
The NUMAchine Multiprocessor

R. Grindley, T. Abdelrahman, S. Brown, S. Caranci, D. DeVries, B. Gamsa,
A. Grbic, M. Gusat, R. Ho, O. Krieger, G. Lemieux, K. Loveless,

N. Manjikian, P. McHardy, S. Srbljic, M. Stumm, Z. Vranesic and Z. Zilic
Department of Electrical and Computer Engineering

University of Toronto, Canada
zvonko@eecg.utoronto.ca

Abstract

Small-scale multiprocessors are becoming increasingly
economical and common, whereas larger multiprocessors
continue to have higher per-node costs. The NUMAchine
multiprocessor project seeks to make large-scale multipro-
cessors more economical while maintaining high perfor-
mance by exploring architectural and hardware features for
low-cost, modular multiprocessors. To demonstrate our ap-
proach, we have implemented a prototype system that is
scalable to 128 processors. An efficient directory-based
cache coherence protocol exploits our hierarchical ring-
based interconnect and supports sequential consistency.
This paper documents the design choices and the resulting
performance of the system using both simulation results and
measurements on the prototype hardware.

1. Introduction

For multiprocessors to gain widespread use, economic
considerations must play a role in their design. Currently,
systems with 8 processors are available as commodity parts,
and in the next decade it is possible that the size of commod-
ity multiprocessors may reach 16 or 32 processors. For this
to happen, the overall cost of these multiprocessors must be
kept low and the architecture must be sufficiently modular
so that small systems can be easily and affordably extended
into larger ones. While much of the multiprocessor research
to date has focussed on performance, we have extended our
research to examine architectural and hardware features for
low-cost modular multiprocessors while maintaining good
performance and scalability.

The NUMAchine multiprocessor1 has been developed
at the University of Toronto as part of a research project

1This work was supported by the Strategic Grant #STR0149404 from
the Natural Sciences and Engineering Research Council of Canada

on hardware and software for parallel computing. It is
a CC-NUMA distributed shared-memory (DSM) multipro-
cessor designed for cost-effective performance. Processors,
caches, and memory are distributed across a number ofsta-
tions interconnected by a hierarchy of unidirectional bit-
parallel rings. The simplicity of the interconnection net-
work permits the use of wide communication paths at each
node and a novel scheme for routing packets between sta-
tions enables high-speed operation of the rings. A directory-
based hardware cache coherence protocol is used. The pro-
tocol scales efficiently with system size by exploiting the
hierarchical architecture and the natural ordering properties
of the rings; it implements a sequentially-consistent mem-
ory model. A prototype machine has been constructed to
serve as a useful test-bed for further hardware and software
research. All of the control circuitry is implemented in pro-
grammable logic, making it possible to add or change func-
tionality at the hardware level without requiring physical
modifications to printed-circuit boards.

The primary research contributions of the NUMAchine
hardware implementation are: i) proof-of-concept for a sim-
ple, low-cost multiprocessor architecture based on hierar-
chical rings and ii) an efficient hardware cache coherence
protocol that exploits the architecture’s multicast capabili-
ties. The paper is organized as follows: Section 1.1 identi-
fies related commercial and experimental multiprocessors.
Section 2 describes the NUMAchine architecture and pro-
totype details. Major architectural and design choices are
discussed in Section 3. Prototype performance results are
presented in Section 4 and the current status of the proto-
type is given in Section 5. Section 6 concludes the paper.

1.1 Background

A variety of large-scale multiprocessor architectures has
been developed, as indicated in Table 1. The relevant fea-
tures considered here are: type of clustering, type of in-
terconnect, presence of caches for remote data, and the

Table 1. Some commercial and experimental multiprocessors

Name Cluster Interconnect Features

DASH [14] bus mesh remote access cache
FLASH [7] non-clustered mesh programmable protocol processor, page replication/migration
Origin2000 [13] paired-processors cube page replication/migration
I-ACOMA [20] bus mesh simultaneous multithreading, cache-only memory architecture
Teracomputer [19] non-clustered multistage switch multithreaded execution, no caching or data replication
Starfire [1] bus multiple buses global snooping, crossbar for responses
V-class [8] crossbar toroidal ring remote data caches
KSR1 [12] non-clustered hierarchical rings cache-only memory architecture
NUMA-Q [16] bus ring remote data caches

choice between non-uniform memory (NUMA) or cache-
only memory (COMA) architectures. Clustering processors
together is a means of leveraging commodity symmetric
multiprocessor (SMP) nodes. There are a number of possi-
bilities for the system-wide interconnect including meshes,
multistage switch networks, and rings. Each has advantages
and disadvantages in terms of performance, complexity, and
cost. Some systems include caches for remote data to miti-
gate longer memory access latencies as the system size in-
creases. Finally, some systems employ a cache-only archi-
tecture (COMA) to automatically replicate and migrate data
in hardware, rather than rely on caching with home memory
locations as in NUMA systems. The systems listed in Ta-
ble 1 use NUMA architecture, unless otherwise stated. The
variety of architectures in Table 1 suggests that there is no
single best approach when engineering such systems.

The NUMAchine multiprocessor employs clustering,
uses a hierarchical ring-based interconnect, provides a re-
mote data cache, and uses a NUMA architecture. It is
therefore more similar to the last three systems in Table 1.
Nonetheless, this is an introduction to NUMAchine, and
comparison to other systems will be left to future papers.

