
Cache Consistency in Hierarchical-Ring-Based MultiprocessorsyKeith Farkas Zvonko Vranesic Michael StummDepartment of Electrical EngineeringUniversity of TorontoToronto, Ontario, Canada M5S 1A4email: farkas@eecg.toronto.eduEECG TR-92-09-01AbstractA cache consistency scheme is presented for a classof multiprocessors based on a hierarchy of rings. Bytaking advantage of the natural broadcast and orderingproperties of rings, cache consistency is achieved via asimple, selective-broadcast based protocol requiring nocomplex hardware. Using address-trace driven simula-tions of the Hector shared-memory multiprocessor, itis shown that the scheme performs well.1 IntroductionThe design of cache consistency protocols for large-scale shared-memory multiprocessors is complicatedbecause of several factors. First, due to limited band-width of a single bus, large-scale multiprocessors havemore complex interconnection networks. These net-works use split-cycle protocols and allow concurrentmemory accesses. In some cases these networks arenot race-free [13], which makes it di�cult to impose aglobal ordering on accesses.The second complication pertains to the increasedpotential for contention at some of the system nodessuch as network links or memory modules. Contentionfor such resources requires that requests for them beeither queued in some fashion, or refused by returninga negative acknowledgment to the requester. Since us-ing in�nite queues can be impractical, the unsuccessfulrequesters may be allowed to retry the request later.As a result, consistency protocols must be capable ofgracefully handling rejected requests and retries, aswell as permitting the queuing of requests.yTo appear in "Supercomputing `92", November 1992.

Finally, growing memory sizes and increasing num-ber of processors imposes limits on the scalability ofconsistency protocols. All protocols require some stateinformation to be kept and the amount of this infor-mation increases with the number of processors andmemory size. Moreover, a particular data item maybe shared by a large number of processors, all of whichmust be noti�ed when a change to the data item ismade. This noti�cation process can inict a large de-lay on the source of the update and can consume asigni�cant portion of the available network bandwidth,depending on the implementation details of the pro-tocol.A number of cache consistency protocols have beenproposed, all of which address the above three com-plications in various ways. Limited-map directoryschemes attempt to address the issue of bandwidthconsumption by limiting the broadcasts of cache con-trol messages to only those processors which havea copy of the accessed item, while at the sametime reducing the amount of state information. TheMIT Alewife multiprocessor [3] implements a ver-sion of such a protocol in which the broadcastingis handled by the hardware if the degree of sharingis small and otherwise by software. In using thishardware/software approach, the poor scalability oflimited-directory schemes is avoided [3]. A related ap-proach is implemented by the DASH multiprocessor[14], which uses a full-map directory but the amountof state information is reduced by grouping processorsinto clusters. Consistency within a cluster is main-tained via snooping.A third cache-consistency scheme, implemented bythe IEEE SCI protocol [9], uses linked lists as opposedto the directories used in the DASH and Alewife sys-tems. The linked lists, maintained by pointers in each

cache block frame, are used to identify the nodes witha copy of a given data item. Consistency is main-tained by traversing the list anytime this data itemis modi�ed. Traversing a list, however, can result inmessages owing over the same network links severaltimes, especially in networks without point-to-pointinterconnections between all modules. For example,in a ring-connected system a message may have totraverse the entire ring n times in the worst case, ifthere are n active copies of the data to be invalidated.Barroso and Dubois [1] have proposed a scheme fora system of processors interconnected by a unidirec-tional ring that relies on snooping and thus avoids themultiple-traversal problem of the SCI protocol.In this paper, we propose a selective-broadcastbased cache consistency protocol that addresses thethree complications listed above for a class of mul-tiprocessors based on hierarchical rings. Ring-basednetworks have been investigated [1, 6, 10, 11, 16]as a means for implementing high performance in-terconnection backplanes because they o�er a num-ber of advantages. Having point-to-point intercon-nections, large rings can be driven at very high clockrates. Rings also exhibit natural broadcast and or-dering properties that facilitate the implementationof cache consistency protocols. The proposed proto-col can easily be used to achieve various consistencymodels, including sequential consistency [12] and pro-cessor consistency [8].In the next section, we de�ne the class of machinesfor which the protocol is targeted. Section 3 presentsthe new protocol. Section 4 discusses several perfor-mance issues and enhancements to the basic protocol.Finally, in Section 5, we analyze the performance ofthe protocol through address trace driven simulations.2 The Architecture of the Target Mul-tiprocessorThe protocol presented in this paper has been de-veloped for general multiprocessors that are based onhierarchical rings. In order to clarify the presentation,we will describe without loss of generality the protocolas it would apply to the Hector multiprocessor archi-tecture [16].The target architecture consists of clusters of pro-cessor and memory modules, interconnected by rings.In Hector, a cluster is called a station, within which asplit-cycle bus is used as the interconnection medium.The hierarchical multiprocessor is formed by intercon-necting sets of stations by local rings, which are then

