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1 Introduction

Designing an operating system for good performance is fundamentally more difficult for shared-memory
multiprocessors than it is for uniprocessors. Multiprocessors require that a distinct set of issues be considered.
For example, the overhead of cache consistency requires careful attention to the placement of data in order to
reduce the number of cache misses. Similarly, in large systems the distribution of memory across the system
also requires attention to the placement of data but this time to improve memory access locality. Dealing
with these issues might involve such optimizations as data alignment, padding, regrouping, replication, and
migration, or even the use of alternative data structures. Unfortunately, current compiler technology is not
capable of performing many of these optimizations on code typical of operating systems. Hence, the systems
programmer needs to be aware of the intricacies of multiprocessors and explicitly optimize the code for these
systems.

This article first reviews how shared memory multiprocessor hardware affects the performance of system
software and then presents a set of principles for organizing operating system data to maximize performance
on these systems. The principles have been derived from a synthesis of our own experience developing (and
performance tuning) two parallel operating systems and the experiences reported by other operating system
developers. The principles are not only useful for adapting and performance tuning existing multiprocessor
operating systems, but are also useful when designing a system from scratch. In the latter case, they
lead to a system structure that is both novel and effective. As an example, we illustrate the use of these
principles on selected components of a (complete and running) object-oriented operating system we have
been implementing.

2 Multiprocessor Hardware Issues

In this section we describe how shared-memory multiprocessor hardware affects system software. In
particular, we consider the effects of (i) true parallelism resulting from multiple processors, (ii) cache
coherence and its protocols, and (iii) the high cache-miss latency of shared memory multiprocessors. The
characteristics of the small-scale and large-scale multiprocessors we use for this analysis are described in
Figure 1.
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Figure 1: This figure depicts the two basic classes of multiprocessors under consideration. The left figure shows
a small-scale bus-based multiprocessor, which commonly range in size from 4-16 processors. The figure on the
right shows the general architecture of a large-scale system, typically built from nodes containing a small number of
processors, memory, and disks, and connected by some scalable interconnect (represented here by a cloud), which
could be a mesh, tree, torus, etc. Important features common to both types of systems are the use of an invalidation-
based coherence scheme (rather than the less common update-based scheme), and in-cache synchronization primitives
(rather than network- or memory-based primitives).

Since much of the material presented in the section is tutorial in nature, the well-informed reader should
feel free to scan over it quickly.

2.1 Multiple processors

The most obvious difference between shared-memory multiprocessors (SMMPs) and uniprocessors is the
number of processors. Although uniprocessor system software may already deal with concurrency issues, the
true parallelism in multiprocessors introduces additional complications that can affect both the correctness
and performance of uniprocessor synchronization strategies.

The strategies often employed for synchronization on uniprocessors, such as disabling interrupts in
the kernel [26] or relying on the non-preemptability of a server thread [15], are not directly applicable on
multiprocessors. Although they can be made to work by allowing only a single processor to be in the kernel
at a time (or a single process to be executing in a server at a time), this serializes all requests and is not
acceptable for performance reasons. For example, gcc spends over 20 percent of its time in the kernel
under Ultrix [8], which would limit the useful size of a multiprocessor to 5 processors if all kernel requests
were serialized. As a result, a fully preemptable (and fully parallelized) system software base is generally
required [9, 29].

Fine-grained locks are generally needed to achieve a high level of concurrency and improved perfor-
mance; however, the finer the granularity of locks, the larger the number of locks that must be acquired
to complete an operation, resulting in higher overhead even if there is no contention for the locks. For
example, in a previous system, we found that locking overhead in the fully uncontended case accounted for
as much as 25 percent of the total page-fault handling time [32]. It is therefore necessary to carefully balance
the desire for high concurrency through finer-grained locks, against the desire for lower overhead through
coarser-grained locks.
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In addition, there are complex tradeoffs to consider in the implementation of locks on a multiprocessor.
Whereas the choice is straightforward for uniprocessors where the only sensible option is a simple blocking
lock, multiprocessor locking must consider such issues as context-switch overhead, wasted spin-cycles, bus
and network contention due to spinning, fairness, and preemption effects for both lock holders and spinners.
Fortunately, this area has been well-studied [2, 3, 5, 13, 18, 32], and in most cases spin-then-block locks
with exponential back-off for the spinning phase have proven to be highly effective [13].1
2.2 Cache coherence

