
Proc. Intl. Conf. on Parallel Processing, 1994.

Optimizing IPC Performance for Shared-Memory Multiprocessors

Benjamin Gamsa
Department of Computer Science

University of Toronto
Toronto, Canada M5S 1A4

Email: ben@cs�toronto�edu

Orran Krieger and Michael Stumm
Department of Electrical and Computer Engineering

University of Toronto
Toronto, Canada M5S 1A4

Email: okrieg@eecg�toronto�edu

Email: stumm@eecg�toronto�edu

Abstract

We assert that in order to perform well, a shared-memory multi-
processor inter-process communication (IPC) facility must avoid
a) accessing any shared data, and b) acquiring any locks. In
addition, such a multiprocessor IPC facility must preserve the
locality and concurrency of the applications themselves so that
the high performance of the IPC facility can be fully exploited.

In this paper we describe the design and implementation of
a new shared-memory multiprocessor IPC facility that in the
common case internally requires no accesses to shared data and
no locking. In addition, the model of IPC we support and our
implementation ensure that local resources are made available
to the server to allow it to exploit any locality and concurrency
available in the service. To the best of our knowledge, this is the
first IPC subsystem with these attributes.

The performance data we present demonstrates that the end-
to-end performance of our multiprocessor IPC facility is com-
petitive with the fastest uniprocessor IPC times.

1 Introduction

The design of the inter-process communication (IPC) facility
of a shared memory multiprocessor seriously affects perfor-
mance and scalability. The IPC facility must maximize locality
and concurrency, and export these attributes to applications and
servers. In particular, it should efficiently enable independent
requests to be serviced in parallel, whether they originate from
a large number of different programs or a smaller number of
large-scale parallel programs, and whether they are targeted at
one or many servers. The IPC facility must also allow locality
in the interactions between the clients and the servers (such as
a client repeatedly accessing the same server resource) to be
easily exploited.

In this paper we describe the design and implementation of
a new shared-memory multiprocessor IPC facility that in the
common case internally requires no accesses to shared data and
no locking.� In addition, the model of IPC we support and our
implementation ensure that local resources are made available

�Althoughour approachworks equally well on smaller bus-based systems, we
are primarily concerned with shared-memory multiprocessors that can scale to
hundreds of processors. Large scale shared-memory multiprocessors generally
have memory distributed among the processors, such that the access time and
available bandwidthvaries with the distance between the memorymodule and the
processor. Such multiprocessors are often called Non-Uniform Memory Access
time (NUMA) multiprocessors.

to the server to allow it to exploit any locality and concurrency
available in the service. To the best of our knowledge, this is
the first IPC subsystem with these attributes. The performance
data we present in Section 3 demonstrates that the end-to-end
performance of our multiprocessor IPC facility is competitive
with the fastest uniprocessor IPC times.

To date, the majority of the research on performance con-
scious IPC has been done on uniprocessor systems. Excellent
results have been reported for these systems, to the point where
Bershad argues that the IPC overhead has become largely irrel-
evant [1]. For example, Liedtke reports requiring 60 �secs on
a 20 MHz 386 system and 10 �secs on a 50MHz 486 system
for a null, round-trip RPC [12]; a recent version of Mach re-
quires 57 �secs on a 25 MHz MIPS R3000 and 95 �secs on a
16 MHz MIPS R2000 [1, 8]; and QNX requires 76 �secs on
a 33MHz 486 [11]. These implementations apply a common
set of techniques to achieve good performance: i) registers are
used to directly pass data across address spaces, circumvent-
ing the need to use slow memory [6]; ii) the generalities of
the scheduling subsystem are avoided with hand-off scheduling
techniques [4, 6]; iii) codeand data is organized to minimize the
number of cache misses and TLB faults; and iv) architectural
and machine-specific features are exploited or avoided depend-
ing on whether they help or hinder performance.

