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Abstract. This paper presents a new cache consistency scheme for hierarchically structured shared-memory 
multiprocessors. The scheme is simple, fast and efficient, and it does not require a large amount of state 
information to be maintained. The scheme exploits the broadcast capability of these systems, but limits 
the extent of the broadcasts by means of a novel filtering mechanism. As a specific example, it is shown 
how the proposed cache consistency scheme can be implemented on the Hector multiprocessor architecture. 
Using trace-driven simulations, we demonstrate that the scheme is scalable and performs well for common 
applications. 
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1. Introduct ion 

In shared-memory multiprocessors, the performance of  parallel applications can be im- 
proved through the use of hardware-enforced cache consistency schemes. Yet hardware- 
based schemes do not scale easily to large systems. Large multiprocessors require inter- 
connection networks that are more complex than the single-bus-like structures used in 
small multiprocessors. In these smaller systems, there exists a natural broadcast mecha- 
nism allowing for simple snooping-based cache consistency protocols. In larger systems, 
the networks are often segmented in order to increase the total system bandwidth. Ex- 
tensive use of broadcasts in these segmented networks quickly increases the network 
utilization to an unacceptable level as the size of  the system increases. Moreover,  such 
networks are often not race-free, making it difficult to impose a global ordering on mem- 
ory accesses. For these reasons, many of  the cache consistency schemes proposed for 
large systems do not rely on broadcasts, but on communication that targets only the 
caches with copies of  the particular block of  memory. 

In order to be able to target specific caches, it is necessary to store the identity of  all 
caches that have a copy of  a particular block. The hardware cost of maintaining this 
information increases greatly with both the memory size and the number of  processors. 
Hardware complexity is further increased because the state information must be quickly 
accessible in order to avoid degrading the system performance. 
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A number of cache consistency protocols have been proposed that address the above 
issues, with the aim of achieving a high degree of scalability. Directory schemes attempt 
to minimize the bandwidth consumption by sending the cache control messages to only 
those processors that have a copy of the accessed item. The MIT Alewife multiprocessor 
[Chaiken et al. 1991] implements a version of such a protocol in which the message 
distribution is handled by the hardware if the degree of sharing is small and otherwise by 
software. By relying on software to enforce consistency when the degree of sharing is 
large, which is a relatively infrequent situation [Chaiken et al. 1991; Lenoski et al. 1992], 
the amount of state information maintained by the hardware remains small. The DASH 
multiprocessor [Lenoski et al. 1990] reduces the amount of state information required by 
grouping processors into clusters and maintaining the information on a per-cluster basis. 
Consistency within a cluster is maintained by means of snooping. 

Another cache consistency scheme, which is implemented by the IEEE SCI protocol 
[Gustavson 1992], uses linked lists. A linked list, maintained by pointers in each cache 
block frame, is used to identify the nodes with a copy of a given data item. Consistency 
is maintained by traversing the list anytime this data item is modified. In systems without 
point-to-point interconnections between all processors, it is possible that traversing a list 
can result in messages flowing over the same network links several times. For example, 
in a ring-connected system, a message may have to traverse the entire ring n times in 
the worst case if there are n active copies of the data to be invalidated. In systems based 
on a single unidirectional ring, this multiple-traversal problem can be avoided through 
the use of a snooping-based scheme proposed by Barroso and Dubois [1991]. 

In this paper we describe a new cache consistency scheme for hierarchically structured 
shared-memory multiprocessors that is simple, fast and efficient, and it does not require 
a large amount of state information to be maintained. It can be used to achieve various 
consistency models from sequential consistency [Lamport 1979] to release consistency 
[Gharachorloo et al. 1990]. It is suitable for hierarchical multiprocessors that employ 
interconnection networks with the following properties: There is a unique path between 
any two nodes, it is impossible for messages to pass each other, and the messages are 
processed at each network node in the order in which they arrive. Networks of this type 
are race-free [Landin et al. 1991]. Race-free networks have been used in a number of 
experimental multiprocessors built in university environments, such as Cm* [Gehringer 
et al. 1987], Cedar [Konicek 1991], and Hector [Vranesic et al. 1991], as well as in the 
KSR-1 [KSR 1992; Frank et al. 1993], a commercially available machine. 

Our scheme exploits the broadcast capability, but limits the extent of the broadcast 
by means of a novel filtering mechanism. Filters, located in each routing node of the 
network, decide whether a broadcast message should be propagated further by inspecting 
information recorded in the message as a bit mask. The bit masks, whose size is a 
function of the number of levels of hierarchy in the network, are maintained with the 
memory on a per-block basis. 

Our scheme differs from existing directory-based cache consistency schemes in two 
important aspects. First, it requires much less additional memory because the state 
information that has to be kept is less specific and hence requires only a relatively small 
bit mask per memory block. Second, invalidations of shared data requiring a consistency- 
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message broadcast are performed within the maximum time for a single broadcast. In 
directory schemes, the time to complete the invalidation process is determined by the 
time needed to transmit (possibly individual) messages to all caches that are affected. 

Without loss of generality, we will present our scheme as applied to the Hector mul- 
tiprocessor architecture [Vranesic et al. 1991], which uses a hierarchy of unidirectional 
rings to interconnect processor and memory modules (as described briefly in the next 
section). In Section 3 we discuss a protocol for enforcing sequential consistency, assum- 
ing a full broadcast in order to simplify the presentation. In Section 4 we introduce our 
filtering mechanism. Finally, in Section 5 we analyze the performance of the scheme 
by presenting the results of trace-driven simulations. These simulations show that the 
limited-broadcast scheme is scalable and that it performs well. 