2. NUMAchine Architecture and Prototype

The NUMAchine architecture permits modular system
construction which can affordably scale from a small to a
large number of processors. Architecture and prototype de-
tails are described below.

2.1 Architecture Overview

NUMAchine consists of a number ofstationsconnected
by a two-level hierarchy composed ofLocal Ringsand a
Central Ring, as shown in Figure 1. The ring hierarchy
is joined by anInter-Ring Interface. Data transfers across
rings are divided intopacketswhich are sent according to a
slotted ring protocol. Routing packets on the NUMAchine
ring is simple and fast: each station checks a single bit to
determine if a packet has reached its destination.

Inter-Ring
Central Ring

Local Rings

P P P P

I/OM

Ring Out Ring In

P = Processor
M = Memory
NI = Network Interface
I/O = SCSI, Ethernet, etc.

Station
Bus

Interface

Stations

NI

Figure 1. NUMAchine architecture

Unidirectional slotted rings were chosen for a number of
reasons. First, they can perform as well as meshes for up to
128 processors [17, 18] when some data locality is present.
Second, stations can be added one at a time without signif-
icant re-wiring or topology changes, making them highly
modular and cost-effective. Third, rings exhibit two fea-
tures useful for implementing cache coherence and mem-
ory consistency: inherent sequencing of requests/responses,
and natural broadcast capabilities. For example, a single re-
quest invalidates multiple copies of a cache line as it tra-
verses the ring hierarchy, and serves as an acknowledgment
upon its return to the source of the request.

Each station in NUMAchine consists of a bus connect-
ing a number of processors, a memory module, an I/O mod-
ule, and anetwork interfacethat connects to a Local Ring.
The physical memory is distributed among the stations such
that each memory address has a fixedhome station. Local
memory accesses within a station incur only bus intercon-
nect latency, whereasremotememory accesses incur addi-
tional ring interconnect latency to access addresses whose
home location is on another station. The network interface
also contains anetwork cache(NC) that reduces the average
latency for remote data accesses.

1 0 0 0 0 0 1 1

STN 1

STN 2 STN 0

STN 3

Local
Ring 3 STN 1

STN 2 STN 0

STN 3

Local
Ring 2

STN 1

STN 2 STN 0

Local
Ring 0

STN 1

STN 2

STN 3 Local
Ring 1

Ring Station

Ring Station

Cache Line B

Cache Line A
01230123

0 0 1 1 1 0 0 1
01230123

STN 3

STN 0

STN 1

Filtermask

Filtermask

Figure 2. Filtermask examples

2.2 Cache Coherence

NUMAchine uses a directory-based, write-
back/invalidate cache coherence protocol. A detailed
description of the cache coherence protocol can be found in
[4]. Directories are maintained at two levels: the memory
level and the network level.

Memory Level: The memory directories maintain the
system-wide coherence state of each cache-line-sized mem-
ory block, and identify cached locations using two small
bitmasks. Theprocessor maskidentifies processors on the
local station with a copy of a cache line. Thefiltermaskuses
separate ring and station fields to identify remote stations
which also contain a copy. The name of this mask reflects
its intended role in limiting (filtering) the destinations for
invalidation requests. Multiple remote locations are repre-
sented by OR-ing their respective filtermasks into a single
filtermask to reduce the number of bits in the directory. Al-
though the resulting filtermask may occasionally overspec-
ify the true caching stations, this merely causes some in-
validations to be sent where none are needed. The number
is typically small because most cache lines are shared by a
small number of processors.

Two filtermask examples are given in Figure 2. Copies
of cache line A are located on stations 0 and 1 of Local
Ring 3, and the resulting filtermask formed by OR-ing this
information precisely indicates the locations of copies of
line A. Copies of cache line B are located on station 0 of
Local Ring 0 and station 3 of Local Ring 1. When a single
filtermask is formed for these locations, itoverspecifiesthe
locations of cache line B. It appears that two additional sta-
tions have copies (station 3 on Local Ring 0 and station 0
on Local Ring 1) when in reality they do not. Such over-

specification only occurs when copies are on different rings
and on different stations on those rings.

Network Level: The network cache also maintains a di-
rectory with a processor mask for each cache line present
in the cache. This mask specifies the local processors with
copies of cache lines whose home memories are on other
stations. Typically, only the processors listed in the proces-
sor mask receive invalidation messages sent for this cache
line. However, a cache line in the network cache may be
replaced by another without informing the home memory
and without invalidating copies in the processor caches on
this station. If an invalidation is received for such a cache
line, the worst case must be assumed and all processors on
the station must be sent the invalidation. A relatively large
network cache makes this an infrequent occurrence.

Coherence States: The memory directories maintain four
coherence states for each cache line:

Local Valid
(LV)

One or more processors caches within the sta-
tion have a shared copy. Remote stations do
not have valid copies.

Local Invalid
(LI)

One local processor cache has a modified
copy. There are no other valid copies.

Global Valid
(GV)

One or more remote stations have a shared
copy, and there may also be local copies in
processor caches within the station.

Global Invalid
(GI)

One remote station has a modified copy, and
there are no other valid copies.

A line in any one of the four states can also be locked. Lock-
ing of the line occurs at the beginning of a coherence action
that requires multiple stages, and ensures that no other ac-
cess to the line is possible until the transaction completes.

