
HFS� A Performance�Oriented Flexible File System

Based on Building�Block Compositions

Orran Krieger

IBM T�J� Watson Research Center

and

Michael Stumm

Department of Electrical and Computer Engineering

University of Toronto

The Hurricane File System �HFS� is designed for �potentially large�scale� shared memory multi�
processors� Its architecture is based on the principle that� in order to maximize performance for
applicationswith diverse requirements� a �le system must support a wide variety of �le structures�
�le system policies and I�O interfaces� Files in HFS are implemented using simple building blocks
composed in potentially complex ways� This approach yields great 	exibility� allowing an appli�
cation to customize the structure and policies of a �le to exactly meet its requirements� As an
extreme example� HFS allows a �le
s structure to be optimized for concurrent random�accesswrite�
only operations by ten threads� something no other �le system can do� Similarly� the prefetching�
locking� and �le cache management policies can all be chosen to match an application
s access
pattern� In contrast� most parallel �le systems support a single �le structure and a small set of
policies�

We have implemented HFS as part of the Hurricane operating system running on the Hector
shared memory multiprocessor� We demonstrate that the 	exibility of HFS comes with little
processing or I�O overhead� We also show that for a number of �le access patterns HFS is able
to deliver to the applications the full I�O bandwidth of the disks on our system�

Categories and Subject Descriptors� D��� �Operating Systems�� File Systems Management�
Access methods� D��� �Operating Systems�� File Systems Management�File organization�
D���� �Operating Systems�� Performance�Measurements� E�� �Files�� Organization� E�� �Files��
Optimization

General Terms� Design� Performance� Flexibility� Customization

Additional Key Words and Phrases� Data partitioning� data replication� parallel computing� par�
allel �le system

This work was done while the authors were at the University of Toronto� and supported by a grant
from the Canadian Natural Sciences and Engineering Research Council� Name� O� Krieger
A�liation� IBM T�J� Watson Research Center Address� P�O�Box ���� Yorktown Heights� NY
������ email� okrieg�watson�ibm�com Name� M� Stumm A�liation� Department of Electrical
and Computer Engineering� University of Toronto Address� �� King
s College Road� Toronto�
Canada M�S G�� email� stumm�eecg�toronto�edu
Permission to make digital or hard copies of part or all of this work for personal or classroomuse is
grantedwithout fee provided that copies are not made or distributed for pro�t or direct commercial
advantage and that copies show this notice on the �rst page or initial screen of a display along
with the full citation� Copyrights for components of this work owned by others than ACM must
be honored� Abstracting with credit is permitted� To copy otherwise� to republish� to post on
servers� to redistribute to lists� or to use any component of this work in other works� requires prior
speci�c permission and�or a fee� Permissions may be requested from Publications Dept� ACM
Inc�� ���� Broadway� New York� NY ���� USA� fax �� ����� ��������� or permissions�acm�org�

� � O�Krieger and M�Stumm

�� INTRODUCTION

The Hurricane File System �HFS� supports a large� expandable set of �le struc�
tures� interfaces� and policies� and allows an application to customize the �les it
uses to match its I�O requirements� This high degree of 	exibility is achieved by
having many �ne�grained building blocks� each of which de�nes a portion of a �le
s
structure or implements a simple set of policies� The application can control the
composition of the building blocks used to implement �les on a per �le and per
open �le instance basis� This allows the �le
s implementation to be customized to
best meet the application
s I�O requirements�
A parallel �le system di�ers from uniprocessor �le systems both because of the

hardware resources it must manage and because of the requirements of the applica�
tions it must support� HFS is designed for �potentially large�scale� shared�memory
multiprocessors� Such systems have a large number of disks and memory modules
distributed across the system� To optimize I�O performance� a �le system must
properly exploit these resources� For example� data should be distributed across
the disks to improve I�O bandwidth� cached in memory to reduce the demand on
the system disks� and prefetched from disk in order to hide the latency of disk I�O
from applications�
Many important supercomputer applications have massive I�O requirements �del