Software on a shared-memory multiprocessor suffers not only from cold, conflict, and capacity cache misses
(as on a uniprocessor), but also from coherence misses. Coherence misses are caused by read/write sharing
and the cache-coherence protocol,2 and are often the dominant source of cache misses. For example, in a
study of IRIX on a 4-processor system, Torrellas found that misses due to sharing dominated all other types
of misses, accounting for up to 50 percent of all data cache misses [30]. In addition to misses caused by
direct sharing of data, writes by two processors to distinct variables that reside on the same cache line will
cause the cache line to ping-pong between the two processors. This problem is known as false sharing and
can contribute significantly to the cache miss rate. Chapin et al., in investigating the performance of IRIX
ported to a 32 processor experimental system, found that many of the worst-case hot spots were caused
by false sharing [7]. Although strategies for dealing with misses in uniprocessors by maximizing temporal
and spatial locality and by reducing conflicts are well known, if not always easily applied, techniques for
reducing true and false sharing misses in multiprocessors are less well understood. Semi-automatic methods
for reducing false sharing, such as structure padding and data regrouping, have proven somewhat effective,
but only for parallel scientific applications [16, 31].

The effects of synchronization variables can have a major impact on cache performance, since they can
have a high degree of read/write sharing and often induce large amounts of false sharing. For example,
Rosenblum noted in a study of an 8 processor system that 18 percent of all coherence misses were caused
by the false sharing of a single cache line containing a highly shared lock [27]. Even without false sharing,
the high cost of cache misses can increase the cost of a lock by an order of magnitude over the fully cached
case.3
2.3 Cache miss latency

In addition to the greater frequency of cache misses due to sharing, SMMP programmers are faced with
the problem that cache misses cost more in multiprocessors regardless of their cause. The latency increase
of cache misses on multiprocessors stems from a number of sources. First, more complicated controllers
and bus protocols are required to support multiple processors and cache coherence, which can increase the
miss latency by a factor of two or more.4 Second, the probability of contention at the memory and in the
interconnection network (bus, mesh, or other) is higher in a multiprocessor. Extreme examples can be found1Distributed queue-based spin locks are another well-studied option, whose prime value is for the less common cases that can
benefit from continual spinning (even under high contention) and which also require low-latency and a high degree of fairness [20, 23].2To be more precise, invalidation-based cache coherence protocols require that the cache obtain exclusive access to a line the
first time it is written to, even if no sharing is taking place. These misses are sometimes referred to as upgrade misses or initial-write
misses. Hence there is an extra cost in multiprocessors both for sharing misses and upgrade misses.3Some results suggest that there is often sufficient locality that the locks can generally be assumed to reside in the cache [30].
However, later work (by the same author) suggests that coherence traffic due to locking is a significant problem [35]. The effects
of false sharing may well explain this apparent contradiction.4Even the Digital 8400 multiprocessor, which is expressly optimized for read-miss latency, has a 50 percent higher latency than
Digital’s earlier, lower performance, uniprocessors [10].
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in early work on Mach on the RP3 where it took 2.5 hours to boot the system due to memory contention [6],
and in the work porting Solaris to the Cray SuperServer where misses in the idle process slowed non-idle
processors by 33 percent [21]. Third, the directory-based coherence schemes of larger systems must often
send multiple messages to retrieve up-to-date copies of data or invalidate multiple sharers of a cache-line,
further increasing both latency and network load. This effect is clearly illustrated in the operating system
investigation by Chapin et al., which found that local data miss costs were twice the local instruction cache
miss costs, due to the need to send multiple remote messages [7].

In the case of large systems, the physical distribution of memory has a considerable effect on performance.
Such systems are generally referred to as NUMA systems, or Non-Uniform Memory Access time systems,
since the time to access memory varies with the distance between the processor and the memory module.
In these systems, physical locality plays an important role in addition to temporal and spatial locality. An
example can be seen in the work of Unrau et al., where, due to the lack of physical locality in the data
structures used, the uncontended cost of a page fault increased by 25 percent when the system was scaled
from 1 to 16 processors [33].