State information contained in the network cache com-
plements the information in the home memory. The set of
states in the network cache (GV, GI, LV, LI) is similar to that
in main memory. One difference is that the Local states, LI
and LV, indicate the station has a modified copy; hence, the
same line is in the GI state at the home memory. Upon
receiving a request for the cache line, the home memory
must forward it to the station with the modified copy. Data
responses are sent both to the home memory and the re-
quester. Another difference is that the GI state only means
that no valid copies of the cache line exist on the station.

2.3 Memory Consistency

NUMAchine supports sequential consistency, which is
the most intuitive model for writing shared-memory pro-
grams. As well, since modern high-performance processors
gain little additional performance from relaxed consistency
schemes, there is little incentive for implementing these
less-intuitive programming models [9]. Although provid-
ing sequential consistency may involve additional hardware

cost in some architectures , the NUMAchine architecture in-
herently provides simple and efficient means for supporting
it. Fixed sequencing points are defined on both the Local
and Central Rings. A multicast (limited broadcast) invali-
dation does not become active until it passes the sequenc-
ing point on the highest ring level that must be traversed to
reach all multicast destinations. The simple routing for the
rings makes the activation decision trivial. This imposes the
necessary ordering for sequential consistency between any
two multicasts on a given ring level, although the average
traversal length for sequenced packets (i.e. invalidations) is
slightly increased.

2.4 Flow Control, Deadlock Avoidance, and Retry

To prevent loss of data due to buffer overflow, NUMA-
chine uses a flow control scheme that signals nearby senders
to stop issuing packets if the receiving buffer is nearing ca-
pacity. No timeouts or negative acknowledgments are re-
quired in this approach, simplifying the implementation.
Buffers with large capacities are relatively inexpensive and
provide adequate space for in-transit messages when the
flow control is invoked.

NUMAchine avoids deadlock arising from circular de-
pendence amongst resources by distinguishing between
sinkablepackets (those that will not generate new requests
such as data response) andnon-sinkablepackets (such as
requests). Sinkable responses are permitted to bypass non-
sinkable requests in certain cases that would otherwise lead
to deadlock. Details of deadlock avoidance and flow control
are documented in [15].

NUMAchine provides a retry mechanism for requests
that are negatively-acknowledged when they encounter a
locked state in a directory. This approach avoids the need
to buffer an arbitrary number of such requests at the locked
site. Instead, the originator of the request employs a modi-
fied binary exponential back-off retry algorithm.

2.5 Prototype Implementation

The cards on a NUMAchine station are shown in Fig-
ure 3. Each station can hold four processor cards, two mem-
ory cards, two I/O cards, and one network interface card.
The station bus is a 64-bit, split-transaction, address/data
multiplexed bus running at 50 MHz, for a peak bandwidth
of 400 Mbytes/sec. The physical bus is based on the Future-
bus+ standard, but NUMAchine uses a novel synchronous
bus protocol with decentralized busy detection and central-
ized arbitration [15].

Each processor card has a 150 MHz MIPS R4400 micro-
processor with an external 1-Mbyte secondary cache. The
secondary cache line size is boot-time selectable between
64 bytes and 128 bytes.

I/O

DRAMBridge

(Video,
LAN)

S
C

S
I2

S
C

S
I2

S
C

S
I2

S
C

S
I2

A
uxR4650

uP

64
-d

ee
p

64
-d

ee
p

Station Bus

Memory

256 MB
DRAM

Directory
Controller

DRAM
Controller

25
6-

de
ep

64
-d

ee
p

LBI

External
Agent

R4400
uP

Processor

64
-d

ee
p

64
-d

ee
p

Network Interface

N
on

-
S

in
ka

bl
e

S
in

ka
bl

e

Network
Cache

8 MB
DRAM

25
6-

de
ep

25
6-

de
ep

64
-d

ee
p

64
-d

ee
p

Ring In Ring Out

Packet
Reassembly

1MB
L2 Cache

Directory

Figure 3. Cards on a NUMAchine station

The memory card contains up to 256 Mbytes of 4-way
interleaved DRAM that can feed the bus at the peak band-
width of 400 Mbytes/sec. The memory card also hosts a di-
rectory controller that uses SRAM memory to maintain the
state of each cache-line-sized DRAM memory block on the
board. Finally, the memory card includes a controller for
special functions such as block memory-to-memory trans-
fers and block coherence operations.

The I/O card provides access to local disk storage, as
well as a PCI interface for a commodity LAN adapter or
video card. The I/O subsystem supports disks distributed
among four SCSI-2 controllers.

The network interface card provides the connection be-
tween the station bus and the Local Ring. The incoming and
outgoing paths are separate and each is 64 bits wide. It also
contains an 8-Mbyte network cache for remote data. The
controllers on the network interface card are responsible for
managing the network cache as well as the packaging and
reassembly of cache lines to and from the ring hierarchy.

The connection between each Local Ring and the Cen-
tral Ring is through an Inter-Ring Interface (IRI) consisting
of FIFO buffers for the upward and downward paths, along

with the associated controllers. For a 64-processor machine
consisting of four Local Rings, four IRIs are necessary. Our
implementation places all four IRIs on a single board with
daughter cards. Further implementation details of the pro-
totype have been reported in [5].

3. Rationale for Design Choices

Simulations of SPLASH-2 benchmark programs were
used to analyze the performance impact of the rings, queue
sizes, filtermasks, network caches, and coherence protocol
overhead. These results are described below and further de-
tails can be found in [6].