interconnected by higher level rings. While the pro-posed scheme is scalable to an arbitrary number oflevels, for simplicity we will assume the two-level ringhierarchy shown in Figure 1, comprising local ringsinterconnected by a single central ring.Each memory module occupies a unique contiguousportion of a at, global (physical) address space. Theprocessor modules can transparently access all mem-ory locations. The modules consist of a processor,cache memory, a cache controller and a communica-tion submodule.Information is transferred between processor andmemory modules using a packetized synchronoustransfer protocol. The interconnection network traf-�c consists of request packets and response packets.Communication submodules associated with each pro-cessor and memory module handle the sending and re-ceiving of the packets. The transfer of packets betweenmodules is managed by station controllers and inter-ring interfaces. Each station controller is responsiblefor controlling on-station transfers as well as the tra�con the local ring in the vicinity of its station.Each ring can be thought of as consisting of mul-tiple segments in which, in any given cycle, a singlepacket may reside. Packets travel around the ringby being synchronously transferred from one ring seg-ment to the next; packets are assumed to travel in thecounter-clockwise direction. As long as a packet on aparticular segment is not destined for the associatedstation, on-station and local ring transfers may occurconcurrently. If a ring packet is to be delivered to amodule on a station, its delivery takes precedence overon-station transfers. Packets destined for another sta-tion are switched onto the station bus and local ring ifthe local ring segment does not contain a valid packet.The inter-ring interfaces require FIFO bu�ers tostore packets due to the possibility of packet collisions.A collision will occur if in a given cycle, input packetsfrom both rings are to be routed to the same output.A simple interface is shown in Figure 2. As with thedelivery of packets to a station from a local ring, pack-ets on the central ring have priority over those on thelocal ring.3 The Cache-Consistency ProtocolIn this section, we present a consistency protocolin the context of the target multiprocessor. The pro-tocol exploits the broadcast capability of rings anduses snooping within stations to maintain the cachesconsistent. Packet �lters within each network node

central ring
local ring 2

P1 MP

station bus

P M1P

Station B

P
M

MP
P

M

Station A

station controller B

local ring 1

inter−ring
interface A

station controller A

inter−ring
interface B

M

Figure 1: Structure of the Target Multiprocessorare used to limit the scope of the broadcast messagesand thereby improve the scalability of the protocol.The presentation describes the protocol in the targetsystem with no packet �ltering and with invalidatingcaches that use a write-through policy; packet �ltersand alternative cache strategies are then discussed inSection 4. Cache consistency is maintained whenevershared data is modi�ed by writing the change throughto main memory and invalidating all cached copies ofthe data. It should be noted that reads of shared datarequire no consistency actions because they are pro-cessed in the same manner as reads of private data.Moreover, it is assumed that the issuing processor isblocked until the requested data is returned.A write of shared-data begins with the source pro-cessor module sending a write-request packet to thedestination memory module, say memory module M1in Figure 1. If the destination cannot accept thepacket, a write-nack packet is returned to the sourceand the source will later reissue the write request. Ifthe destination can accept the write-request packet,
local ring
 fifo