As a result of the high cost of cache misses, newer systems are being designed to support non-blocking
caches and write buffers in order to hide load and store latencies. Many of these systems allow loads and
stores to proceed while previous loads and stores are still outstanding. This results in a system in which the
order of loads and stores may not appear the same to each processor; these systems are sometimes referred
to as being weakly consistent [12].

The implication of weakly consistent systems is that regular memory accesses cannot be used for
synchronization purposes, since memory access can appear out of order. For example, if one processor fills
a buffer and marks it filled, other processors might see the buffer first being marked filled and then actually
filled with data. This could cause some processors to access stale data when they see the buffer marked
filled. As a result of this behavior, software must generally switch from using simple flags to using full
locking, with significantly more expensive special memory synchronization instructions. This difference is
illustrated by the cost of a lock/unlock pair in AIX on the PowerPC, which is 100 times more expensive that
a cached store [29].5

Another result of the high cache-miss latency is the movement towards larger cache lines of 128 or even
256 bytes in length. These large cache lines are an attempt to substitute bandwidth (which is relatively easy
to design into a system) for latency (which is much harder to design in). Unfortunately, large cache lines
tend to degrade performance in SMMPs due to increased false sharing.6 The example cited earlier of a single
falsely-shared cache line being responsible for 18 percent of all coherence misses was due in part to the
fact that the hardware had 128 byte cache lines, causing a critical lock to be shared with 22 other randomly
placed variables [27].

2.4 Summary

The memory access times in a multiprocessor span several orders of magnitude due to architectural and
contention effects (see Table 1). To mitigate these effects, system software must be structured to reduce
cache misses and increase physical locality. In the next section we present a set of structuring techniques
and the circumstances under which they should be applied.5In principle, locks would not be required for single flag variables if it were possible to insert (or have the compiler insert) the
required memory barrier instructions at the right places, but such support is not generally available at this time [1].6To further complicate matters, with such a wide variety of cache line sizes (sometimes even within the same product line),
ranging from 16 to 256 bytes, it is becoming increasingly difficult to optimize for a fixed or “average” cache line size.
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Access Type Latency

Primary cache 1
Secondary cache 10
Local memory 100
Remote memory 200–500
Hot spot 1000–10000

Table 1: Latencies for different types of accesses in a typical large-scale shared-memory multiprocessor, measured in
processor cycles.

3 Design principles

The issues described in the previous section clearly have a major impact on the performance of multiprocessor
system software. In order to achieve good performance, system software must be designed to take the
hardware characteristics into account. There is no magic solution for dealing with them; the design
of each system data structure must take into account the expected access pattern, degree of sharing, and
synchronization requirements. Nevertheless, we have found a number of principles and design strategies that
have repeatedly been useful. These include principles previously proposed by us and others [7, 32, 33, 35],
refinements of previously proposed principles [14] to address the specific needs of system software, and a
number of new principles.

3.1 Structuring data for caches

When frequently accessed data is shared, it is important to consider how the data is mapped to hardware
cache lines and how the hardware keeps the cached copies of the data consistent. Principles for structuring
data for caches include:

S1: Segregate read-mostly data from frequently modified data. Read-mostly data should not reside in the
same cache line as frequently modified data in order to avoid false sharing. Segregation can often be
achieved by properly padding, aligning, or regrouping the data. Consider a linked list whose structure
is static but whose elements are frequently modified. To avoid having the modifications of the elements
affect the performance of list traversals, the search keys and link pointers should be segregated from
the other data of the list elements.7

S2: Segregate independently accessed read/write data from each other. This principle prevents false sharing
of read/write data, by ensuring that data that is accessed independently by multiple processors ends
up in different cache lines.