3.1 Simulator

The NUMAchine simulator uses MINT [21] as its front-
end. The back-end models NUMAchine’s memory system,
generating appropriate delays when requests are passed
through caches, buses, rings, etc. When modeling a com-
plex system such as a multiprocessor, the trade-off between
model accuracy and simulation time can be significant. The
NUMAchine simulator attempts to efficiently capture all the
salient details of data transfers and protocols.

All queues are modeled accurately, providing good indi-
cation of occupancy and congestion. Operating system calls
take zero time as seen from the virtual processor. Page fault
overhead is not modeled and a round-robin page placement
policy is used.2 The default behavior is to model only the
parallel section of a program. When skipping over the se-
quential code, the simulator correctly executes instructions,
but allows all loads and stores to succeed immediately, by-
passing the cache and without doing any page mapping.

3.2 Ring Performance

This section shows that the design of the ring hierarchy
and flow control prevent saturation of the network.

Ring Utilization: In a single ring clock cycle, a ring slot
may depart a ring interface in either an empty or utilized
state. An empty slot departs a ring interface when there is
no new data to inject into the ring and eitheri) an incom-
ing packet terminates its traversal at the interface, orii) an
empty slot was received. Utilized ring slots may be catego-
rized into one of the following three states:

Send A new packet is injected into an outgoing ring slot.
Forward A received packet is passed on to the next ring link.
Split A received packet is passed on, and a local copy is

passed down.

2The results are somewhat pessimistic since all pages, private and
shared, are currently allocated using the round-robin policy.

Ring utilization is obtained by averaging the utilized slots
over all the ring’s interfaces.

Figure 4 shows utilizations of the Central and Lo-
cal Rings. The large utilizations (10%–40%) for FFT,
Ocean and Radix arise from a higher communication-to-
computation ratio, as described in [22]. In contrast, the
other benchmarks exhibit markedly lower utilizations.

For all benchmarks running on 64 processors, Central
Ring utilization is higher than the Local Ring, as expected.
For 32 processors (only two Local Rings) the situation is
reversed, indicating that plenty of additional bandwidth is
available on the Global Ring.

Ring Queue Depths: To obtain greater insight into ring
performance, we measured the maximum and average
depths of the incoming and outgoing queues in the network
interfaces. The same queue sizes as the prototype were used
(512 entries for Central, and 256 for Local), with flow con-
trol being invoked when a queue reaches 75% of capacity.
The results are presented in Figure 5.

Most of the benchmarks have low average queue depths,
and the maximum queue depths are usually below the
threshold for flow control invocation. Hence, the rings
are able to handle the amount of traffic generated by these
benchmarks and the flow control mechanism is not invoked.
Note that moderately-sized commodity buffers are suffi-
cient to provide this performance.

Only three of the benchmarks actually achieve queue
depths that cause flow control to be invoked: Barnes, Ocean,
and Radix. For Barnes and Ocean, the impact of the flow
control is minimal, since Central Ring queue depths exceed
the threshold only a small number of times. Furthermore,
this does not significantly impact the Local Ring queues,
since their thresholds are not reached.

Only Radix invokes the flow control mechanism a signif-
icant number of times. Because of this, average and maxi-
mum depths for the Local Ring queues also increase (since
they are frequently blocked from injecting packets into the
Central Ring) and can potentially saturate. Despite this, the
Central Ring utilizations, while higher than for most of the
other benchmarks, do not exceed about 40%.

Interestingly, Barnes exhibits a large difference between
its maximum and average queue depths and its ring utiliza-
tions are low (less than 10%). Thus, this application has a
few short but heavy bursts of communication. In contrast,
FFT exhibits higher utilizations (5%–40%), but has lower
maximum queue depths, indicating higher volume commu-
nication that is more evenly distributed in time.

Central Ring Speed: The raw speed of the interconnec-
tion network has an effect on performance in any multi-
processor system. As shown in Figure 5, the ring-injection
queues into the Central Ring can become long. Increasing

32 64
0

10

20

30

40

50

C
en

tr
al

 R
in

g
U

til
. (

%
)

Barnes

32 64
0

10

20

30

40

50
FFT

32 64
0

10

20

30

40

50
LU−Con

32 64
0

10

20

30

40

50
Ocean−Con

32 64
0

10

20

30

40

50
Radix

32 64
0

10

20

30

40

50
Raytrace

32 64
0

10

20

30

40

50
Volrend

32 64
0

10

20

30

40

50
Water−Sp

Send
Split
Forward

8 16 32 64
0

10

20

30

Processors

Lo
ca

l R
in

g
U

til
. (

%
)