2. The Hector Multiprocessor Architecture 

In this section, we present a brief overview of the Hector multiprocessor architecture 
[Vranesic et al. 1991]. The Hector architecture consists of a set of stations connected 
by a hierarchy of unidirectional rings. Each station contains a cluster of processor and 
memory modules, connected by a split-cycle request-response bus. The hierarchical 
multiprocessor is formed by interconnecting unique sets of stations by local rings that 
are in turn interconnected by higher-level rings; the ring at the top of the hierarchy 
is referred to as the central ring. While this interconnection scheme is scalable to an 
arbitrary number of levels, for simplicity we will assume the two-level ring hierarchy 
shown in Figure 1. 

Each processor module consists of a processor, cache memory, a cache controller and a 
communication submodule. Each memory module occupies a unique contiguous portion 
of a flat, global (physical) address space that is transparently accessible by each processor. 
Information is transferred using a bit-parallel packet transfer protocol. Communication 
submodules associated with each processor and memory module handle the sending and 
receiving of the packets. The transfer of packets between modules is managed by station 
controllers and inter-ring interfaces. Each station controller is responsible for controlling 
transfers between modules on the same station as well as the traffic on the local ring in 
the vicinity of its station. 

Each ring can be thought of as consisting of multiple segments in which, in any 
given cycle, a single packet may reside. Packets travel around the ring by synchronous 
transfer from one ring segment to the next. As long as a packet on a particular segment 
is not destined for the associated station, on-station and local ring transfers may occur 
concurrently. If a ring packet is to be delivered to a module on a station, its delivery takes 
precedence over on-station transfers. Packets destined for another station are switched 
from the station to the local ring only when the local-ring segment does not already hold 
a valid packet. Therefore, no flow control problems occur at the station level. 

The inter-ring interfaces connect two rings and require FIFO buffers to store packets 
and prevent packet collisions. A collision would occur if in a given cycle the input 
packets from both rings are to be routed to the same output. Packets on the central ring 
usually have priority over those on the local ring. To make flow control unnecessary, 
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Figure 1. Structure of the Target multiprocessor. 

the FIFO buffers are large enough so that they can accommodate any packet that might 
arrive. These FIFOs are of fixed size, because the number of processors in the system 
limits the number of packets being transferred in the system at any given time and each 
processor can have at most a limited number of outstanding memory requests. Thus, in 
a system with P processors and N outstanding memory requests per processor, the FIFO 
buffers at the inter-ring interfaces will need to be large enough to accommodate P x N 
requests. Finally, note that packet collisions cannot occur on the station bus because the 
station controller grants an on-station module use of the bus only if there is no incoming 
ring-packet delivery. 

In each cycle, every packet is transferred to the next ring segment or the next station 
bus, unless the packet is buffered in an inter-ring FIFO. If a memory access packet 
reaches a memory module that has too many packets already queued for service, then 
a negative acknowledgment packet is sent back to the requesting processor so that it 
can retransmit the request [Vranesic et al. 1991]; the requesting processor will always 
be able to receive the negative acknowledgment. The invalidation packets used by the 
proposed cache consistency protocol are always processed by the cache modules when 
these packets arrive at a station. Therefore, these invalidation packets are never negatively 
acknowledged. 
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3. The Cache Consistency Protocol 

We now present the cache consistency scheme in the context of the Hector multiprocessor 
architecture. The scheme exploits the broadcast capability of rings and uses snooping 
within stations to keep the caches consistent. Packet filters within each network node 
(i.e., each station controller and each inter-ring interface) are used to limit the scope of 
the broadcast messages and thereby improve the scalability of the protocol. 

The protocol is suitable for invalidating and updating caches using write-through or 
write-back. To simplify the discussion, we will first describe the basic protocol for 
write-through invalidating caches, and then show how the protocol can be used with 
write-back invalidating caches. The described protocol enforces sequential consistency, 
but it can also be adapted for weaker consistency models (as discussed in Section 3.3). 
We begin by presenting the protocol with no packet filters, and then in Section 4 describe 
the packet filtering mechanism. 

3.1. The Basic Protocol 

With invalidating write-through caches, consistency is maintained when shared data is 
modified by writing the change through to the main memory and invalidating all cached 
copies of the data aside from the copy belonging to the processor that is the source of 
the write. The invalidating protocol entails five key steps in the common case: 

1. A processor sends a write message to the target memory; the processor is then 
blocked. 1 

2. The memory block that is being modified in the target memory is locked. 

3. A message requesting cache invalidations is sent by the target memory to the highest- 
level ring; this message takes the form of a write-invalidate-pending (WIP) packet. 

4. An invalidate-cache-block message is broadcast from the highest-level ring to all 
stations; this message takes the form of a write-invalidate (WI) packet. 

. Upon receipt of the broadcast WI packet, the target memory location is unlocked. 
Similarly, the processor is unblocked when it receives the WI packet corresponding 
to its write request. 