S3: Privatize write-mostly data. Where practical, generate a private copy of the data for each processor so
that modifications are always made to the private copy and global state is determined by combining
the state of all copies. This principle avoids coherence overhead in the common case, since processors
update only their private copy of the data. For example, it is often necessary to maintain a reference
count on an object to ensure that the object is not deleted while it is being accessed. Such a reference
count can be decomposed into multiple reference counts, each updated by a different processor and,
applying S2, forced into separate cache lines.7This is in marked contrast to uniprocessors, where it is better to collocate the linked list state and the list elements so that when

an element is reached some of its data will have been loaded into the cache.
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S4: Use strictly per-processor data wherever possible. If data is accessed mostly by a single processor, it
is often a good idea to restrict access to only that processor, forcing other processors to pay the extra
cost of inter-processor communication on their infrequent accesses. In addition to the caching benefits
(as in S3), strictly per-processor structures allow the use of uniprocessor solutions to synchronize
access to the data. For example, for low-level structures, disabling interrupts is sufficient to ensure
atomic access. Alternatively, since data is only accessed by a single processor, the software can rely
on the ordering of writes for synchronization, something not otherwise possible on weakly consistent
multiprocessors (see Section 2.3).

3.2 Locking data

In modern processors, acquiring a lock involves modifying the cache line containing the lock variable.
Hence, in structuring data for good cache performance, it is important to consider how accesses to the lock
interact with accesses to the data being locked.

L1: Use per-processor reader/writer locks for read-mostly data. A lock for read-mostly data should be
implemented using a separate lock for each processor. To obtain a read-lock, a processor need only
acquire its own lock, while to obtain a write-lock it must acquire all locks. This strategy allows the
processor to acquire a read-lock and access the shared data with no coherence overhead in the common
case of read access. (This principle can be viewed as a special case of principle S3.)

L2: Segregate contended locks from their associated data if the data is frequently modified. If there is a
high probability of multiple processes attempting to modify data at the same time, then it is important
to segregate the lock from the data so that the processors trying to access the lock will not interfere
with the processor that has acquired the lock.8

L3: Collocate uncontended locks with their data if the data is frequently modified. When a lock is brought
into the cache for locking, some of its associated data is then brought along with it, and hence
subsequent cache misses are avoided.

3.3 Localizing data accesses

For large-scale systems, the system programmer must be concerned with physical locality in order to reduce
the latency of cache misses, to decrease the amount of network traffic, and to balance the load on the different
memory modules in the system. Physical locality can be especially important for operating systems since
they typically exhibit poor cache hit rates [8].

D1: Replicate read-mostly data. Read-mostly data should be replicated to multiple memory modules so
that processors’ requests can be handled by nearby replicas. Typically, replication should occur on
demand so that the overhead of replicating data is only incurred if necessary.

D2: Partition and migrate read/write data. Data should be partitioned into constituent components according
to how the data will be accessed, allowing the components to be stored in different memory modules.
Each component should be migrated on use if it is primarily accessed by one processor at a time.
Alternatively, if most of the requests to the data are from a particular client, then the data should be
migrated with that client.8Special hardware support for locks has been proposed that results in no cache-coherence traffic on an unsuccessful attempt to

acquire a lock, making principle L2 unnecessary [17].
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D3: Privatize write-mostly data. Privatizing write-mostly data, as described in principle S3, can be used
not only to avoid coherence overhead, but also to distribute data across the system to localize memory
accesses.

Although the following principles are not strictly for structuring data for locality, we have found them equally
important in achieving efficient localization of operating system data.

D4: Use approximate local information rather than exact global information. For certain operating system
policies, it is possible to sacrifice some degree of accuracy in exchange for performance by using
local approximate information to make reasonable decisions rather than exact global information. For
example, having per-processor run-queues reduces short-term fairness globally, but minimizes the cost
to the dispatcher when a process is being scheduled to run.

D5: Avoid barrier-based synchronization for global state changes. When data is replicated or partitioned,
it is necessary to synchronize when making global changes to the replicas and when determining a
globally consistent value for the partitioned data. In this case, the system should avoid using barrier-
based synchronization because it wastes processor cycles while waiting for other processors to reach
the barrier, and results in a high overhead in interrupting (and restarting) the tasks running on the
processors [35]. There are a variety of alternative asynchronous schemes (e.g., as used for lazy TLB
shoot-down [25]) which can, for example, allow multiple requests to be combined together to reduce
the amount of inter-processor communication.