Rosario and Choudhary ���� Galbreath et al� ���� Intel ���� Lin and Zhou
���� Miller and Katz ��� Poole ���� Scott ����� These parallel applications
have needs that are di�erent than those of the typical sequential Unix applications
for which many �le systems have been optimized� First� for many supercomputer
applications� most of the I�O bandwidth goes to accessing temporary �les� say for
data sets that cannot �t in main memory�� Because the �les are created speci��
cally for the application� the �le structure can be optimized for the particular access
pattern of the application that will use it� Second� such applications are much less
likely to access an entire �le sequentially� although they may still have predictable
access patterns that can be used to optimize I�O performance� Finally� the in�
terface requirements of such applications di�er from traditional Unix applications�
Unix read�write requests both implicitly impose synchronization that unnecessarily
constrains performance and results in poor performance when requests are not to
sequential data�
Optimizing a �le system for I�O�intensive parallel applications is complicated

by the fact that the requirements of these applications are poorly understood�
and hence there is currently little understanding of the �le structures� policies�
and I�O interfaces required in order to best satisfy these requirements� This poor
understanding exists� in part� because most current parallel machines have poor
support for high performance I�O� and as a result the parallel processing community
has mainly studied applications that have small I�O requirements �Crandall et al�
���� del Rosario and Choudhary �����
The 	exibility of HFS allows a �le to be customized to match the needs of a

particular application on a particular hardware platform� and the application can

�Another reason why many supercomputer applications access temporary �les is that the massive
�les used may require storage on tertiary rather than secondary storage� and the �les are only
transfered to disk when an application will actively be using them�

HFS� A Performance�Oriented Flexible File System � �

directly control this customization� An HFS application can choose how �le data
is to be distributed across the disks� how the data is to be distributed on each
of the disks� whether to store redundant copies for fault tolerance� how to hide
latencies� what advisory or enforced synchronization policies to use� and whether
to transparently invoke compression�decompression algorithms on the data� We
contend that this level of 	exibility is necessary in order to be able to accommodate
the diverse I�O requirements of applications executing on parallel hardware�
While we have focused on I�O intensive parallel scienti�c applications� HFS has

been designed to be a general �le system that can e�ciently support the needs
of a wide variety of applications� As as result� HFS also e�ciently supports the
interface standards used by sequential applications� This is important for the �le
system of a shared�memory multiprocessor� since these machines are expected to
�concurrently� support applications that range from sequential interactive jobs to
very large parallel applications� and from scienti�c applications to transactional
data base systems �Frank et al� ���� Kuskin et al� ���� Lenoski et al� �����
Overall� the 	exibility of HFS is important for a number of reasons� First� it is

crucial in allowing a large class of I�O�intensive supercomputer applications to ex�
ploit the full I�O bandwidth of the disks attached to the system� Second� given the
poorly understood requirements of I�O�intensive parallel applications� 	exibility is
necessary to ensure that the �le system doesn
t constrain application developers�
Third� the 	exibility allows HFS to easily adapt to new I�O interfaces� new op�
erating systems� new demands on the �le system functionality� and new hardware
platforms� Fourth� the 	exibility allows the requirements of other workloads� such
as sequential Unix applications� to be met without imposing additional overheads�
Finally� the 	exibility is important for experimentation� making it easy to explore
di�erent policies and �le structures in the context of a common system environment�
For parallel processing� 	exibility and customizability is of little use if the asso�

ciated overhead results in poor performance� We demonstrate that the 	exibility
of HFS comes with negligible overhead when compared to the other costs associ�
ated with I�O� Moreover� we argue that in many cases the ability to customize an
implementation of a �le to its expected demands can result in lower overhead than
a more generic implementation�
In the next section we describe the building�block composition technique� The

following section presents the architecture of HFS and shows how building�block
compositions are implemented by our �le system� Subsequent sections present
performance results obtained from our implementation of HFS as a part of the
Hurricane operating system �Unrau et al� ���� on the Hector shared�memory mul�
tiprocessor �Vranesic et al� ���� Our experimental results show that �� it is
feasible to implement a �le system based on building�block compositions� ��� the
performance overhead is low� and ��� the basic goal of 	exibility is indeed important�

�� BUILDING�BLOCK COMPOSITION

Each HFS �le is implemented by combining together a set of building blocks� A
building block can de�ne a portion of a �le
s structure or implement a simple set
of policies� For example� di�erent types of building blocks exist to store �le data
on a single disk� distribute �le data to other building blocks� replicate �le data to
other building blocks� store �le data with redundancy for fault tolerance� pre�fetch

� � O�Krieger and M�Stumm

A

B

C D

Fig� �� This HFS building�block composition implements a �le� Building blocks C and D
may each store data on a single disk� building block B might be a distribution building
block that distributes the �le data to C and D� and building block A might be a compres�
sion�decompression building block that decompresses data read from B and compresses
data being written to B�

�le data into main memory� enforce security� manage locks� and interact with the
memory manager to cache �le data� Building blocks are implemented as objects
and thus contain state and a set of operations that manipulate that state�
A building�block object exports an interface that speci�es the operations that can

be invoked by other building blocks� It may also import �one or more� interfaces
that are exported by other building blocks� Two building blocks are said to be
connected if one of them can invoke operations of the other� and the building block
is then also said to reference the other� Two building blocks may be connected only
if the exported interface of the one is imported by the other�
The particular composition of building blocks that implements a �le �i�e�� the

set of building blocks and the way they are connected� determines the behavior
and performance of the �le� As a simple example� Figure shows four building
blocks and how they are connected� Building block B contains references to C
and D� and in turn is referenced by A� Building blocks C and D may each store
data on a di�erent disk� B might be a distribution building block that distributes
the �le data to C and D� and A might be a compression�decompression building
block that de�compresses data read from B and compresses data being written to
B� The imported and exported interfaces are indicated by the pattern at the top
and bottom of each building block� If two building blocks are connected then the
corresponding imported and exported interfaces must match�

It is important to note that each �le and each open �le instance will �at least
in part� have a di�erent building�block composition� For example� two open �le
instances �even of the same �le� will be implemented by a di�erent set of build�
ing blocks� possibly with a di�erent topology� making it possible to o�er highly
customized services�

��� Flexibility

In our building�block framework� 	exibility can be achieved in a number of ways�
First� given a particular composition� it is possible to exchange one building block
for another as long as the imported and exported interfaces of the two are the same�
For example� in Figure � building block B could be replaced by another building
block B� that implements a di�erent distribution� Thus for each type of building

HFS� A Performance�Oriented Flexible File System � �

block� multiple implementations may exist� each supporting a di�erent policy or
optimized for a di�erent application behavior� In practice this is achieved by hav�
ing multiple subclasses provide separate implementations with identical interfaces
inherited from a common superclass� Even with only a few subclasses for each
building block� the combinatorial e�ect on the behavior of an entire composition
can be huge�
Second� new building blocks can be added to an existing structure if the connect�

ing interfaces match� thus modifying the topology� This can be used to add new
functionality� For example� a new building block E �that� say� implements prefetch�
ing of some sort� can be inserted between A and B� as long as both the imported
and the exported interface of E are the same as that exported by B� Building
blocks that import the same interface they export can be arbitrarily stacked� As
another example� to implement a replicated �le� one can imagine just adding a
replication building block F between A and B that is connected to both B and a
second subtree rooted by another distribution building block similar to B�

Finally� it is possible to support new interfaces to applications by introducing
new building blocks that export these interfaces� but import existing interfaces so
that they can be connected to existing structures�
In general� the �ner the granularity of the building blocks used in a composition

�and thus the larger the number of building blocks in the composition� the larger
the degree of 	exibility� In our implementation� we have found that we tend to
use many �ne�grained building blocks in a composition� as opposed to using a few
large ones� For example� the distribution building blocks B above might execute
only ��� lines of C code in a typical 	ow of control through the building block�
Similarly� the larger the number of building�block types with identical interfaces
is� the more 	exibility exists in de�ning compositions� This is particularly true for
building blocks that export the same interface they import�

��� Operation

In our model� control is passed from one building block to another by having the
�rst invoke an exported operation of the other� The 	ow through building�block
compositions is initiated either by an application invoking an operation on one of
the building blocks� or as a result of a page fault or disk interrupt� In the case of
a building block that resides in a di�erent address space�� an RPC�like facility is
used to pass control� In our implementation� the building block code is executed
by a thread that is created in the target address space as a by�product of the
Hurricane protected procedure call �PPC� facility �Gamsa et al� ����� The degree
of concurrency in servicing I�O requests is thus equal to the number of requests
issued�
A crucial aspect of our work is that we allow applications to specify the initial

composition of the �les they create� and we allow applications to modify �in part�
the existing building�block compositions of the �les they are accessing� Arguments
to a constructor specify how that building block is to be connected to the other
already existing building blocks� Because the applications that specify compositions

�As will be seen in the next section� the �le system is partitioned across a number of address
spaces�

� � O�Krieger and M�Stumm

maybe untrusted� it is necessary to validate the safety of these compositions� Hence�
once the building blocks have been instantiated� they verify that each referenced
building block is of the correct type �i�e�� the right interface� and that any other
required constraints are met� For example� if some building block requires that a
particular �le block size be supported� it veri�es that all building blocks it references
can in fact support that block size� In system servers� only hierarchical compositions
are allowed �i�e�� no loops�� and only unidirectional links between building blocks
are allowed� This simpli�es validating the safety of the compositions�
Some building blocks� such as those that de�ne �le structure� are persistent and

exist �on disk� as long as the �le exists� In our current implementation these
building blocks cannot be changed once created� Other building blocks� such as
those that represent state for open �le instances� are transitory and exist only
when a �le is open� These building blocks can be changed at any time� say to
conform to a speci�c application
s access pattern�

��� Performance considerations

Since performance is the ultimate goal of our work� the overhead of our building�
block framework is an important concern� If a �le is implemented using many layers
of simple� �ne�grain building blocks� then one might suspect that the overhead of
traversing these layers would be a problem� In practice� we have found the overhead
to be small for the following �ve reasons�

�� Even if a �le is implemented with many layers of building blocks� requests are
often serviced by traversing only a small number of layers� For example� many
building blocks cache data� so read and write requests can often be satis�ed
from a cache managed by a building block that is close to the client�

��� Our approach naturally reduces the amount of cross�address space communica�
tion� Building�block composition di�ers from other approaches for customizing
system software by not requiring the system to redirect requests to the appli�
cation address space or to a separate server �Druschel ���� Heidemann and
Popek ���� Khalidi and Nelson ����� With our approach� the customization
occurs in the server providing the service� thus naturally avoiding cross�address
space communication�

��� We have found it possible to de�ne building�block interfaces that have extremely
low overhead� For example� the interfaces we have developed for our building
blocks typically allow control to pass through multiple building blocks without
requiring data to be copied�

��� Since the functions and data of a building block are speci�c to the policies it
implements� it is often possible to avoid executing conditional statements �e�g��
to determine the policy to use� that a more traditional approach would require�
Avoiding such conditional statements can reduce system overhead �Massalin
and Pu ����� Also� since the data is optimized to provide exactly the informa�
tion required� it can be represented more compactly� reducing the main memory
and caching overhead of the system�

��� If the use of many building blocks happens to result in excessive overhead
for some important new workload� then it is straightforward for a systems
programmer to de�ne and add a new type of building block to speci�cally

HFS� A Performance�Oriented Flexible File System � 	

memory
manager

system
servers

logical
layer

physical
layer

application
layer

Fig� �� This �gure illustrates the relationship between the di�erent components of the
Hurricane �le system� The Alloc Stream Facility �ASF	 is an application�level I�O library�
The physical layer of the HFS �le system implements �les and controls the system disks�
The logical layer server provides �le system authentication services� Most �le I�O occurs
through mapped �les� so the memory manager is involved in most requests to read or
write �le data�

handle the demands of this workload� possibly by combining a set of simple
building blocks into a single more complex building block�

�� ARCHITECTURE AND IMPLEMENTATION

The Hurricane File System �HFS� implements �les using building�block composi�
tions� HFS is logically divided into three layers� the application layer� the physical
layer� and a logical layer between the two �Figure ��� The Alloc Stream Facility
�ASF� is an I�O library that makes up the application layer of HFS �Krieger et al�
����� We provide as much functionality as possible in this layer in order to mini�
mize communication with servers in other address spaces� The HFS physical layer�
which implements �les and controls the system disks� and the HFS logical layer�
which provides �le system authentication services� are system servers of the Hurri�
cane operating system� The memory manager is involved in most requests to read
or write �le data� because ASF ensures that most �le I�O occurs through mapped
�les� We describe each of the three layers of HFS in turn�

��� The Alloc Stream Facility

Application requests for I�O are often handled by an application�level I�O library�
such as stdio� that acts as an intermediary between the application and the I�O
servers of the system� The Alloc Stream Facility �ASF� is another such library�
which we developed using our building�block approach� It handles all I�O on Hur�
ricane �e�g�� terminal� socket� disk� and pipe I�O�� is suitable for multiprocessor
operation� and exports a number of di�erent I�O interfaces �such as the Unix
read�write and stdio interfaces� to applications �Krieger et al� ����� AFS has
been ported to a number of uniprocessor and multiprocessor systems� including
SunOS� IRIX� AIX� and HP�UX�
The ASF I�O package is an example where we have clearly found it advantageous

to de�ne a large number of simple building blocks� instead of a smaller number
of more general ones� Most of the building blocks import and export the same
interface� so there is much 	exibility in the compositions� This common interface�

 � O�Krieger and M�Stumm

prefetching

locking

service−specific

compression/
decompression

Per−thread

to file system
servers

Fig� � Example of an ASF building�block composition used by a multi�threaded applica�
tion to access a �le stored on disk in a compressed format� All building blocks other than
the service�speci�c one import and export the ASI interface� The application is assumed
to use ASI directly� so no interface building blocks are shown�

the Alloc Stream Interface �ASI� was carefully designed to minimize the amount of
data copying required as control is passed from one building block to another��

The implementation of ASF supports three types of building�blocks� �� ASI
building blocks� ��� service�speci�c building blocks� and ��� interface building blocks�
ASI building blocks import and export the ASI interface� and can hence be con�
nected in arbitrary ways� We have de�ned ASI building blocks that implement
policies for latency hiding� compression�decompression and advisory locking �for
multi�threaded applications�� To simplify the task of the application programmer�
we have de�ned ASI building blocks that allow applications to have customized
views of �le data��

Service�speci�c building blocks import the interface of a particular I�O service
�e�g�� terminal� �le� network connection� and export the ASI interface� For good
performance� we have found it important that data be transferred to and from
server address spaces using service�speci�c interfaces� For example� on Hurricane
large �les are most e�ciently accessed using mapped��le I�O� while terminal I�O is
best accessed using a read�write interface� We also de�ne a separate building block
for read�only� write�only� and read�write access for each I�O service� respectively�
Separate� direction�speci�c building blocks are more e�cient than more general

�While having a common interface is important� it is also important that building blocks be
able to export additional building block�speci�c functions for extensibility� For example� if a
�le system supports prefetching� the service�speci�c building blocks for that �le system should
export an interface that allows for prefetching� ASI supports this by providing a special function
�similar to the default function Heidemann and Popek �Heidemann and Popek ����� de�ne for
their stackable �le system� that handles any class�speci�c requests� When a building block cannot
directly interpret a special request� it re�directs it to the building blocks it references�
�This is similar to the functionality provided by the ELFS �le system �Grimshaw and Loyot �����
that allow the semantic structure of a �le �e�g�� a �le containing a two dimensional matrix� to
be taken into account� Similarly� we have de�ned other ASI building blocks that implement the
mapping functions de�ned by the Vesta �le system �Corbett and Feitelson ������

HFS� A Performance�Oriented Flexible File System � �

ones� since less checking is necessary when they are specialized�
Interface building blocks import the ASI interface but export a standard I�O

interface to the application� such as the �emulated� standard Unix I�O system
call interface and the stdio interface� �Applications can also use the ASI interface
directly�� Language interfaces� such as the C�� iostream� could also be supported�
although we have not yet implemented them�
Figure � illustrates how ASF building blocks might be used in a building�block

composition for a �le being accessed by a multi�threaded application where each
thread sequentially accesses a di�erent part of a single �le stored on disk in a
compressed format� Each application thread has a per thread building block that
maintains the �le o�set for that thread� Since each thread accesses data sequen�
tially� but the �le as a whole is not accessed sequentially� each per�thread building
block references a di�erent prefetching building block� The prefetching building
blocks all reference a single building block that implements some advisory lock�
ing policy�� This building block� in turn� references a compression�decompression
building block� which decompresses data read from the �le and compresses data
being written to the �le� Finally� the compression�decompression building block
makes requests to access �le blocks to a service�speci�c building block� which maps
the �le into the application address space� and translates I�O requests for �le data
into accesses to the mapped region�
An application that creates a �le can specify which ASF building blocks should

be instantiated by default when the �le is opened�� Once a �le has been opened�
the accessing application can customize the �le by modifying the set of building
blocks used� For example� the number of threads and the way threads access the �le
are speci�c to the application� so the per�thread prefetching and locking building
blocks shown in Figure � are instantiated explicitly by the application at run time�
These ASF building blocks can be subsequently changed to adapt to the di�erent
access patterns an application might have in di�erent phases of its execution� For
example� an application traversing a matrix �rst by row and then by column would
bene�t from changing the ASF building blocks used when its access pattern to the
data changes�

��� Physical�layer �le service

The physical layer of HFS implements �les and controls the disks on the system�
It handles disk block placement and is thus responsible for cylinder clustering�
load balancing� and locality management� Logically� the physical layer of HFS is
situated below the memory manager� as shown in Figure �� so that mapped �le I�O

�Any locking policy implemented in the application address space can only be advisory �rather
than enforced�� since there is no way to ensure that the application cannot bypass the library
and call the �le system servers directly� For scalability� building blocks through which all control
must pass� such as the locking building block shown� must be implemented using sophisticated
techniques in order to properly handle concurrency� caching and NUMA e�ects �Parsons et al�
������
�Having application�layer building blocks instantiated automatically is important in order to pro�
vide functionality transparent to the application� For example� if the compression�decompression
building block of Figure is instantiated automatically� then ASF can hide the fact that compres�
sion is being done from applications� This allows standard utilities� such as editors� to process
compressed �les without knowledge of this fact�

� � O�Krieger and M�Stumm

per−disk

replication

distribution

Fig� �� Example building�block composition in the physical layer of the HFS �le system�

can exploit the facilities of the physical layer� This allows an application to map a
large portion of a �le into its address space even if the disk blocks are distributed
across a number of disks�
All building blocks used in the physical layer of HFS import and export the same

interface� except for those that interact directly with the disks� Again� this allows
the building blocks to be composed in a wide variety of ways� and hence allows
for much 	exibility in the policies implemented by this layer of the �le system�
The interface used here is similar to the ASI interface used in the application�level
library� where the key operations to read and write �le blocks involve no copying
as control passes through the building blocks�
We have implemented three types of per�disk building blocks that organize �le

data on the disk� extent based building blocks store �le data using contiguous
extents of up to ��� disk blocks �Sweeney et al� ����� random access building
blocks always write �le blocks to a �new� location near the current disk head
position �Rosenblum and Ousterhout ���� and sparse data building blocks are
optimized for �les with large un�populated areas�
Physical�layer building blocks that import and export the same interface include�

Striped data� stripes data in a round�robin fashion across the referenced building
blocks�

Distribution� partitions a �le into contiguous regions� each stored by a di�erent
referenced building block�

Write�mostly� takes into account disk proximity or load to optimize write per�
formance�

Replication� replicates data to each referenced building block�

Parity� computes and stores parity information for fault recovery �Patterson et al�
�����

Application speci�c distribution� maintains an application speci�ed table that
de�nes how data is distributed to referenced building blocks� and