To illustrate the protocol, consider the following example. Assume that in Figure 1, 
processor module P1 on station A issues a write to memory module M1 located on 
station B. Then, P1 is blocked from making further memory accesses until it receives a 
WI packet, broadcast in response to its write request. The write-request packet travels 
to the destination via local ring 1, the central ring, local ring 2, and station bus B. If the 
destination memory module accepts the write-request packet, its station controller forms 
a WIP packet. This packet then ascends to the central ring where it is transformed into 
a WI packet by inter-ring interface 2. This WI packet then circulates around the entire 
central ring and is removed by the inter-ring interface that created it (inter-ring interface 



350  K. FARKAS, Z. VRANESIC, AND M. STUMM 

2). As the WI packet circulates around the central ring, a copy of the WI packet is 
formed at each inter-ring interface and passed down to the associated local ring. Each 
newly formed WI packet in turn circulates around the local ring and is removed when 
it returns to the inter-ring interface responsible for its formation. As the WI packet 
circulates around the local ring, each station controller makes a copy of the WI packet 
and switches it onto the station bus to allow snooping by the on-station caches. When a 
WI packet reaches the memory module that initiated the invalidation (M1), the location 
is unlocked. Likewise, when a WI packet reaches the processor module that initiated the 
write (P1), the processor is unblocked. It is essential to ensure that P1 is not unblocked 
by a WI packet generated in response to a write by another processor. This requirement 
is easily achieved by including the processor ID in the WI packet. 

The following details concerning the invalidation process should be noted: 

�9 The WI packet on a local ring is removed by the associated inter-ring interface. The 
WI packet on the central ring is removed by the inter-ring interface through which it 
entered the central ring; this is the same interface that transformed the WIP packet 
into the WI packet. 

�9 The WI packet returns to the memory module only after the corresponding WI packet 
has circulated around the entire central ring. The unlocking of the memory location, 
however, may occur before all cached copies of the corresponding data have been 
invalidated, since some of the other WI packets may still be in transit. 

�9 The source of the write request is unblocked when the WI packet visits its station 
rather than when the memory location is unlocked. 

�9 Any copies of the data item resident on the station on which the source is located 
are invalidated when the WI packet visits that station. 

The locking of the memory location during the invalidation process is required in order 
to meet a necessary memory-access ordering requirement for sequential consistency, as 
shown in the appendix. While a location is locked, that is during the invalidation process, 
other write requests to the same location may be accepted and performed, but with 
the provision that the location remains locked until all the corresponding WI packets 
have returned to the memory module. This provision can be met with a counter for 
each location to count the number of outstanding WI packets. Of course, adding these 
counters incurs an extra implementation-dependent cost. Read requests may also be 
received while the location is locked, but the requested data cannot be returned to the 
requesting processor until the location is unlocked. With this one exception, the read 
requests require no special action in this cache consistency protocol. 

3.2. Sequential Consistency 

It is essential to be able to demonstrate that a cache consistency protocol correctly 
enforces the desired memory model. To do so entails showing that the necessary ordering 
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of shared-memory accesses is preserved. A number of researchers [Dubois et al. 1986; 
Gharachorloo et al. 1990; Landin et al. 1991; Scheurich 1989] have proposed methods for 
demonstrating that this order is preserved. These methods involve showing that a set of 
memory-model specific conditions are adhered to by each processor in the multiprocessor 
system. If this fact can be demonstrated, then the system correctly enforces the desired 
memory model. Using the conditions developed by Scheurich, it can be shown that 
the invalidation protocol described above enforces sequential consistency [Farkas 1991]. 
Three features of the Hector architecture, along with the blocking requirement described 
above, guarantee that the necessary ordering of shared accesses is preserved: (1) There is 
a unique path between any two modules, (2) it is impossible for two packets to overtake 
each other, and (3) packets are processed at each network node in the order in which 
they arrive. The need for the locking is discussed further in the appendix. 

3.3. Variants of the Basic Protocol 

Our cache consistency scheme can be adapted easily to implement other caching strategies 
and weaker consistency models. 

3.3.1. Write-back Version 

For simplicity, we have presented the basic protocol in terms of write-through caches. 
However, for many applications, better performance can be achieved with write-back 
caches. Indeed, the latest high-performance microprocessors feature write-back cache 
support. The basic protocol described above can be modified for use with such caches 
and processors. 

The protocol for write-back caches allows a data item to be present in multiple caches 
when the item is only being read, but when a processor wants to modify the item, the 
processor must obtain exclusive ownership. 

As with write-through caches, a read request for data that is not in the requesting 
processor's cache will result in the corresponding cache line being fetched into the cache. 
This line will be obtained from the present owner. The owner of the line is either the 
main memory or the cache with exclusive use of the cache line. If the owner of the line 
is a cache module, then ownership of the line is transferred back to the main memory. 

Write operations are more complex. The requesting processor must become the ex- 
clusive owner of the cache line before the write can be performed. Obtaining exclusive 
ownership entails obtaining a valid copy of the line should it not already be in the writing 
processor's cache, invalidating all other cached copies of the line, and recording at the 
main memory the ID of the writing processor. The invalidation is achieved using the 
broadcast mechanism described above. As with write-through caches, the target memory 
location must be locked until the corresponding WI packet returns to the memory mod- 
ule. However, unlike with write-through caches, no subsequent read or write requests 
to this location may be serviced by the memory while the location is locked. When the 
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cache line is ejected from the cache, no special action is required; the ownership and the 
contents of the line are merely transferred back to the memory module. 

3.3.2. Updating Version 

Updating caches may be used by augmenting the invalidating protocol with a third 
phase. In the first phase of the updating protocol, as in the invalidating protocol, the 
write request is forwarded to the target memory module. In the second phase, the cached 
copies are updated and are also locked, thus preventing read accesses to the data item. 
Then, in the third phase, all copies are unlocked [Farkas 1991]. As in the case of the 
invalidating protocol, the locking of the cache lines is required to prevent two processors 
from observing writes to different locations in different orders. 