8 16 32 64
0

10

20

30

Processors
8 16 32 64

0

10

20

30

Processors
8 16 32 64

0

10

20

30

Processors
8 16 32 64

0

10

20

30

Processors
8 16 32 64

0

10

20

30

Processors
8 16 32 64

0

10

20

30

Processors
8 16 32 64

0

10

20

30

Processors

Send
Split
Forward

Figure 4. Central and Local Ring utilizations

32 64
0

100

200

300

400

C
en

tr
al

 R
in

g
Q

ue
ue

 D
ep

th
s

Barnes

32 64
0

100

200

300

400

FFT

32 64
0

100

200

300

400

LU−Con

32 64
0

100

200

300

400

Ocean−Con

32 64
0

100

200

300

400

Radix

32 64
0

100

200

300

400

Raytrace

32 64
0

100

200

300

400

Volrend

32 64
0

100

200

300

400

Water−Sp

Inj.Max
Inj.Avg
Extr.Max
Extr.Avg

8 16 32 64
0

50

100

150

200

Processors

Lo
ca

l R
in

g
Q

ue
ue

 D
ep

th
s

8 16 32 64
0

50

100

150

200

Processors
8 16 32 64

0

50

100

150

200

Processors
8 16 32 64

0

50

100

150

200

Processors
8 16 32 64

0

50

100

150

200

Processors
8 16 32 64

0

50

100

150

200

Processors
8 16 32 64

0

50

100

150

200

Processors
8 16 32 64

0

50

100

150

200

Processors

Inj.Max
Inj.Avg
Extr.Max
Extr.Avg

Figure 5. Central and Local Ring queue depths

the Central Ring speed should help empty out the queues,
while increasing the rate of requests being injected into the
lower levels of the hierarchy. The key point is that the two
levels of hierarchy must be well-balanced. We simulated
speeds from 50 to 250 MHz, in 50 MHz steps. The per-
formance increased by 11% at 100 MHz, and then flattened
out. Higher Central Ring speeds put pressure on the IRI
extraction queues, and the limiting factor becomes the rate
at which packets can be transferred to the station. For the
prototype, we determined that 50 MHz is sufficient, but the
Central Ring can run at any speed up to 80 MHz.

3.3 Filtermask Performance

As the number of stations in the system increases, the
probability of the filtermask overspecifying stations in-
creases. Since the filtermask can uniquely identify each sta-
tion, the only concern is in overspecifying targets of mul-

ticasts, specifically invalidations. This imprecision in the
filtermask can be measured by keeping track of the exact
number of sharers in the memory coherence directory in
the simulator. When an invalidation is sent out, the actual
number of stations targeted is divided by the real number
of sharers to obtain theoverinvalidation rate. For the sim-
ple case of two sharers, the overinvalidation rate can be as
high as two if the sharers are on different rings and stations.
(Note that if the sharers are on the same station or the same
Local Ring then the overinvalidation rate is one, i.e., the fil-
termask is precise.) We expect the rate to be around two if
the number of sharers on average is two, as we did not tune
the SPLASH-2 programs to take advantage of locality.

Figure 6 shows the overinvalidation rate averaged for all
invalidations. The rates can reach as high as 3.3, but most
are around 2.5 when using 64 processors. This amount of
multicast traffic does not impair the machine performance,
because on average they do not generate broadcast inval-

0 8 16 32 64

1

1.5

2

2.5

3

3.5

Processors

O
ve

rin
va

lid
at

io
n

R
at

e

Barnes
FFT
LU−Con
Ocean−Con

0 8 16 32 64

1

1.5

2

2.5

3

3.5

Processors
O

ve
rin

va
lid

at
io

n
R

at
e

Radix
Raytrace
Volrend
Water−Sp

Figure 6. Overinvalidation rates

idations to all stations. Avoiding heavy broadcast traffic is
important in maintaining system scalability, as shown in [2].

3.4 Network Cache Performance

The most fundamental metric for measuring Network
Cache performance is thehit rate. A request for a remote
cache line is considered a hit in the NC if it does not gen-
erate any network traffic (though it will generate local on-
station traffic). The simplest such case occurs when data
fetched during a remote shared read from one processor can
be used to satisfy a subsequent request by another on-station
processor. More complicated scenarios are described in [4].

We classify the NC hits based on the type of access
(shared or exclusive) and the current coherence state of the
line. There are five possible combinations:

SHRLV A shared read to an NC-owned line (Local Valid).
The NC responds with data.

SHRGV A shared read to a globally shared line (Global
Valid). The NC responds with data.

SHRLI A shared read to a line that is dirty in one of the local
processor caches (Local Invalid). The NC mediates
the intervention to obtain a copy of the line.

EXC LV An exclusive read (or upgrade) to an NC-owned line.
The NC responds with data or an upgrade acknowl-
edgment (invalidate).

EXC LI An exclusive read to a locally dirty line (Local In-
valid). The NC mediates the exclusive intervention.

Figure 8 indicates that while the hit rates can be quite
good for some applications, there is considerable variabil-
ity. FFT rarely hits because its data access pattern con-
sists of migratory data which has little spatial or tempo-
ral locality. Radix has an all-to-all communication phase
which is heavily write-dependent. Since its writing pattern
is fairly random, the probability that a line will be shared
on the same station decreases as more stations are used.
This accounts for the declining hit rate. Except for Radix,
where most hits come from sharing locally modified data
(EXC LI), the most prevalent source of hits is from accesses
to global read-shared data (SHRGV). Although the NC

1 2 4 8 16 32 64

1

1.2

1.4

1.6

1.8

R
el

at
iv

e
P

er
fo

rm
an

ce

Barnes

1 2 4 8 16 32 64

1

1.2

1.4

1.6

1.8
FFT

1 2 4 8 16 32 64

1

1.2

1.4

1.6

1.8

Processors

R
el

at
iv

e
P

er
fo

rm
an

ce

Ocean−Con 4

1 2 4 8 16 32 64

1

1.2

1.4

1.6

1.8

Processors

Radix

Figure 7. Turning off cache coherence

certainly does provide a (sometimes substantial) caching ef-
fect, the overall effect on performance is hard to determine
from the hit rate alone.

3.5 Coherence Overhead

NUMAchine’s cache coherence scheme efficiently uses
the ordering and multicasting properties of rings to achieve
low coherence overhead. As a test, we ran the simulator
without enforcing coherence. Although the machine is ren-
dered functionally incorrect, it is possible to evaluate the
coherence overhead and place an upper bound on any po-
tential performance improvement.