In applying the S*, L*, and D* principles, the programmer must be aware that their over-zealous ap-
plication may actually reduce performance. For example, while a naive application of the S* principles
may result in a system with reduced coherence overhead, it may also result in an increased total number of
cache misses due to the fragmentation of data structures. Hence, significant expertise is required to apply
the design principles in a balanced fashion.

4 Application of the design principles

To illustrate how the design principles influence system software design, we describe selected parts of
Tornado [24], an object-oriented operating system for the NUMAchine [34] large-scale multiprocessor.
First, we describe our basic model of objects, one that facilitates the application of the design principles
across our system. Then, we describe four components of our infrastructure to support this model, each of
which uses the design principles in its internal implementation.

4.1 Structuring objects

The traditional approach for implementing objects in uniprocessor systems does not extend well to multipro-
cessor systems. A uniprocessor object is typically implemented as a single structure, organized to maximize
spatial and temporal locality, and possibly protected by a single lock to serialize concurrent accesses. In
a multiprocessor, such an object may experience significant coherence overhead due to the active sharing
of frequently-modified cache lines and may not offer sufficient concurrency. Moreover, the object will be
located in a single memory module, which in a large-scale system will cause remote processors to experience
high access latencies.

One way to achieve good multiprocessor performance is to partition object data into distinct components
so as to reduce cache coherence overhead (S*), to allow each component to be locked independently (L1),
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and to allow each component to be placed close to processors that are accessing it (D*). However, this
requires a mechanism that allows a processor to efficiently locate the component of the object that it should
access. Although an object could provide a redirection table for this purpose, a naive implementation would
require all accesses to pass through a centralized table, thereby limiting the benefits of distributing the data
of the object. The approach we have taken is based on a new model of objects, called clustered objects, that
allows objects to be easily partitioned while preserving the fundamental object abstraction [24].

4.2 Clustered object model

A clustered object is an object implemented by a set of representative objects, which all support a common
interface (i.e., that of the object); these representatives are typically distributed across a system, serving as
different (local) points of access. In this model, part of the clustered object data may be replicated across
its representatives, while other parts may be maintained exclusively by one representative, possibly being
migrated from representative to representative as it is accessed. For each object, a processor is associated
with a particular representative, to which it directs method invocations. The representatives together are
responsible for giving their clients the view of a single, consistent object, hiding the fact that the object
is partitioned and distributed. (Note that since the clustered object model serves only as a framework
for partitioning objects, the programmer must still write code to associate representatives and processors,
distribute representatives to memory modules, and segregate and/or replicate data across the representatives.)

As an example of a clustered object, consider a kernel object that implements a region of memory
that is mapped into an application’s address space. Assume that the application is operating on a matrix
in a partitioned manner, with only a few boundary pages shared between processes (see upper portion of
Figure 2). The application’s partitioned access pattern allows design principles S2 and D2 to be applied in
partitioning the data of the region object. In this example, a region representative is created for each of the
four processors, which records the local page mappings and manages the physical cache for the matrix (see
lower portion of Figure 2). When a process experiences a page fault or prefetches a page, the processor
first locates its region representative. This representative then, in the common case, allocates a page in local
memory and directs the pager to fetch the corresponding page. If the page is one of those that is shared,
then the representative forwards the request to the representative responsible for managing that page. In
this implementation, a separate set of internal data structures (linked lists, hash tables, etc.) exists for each
representative (S4), while each page descriptor is managed by a single representative (D2). This organization
allows most requests to be handled solely by a processor’s dedicated representative, resulting in no lock
contention, no remote memory accesses, and improved cache performance.

4.3 Clustered object support

Since all components of our system rely heavily on clustered objects in applying the design principles, it is
vital that the services used to support clustered objects be implemented efficiently. Our basic approach in
designing these services is to have the key data structures required to handle common requests maintained
on a per-processor basis, applying design principles S4, D1, D2, and D3. For less common operations, we
typically rely on the other principles to minimize overheads.