3.3.3. Relaxing the Consistency Model 

While sequential consistency is conceptually simple, it imposes restrictions on the per- 
missible outstanding memory accesses of a processor. In addition, a performance penalty 
may be incurred due to the need for restricting access to a memory location during the 
invalidation (updating) process. By adopting a weaker consistency model, hardware opti- 
mizations are possible that increase the system performance. One such model is processor 
consistency [Goodman 1991] provided by several commercial multiprocessors, including 
the Silicon Graphics POWER workstation [Basket et al. 1988] and the VAX 8800 [Fu 
et al. 1987], both of which use a single bus, thus allowing for a simpler consistency 
protocol than the one we propose. 

Processor consistency stipulates that the write operations issued by a processor be ob- 
served in the order in which they were issued, but the writes issued by different processors 
may be observed in different orders. It is in this last point that sequential consistency 
and processor consistency differ. The protocol for processor consistency is very similar 
to the invalidating protocol described above. To achieve processor consistency, we can 
remove either the requirement that the memory be locked in the second phase of the 
protocol or the requirement that the processors be blocked after issuing a write. For the 
updating protocol mentioned above, either nonblocking processors can be used or the 
third phase need not be used. 

System performance can be increased even more by further relaxing the consistency 
model. One such model is release consistency [Gharachorloo et al. 1990] in which a 
global ordering of memory accesses need only occur at specific synchronization points; 
at other times, writes can be observed by other processors in an arbitrary order. Release 
consistency can be implemented by adapting our protocol so that processors are blocked 
only at the synchronization points. 
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4. Scalability 

In the above discussion, we have assumed that invalidation packets are disseminated using 
a full broadcast. While this assumption made the presentation easier to understand, it 
is clear that a pure broadcast scheme is not scalable. The scalability is constrained by 
the amount of the network bandwidth consumed by the invalidation-packet broadcasts. 
With increasing numbers of processors, these broadcasts will grow at a proportional rate, 
resulting eventually in the saturation of the interconnection network. 

To increase the scalability of the proposed invalidation protocol, filters are introduced 
to the ring interfaces (i.e., the inter-ring interfaces and the station controllers). These 
filters block the propagation of invalidation packets that need not be passed on. For 
example, if a station contains no copies of the data being invalidated, there is no need 
to transmit the corresponding write-invalidate packet to this station. 

Two types of filters are used to block the invalidation packets. Outgoing filters block 
the propagation to the next higher level of the hierarchy if all copies of the data being 
invalidated are within the portion of the system that lies below the filter. These filters 
limit the scope of broadcasts by blocking the write-invalidate-pending (WIP) packets. In 
addition, they will reduce the average time required to write a shared location, because 
many broadcasts will no longer start at the highest point in the hierarchy. Incoming filters, 
on the other hand, block the propagation to the next lower level of the hierarchy if there 
are no copies of the data being invalidated in that portion of the system. These filters 
reduce the unnecessary penetration of the broadcast by blocking the write-invalidate (WI) 
packets. 

4.1. Outgoing Filters 

Outgoing filters limit the ascent of write-invalidate-pending (WIP) packets to higher 
levels. This blocking is effected by the filter in the ring interface that is the lowest 
common ancestor relative to all copies of the data being written. When the blocking 
occurs, the ring interface transforms the WIP packet into a WI packet and broadcasts the 
packet to the subsystem below. 

The key to the filtering is knowing the ring interface at which the WIP packet should 
be blocked. If the locations of all copies of a memory block are known, then this ring 
interface can be identified by its height in the hierarchy. The height serves to uniquely 
identify the ring interface because (1) there is a (unique) direct path from the memory 
module that sources the WIP packet to the central ring, and (2) there is exactly one 
ring interface at each level along this path. Each WIP packet includes the height entry 
corresponding to the height that must be obtained in order to reach all copies of the 
memory block being invalidated. When a ring module receives a WIP packet from 
a lower-level ring, it compares the height entry in  the packet with its own height to 
determine whether to block the WIP packet. 

In our design, the height values are maintained on a per cache-line-sized memory-block 
basis. These values are associated with each memory module and are stored within the 
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same station as the memory module. (Note that the caches do not require and do not 
store this information.) The height values are set on each access request to the memory 
module. On a write access, the value corresponding to the data being written is included 
in the WIP packet. After the WIP packet is formed, the value is set to the height that 
needs to be reached in order for a WI packet to reach the writing processor. On a read 
access, the value is set to the height for a WI packet to reach the accessing processor if 
that height is larger than the already existing height value. 

4.2. Incoming Filters 

Incoming filters reduce the unnecessary penetration by preventing write-invalidate pack- 
ets from descending into a subsystem in which there are no copies of the data being 
invalidated. To decide whether to pass a WI packet on, a ring interface needs to know 
if the stations below it have any cached copies. A straightforward method of encod- 
ing this information in a WI packet would be to use a bit mask, where each bit in the 
mask would correspond to a station and would indicate whether the station contains a 
cached copy of the cache-line-sized memory block being invalidated. The bit masks for 
each memory block would be associated with the memory modules (together with the 
height values). The obvious problem with this scheme is that the size of the bit mask 
corresponds directly to the number of stations in the system and hence scales poorly. 

We propose a simpler and less costly design. Our design partitions the bit mask into 
fields and uses each field to encode information about one level of the interconnection 
network hierarchy. An example of this bit mask partitioning is shown in Figure 2 for a 
system with 256 stations configured as a central ring (root level) connecting two level-2 
rings, each level-2 ring connecting four level-3 rings, each level-3 ring connecting four 
local rings, and each local ring having 8 stations. In the bit mask, each bit position in a 
particular field corresponds to a specific path from this level to the next lower level in the 
hierarchy, and the value of the bit indicates whether a WI packet should be propagated 
down that path. The number of bits in a particular field is thus equal to the maximum 
number of paths from any ring at this level to the next lower level. Thus, in our example, 
the rightmost field of the bit mask requires 8 bits because each local ring has 8 stations. 
The overall hardware cost per memory block is the sum of the bits in all fields. In our 
example, this cost is 18 bits for the 256-station system, which is significantly less than 
the 256 bits required for the 1 bit per station encoding. 