central
ring fifo

local ring

central ringcentral ring

local ring

multiplexer demultiplexerFigure 2: Inter-ring Interface

the addressed location is locked, and a write-invalidate(WI) packet is formed and broadcast to all processormodules. The broadcast is performed by �rst prop-agating the WI packet to the highest-level ring (i.e.,the central ring in Figure 1), where it circulates aroundthe entire ring and is switched back onto the destina-tion's local ring (local ring 2 in Figure 1). At eachinter-ring interface, a copy of the packet is made andpassed down one level where it continues to propagatevia the lower-level rings to all stations. When the WIpacket returns to memory module M1, the updatedlocation is unlocked; when the WI packet arrives forthe third time at inter-ring interface B, it is removed.From the time a memory location is locked until it isunlocked, other accesses to the same location are notaccepted. This locking of the memory location pre-vents two processors from observing updates to twodi�erent memory locations in di�erent orders. Thisordering requirement is necessary to ensure sequentialconsistency (discussed later in this section), althoughit is not necessary for some weaker forms of consis-tency. In the appendix we illustrate how this lockingenforces the necessary ordering for sequential consis-tency.To illustrate the protocol in more detail, considerthe following example. Assume that in Figure 1, pro-cessor module P1 issues a write to memory module M1located on another station. Then, P1 is blocked frommaking further requests until it receives an acknowl-edgment from the destination. The write-requestpacket travels to the destination via local ring 1, the

central ring, local ring 2, and station bus B. If thedestination memory module accepts the write-requestpacket, it forms a WI packet. This packet then visitseach station in the system using the broadcast schemedescribed above. As the WI packet ows around thelocal rings, each station controller switches a copy ofthe packet onto its station bus to allow snooping andinvalidation by the on-station caches. The only excep-tion occurs at the source processor module where noinvalidation occurs. Instead, the source is unblockedand as far as it is concerned the access is completed.When the WI packet returns to station B, the des-tination memory module M1 notes the return of theWI packet and unlocks the location to which this WIpacket corresponds.It is important to note the following details concerningthe invalidation process:� The WI packet on a local ring is removed by theassociated inter-ring interface. The WI packet onthe central ring is removed by the inter-ring in-terface through which it entered the central ring.� The WI packet returns to the destination only af-ter it has circulated around the entire central ring.The unlocking of the memory location, however,may occur before all cached copies of the corre-sponding data have been invalidated.� The source of the write request is unblocked whenthe WI packet visits its station rather than whenthe memory location is unlocked.� Any copies of the data item resident on the sta-tion on which the source is located are invalidatedwhen the WI packet visits that station.In summary, the invalidating protocol entails two dis-tinct phases:1. In phase one, the write request is sent to the des-tination and a decision is made whether or not toaccept the request. Until the request is acceptedby the destination, only the source is aware of theexistence of the pending write.2. If the request is accepted, the second phase isbegun with the formation of a WI packet. Thispacket is broadcast to all modules to e�ect boththe invalidation of cached copies of the locationand the unblocking of the source. As far as thedestination is concerned, this phase ends with theWI packet \visiting" the destination's station re-sulting in the unlocking of the memory location.

Sequential ConsistencyIt is essential to be able to demonstrate that acache-consistency protocol correctly enforces the de-sired memory model. To do so entails showing that thenecessary ordering of shared-memory accesses is pre-served. Methods for demonstrating consistency havebeen put forth by a number of researchers [4, 7, 13, 15],where a set of memory-model speci�c conditions arespeci�ed that must be met by each processor in themultiprocessor system. If it can be shown that eachprocessor adheres to these conditions, then the systemcorrectly enforces the desired memory model. Usingthe conditions proposed by Scheurich, it can be shownthat the proposed invalidation protocol enforces se-quential consistency [5]. Three features of the Hectorarchitecture guarantee that the necessary ordering ofshared accesses is preserved. These features are: (1)there is a unique path between any two modules; (2)it is impossible for two packets to overtake each other;and (3) packets are processed at each network node inthe order in which they arrive.4 Extensions and EnhancementsThis section discusses several performance issuesand enhancements to the invalidating protocol thatwas presented in the previous section.4.1 Alternative Cache StrategiesWe have described a consistency protocol for inval-idating caches. This protocol can also be extended towork with updating caches, but now the cache linesbeing updated must be locked during the time thatthe copies are being updated. To implement this lock-ing, the protocol is augmented by a third phase. Inthe second phase of the protocol, the cached copiesare updated and are also locked, thus preventing reador write accesses to the data item. Then, in the thirdphase, all copies are unlocked [5]. As in the case of theinvalidation protocol, the locking of the cache lines isrequired to prevent two processors from observing up-dates to di�erent locations in di�erent orders.The proposed invalidating protocol can be extendedfor use with the copy-back cache policy, but at thecost of more complex hardware. This policy requires�rst detecting that an access to an item that is dirtyhas been made and second guaranteeing that for aread request, the requester gets a copy of the validdata; the di�culties with this approach are discussedin more detail in [5]. For single bus-based systems,