To model a non-coherent system, the memory model was
changed. First, stores to a processor cache that find a line
present in any state are treated as hits; no coherence infor-
mation is passed on to the memory or NC. Second, read re-
quests (shared or exclusive) to home memory always return
data. The directory is neither checked nor updated. Finally,
if a cache line is present in the NC in any state, it is consid-
ered a hit and data is returned. Note that NC misses must
still fetch the line remotely, although the remote memory is
guaranteed to hit. Locked lines still generate NACKs.

By turning off coherence we eliminate three types of
overhead: i) all NACKs, except for local NACKs from
the NC,ii) latency to obtain write ownership (invalidation),
and iii) latency for fetching modified cache lines from the
caches of other processors, because the home memory al-
ways hits.

The results for Barnes, FFT, Ocean and Radix are shown
in Figure 7. Ocean shows dramatic improvement because
data is typically delivered from the caches when coherence
is off. With cache coherence present, this data is invalidated
by remote writes and requires re-reading of the cache line,
creating additional ring traffic. Barnes shows a slight im-
provement, while FFT and Radix show almost no improve-
ment. The conclusion is that the cache coherence protocol
(including the effect of the NC) performs well for our test
programs.

8 16 32 64
0

50

100

Processors

N
C

 H
it

R
at

e
(%

)
Barnes

8 16 32 64
0

50

100

Processors

FFT

8 16 32 64
0

50

100

Processors

LU−Con

8 16 32 64
0

50

100

Processors

Ocean−Con

8 16 32 64
0

50

100

Processors

Radix

8 16 32 64
0

50

100

Processors

Raytrace

8 16 32 64
0

50

100

Processors

Volrend

8 16 32 64
0

50

100

Processors

Water−Sp

Shr−LV
Shr−GV
Shr−LI
Exc−LV
Exc−LI

Figure 8. Network Cache hit rates

4. Prototype Performance

Using the simulator discussed in the previous section and
measurements on the hardware prototype, we present access
latencies and speedups for selected benchmarks.

4.1 Access Latencies

Table 2 gives the measured read latencies to different
parts of the memory hierarchy on an unloaded system. The
latency is measured from the time the processor issues the
read request to the time the processor receives the first data
packet. The ratio of remote to local access latencies, the
“NUMA-ness” of the system, is about 4:1. This ratio puts
NUMAchine mid-range when compared to the implemen-
tations mentioned in Section 1.1, which are as low as 2:1
and as high as 10:1. The absolute values of latencies are
larger than in the other systems mentioned largely due to the
implementation of all control logic in programmable logic
devices. Nevertheless, performance of the system is good,
as shown in the next section.

4.2 Speedups

We present the measured speedups of 8 unmodified
SPLASH-2 benchmarks [22] in Figure 9 with a summary
in Table 3. Results are shown for both the simulator and the
16-processor hardware prototype. Uniprocessor runtimes
were obtained using the parallel versions of the bench-
marks. Although the simulator is sometimes optimistic,
general patterns for most benchmarks match hardware re-
sults. The exceptions are FFT and LU, which do not show
a close correspondence.3

For the base problem sizes, 4 out of the 8 benchmarks
have a parallel efficiency (speedup divided by the number of
processors) greater than 60%. The remaining benchmarks
(FFT, LU, Ocean and Radix) are known to speed up poorly
for the base problem size, even with 16 processors [11];
our results confirm this finding. Of these, the speedups for
Ocean and Radix have a parallel efficiency greater than 60%

3We are in the process of examining the simulator to determinethe
source of these discrepancies.

Table 2. Measured access latencies

level of hierarchy 150-MHz PCLKs 50-MHz SCLKs

L1 cache 1 n/a
L2 cache 6 n/a
Local memory 135 45
Local network cache 165 55
Other L2 cache 255 85
Rem. mem. (same ring) 594 198

Table 3. Performance summary

Benchmark Characteristics Observations
name c-to-c ratio locality ring util. speedup

Barnes low good low good
FFT high poor higher poor
LU-Con low good low poor
Ocean-Con high moderate higher good1

Radix high poor higher good1

Raytrace low moderate low good
Volrend low moderate medium good
Water-Sp low good low good
1 larger problem size required

with larger problem sizes. We expect LU would improve
similarly, but the 1024 size shown is the largest we can run
on the simulator in a reasonable amount of time. Also, we
are investigating the poor performance of FFT.

In general, benchmarks with low communication-to-
computation (comm-to-comp) ratio and good locality of
reference (Barnes, LU, and Water) are known to have better
speedups. Our speedup results match this trend, with the
exception of LU which is known to have load imbalance
problems. The low ring utilization of these benchmarks ob-
served in Figure 4 confirms their low comm-to-comp ra-
tio. Although Raytrace and Volrend show only moderate
locality, their low comm-to-comp ratio still produces low
to medium ring utilization and good speedup is maintained.
It is interesting to note that these five benchmarks all have
high NC hit rates (above 50%), which is important for re-
ducing latency.