For an example of the use of the incoming filter bit masks, consider the very small 
system shown in Figure 3. Suppose that a memory location is modified, of which copies 
exist on stations B and C. To maintain consistency, a WI packet must propagate to these 
stations. In order for the WI packet to reach station B, the following bits in the mask 
must be set: bit 1 of field 1 (to indicate the presence of a copy within local ring 1) and 
bit 2 of field 2 (to indicate the presence of a copy within station 2). Similarly, for a WI 
packet to reach station C, bit 3 of field 1 and bit 1 of field 2 must be set. The bit mask 
with these four bits set is shown in the figure. With this bit mask, the WI packet will 
reach station B but will also reach station A because bit 1 of field 2 is set. Similarly, 
the WI packet will reach both stations C and D. The proposed bit encoding scheme 
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Figure 2. Incoming filter bit mask for an example 256-station system. 
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Figure 3. Illustration of the bit mask for the example in which processors on stations /3 and C have cached 
copies of a memory location. 

is not perfect since the WI packet need not have reached stations A or D. However, 
investigations of multiprocessor applications have shown that the number of processors 
that actively share a given data item is small on average [Chaiken et al. 1991; Lenoski 
et al. 1992]; hence we expect the incoming filters to be effective. 

The bit masks are maintained in the same fashion as described for the height values 
used with the outgoing filters. A read access to a memory block causes the setting of 
the necessary bits to ensure that a subsequent write to the block will result in a WI 
packet propagating to the reading processor's station. On a write access, after the bit 
mask is inserted into the WIP packet, the bits of the mask are cleared except for the 
bits corresponding to the path between the memory module and the writing processor. 
It should be noted that the bit mask is not changed when a cache line is evicted. Thus, 
the bit mask identifies the set of stations that includes those caches which have acquired 
a copy of the memory block since the last invalidation. 

The bit masks reflect the path required for a WI packet to propagate from the ring 
interface that is the least common ancestor relative to all the copies of the data. Since 
the bit mask has as many fields as the network has levels, the height value is encoded 
in this mask by setting to zero all fields corresponding to levels above the level that 
the WIP packet must reach. Because this zeroing is performed as part of the process o f  
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maintaining the incoming filter bit masks, the height values never have to be explicitly 
calculated or maintained. 

The control structure of the filter mechanism is simple. The decision whether a broad- 
cast packet should be blocked is made by a simple inspection of the bit mask in the 
packet, which has the same complexity and time delay as that incurred in making normal 
routing decisions in the ring interfaces. 

The main hardware cost of the filters is the memory required to store the bit masks, 
which grows linearly with the size of the memory and logarithmically with the number 
of processors. Another potential cost of the filters involves the inclusion of the bit masks 
in each invalidation packet. In practice, however, because invalidation packets do not 
include data, the bit masks can be included without increasing the size of the packets. 

Our scheme differs from the existing directory-based cache consistency schemes in 
two important aspects. First, it requires much less additional memory, because the state 
information that has to be kept is less specific and therefore requires relatively small bit 
masks. Second, all writes requiring invalidations are performed within the maximum 
time for a single broadcast. In directory schemes, the time to complete the invalidation 
process is determined by the time needed to transmit (possibly individual) messages to all 
caches that are affected. The only significant drawback of our scheme is that it generates 
some unnecessary traffic due to the imperfect blocking nature of the filters. However, 
as indicated by the simulation results in the next section, the effect on the utilization of 
the communications links is reasonable enough to lead us to believe that the proposed 
scheme will scale well in large systems. 

5. Evaluation of the Proposed Protocol 

We have investigated the effectiveness of the proposed protocol using trace-driven sim- 
ulations. Because a meaningful evaluation demands that a detailed simulation model be 
used, we decided to model the Hector prototype [Stumm et al. 1993] at the register level. 
This prototype implements the variant of the Hector multiprocessor architecture in which 
the memory is distributed among the processor modules instead of residing in separate 
modules. 

5.1. Simulation Methodology 

The purpose of our evaluation is to assess the overall performance of the proposed in- 
validating protocol and to assess its potential for scalability. We use memory access 
latency as our metric for performance. We compare our scheme against two alternatives: 
a scheme in which shared data is not cached and an optimistic extreme in which inval- 
idation overhead is assumed to be zero. We have made this comparison for a number 
of topologies and have found that a balanced topology gives the best performance. We 
assess scalability by investigating the impact of the proposed protocol on the utilization 
of the network links for a system with up to 128 processors. Using a balanced topology, 
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No. of 
Application Procs. 

Simple 64 

Speech 64 

Weather 64 

SOR 64 

64 
MP3D 

128 

64 
Water 

128 

No. of Distribution of Memory Operations (in %) 

Memory Instruction Read- Private Data Shared Data 
Refs. modify 

fetches writes 

19 M 40.9 13.4 

11M 

19 M 41.5 0.8 

762 M 61.5 

15 M 1.0 

18 M 1.0 

27 M 0.2 

26 M 0.2 

Reads Writes Reads Writes 

19.2 9.9 14.8 1.7 

78.2 21.8 

40.2 7.0 8.5 2.0 

30.8 7.7 

25.9 9.1 38.8 25.2 

26.7 10.7 37.3 24.2 

61.0 23.3 13.9 1.6 

60.9 23.3 14.0 1.6 

Table 1. Trace characteristics: Simple models the behavior of fluids and uses finite difference methods; 
Speech implements the lexical decoding stage of a speech interpretation language (the trace contains only data 
references); Weather solves a set differential equations using finite-difference methods; SOR is an iterative 
method for solving partial differential equations; MP3D models a wind tunnel using discrete particle-based 
simulation; Water computes the energy of a system of water molecules. 

we show that the proposed protocol scales well when used with both write-through and 
write-back policies. 