these two requirements are easily accommodated as alldata transfers are simultaneously visible to all proces-sor modules. However, for systems in which multipledata transfers can occur concurrently, but invisibly tosome of the processor modules, these two requirementsare more di�cult to meet.4.2 Relaxing the Consistency ModelWhile the sequential consistency memory model isconceptually simple, it imposes restrictions on the per-missible outstanding memory accesses of a processor.In so doing, it prevents many hardware optimizationsthat could increase system performance. For thesereasons, weaker memory models have been consid-ered. One such model is the processor consistencymodel [8] provided by several commercial multiproces-sors, including the VAX 8800 and the Silicon GraphicsPOWER Station [7] which both employ a single busthus rendering the consistency protocol simpler thatthe one we propose.The processor consistency memory model stipulatesthat the write operations issued by a processor be ob-served in the order in which they were issued, but thewrites issued by di�erent processors may be observedin di�erent orders. It is in this last point that the se-quential consistency and processor consistency mem-ory models di�er. The protocol for processor consis-tency is very similar to the invalidating protocol, de-scribed in Section 3, but it does not require the mem-ory to be locked during the second phase.4.3 ScalabilityScalability of the proposed protocol is predomi-nantly inuenced by the bandwidth consumed by con-sistency messages which are broadcast to all processormodules. As the number of processors in the systemincreases, the broadcast tra�c will also increase cor-respondingly. To prevent the broadcast tra�c fromswamping the interconnection network, it is necessaryto either limit the number or the scope of the broad-casts.An attractive possibility is to use a �lter mech-anism. Filters are located at each node in thering-hierarchy to limit the propagation of the write-invalidate packets to only those sections in the systemwhere a cached copy of the data exists. Each stationcontroller and inter-ring interface has two �lters, oneto restrict broadcast packets from going farther up inthe hierarchy, the other to restrict broadcast packetsfrom entering the subsystem below. The hardwarecosts of such �lters can be reduced by providing the

�ltering on a per page basis (as opposed to on a percache line basis). With the page-based granularity, itis easy for the operating system to manage these �ltersalong with the page tables it already must manage.5 Evaluation of the Proposed ProtocolUsing address driven simulations, we have investi-gated the e�ects of the proposed invalidating protocolon the performance of the target system. Because ameaningful evaluation demands that a detailed simu-lation model be employed, we decided to model theHector multiprocessor at the register level. The Hec-tor multiprocessor [16] is similar to the target system,with the most important di�erences being that in Hec-tor the memory is distributed among the processormodules instead of residing in separate modules. Be-cause of the di�erences, the invalidating protocol de-scribed in Section 3 had to be slightly modi�ed. Thesemodi�cations and the simulator are described in [5].5.1 Simulation MethodologyA number of di�erent system topologies were sim-ulated for 32 processor and 64 processor systems. Ineach system, processor modules comprised 64-Kbyteinstruction and 64-Kbyte data caches, a processor, and16 Mbytes of the global memory. To reduce the num-ber of lock bits required for locking memory locationsduring phase two of the invalidating protocol, the lock-ing was done on a per (physical) page basis1. Packet�ltering was employed in the 64 processor systems.The processor was modeled using an event genera-tor to emulate the execution of a number of multipro-cessor applications. We will show the results for fourof these applications running on a 32 processor systemand the results for a �fth running on a 64 processorsystem. This latter application, SOR2, is an itera-tive method for solving partial di�erential equations.The simulation of this application involved 5 millioniterations over the array, during which the memoryreferences and inter-reference timings were generatedusing a state machine.For the other four applications, the memory ref-erences were obtained from address traces that, asshown in Table 1, exhibit a varied distribution of mem-ory operations. The �rst three of these are part ofthe SPLASH parallel benchmark set of traces that isavailable from Stanford University; a description of1The contention for these locks is shown in the next section.2Successive Over-Relaxation