While in the multiprocessor case it is important to exploit
all of the optimizations listed above, additional work is also
required. In particular, direct translation of the uniprocessor
IPC facilities to multiprocessors generally results in accesses to
shareddata and locks along the critical path. In a multiprocessor,
accesses to shared data can result in cache misses or increased
cache invalidation traffic which can add hundreds of cycles to
the cost of an operation. (The relative cost of cache misses
and invalidations is still increasing as processor cycle times
are further reduced.) With the increases in efficiency of IPC
implementations, locks can quickly saturate, even if the critical
sections are very short.

The new IPC facility we introduce in this paper is based on
the Protected ProcedureCall (PPC) model rather than a message
passing model. In the PPC model, a client process is thought of
as crossing directly into the server’s address space when making
a call. This model together with our implementation has a num-
ber of important properties. First, the model inherently provides
as much concurrency in the server as the requesting clients,while
the implementation uses no locks in the common case thereby
imposing no constraints of its own on concurrency. Second, no



shared data is accessed in the common case, minimizing cache
consistency traffic. Finally, the model dictates that requests are
always handled on the same processor as the client, allowing the
server to keep state associated with the client’s requests local to
the client. With our implementation, the resources provided to
the server to handle a request (in particular, the server’s stack)
are local to the processor on which the request is being serviced,
henceminimizing implicit accessesby the server to shareddata.

2 Implementation Overview

The common model of a system based on Protected Procedure
Calls (PPCs) is that servers are passive objects, consisting of
simply an address space, and that client threads move from
address space to address space as they invoke services. This
immediately implies that: i) client requests are always handled
on their local processor; ii) clients and servers share the pro-
cessor in a manner similar to handoff scheduling (since there is
logically only one thread of control); and iii) there are as many
threads of control in the server as client requests (again because
each client provides its own thread of control). The PPC model
is thus a key component to enabling locality and concurrency
within servers.

Although PPCs are most naturally implemented by having the
invokingprocess crossdirectly into the server’s address space[2,
5, 7], our implementation uses separate worker processes in the
server to service client calls. Worker processes are created
dynamically as needed and (re)initialized to the server’s call
handling code on each call, affecting an upcall directly into the
service routine.

The decision to use separate worker processes to implement
PPCs is motivated by three factors.� First, it simplifies exception
handling. Although we would like a PPC to appear similar to a
traditional procedure call, we would prefer its failure modes to
more closely follow those of a message exchange (for example,
an exception raised against the client while executing in the
server should not effect the server). Second, having the client
itself cross into the server’s address spacewould still necessitate
a separate stack while executing in the server (for robustness
and security) as well as a change of identity to allow the client
to acquire the privileges of the server, which reduces the savings
of such an approach. The third, more pragmatic factor is that
having a separate worker process service PPC calls fits more
naturally with the traditional process model upon which our
operating system is based.

To maximize locality within the IPC subsystem, each proces-
sor independently maintains a local collection of all resources
required to complete a PPC call (Figure 1). This includes a
pool of worker processes for each server�, and a pool of call
descriptors (CDs) shared among all the servers for use on that
processor. The per-server worker pools most commonly con-
tain only a single worker, but can grow and shrink dynamically
as needed. The call descriptors serve two purposes: they store
return information during a call, and they point to physicalmem-
ory used for the stack of a worker process during a call. These
pools are accessed exclusively by the local processor.

�Similar factors were coincidentally noted in Spring [10].
�If a server supports multiple services, there is one pool per service.

worker pool
entry point
. . .

service Table
shared CD pool

CD CD

stack stackWorker Worker

Service Table
Processor structure

Processor 0

1

2

N

Figure 1: Per-processor PPC data structures.

When a call is made, a worker process is allocated from
the server’s pool, and a call descriptor (CD) is allocated from
the per-processor pool; if necessary, new worker processes and
call descriptors are created for this purpose. Next, the return
information for the calling process is stored in the CD, and
the physical memory associated with the CD is mapped into
the server’s address space to be used as the worker’s stack. The
worker is then used to perform an upcall into the server’s address
space and immediately starts executing the server’s call handling
code. When the call completes, the stack is unmapped from the
server’s address space, the CD and worker are returned to their
respective pools, and the information in the CD is used to return
control back to the caller.