In the simulations, the processor was modeled using an event generator to emulate 
the execution of  a multiprocessor application. We will show the results for six different 
applications running on either 64-processor or 128-processor systems. For these applica- 
tions, the memory references were obtained from address traces whose distributions of  
memory operations are shown in Table 1. The traces for Simple, Speech and Weather 
were obtained from the MIT trace set; Chaiken et al. describe the applications and 
the methods used to acquire these traces [Chaiken et al. 1990]. The remaining traces 
were generated using the MINT multiprocessor simulation package [Veenstra and Fowler 
1994]: SOR (Successive Over-Relaxation), and Water and MP3D which are applications 
from the SPLASH benchmark set [Singh et al. 1991]. The traces for the last two appli- 
cations correspond to the complete parallel-execution stage of the benchmark, but do not 
include instruction references (in order to decrease the size of the traces and decrease 
the simulation time). 

Because the address traces were acquired from machines dissimilar to Hector, it is 
only meaningful to compare the relative results for the different caching strategies and 
topologies; the absolute numbers are not meaningful. Thus, we view the traces merely as 
a sequence of  memory references rather than the reference stream that would be generated 
if the applications were compiled for and run on Hector. Furthermore, while our MINT- 
generated traces contain inter-reference timing information, the three MIT traces do not. 
For these traces we assumed a one-cycle delay between memory references. The traces 
do not contain mapping information assigning the address-reference streams to physical 
processors. Similarly, the traces do not specify a virtual to physical page assignment. 
In the simulations, we performed optimal page assignment by first preprocessing the 



358 K. FARKAS, Z. VRANESIC, AND M. STUMM 

22.8 

~12.512 4 12.6 shared 
13.1 11.8 . r.~10.710. 5 data writes 

10.9 9 6  t'~9.9 9.8 ,'~ 10.1 ~ shared 
data reads 
private 

i~ data 
. ' i  write read-modify- 

::~::~:: instructions 

u n  i b z  u n  i b z u n  i b z  u n  i b z u n  i b z u n  i b z 

1x64x1 1x16x4 2x4x8 2x l  6x2 2x8x4 4x4x4 

u = no caching n = IP wi thout  f i l ters i = IP with incoming f i l ters 

b = IP with in & out f i l ters z = z e r o - o v e r h e a d  protocol  

Figure 4. Average memory access latency for the Weather application. 

traces and then statically allocating pages such that a page is located closest to those 
processors that issued the most references to it. Finally, the MIT traces contain only 
a small percentage of the total memory references the applications would have issued 
during their entire execution, and the MINT traces contain only the shared-data accesses 
made in the parallel execution phase of the applications. For these reasons, the results 
we present correspond to the data gathered to the point where the first processor exhausts 
its stream of references. 

5.2. Latency Analysis 

To assess the effects on memory access latency, five scenarios were simulated using the 
traces of Table 1: (1) Shared data is not cached, (2) shared data is cached using the 
write-through invalidating protocol without filters, (3) the same protocol is used with 
incoming filters, (4) the same protocol is used with both incoming and outgoing filters, 
and (5) shared data is cached using a zero-cycle overhead cache consistency scheme. 
The last scenario, in which all copies of a location are assumed to be invalidated in a 
single cycle with no messages transmitted, is provided to gauge the overhead due to the 
use of the invalidating protocol. In each of these scenarios, the invalidating protocol 
enforces sequential consistency. The metric we use in comparing these scenarios is the 
weighted-mean number of clock cycles. This metric is independent of the cycle time of 
a system and hence allows us to conduct a comparison that is not tied to a particular 
implementation. 

Figure 4 presents the weighted-mean memory access latency for the execution of the 
Weather application. The various degrees of shading in the figure show the latency 
attributable to each access type. The ordered triples labeling the horizontal axis specify 
the topology simulated: The first coordinate indicates the number of local rings, the 
second the number of stations per local ring and the third the number of processors 
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Figure 5. Average memory access latency for the Speech application. 

per station. Because the cache hit rates for instruction and private data accesses are 
very high, the contribution to the average latency by these access types is constant. 
In this particular application, most of the latency is attributable to the read-modify- 
write operations. As can be seen, the average latency is generally reduced with cache 
consistency. The scenarios using the invalidating protocol perform within 12% of the 
ideal zero-cycle overhead scheme; their near identical performance is attributable to low 
network utilizations. 

Figure 5 presents similar results for the Speech application. Compared to Weather, 
Speech shows a more pronounced reduction in the memory access latency with the 
use of the invalidating protocol. This observation is not surprising because the Speech 
application trace essentially contains only shared-data references (see Table 1). The 
use of incoming filters alone improves the performance by an average of 17% over 
the topologies investigated. This improvement is brought about by the considerable 
reduction in the average station bus utilization from 56% without filters to 13% with 
incoming filters. When outgoing filters are also used, the performance improves further 
by a factor of two on average, as a result of the reduction in shared-data access latency 
brought about by the outgoing filters. 