� � H/W: 16384 points
� � Sim: 16384 points

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|

0.0

|

2.0

|

4.0

|

6.0

|

8.0

|

10.0

|

12.0

|

14.0

|

16.0
Barnes

S
pe

ed
up

�

�

�

�

�

�

�

�

�

�

� � H/W: 2^16
� � H/W: 2^20

 Sim: 2^20

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|

0.0

|

2.0

|

4.0

|

6.0

|

8.0

|

10.0

|

12.0

|

14.0

|

16.0
FFT

S
pe

ed
up

�

�

�

�

�

�

�

�

�

�

� � H/W: 512X512
� � H/W: 1024X1024

 Sim: 1024X1024

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|

0.0

|

2.0

|

4.0

|

6.0

|

8.0

|

10.0

|

12.0

|

14.0

|

16.0
LU-Con

S
pe

ed
up

�

�

�

�
�

�

�

�

�

�

� � H/W: 258X258
� � H/W: 514X514

 Sim: 514X514

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|

0.0

|
2.0

|
4.0

|

6.0

|

8.0

|

10.0

|

12.0

|

14.0

|

16.0
Ocean-Con

S
pe

ed
up

�

�

�

�

�

�

�

�

�

�

� � H/W: 256K keys
� � H/W: 4M keys

 Sim: 4M keys

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|

0.0

|

2.0

|

4.0

|

6.0

|

8.0

|

10.0

|

12.0

|

14.0

|

16.0
Radix

S
pe

ed
up

Processors

�

�

�

�

�

�

�

�

�

�

� � H/W: balls4.env
� � Sim: balls4.env

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|

0.0

|

2.0

|

4.0

|

6.0

|

8.0

|

10.0

|

12.0

|

14.0

|

16.0
Raytrace

S
pe

ed
up

Processors

�
�

�

�

�

�

�

�

�

�

� � H/W: head.den
� � Sim: head.den

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|

0.0

|

2.0

|
4.0

|

6.0

|

8.0

|

10.0

|

12.0

|

14.0

|

16.0
Volrend

S
pe

ed
up

Processors

�

�

�

�

�

�

�

�

�

�

� � H/W: 512 particles
� � Sim: 512 particles

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|

0.0

|

2.0

|

4.0

|

6.0

|

8.0

|

10.0

|

12.0

|

14.0

|

16.0
Water-Sp

S
pe

ed
up

Processors

�

�

�

�

�

�

�

�

�

�

Figure 9. Parallel speedups on the NUMAchine prototype

Of the remaining three benchmarks (FFT, Ocean, and
Radix), achieving good speedup is difficult because of the
large bandwidth requirements: flow control is invoked for
Ocean and Radix and all three show higher ring utilizations.
Increasing the problem size for Ocean and Radix does result
in good speedup, but the same is not true for FFT. Further
increases in problem size for FFT and Radix has not helped
much in other studies [11].

Another trend is the change in the slopes of the speedup
curves when the number of processors is increased, which is
common for DSM machines. The slopes are fairly constant
up to 4 processors indicating that station parameters have
been chosen well. The slope decreases for larger configura-
tions, since some requests are now for off-station memory.
This is particularly noticeable for applications with large re-
mote communication requirements.

4.3 Larger Systems

Results for larger configurations are shown in Figure 10.
These speedups were obtained using the NUMAchine simu-
lator and show the expected prototype performance. Larger
problem sizes were used for FFT, LU, Ocean and Radix.

The performance of the system is good, achieving a par-
allel efficiency of greater than 60% for 7 out of 8 bench-
marks on 64 processors. It remains to be seen how well
the prototype Central Ring performs, although speedups ob-
tained through simulation are encouraging.

5. Current Status

The NUMAchine prototype consists of three Lo-
cal Rings, each containing four stations (16 proces-
sors). The Central Ring is undergoing testing, and
upon completion will link together the Local Rings
to form a 48-processor system. Updates on the
hardware status, with photographs, can be found at
http://www.eecg.toronto.edu/parallel.

We have developed a custom parallel POSIX-compliant
operating system, Tornado [3], to take advantage of
NUMAchine’s inherent clustering and provide user-
customizable support in the kernel for parallel file sys-
tems. Tornado boots and runs parallel programs such as the
SPLASH-2 suite and numerous X11 programs. The sys-
tems group is also working closely with IBM research, and
has ported the K42 operating system to NUMAchine [10].

6. Conclusion

Lessons learned from the evolution of the desktop PC
are that cost, usability, and modularity are crucial to gain
widespread acceptance of an architecture. Today, 4- and
8-way multiprocessors are prevalent in the workstation en-
vironment. We believe that medium-scale parallel process-
ing will also become widely used. Hence, the goal of the
NUMAchine project is to develop cost-efficient and usable
parallel computing. Our experience has shown that it is pos-

� � Barnes: 16384
� � FFT: 2^20
� � LU-Con: 1024X1024
� � Ocean-Con: 514X514

|
0

|
8

|
16

|
24

|
32

|
40

|
48

|
56

|
64

|

0.0

|

8.0

|

16.0

|

24.0

|

32.0

|

40.0

|

48.0

|

56.0

|

64.0

S
pe

ed
up

Processors

�
�
�

�

�

�

�

��
�
�

�

�

�

�
�
�

�

�

�

�

�
�
�

�

�

�

�

� � Radix: 4M keys
� � Raytrace: balls4.env
� � Volrend: head.den
� � Water-Sp: 512

|
0

|
8

|
16

|
24

|
32

|
40

|
48

|
56

|
64

|

0.0

|

8.0

|

16.0

|

24.0

|

32.0

|

40.0

|

48.0

|

56.0

|

64.0

S
pe

ed
up

Processors

�
�
�

�

�

�

�

��
�

�

�

�

�

�
�
�

�

�

�

�

��
�

�

�

�

�

Figure 10. NUMAchine simulator speedups

sible to build an effective medium-scale multiprocessor us-
ing a simple architecture with off-the-shelf parts.