The key benefits of our approach all result from the fact that
resources needed to handle a PPC are accessed exclusively by
the local processor. By using only local resources during a call,
remote memory accesses are eliminated. More importantly,
since there is no sharing of data, cache coherence traffic is
also eliminated. Since the resources are exclusively owned and
accessed by the local processor, no locking is required (apart
from disabling interrupts, which is a natural part of system traps).
By eliminating memory, network, and lock contention, the PPC
facility imposes no constraints on concurrency for the system.

Since the physical stacks (and CDs) used by the worker pro-
cesses are not bound to particular workers or even particular
servers, but instead are assigned to workers on an as-needed
basis, they are effectively recycled on each call. This improves
the overall cache performance of the system, due to the smaller
cache footprint that arises when multiple servers are called in
succession and sequentially share physical stack pages. This
also reduces the physical memory requirements of the system,
since multiple servers called in succession may share a single
CD and stack, and extra stacks created during peak call activity
can easily be reclaimed.

A concernof reusing stacks in this way is the possible security
risk of sharing stacks amongst potentially untrusting servers.
This is currently addressed by permitting workers to perma-
nently hold on to a CD and stack, allowing them to safely put
sensitive information on their stack. Although, as a side ef-
fect, this allows individual calls to complete more quickly in
the best case, it removes the advantages of sharing stacks, and
may ultimately result in overall lower performance. A possible
compromise solution would collect servers that trust each other
into groups and only share stacks between servers in the same



group.
Probably the most important prior work in performance con-

scious multiprocessor IPCs is Bershad’s Light-Weight RPC
(LRPC) facility [2]. On the surface LRPC appears similar to
our own. For example, it uses the same PPC model as its basic
abstraction, and it is designed to minimize the use of shared
data and locks. The key difference is that not all resources
required by an LRPC operation are exclusively accessed by a
single processor. This has implications for the LRPC facility
itself as well as the servers. The LRPC facility accesses shared
data which must be locked and may cause additional bus traffic.
From a server perspective, the stacks used to handle the calls are
not reserved on a per-processor basis, and hence the server may
implicitly access remote data.

It is also interesting to observe how the recent changes in
technology lead to design tradeoffs far different from what they
used to be. The Firefly multiprocessor [14] on which Bershad’s
IPC work was developed has a smaller ratio of processor to
memory speed, has caches that are no faster than main mem-
ory (but are used to reduce bus traffic), and uses an updating
cache consistency protocol. For these reasons, it was far less
important to avoid accessing shared data, maximize the cache
hit rate, or to pass arguments across address spaces directly in
the processor registers. Bershad found that he could improve
performance by idling server processes on idle processors (if
they were available), and having the calling process migrate to
that processor to execute the remote procedure. This approach
would be prohibitive in today’s systems with the high cost of
cache misses and invalidations.

3 Performance

The platform used for our implementation is the Hurricane op-
erating system [13, 15] running on the Hector shared memory
multiprocessor [16]. These experiments were performed on a
fully configured but otherwise idle 16 processor system. This
prototype system uses Motorola 88100/88200 processors run-
ning at 16.67 MHz, with 16KB data and instruction caches and
a 16 byte line size. Each processor has a local portion of the
globally accessiblememory. Hector hasno hardware support for
cache coherence. Uncached local memory accesses require 10
cycles, while cache loads and writebacks require 20 cycles plus
an extra 10 for the first store to a clean cache line. The Motorola
88200 has a dual context TLB (user/supervisor bit) which takes
27 cycles on our hardware to handle a TLB miss. A trap to (and
return from) supervisor mode requires approximately 1.7 �sec.