Figure 6 gives the results for the SOR application. As shown in the figure, the use of 
both types of filters achieves latencies within 20% of the ideal zero-overhead scheme. 
However, it is interesting to note that the memory access latency of the invalidating pro- 
tocol without filters can be worse than uncached operation if the topology is unbalanced. 
(We should also note that in this application the filters do not improve noticeably the 
average latency of read accesses. The reason is that the vast majority of reads are local 
due to our page placement policy; hence, they are not affected by the changes in network 
utilization.) 

Our simulations have shown that for the traces in Table 1, the average memory access 
latency is reduced with the use of the invalidating protocol. The obtained results also 
reveal that the topology of the system has a significant impact on the performance. The 
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Figure 6. Average memory access latency for the SOR application. 
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instructions 

best topologies are those that are balanced in terms of the number of processors, stations 
and rings. This preference occurs because the more balanced topologies tend to maximize 
the number of independent concurrent transactions in the interconnection network. In 
addition, the average distance between any two modules is shorter m these topologies 
than in unbalanced topologies. This distance has a direct impact on the time required 
to access a remote memory location as well as the length of time a memory location 
remains locked during the second phase of the invalidating protocol. 

5.3. Traffic Analysis 

Figures 4 - 6  show that performance can be improved significantly with the use of the 
invalidating write-through protocol. We now consider the utilization of the network links 
to show that the filter mechanism improves scalability. Since the balanced topologies 
generally exhibit superior performance, we will present only the results obtained from 
the simulations of balanced systems. We begin by presenting data for simulations of 
a 64-processor system for the 4 x 4 x 4  topology with write-through. We then present 
data for simulations of a system using write-back. Finally, we show results from the 
simulations of 128-processor systems. 

5.3.1. Write-through 

The primary purpose of the filters is to reduce the utilization of the interconnection 
network by limiting the scope and penetration of the invalidation packet broadcasts. The 
effectiveness of the filters may be assessed by looking at the utilization of the various 
links in the interconnection network. Figure 7 depicts the effect of incoming filters on 
the utilization of the station buses and local rings for the six different applications. The 
utilization of the central ring is not given because incoming filters have no effect on 
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Figure  7. Utilization of the station buses (s) and local rings (1) using incoming filters with write-through. 

the traffic on this ring. In the figure, the upper number above each bar gives the actual 
utilization of the network link while the lower number gives the utilization of the link 
due to invalidation packets. It is apparent from the figure that incoming filters reduce 
significantly both the utilization of the network links and the portion of this utilization 
attributable to invalidation packets. Incoming filters therefore enhance scalability. 

Figure 8 gives the percentage of the invalidation packets that are blocked by the 
incoming filters. The second and third bars (for each application) correspond to the 
invalidation packets that pass through the inter-ring and station-controller filters. The 
fourth bar (black) indicates how many invalidation packets are actually required to reach 
the stations because of the existence of a copy of the data being invalidated. As seen 
in the figure, for some applications the incoming filters reduce the invalidation traffic 
close to the minimum required. For the other applications the reduction is not as great, 
because of the imperfect nature of our simple filtering mechanism; still, less than a third 
of the invalidation packets generated reach a station, which indicates the effectiveness 
of the filters. 

For the write-through protocol, outgoing filters have an even greater potential impact 
on scalability than incoming filters. As illustrated in Figures 4 -  6, the use of these filters 
can greatly decrease the shared-data write latency, thereby improving the performance. In 
addition, the latencies for all types of accesses may decrease due to the reduced network 
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Figure 9. Utilization of the station buses (s), the local rings (l) and the central ring (c), using both incoming 
and outgoing filters with the write-through invalidating protocol. 

load brought about by restricting the scope of the broadcasts. Figure 9 depicts the effect 
of  using both incoming and outgoing filters on the utilization of the network as well as 
the portion of this utilization attributable to invalidation packets. It is apparent that the 
use of the outgoing filters further reduces the utilization, thus enhancing the scalability 
of  the protocol. 
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Figure 10. The effectiveness of outgoing filters in achieving a limited broadcast with write-through. 

Figure 10 depicts the effectiveness of the outgoing filter mechanism in achieving a 
limited broadcast. The second bar gives the portion of the broadcasts limited to a single 
station, the third bar shows the portion limited to a single local ring, and the fourth 
shows the portion that results in a system-wide broadcast. These portions are expressed 
as a percentage of the total number of invalidation packets generated by the memory 
modules. The results show that the outgoing filters reduce the scope of the broadcasts 
significantly in all cases and produce a dramatic reduction in the cases of the Speech and 
SOR applications. 

5.3.2. Write-back 

Shared-memory multiprocessors often use the write-back invalidation protocol for cache 
consistency because of its superior performance characteristics. In Figure 11 we depict the 
effectiveness of our filtering scheme when used with write-back, in which an invalidation 
packet is broadcast only if the data being written is actively shared. In this case, the 
cache itself prevents broadcasts caused by writes to data that is not actively shared. In 
effect, the write-back cache acts as an outgoing filter at the processor level. However, 
the outgoing filters can still have a beneficiary effect at the station and ring levels, as 
indicated by Figure 12. In the figure, the second bar of each application represents the 
number of writes that remain local to the cache; the third and fourth bars represent the 
broadcasts affected by the outgoing filters. 