Number Distribution of Memory OperationsApplication of Memory % Instruc- % Atomic % Private Data % Shared DataReferences tions Operations Reads Writes Reads WritesLocusRoute 7.7 M 51.4 0.0 32.5 11.3 4.2 0.6SA-TSP 7.1 M 46.5 0.0 29.1 5.0 18.3 1.1PTHOR 7.1 M 49.7 0.0 25.4 9.6 14.0 1.3Speech 4.7 M { { { { 78.2 21.8Table 1: Address Trace Characteristics. LocusRoute is a global router for VLSI standard cells, SA-TSP solvesthe traveling salesman problem using simulated annealing, PTHOR is a parallel logic simulator and Speechimplements the lexical decoding stage of a speech interpretation language.

private data instructions shared data reads shared data writes

C
yc

le
s

/ A
cc

es
s

7.9

5.3

4.7

6.7

4.9
4.5

6.1

4.7 4.4

5.8

4.5 4.3

6.3

4.7
4.4

6.0

4.6
4.4

no
 c

ac
hi

ng

in
va

lid
at

in
g

pr
ot

oc
ol

ze
ro

−
ov

er
he

ad
 p

ro
to

co
l

1 x 32 x 1 2 x 16 x 1 2 x 8 x 2 4 x 4 x 2 2 x 4 x 4 4 x 2 x 4Figure 3: Average memory latency for the concurrent execution of the SA-TSP and LocusRoute applications,measured at the time the �rst processor completed its task.

the applications and the methods used to acquire thetraces was presented by Weber and Gupta [17]. Adescription of the fourth application and the methodused to acquire the trace was presented by Chaiken etal. [2]. This is a pure data trace that contains onlyshared-data accesses.To investigate the performance impact of the in-validating protocol on the run-time behavior of thebenchmarks, three di�erent scenarios were simulated:(1) shared data is not cached; (2) shared data iscached using the proposed invalidating protocol; and(3) shared data is cached using a zero-cycle overheadcache consistency scheme. The last scenario, in whichall copies of a location are assumed to be invalidatedin a single cycle with no messages transmitted, is pro-vided to gauge the overhead due to the use of theinvalidating protocol.For each system size, six di�erent system topologieswere simulated. However, for the 32-processor system,since the SPLASH address traces include referencesfor only 16 processors, we chose to simulate the con-current execution of two SPLASH applications. TheSpeech address trace contains references for each ofthe 32 processors, so concurrent execution of it was notsimulated. Various memory page distribution schemeswere implemented, all of which gave virtually identicalresults. For the results presented below, round-robindistribution was used to evenly distribute the pagesacross all processor modules.Because the address traces listed in Table 1 were ac-quired from machines dissimilar to Hector, it is onlymeaningful to compare the results for the di�erentcaching strategies and topologies; the absolute num-bers are not meaningful. In addition, the traces con-tain only memory references with no inter-referencetiming information3. Also lacking from the traces issu�cient information to allow the e�cient mapping ofthe address streams to the processors so as to guaran-tee that cooperating processors are located physicallyclose to each other. A similar comment applies to thevirtual to physical page allocation. Hence, the resultspresented are pessimistic.5.2 ResultsFigure 3 presents the average memory access la-tency for the concurrent execution of the SA-TSP andLocusRoute applications. It shows the latency at-tributable to each access type. The ordered tripleslabeling the horizontal axis specify the topology sim-ulated: the �rst coordinate indicates the number of3In the simulations, a one cycle delay between memory ref-erences was assumed.