Hector is a NUMA multiprocessor, with memory access costs
increasing with the distance between processors and memory.
However, because of the emphasis on locality in the design of
the PPC facility, we found that the non-uniform memory access
times had no measurable impact on performance. Hence, the
NUMAness is not addressed here.

To measure the cost of individual PPC operations, we used a
microsecond timer (with 10 cycle access overhead), thus elimi-
nating some of the problems associated with microbenchmark-
ing [3]. Figure 2 shows the performance of the PPC operations
under a variety of conditions. A round trip user-to-user null call
(with up to 8 arguments) requires approximately 34.1 �sec if
the cache is warm. This is reduced by 3–4 �sec if the worker

process holds on to its call descriptor and stack (although, as
already mentioned, this may ultimately hurt performance in the
average case due to lower cache hit rates).

A call to a service in the supervisor address space does not
require a TLB flush and thus incurs fewer TLB misses. This
brings the cost down to 23.5 �sec for the normal case, and
18.7 �sec if the worker process holds on to its call descriptor
and stack.

The cost of these operations is significantly higher if the
cache is not fully primed. Approximately half the instructions
executed for a PPC operation are loads and stores to (local)
memory, and hence their cost will vary according to the number
of cache misses. For example, with the data-cache flushedbefore
each call, times increase consistently by about 20 �sec, about
half of which is due to the cost of saving registers at user level on
the user stack, and half due to cache misses while manipulating
the call data structures inside the kernel. Dirtying the cache and
flushing the instruction cache can increase the times by another
20-30 �sec. However, the hit rates for both instructions and
data can be expected to be high because this code most likely
will be heavily used (and if the code is infrequently used, its
performance is unlikely to be of concern).

The performance results presented in Figure 2 are for a quiet
system with only a single client making calls. Results from
measurements with multiple clients making requests to a com-
mon server are presented in [9], and show a near-linear increase
in throughput as the number of clients is increased.

4 Concluding Remarks

We have described the design and implementation of a new
shared-memory multiprocessor client-server interprocess com-
munication system, and discussed the most important tradeoffs
in its design. Although many of the design decisions were
influenced by our particular hardware base, a M88000-based,
non-cache-coherent multiprocessor [16], we argue that similar
design decisions would apply to most current multiprocessors.
In particular, the strategies used to maximize locality (suchas us-
ing processor-specific worker processes), to eliminate the need
for locking, and to maximize the cachehit rate (such as the serial
sharing of stacks) will continue to be appropriate as long as the
difference between the cost of a cache hit and a cache miss is
large, regardless of whether the system has hardware support for
cache coherence or not.

On our system with 16 MHz Motorola M88100 processors, a
null-RPC from a client process to a user-level server and back,
with 8 words of data passed in each direction, costs 34.1 �secs
if the cache is warm, and as low as 18.7 �secs if the call is to
a kernel-level server. Although multiprocessor IPC can gener-
ally be expected to be slower than uniprocessor IPC because of
the need for locking, an increase in the cache miss rate and an
increase in cache invalidation traffic, our IPC overhead is com-
parable to the best times achieved on uniprocessor systems. We
believe that the overhead of our facility is close to the minimum
achievable on our platform.

We have incorporated this facility into the Hurricaneoperating
system [13, 15], and adapted most of the servers to use it. The
implementation entails approximately 2000 lines of commented
code, of which only 200 instructions and 6 data cache lines are



User to User

no CD hold CD no CD hold CD

cache primed cache flushed
User to Kernel

no CD hold CD no CD hold CD

cache primed cache flushed

0.0

10.0

20.0

30.0

40.0

50.0

60.0

34.1
31.2

53.3
49.4

23.5

18.7

45.6

40.8

Figure 2: Times in microseconds for round-trip PPC calls for all combinations of: a user-level server and a kernel level server, with and without the
cache primed, and with and without a held Call Descriptor.

required to complete most calls; the vast majority of the code is
needed to handle exceptions and to integrate thenew facility with
the pre-existing message passing facility. Generally, not much
effort is required to modify servers to use this facility. Large
changes are necessary only when adapting a single threaded
server to now be multithreaded (although a single lock on entry
would be sufficient if concurrency is not needed).