5.3.3. Larger Configurations 

We have simulated some of the applications running on a 128-processor system. Fig- 
ure 13 shows the utilization of network links for the MP3D and Weather applications, 
using both the write-through and the write-back protocols. In each case, invalidation 
packets constitute most of the traffic at the station level if filters are not used, but this 
traffic is substantially reduced using filters. As the system becomes even larger, the 
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Figure 11. Utilization of the station buses (s), the local rings (1) and the central ring (c), using both incoming 
and outgoing filters with the write-back invalidating protocol. 
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Figure 13. Utilization of the station buses (s), the local rings (1) and the central ring (c), using both incoming 
and outgoing filters for a system with 128 processors arranged in a 4x8x4 topology. 

relative proportion of the invalidation traffic increases accordingly. Therefore, the role 
of filters becomes more important. 

6. Concluding Remarks 

We have presented a new cache consistency scheme, targeted for hierarchically structured 
shared-memory multiprocessors. The protocol is based on broadcasting invalidation 
packets, using a packet filtering mechanism to limit the extent of broadcasts. The key 
advantages of our protocol follow: 

1. It is simple and inexpensive to implement, 

2. it has a minimal effect on packet transfer delays, and 

3. it completes invalidation in minimal and bounded time. 

We have shown that our protocol scales well to medium-sized multiprocessors and that 
it performs well for several typical applications. 

It is interesting to compare the main features of the proposed consistency scheme 
with other existing schemes. For example, the KSR multiprocessor [KSR 1992; Frank 
et al. 1993] is also based on a hierarchy of rings and uses a consistency protocol that 
involves broadcasting of invalidation packets. It uses filters at the inter-ring interfaces. 
The filters are precise and hence require much state information to be maintained at the 
filters, since each filter must be able to keep track of the contents of all caches below it in 
the hierarchy. Thus, the size required for the state information grows by a multiplicative 
factor with the level of the ring in the hierarchy, essentially precluding scaling to beyond 
two or three levels of hierarchy. Moreover, the state information in a filter must be 
searched with each passing invalidation packet to determine how to process that packet. 
The time required for this search effectively limits the speed with which a packet can 
traverse a network node. In contrast, in our scheme, the decision whether to filter out a 
packet is made by examining only one bit in the packet, which can be achieved easily 
in one clock cycle and requires no state information in the filters themselves. 
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Figure 14. A portion of the hierarchy of a system that includes four processors and two memory modules. 

Directory-based schemes attempt to send point-to-point invalidation packets directly to 
the caches that have a copy of the data to be invalidated. Therefore, they are either serial 
in nature, invalidating one copy after another, or they require complex bookkeeping 
to keep track of the acknowledgments of multiple outstanding invalidation packets if 
invalidations can occur concurrently. The SCI protocol (used to implement ring-based 
topologies, including hierarchical ones) is an example of a serial protocol, in which 
actively shared data is kept in a linked list that spans the caches with a copy of the data 
[Gustavson 1992]. Invalidation proceeds along the linked list so that the invalidation of 
n cached copies will require sending n packets, which in the worst case have to traverse 
the entire system. Our protocol results in concurrent invalidation rather than sequential. 
While it generates some superfluous traffic at the lower levels of the hierarchy due to the 
imperfect nature of our filters, it minimizes the invalidation traffic at the top level of the 
hierarchy. For these reasons, the elapsed time of the invalidation process in our scheme 
will never exceed that of any directory-based scheme. 

Presently, we are applying the proposed cache consistency scheme in the design of a 
64-processor prototype machine at the University of Toronto. This multiprocessor will 
use R10000 processors in a balanced topology that has one central ring connecting four 
local rings, each having four stations with four processors. 

Appendix 

Enforcing Sequential Consistency 

In multiprocessors, writes to shared-memory locations are said to occur when they are 
observed by the other processors. Thus, of concern is the order in which writes are 
observed rather than the order in which they are issued. For sequential consistency, the 
observed order of all writes must be the same for all processors. This requirement is 
enforced by the protocols presented in this paper. The enforcement requires that the 
location being written to is locked during the invalidation (updating) phase. We will 
illustrate by an example why locking is necessary for imposing a global ordering on 
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writes; we assume invalidating caches. A more formal discussion on locking and on the 
requirements for sequential consistency is presented in [Farkas 1991]. 

Figure 14 shows a portion of the hierarchy of a system that includes processors P1, 
P2, P3 and P4, and memory modules M1 and 21//2. Let X be a memory location in Ma 
and Y be a location in M2. Also, assume that P1 has a cached copy of Y, while P2 
has a cached copy of X.  Now, suppose P3 performs (successfully) a write to X and P4 
performs a write to Y. If the invalidating protocol is used without locking, the following 
sequence of events is possible. Let P1 issue a read of location X. Since X has been 
changed, P1 will receive the new value of X. Next P1 issues a read of location Y. If  
we assume that the write-invalidate (WI) packet for Y has not yet reached P1, then P1 
will get the old value of Y from its cache. Similarly, if P2 issues a read of location Y, 
it will receive the new value of Y. If it next issues a read of X,  it will read the old 
value of X from its cache if the WI packet corresponding to the change of X has not 
yet reached P2. Therefore, P1 and P2 see the changes made to locations X and Y in 
different orders. 

With locking, the above scenario cannot occur. In our example, the WI packets for 
both X and Y will reach the topmost node in the hierarchy. Assume that WIx ,  the WI 
packet for X,  descends to node L2 before WIy.  Then, it is guaranteed that P2's copy 
of X will be invalidated before P2 can obtain a new value from Y because this memory 
location is locked until WIy  reaches M2. Clearly, a symmetrical situation can occur 
when Wig  precedes W I x  at node L1, thus preventing P1 from reading the old value 
from its cache. 
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Notes 

1. We assume that the processor does not issue multiple writes because we are trying to achieve sequential 
consistency. 
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