In this section, we describe the implementations for invoking clustered object methods, for destroying
clustered objects, for accessing objects across address spaces, and for dynamically allocating memory,
focussing on those aspects of our implementation that illustrate the design principles.
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Figure 2: This figure illustrates an application accessing a matrix in a partitioned fashion, and the corresponding
implementation of the region in the kernel. Each processor possesses its own region representative (Rep 1 through
Rep 4), stored in processor-local memory, to which page fault and prefetch requests are directed. These representatives
keep track of the physical pages allocated to the region as well as the virtual-to-physical mappings. Since each
representative manages different portions of the region, a representative can be locked without delaying the progress
of other processors.

4.3.1 Clustered-object invocation

A clustered object is identified by a unique object identifier (OID), which is translated to a reference to
the appropriate representative on each invocation. To perform this translation efficiently, we allocate on
each processor an object translation table which records references to the representatives to be used by that
processor (D2) (see Figure 3). Since all translation tables are aliased to the same virtual address on every
processor, invoking a method on a clustered object only requires the added step of indexing into the object
translation table using the OID. A translation table entry is initialized the first time an object is accessed by
a processor, which may in some cases also trigger the allocation of a new (nearby) representative.9

Given this scheme, a clustered-object invocation does not commonly entail remote memory references. In
addition, invocations can typically be performed without explicit synchronization because the per-processor
data structures are only modified by remote processors by interrupting the target processor (applying principle
S4). This allows a clustered object method invocation to require only one extra instruction over the non-
clustered-object case.10
4.3.2 Clustered object destruction

The technique for destroying clustered objects is somewhat involved. To make it possible to safely invoke
a clustered object without worrying about the object’s destruction, we constrain destruction to occur only
when no processes are actively accessing the object. Additionally, to avoid the use of costly barriers, we9More detailed aspects of the implementation are described elsewhere [24].10Our system is based on C++, and hence the cost to invoke a non-clustered-object is the cost of a C++ virtual function call.
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Rep A.1 Rep A.2

Rep B.1 Rep B.2 Rep B.3 Rep B.4
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OID B

Clustered Obj A
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Figure 3: The clustered object framework allows a clustered object to associate a different representative with each
processor (and share representatives among processors if desired). This relationship is stored in a per-processor
object translation table. In this way, an object identifier (OID) can be transparently used anywhere in the system; each
access will be directed to the appropriate object representative. For scalability, the table entries are filled on demand,
so although all the entries are shown as if they were filled, they would only be filled if all processors were actually
accessing the two objects shown.

use an asynchronous technique for object destruction (D5). This ensures that processors are never blocked
(avoiding wasted cycles spinning), and allows destruction-requests to be batched (reducing inter-processor
communication).

A reference count scheme is used to determine when an object’s memory can be reclaimed. Rather than
maintaining a separate reference count for each object, a single per-processor reference count keeps track
of the number of threads accessing any clustered object on the processor (L1, S3, D3). When a thread first
enters an address space to invoke a method on a clustered object, it increments the counter for the processor;
subsequent object invocations within the address space require no further increments.

Destroying an object is performed in two phases. In the first phase the object invalidates all references
to itself held by other objects and notifies the appropriate set of processors that it is in the process of being
destroyed. When a processor’s reference count reaches zero, it invalidates its translation table entry; until
this point, it is possible that a thread running on that processor will have made a temporary copy of the
reference (say, in a register), and hence be capable of making new method invocations to the object. The
second phase starts once all translation table entries have been invalidated; it consists of lazily reclaiming
the memory used by the representatives.11
4.3.3 Cross-address-space invocation

In order to preserve the performance advantages of using clustered objects across address spaces, a cross-
address-space communication service must be available that exhibits a similarly high degree of locality11This object destruction algorithm is similar in nature to lazy TLB shoot-down algorithms that re-use physical pages only once
all processors are known to have discarded their associated TLB entry [25].
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(2)

(3)

Client Address Space

Server Address Space

Client Thread

Server Thread

Port Tables

User Space
Kernel Space

Figure 4: The kernel maintains a per-processor table for the ports corresponding to servers in the system. When
a client makes a cross-address space method invocation to such a port, it first traps into the kernel (1). The kernel
then removes a pre-initialized worker (stored in processor-local memory) from the worker list for the port (2). It then
continues execution in the server’s address space (3) at the object translation entry point. When the server thread
terminates, the worker structure in the kernel is returned to the port’s worker list.

and concurrency [11]. We use per-processor data structures for common-case operations, resulting in the
fastest multiprocessor cross-address-space method invocation we know of, matching that of any uniprocessor
implementation [19].