processors per station, the second the number of sta-tions per local ring and the third the number of localrings. Because the cache hit rates for instruction andprivate-data accesses were very high, the contributionto the average latency by these access types is con-stant.Figure 4 presents similar results for the concurrentexecution of two instances of the PTHOR application.Both Figures 3 and 4 show that the average latency isreduced with a cache-consistency scheme and that theinvalidating protocol performs within 20% of the idealzero-cycle overhead scheme. However, the zero-cycleoverhead scheme performs much better than the inval-idating protocol for the Speech application, as shownin Figure 5. This result is not surprising since theSpeech application essentially contains only shared-data accesses.The di�erence in performance between the pro-posed cache consistency scheme and the zero-overheadscheme is due to the broadcast tra�c (which is zeroin the zero-overhead case). Another reason for thisdi�erence is the locking of the memory location dur-ing the second phase of the protocol. The e�ects oflocking can be diminished by locking at a �ner gran-ularity than on a per page basis. However, it shouldbe noted that �ner-grain locking is not necessary formany applications. As seen in Figure 6, the percentageof unsuccessful shared-data accesses due to a lockedmemory page was low in our simulation runs. The de-pendence on topology exhibited by the unsuccessful-access rates is attributable to the length of time thata given location is locked while waiting for the returnof the WI packet. In the single-ring topologies, thistime is equivalent to the time required to traverse thering once. On the other hand, for the multiple-ringtopologies, this time will be less than the time for thesingle-ring topologies due to the hierarchical broadcastscheme.The results in Figures 3 to 5 are based on hardwarecon�gurations that do not make use of the �lter mech-anism discussed in Section 4.3. It is apparent that in aHector machine with up to 32 processors, the utiliza-tion of the interconnection network is low enough sothat broadcast tra�c generated by the proposed cacheconsistency scheme will not have a signi�cant impacton normal memory accesses. However, as the num-ber of processors increases, there will be much morebroadcast tra�c, resulting in poor performance. Oursimulations have shown that with 64 processors thebroadcast tra�c may dominate to the extent that theinterconnection network approaches saturation. Thisphenomenon was observed in our simulations of the

instructions accesses private data accesses shared data reads shared data writes

C
yc

le
s

/ A
cc

es
s

no
 c

ac
hi

ng

in
va

lid
at

in
g

pr
ot

oc
ol

ze
ro

−
ov

er
he

ad
 p

ro
to

co
l

10.6

3.6
2.9

8.5

3.1
2.7

7.2

2.9 2.6

6.4

2.7 2.5

7.2

2.9 2.6

6.8

2.8
2.5

1 x 32 x 1 2 x 16 x 1 2 x 8 x 2 4 x 4 x 2 2 x 4 x 4 4 x 2 x 4Figure 4: Memory latency for the concurrent execution of two instances of the PTHOR application, measured atthe time the last processor completed its task.
private data accesses shared data reads shared data writes

C
yc

le
s

/ A
cc

e
ss

68.6

27

5.8

58.2

20

4.9

18.8

4.9

55

17.7

4.5

47.2

16.3

4.7

44.8

15.5

4.4

55.9

no
 c

ac
hi

ng

in
va

lid
at

in
g

pr
ot

oc
ol

ze
ro

−
ov

er
he

ad
 p

ro
to

co
l

1 x 32 x 1 2 x 16 x 1 2 x 8 x 2 4 x 4 x 2 2 x 4 x 4 4 x 2 x 4Figure 5: Memory latency for the execution of the Speech application, measured at the time the last processorcompleted its task.
R

ef
us

al
 R

at
e

(in
 %

)

22
34

32
4

66
8

12

17

1x32x1 2x16x1 2x8x2 4x4x2 2x4x4 4x2x4(a) Concurrent execution of SA-TSP and LocusRoute Applica-tions
35

20

16
13

 5

2

10
9

read access refusal rate
write access refusal rate

11

8 6 5

1x32x1 2x16x1 2x8x2 4x4x2 2x4x4 4x2x4(b) Speech ApplicationFigure 6: Unsuccessful shared-data accesses due to a locked memory page.