The NUMAchine hardware consists of a CC-NUMA 48-
processor prototype using a hierarchical ring network. We
have identified several beneficial ring properties: inherent
broadcast, which provides an effective mechanism for the
dissemination of cache coherence information; natural or-
dering of transactions, which not only simplifies the coher-
ence protocol but also facilitates a simple implementation
of sequential consistency; and a simple and fast bitmask
routing algorithm. We have also demonstrated a two-level
hardware cache coherence scheme which exploits the ring
properties described above.

The simplicity of the ring network reduces the design
complexity considerably. The incremental cost of inserting
an extra node into the system is also small. This paper has
shown that this cost-effective architecture does not sacrifice
good performance.

NUMAchine’s design naturally provides support for se-
quential consistency – an important aspect of usability. To
further extend usability, one goal is to use the operating sys-
tem to hide the “NUMA-ness” from the user by exploiting
the underlying clustered architecture. The iterative tuning
of parallel programs must also disappear if this class of ma-
chines is to become widely used. For these reasons, work on
parallelizing compilers and parallel file systems are two ma-
jor areas of research that will be carried out on the NUMA-
chine hardware.

References

[1] A. Charlesworth. Starfire: Extending the SMP envelope.
IEEE Micro, 18(1):39–49, Jan/Feb 1998.

[2] K. Farkas, Z. Vranesic, and M. Stumm. Scalable cache con-
sistency for hierarchically-structured multiprocessors. J. of
Supercomputing, pages 345–368, 1995.

[3] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm. Tornado:
Maximizing locality and concurrency in a shared memory
multiprocessor operating system. InProc. of the 3rd Sym-
posium on Operating Systems Design and Implementation,
pages 87–100, 1999.

[4] A. Grbic. Hierarchical directory controllers in the NUMA-
chine multiprocessor. Master’s thesis, Dept. of Electrical
and Computer Engineering, University of Toronto, 1996.

[5] A. Grbic, S. Brown, S. Caranci, et al. Design and implemen-
tation of the NUMAchine multiprocessor. InProc. of the
35th Design Automation Conference, pages 66–69, 1998.

[6] R. Grindley. The NUMAchine Multiprocessor: Design and
Analysis. PhD thesis, Dept. of Electrical and Computer En-
gineering, University of Toronto, 1999.

[7] M. Heinrich, J. Kuskin, D. Ofelt, et al. The Stanford FLASH
multiprocessor. InProc. of the 21st Intl. Symposium on
Computer Architecture, pages 302–313, 1994.

[8] Hewlett Packard. Architecture Reference Guide—V2500
Server. Document No. A3725-96004, 1999. Available at
http://docs.hp.com/hpux/systems/#vclass.

[9] M. D. Hill. Multiprocessors should support simple memory-
consistency models.Computer, 31(12):28–34, Aug 1998.

[10] IBM Research.The K42 Project. Information is available at
http://www.research.ibm.com/K42/.

[11] D. Jiang and J. P. Singh. A methodology and an evaluation
of the SGI Origin2000. InProc. of the Joint Intl. Conference
on Measurement and Modeling of Computer Systems, pages
171–181, 1998.

[12] Kendall Square Research.KSR1 Principles of Operation.
Waltham, MA, 1991.

[13] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA
highly scalable server. InProc. of the 24th Intl. Symposium
on Computer Architecture, pages 241–251, 1997.

[14] D. Lenoski, J. Laudon, T. Joe, et al. The DASH prototype:
Implementation and performance. InProc. of the 19th Intl.
Symposium on Computer Architecture, pages 92–103, 1992.

[15] K. Loveless. The implementation of flexible intercon-
nect in the NUMAchine multiprocessor. Master’s thesis,
Dept. of Electrical and Computer Engineering, University
of Toronto, 1996.

[16] T. Lovett and R. Clapp. STiNG: A CC-NUMA computer
system for the commercial marketplace. InProc. of the 23rd
Intl. Symposium on Computer Architecture, pages 308–317,
1996.

[17] G. Ravindran and M. Stumm. A performance comparison of
hierarchical ring- and mesh-connected multiprocessor net-
works. InProc. of the 3rd Intl. Symposium on High Perfor-
mance Computer Architecture, pages 58–69, 1997.

[18] G. Ravindran and M. Stumm. On topology and bisec-
tion bandwidth for hierarchical-ring networks for shared-
memory multiprocessors. InProc. of the Intl. Symposium
on High Performance Computing, 1998.

[19] Tera Computer Company. Information on their architecture
is available at http://www.tera.com/tech/index.html.

[20] J. Torrellas and D. Padua. The Illinois aggressive comamul-
tiprocessor project (I-ACOMA). InProc. of the 6th Sym-
posium on the Frontiers of Massively Parallel Computing,
1996.

[21] J. Veenstra. MINT tutorial and user manual. Technical
Report 452, Computer Science Department, University of
Rochester, May 1993.

[22] S. Woo, M. Ohara, E. Torrie, J. P. Shingh, and A. Gupta. The
SPLASH-2 programs: Characterization and methodological
considerations. InProc. of the 22nd Intl. Symposium on
Computer Architecture, pages 24–36, 1995.

	Text13: Appeared in Proc. Intl. Conf. on Parallel Processing, Toronto,ON, Canada, August 2000, pp. 487-496.