To accept cross-address space requests, a server must first allocate a port from the kernel to be used
by clients in making requests. Per-processor tables are used to maintain port information, which includes
information about the allocating server (D1) as well as a private pool of pre-initialized worker process
descriptors (PDs) that reside in local memory (D2), as shown in Figure 4.12 Handling a cross-address-
space request consists of removing the first PD from the processor’s private worker queue, and (possibly)
re-mapping a page of memory to pass parameters that cannot fit in registers. Hence, this implementation
of cross-address-space method invocation requires no remote data accesses and no locking (given that the
kernel performs this at interrupt level), resulting in a null method call requiring only �300 instructions.

4.3.4 Memory allocation

Our system memory allocator is adapted from an earlier allocator designed for a small-scale multiproces-
sor [22]. This service is important for two reasons. First, object-oriented programs tend to use dynamic
memory allocation generously [4]. Second, being able to allocate memory local to a processor is vital for12The importance of having local worker structures has been observed in numerous other contexts, including network protocol
processing [28] and process dispatching [30].
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Figure 5: The kernel memory allocator consists of four layers: the processor layer manages blocks of mem-
ory for each processor; the cluster layer balances the allocation of memory blocks among a cluster of pro-
cessors sharing a common memory module; the global physical layer manages the physical pages available in
the system; finally, the global virtual layer manages the allocation of virtual space for memory allocation.

Because the bottom two layers are accessed most frequently, we concentrate on these. Each
processor maintains a list of free blocks for memory of various sizes. These are used to allo-
cate and free memory blocks of a particular size on the given processor. Since contention is ex-
pected to be low, each list is protected by a lock embedded in the head pointer for the list.

If a processor frees memory that belongs to a different processor, however, the memory is returned to a re-
turn list at the cluster level, which then redistributes the blocks in bulk. Since there might be contention in this case,
the lock is maintained separately from the pointer to the list.

implementing clustered objects.
Our focus is on the bottom two layers of the allocator, as these are accessed most frequently (see Figure 5).

To manage sharing and maximize locality, per-processor queues of memory blocks for each block size are
used as free lists in the lowest, per-processor layer (D2). Since contention is rare (occurring only when a
processor is preempted while manipulating a queue), design principle L3 applies and we place a lock with
the pointer to the head of each queue.

Free lists may not be modified by remote processors in order to reduce the number of cache misses
and lock contention. In the rare case that a remote processor wishes to free data, it must use a separate
remote-return-list, maintained at the cluster layer, thus applying design principle S2. In contrast to the
processor-layer lists, the remote-return-list might experience contention, so applying design principle L2,
we keep the lock in a separate cache line from the list pointer. Even though this requires accessing two cache
lines to free a block, the cost is minor compared to having accessed the data remotely in the first place and
is warranted by the potential reduction in cache coherence traffic.
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5 Concluding remarks

We have described the effects of multiprocessor hardware on the performance of system software, provided
a number of design principles that are useful in optimizing multiprocessor system software, and shown
how these design principles can be applied to real software. Our focus throughout has been on low-level
issues related to the organization of system data structures. In doing so we have not addressed many
other important multiprocessor issues. For example, we did not discussed tradeoffs between different
synchronization algorithms, or how code should be distributed across the system for locality.

Multiprocessor operating system programmers also face high-level challenges, such as, developing
techniques to manage the complex resources of large-scale systems and handling the resource requirements
of parallel programs. While it is crucial to address these high-level challenges, the benefits can only be fully
realized if the basic operating system data is properly structured.

The work described is part of a large project involving the design and implementation of the NUMAchine
multiprocessor, the Tornado operating system, and a variety of tools, compilers, and applications. For high
application-level performance it is necessary that all levels involved perform well including the hardware,
the operating system, and the application. In this paper we have described some of the techniques we have
found to be important in achieving high performance at the operating system level.
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