C
yc

le
s/

A
cc

es
s

instruction accesses shared data reads shared data writes

1x64x1 4x8x264x1x1 4x4x44x16x1 8x4x2 2x16x2

2.172.24

4.11
4.43

2.41 2.3

4.07

2.152.17

4.06

2.18 2.16

4.07

2.212.16

4.35

2.182.32

4.05

2.192.16

no
 c

ac
hi

ng

in
va

lid
at

in
g

pr
ot

oc
ol

ze
ro

−
ov

er
he

ad
 p

ro
to

co
l

Figure 7: Average memory latency for the SOR application with the use of �lters to limit the scope of invalidationpackets, for a 64 processor system. In this application, 75% of memory accesses are instruction fetches, 20% areshared-data reads and 5% are shared-data writes.SOR application. While this application is character-ized by a large number of writes, any part of shareddata is accessed by at most two processors. Withoutthe �ltering mechanism on a 64-processor machine,this application showed very poor performance, reach-ing a point where it would have been better not to usecaching at all. Using a �lter on the same machineimproves the performance dramatically. As shown inFigure 7, the performance obtained is close to the zero-overhead case.Finally, it is interesting to note that the results pre-sented in this section suggest that the topology of themultiprocessor machine has a signi�cant impact onperformance. In the �gures, the best topologies arethose that are balanced in terms of the number ofprocessors, stations and rings.6 ConclusionsA key characteristic of cache consistency protocolsis the one-to-many relationship between a shared-dataupdate and the resulting consistency messages thatare directed to all copies of the updated location.Thus, while cache consistency protocols seek to thereduce access latency for shared data, their use maydegrade the overall system performance by increas-ing the interconnection network utilization, and con-tention for other system resources. Owing to this one-to-many relationship, no consistency protocol can betruly scalable. Nevertheless, a high degree of scalabil-ity can be achieved especially if the protocol seeks tominimize the number and frequency of the consistencymessages without imposing additional costs on shared

data accesses.In this paper, we have presented such a cache con-sistency protocol that is targeted for shared-memorymultiprocessors consisting of processor and mem-ory modules interconnected by a hierarchy of ring-connected buses. By making use of two key featuresof the architecture, the scalability of the protocol isgreatly enhanced. First, the hierarchical nature of theinterconnection network o�ers a simple way to imple-ment a packet �ltering mechanism. And secondly, dueto the natural broadcast property of rings, the num-ber of consistency messages appearing in the networkis usually far less than the number of cached copies.That is, it is not necessary to send individual messagesto all processors with cached copies of the location.The results presented in Section 5.2 show that sucha scheme noticeably improves the performance of thesystem.Finally, the cache consistency scheme presented en-forces sequential consistency with simple hardwareand protocols, and it is easily extendible to systemsemploying updating caches or a less strict processorconsistency memory model.Appendix: Enforcing Sequential Consis-tencySequential consistency requires the imposition ofa system-wide order on all accesses to shared mem-ory locations. In multiprocessors, updates issued toshared-memory locations are said to occur when theyare observed by the other processors. Thus, of con-cern is the order in which updates are observed rather

Processor C

Processor D

write(x)

new <- read(x)
old <- read(y)

new <- read(y)
old <- read(x)

write(y)

Processor A

Processor B

time

Figure 8: This diagram illustrates how two processors B and C might observe updates to two di�erent memorylocations in di�erent orders when the locations being updated are not locked. The directed line segments representthe write-invalidate packets. It is assumed that processors A and B are located close together in the network, asare C and D.than the system-wide order in which they are issued.For sequential consistency, the observed order mustbe the same for all processors. The multiphase proto-cols discussed in this paper enforce this requirementby locking updated memory locations during the in-validation (updating) phase.We will illustrate by an example why locking is nec-essary to impose a global ordering on the updates. Amore formal discussion on locking and on the require-ments for sequential consistency is given in [5]. Invali-dating caches are assumed, although the discussion isalso applicable to updating caches.Consider four processors A,B,C and D which sharetwo locations X and Y. Assume that processor A isclose to B in the network, and processor C is close toD. Each processor initially has a cached copy of bothlocations. Then, suppose that processor A updateslocation X, processor D updates location Y and pro-cessors B and C read both locations. The absence oflocking can lead to a non-global ordering as illustratedin Figure 8. In this �gure, the directed line segmentsrepresent the write-invalidate packets resulting fromthe updates to X and Y. Processor C issues a readof location Y, and because its cached copy has beeninvalidated, the new value is acquired from the mainmemory. Processor C then issues a read of locationX, and receives the old value of X since processor C'scached copy has not yet been invalidated. A similarscenario is possible for processor B resulting in it ac-quiring the new value of location X and the old valueof Y. Clearly the update orderings observed by B andC are not the same, and thus a global ordering doesnot exist.With locking, processor C will not be able to ac-