References

[1] Brian N. Bershad. The increasing irrelevance of IPC performance
for microkernel-based operating systems. In Proceedings of the
Usenix Workshop on Micro-Kernels and Other Kernel Architec-
tures, pages 205–212, Seattle, 1992. Usenix.

[2] Brian N. Bershad, Thomas E. Anderson,Edward D. Lazowska, and
Henry M. Levy. Lightweight remote procedure call. In Proceed-
ings of the 12th ACM Symposium on Operating System Principles,
pages 102–13, 1989.

[3] Brian N. Bershad, Richard P. Draves, and Alessandro Forsin. Mi-
crobenchmarksto evaluate system performance. In Proceedingsof
the Third Workshopon Workstation OperatingSystems(WWOS-3),
1992.

[4] D. L. Black. Scheduling support for concurrencyandparallelism in
the Mach operating system. IEEE Computer, 23(5):35–43, 1990.

[5] Jeffrey S. Chase, Henry M. Levy, Michael J. Feeley, and Edward D.
Lazowska. Sharing and protection in a single address space op-
erating system. Technical Report TR-93-04-02, Department of
Computer Science and Engineering, Unversity of Washington,
Seattle, WA 98195, April 1993.

[6] David R. Cheriton. An experiment using registers for fast message-
based interprocess communication. Operating System Review,
(4):12–20, 1984.

[7] Partha Dasgupta, Richard J. Leblanc, Jr., and William F. Appelbe.
The Clouds distributed operating systems: Functional description,
implementation details and related work. In The 8th International

Conference on Distributed Computer Systems, pages 2–9, S. José
CA (USA), June 1988. (IEEE).

[8] Richard P. Draves, Brian N. Bershad, Richard F. Rashid, and
Randall W. Dean. Using continuations to implement thread man-
agementand communication in operatingsystems. In Proceedings
of 13th ACM Symposium on Operating Systems Principles, pages
122–36. Association for Computing Machinery SIGOPS, October
1991.

[9] B. Gamsa, O. Krieger, and M. Stumm. Optimizing IPC perfor-
mance for shared-memorymultiprocessors. Technical Report 294,
CSRI, University of Toronto, 1993.

[10] G. Hamilton and P. Kougiouris. The Spring nucleus: A micro-
kernel for objects. In Proceedings of the 1993 Summer Usenix
Conference. Usenix, 1993.

[11] Dan Hildebrand. Architectural overview of QNX. In Proceed-
ings of the Usenix Workshop on Micro-Kernels and Other Kernel
Architectures, pages 113–126, Seattle, 1992. Usenix.

[12] J. Liedtke. Improving IPC by kernel design. In Proceedings of
the FourteenthACM Symposium on OperatingSystems Principles,
pages 175–187, 1993.

[13] Michael Stumm, Ron Unrau, and Orran Krieger. “Designing a
Scalable Operating System for Shared Memory Multiprocessors”.
In USENIX Workshop on Micro-kernels and Other Kernel Archi-
tectures, pages 285–303, Seattle, Wa., April 1992.

[14] Charles P. Thacker, Lawrence C. Stewart, and Edwin H. Satterth-
waite, Jr. “Firefly: A Multiprocessor Workstation”. IEEE Trans-
actions on Computers, 37(8):909–920, August 1988.

[15] R. Unrau, M. Stumm, O. Krieger, and B. Gamsa. Hierarchical clus-
tering: A structure for scalable multiprocessor operating system
design. Technical Report CSRI-268, Computer Systems Research
Institute, University of Toronto, Toronto, Canada, March 1992.

[16] Zvonko G. Vranesic, Michael Stumm, Ron White, and David
Lewis. “The Hector Multiprocessor”. IEEE Computer, 24(1),
January 1991.