quire the new copy of location Y before processor B'scopy of Y is invalidated. Similarly, processor B cannotacquire the new copy of location X before ProcessorC's. Thus, it is impossible for Processors B and C toobserve the updates to X and Y in di�erent orders.This example demonstrates why the locking of mem-ory locations prevents updates from being seen out oforder and thereby preserves sequential consistency.References[1] Luiz Barroso and Michel Dubois. Cache co-herence on a slotted ring. Proc. of the Inter-national Conference on Parallel Processing, 1(Architecture):230{237, 1991.[2] D. Chaiken, C. Fields, K. Kurihara, and A. Agar-wal. Directory-based cache coherence in large-scale multiprocessors. Computer, 23(6):49{58,1990.[3] D. Chaiken, J. Kubiatowicz, and A. Agarwal.Limitless directories: A scalable cache coher-ence scheme. Proceedings of the Fourth Inter-national Conference on Architectural Support forProgramming Languages and Operating Systems,pages 224{234, 1991.[4] Michel Dubois, Christoph Scheurich, and Fay�e A.Briggs. Memory access bu�ering in multiproces-sors. Proc. of the 13th Annual International Sym-posium on Computer Architecture, pages 434{442, 1986.

[5] Keith I. Farkas. A decentralized hierarchi-cal cache-consistency scheme for shared-memorymultiprocessors. Master's thesis, University ofToronto, April 1991. April.[6] M. Ferrante. Cyberplus and map v interprocessorcommunications for parallel and array processorsystems. Proc. of Third Conference on Multipro-cessors and Array Processors, pages 45{54, 1987.[7] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gib-bons, A. Gupta, and J. Hennessy. Memory con-sistency and event ordering in scalable shared-memory multiprocessors. Proc. of the 17th An-nual International Symposium on Computer Ar-chitecture, pages 15{26, 1990.[8] James Goodman. Cache consistency and sequen-tial consistency. Technical Report 61, SCI Com-mittee, 1989.[9] D.B. Gustavson. The scalable coherent inter-face and related standards projects. IEEE Micro,12(1):10{22, 1992.[10] Robert Halstead, Jr., Thomas I. Anderson,Randy B. Osborne, and Thomas L. Sterling. Con-cert: Design of a multiprocessor development sys-tem. Proc. of the 13th Annual International Sym-posium on Computer Architecture, pages 40{48,1986.[11] David V. James, Anthony T. Laundrie, SteinGjessing, and Gurindar S. Sohi. Scalable coherentinterface. Computer, 23(6):74{77, June 1990.[12] Leslie Lamport. How to make a multiproces-sor computer that correctly executes multiprocessprograms. IEEE Transactions on Computers, c-28(9):690{691, Sep 1979.[13] A. Landin, E. Hagersten, and S. Haridi. Race-free interconnection networks and multiproces-sor consistency. Proc. of the 18th Annual Inter-national Symposium on Computer Architecture,pages 106{115, 1991.[14] A. D. Lenoski, J. Laudon, K. Gharachorloo,A. Gupta, and J. Hennessy. Directory-basedcache coherence protocol for the DASH mul-tiprocessor. Proc. of the 17th Annual Inter-national Symposium on Computer Architecture,pages 148{158, 1990.[15] Christoph Ernst Scheurich. Access Ordering andCoherence in Shared Memory Multiprocessors.

PhD thesis, University of Southern California,May 1989. Tech Report no. CENG 89-19.[16] Zvonko G. Vranesic, Michael Stumm, David M.Lewis, and Ron White. Hector: A hierarchicallystructured shared-memory multiprocessor. Com-puter, 24(1):72{79, Jan 1991.[17] Wolf-DietrichWeber and Anoop Gupta. Analysisof cache invalidations patterns in multiprocessors.Proceedings of the Third International Confer-ence on Architectural Support for ProgrammingLanguages and Operating Systems, pages 243{255, 1989.

	Text20: Appeared in Proc. Supercomputing 92, Minneapolis, MN USA, November 1992, pp. 348-357.