Small data� stores the data of a small �le together with the �le meta�data��

�Multiple small data building blocks can be packed into a single disk block to minimize disk

HFS� A Performance�Oriented Flexible File System � ��

These building blocks are for the most part simple and are described �together with
their interfaces� in more detail in �Krieger �����
Figure � illustrates how the simple building blocks of the physical layer can

be combined together to create very complex �le structures� In this example� a
replication building block replicates data to two distribution building blocks� each
of which distribute data across a number of per�disk building blocks� Such a �le
structure would allow �le data to be replicated to di�erent parts of a large scale
multiprocessor� allowing requests for �le data to be serviced from a nearby replica�
The structure of a �le is determined by how the initial building blocks are in�

stantiated and connected� and this is controlled directly by the application� The
structure is de�ned in a bottom up fashion� As the �le grows� the �le system
may instantiate new building blocks to store the additional data� but does so while
retaining the basic �le structure de�ned by the application�
Unlike application�layer building blocks� the physical�layer building blocks asso�

ciated with a �le are persistent and cannot be changed at run time�� Therefore�
some building blocks at this layer must implement more than a single policy to
be able to handle di�erent application requirements� For example� the replication
building block might implement two policies for directing read requests� �� to the
object on the least loaded disk� or ��� to the object on the disk closest to the target
memory� Which policy to use can then be speci�ed �and changed� at run time�
Persistent building blocks� such as those described in this section� are stored on

disk with the �le data� and only cached in memorywhen they are needed� One novel
feature of our system is that the persistent building blocks themselves are stored
in a regular �le that is itself stored on disk �by other persistent building blocks��	

When an application instantiates a persistent building block� it can specify which
�le should be used to store that building block� This means that all the same policies
used for storing �le data can be used to store the building blocks themselves� This
	exibility makes it possible� for example� to co�locate building blocks near other
related data� to take advantage of the disk head position when writing out building
blocks� or to store building blocks redundantly for fault tolerance�

��� Logical�layer �le service

The logical layer of HFS implements all �le system functionality that does not have
to be implemented at the physical layer and� for security or performance reasons�
should not be implemented in the application layer� In our implementation� this
layer provides naming �i�e�� directories�� authentication� and locking services� In
order for locks on �le data to be enforced �rather than just advisory� they must be
implemented by a system server that can prevent applications from accessing data
that has been locked by others�
The logical layer of HFS di�ers from the other layers in that there is less 	exibility

in how building blocks can be composed� Building blocks in this layer �t into four
basic types� Naming building blocks maintain the name space of HFS and the

fragmentation�
�We are currently exploring techniques to ease this restriction so that �le structures can be
modi�ed dynamically without requiring a copy�
	On each disk� there are a small number of persistent building blocks whose location on disk is
recorded in a well known location�

�� � O�Krieger and M�Stumm

open requests

service
specific

naming

open
authentication

access
authentication

locking

file
data

application
layer

logical
layer

physical
layer

Fig� �� An example of a logical�layer building�block composition�

particular type of building block used for a directory determines how the directory
is to be cached in main memory� Open�authentication building blocks authenticate
requests to open a �le� Access�authentication building blocks authenticate requests
to access �i�e�� read� write or map� �le data� Locking building blocks enforce locking
policies�

Figure � illustrates a typical composition of logical�layer building blocks and
shows how these building blocks interact with the building blocks in the applica�
tion and physical layer� Open requests are resolved by naming building blocks that
use the pathname speci�ed by the application to locate the open�authentication
building block for the �le� After authenticating the request� for example by us�
ing an access list based policy� these building blocks return to ASF information
which identi�es both the application�layer building blocks to be instantiated �by
default� and a handle of the access�authentication building block to which subse�
quent requests are to be directed� In the application layer� service�speci�c ASF
building blocks direct requests to read� write� or map the �le data to the access�
authentication building block returned by an open request� After authenticating
the request� the access�authentication building block directs the request to the lock�
ing building block which enforces locking constraints� In the case of mapped �le
I�O� the request is then forwarded to the memory manager� Otherwise� read and
write requests are satis�ed by corresponding requests made to the physical layer�

As with physical layer building blocks� the logical layer building blocks are per�
sistent and instantiated by the application when the �le �or directory� is created�

We have put in less work developing the logical layer of HFS than we have
developing the other layers� primarily because the logical layer has very little e�ect
on performance in our system� Except for small �les� we have found that mapped
�le I�O results in the best performance� and hence most accesses to �le data on
our system do not go through the logical layer� Nevertheless� we believe that the
	exibility of the building block approach could be usefully exploited even for this
layer� making it easy to experiment with new mechanisms for caching directory
information� authenticating open requests �e�g�� using access lists or Unix style
permissions� and enforcing locking protocols�

HFS� A Performance�Oriented Flexible File System � ��

per−disk

replication

distribution

open requests

naming

open
authentication

access
authentication

locking

application
layer

logical
layer

physical
layer

prefetching

locking

service−specific

compression/
decompression

Per−thread

Fig� �� A full example of an HFS �le�

��� Putting it all together

Figure � shows how the di�erent layers of HFS discussed in the previous sections
work together when an application is accessing a �le� The building blocks implement
a �le where �� there are two replicas of the �le data� ��� each of the replicas is
distributed across a di�erent set of disks� ��� the data is stored in the �le in a
compressed format� ��� the �le is being accessed by a multi�threaded application�
and ��� each thread is sequentially accessing a di�erent part of the �le data�
The �gure demonstrates the strength of the building�block approach employed

by HFS� The application is able to customize a �le and open��le instance to match
its speci�c access pattern by customizing both the �le structure and the �le system
policies implemented by all three layers of the �le system� Not only does each of
the layers provide its functionality in a 	exible fashion� but a combinatorial e�ect
arises because compositions span all layers of the system� While �le systems such
as Vesta �Corbett and Feitelson ���� support quite complex �le structures� and
systems such as ELFS �Grimshaw and Loyot ��� allow for customized policies
at the application level� HFS is unique in having a single consistent technique for
customized functionality at all levels of the system�

�� � O�Krieger and M�Stumm

It is clear from the above discussion that the development of HFS di�ered from
most other �le systems in that we took a holistic view of the �le system� considering
all the system servers and layers that a�ect I�O performance together� Looking at
the system in this fashion resulted in numerous software engineering and perfor�
mance advantages� For example� the physical layer of the �le system could rely
on ASF to guarantee that all accesses to large �les use mapped �le I�O� making
it unnecessary to support multiple techniques for accessing the same �le with the
attendant required e�ort to provide consistency� As another example� ASF can rely
on the logical layer to tell it what building blocks should be instantiated by default�
allowing the compression implemented by ASF to be transparent to the application
accessing a �le�

�� MINIMIZING APPLICATION COMPLEXITY

There is a tradeo� between 	exibility and the complexity an application program�
mer is faced with when developing applications to use the system� While we have
found writing application�level code to create HFS �les to be straightforward� we
do not� in general� expect application programmers to write such code themselves�
Instead� we believe that a number of approaches will allow even novice users to
exploit the 	exibility of our �le system�

ASF defaults� The application�level library can create �les using reasonable de�
faults if no information is available from the application�

Library functions� We have constructed a variety of library routines that imple�
ment the most common types of data distribution� including all examples described
in the previous section� These routines hide the process of instantiating building
blocks from the application programmer�

Compiler support� A compiler has been developed that for a class of applications
hides all I�O operations from the application programmer� while exploiting the
	exibility of HFS to achieve good performance �Mowry et al� �����

	� EVALUATION

In this section we describe our experiences with� and show performance results from�
our implementation of HFS� Our goal is to demonstrate that �� it is feasible to
implement a �le system based on building�block compositions� ��� the performance
overhead is low� and ��� the basic goal of 	exibility is indeed important� While it is
di�cult to quantify 	exibility� we will argue in Section � that HFS is signi�cantly
more 	exible than other existing and proposed multiprocessor �le systems�
We have implemented HFS as part of the Hurricane operating system �Unrau

et al� ���� on the Hector shared�memory multiprocessor �Vranesic et al� ����
The ASF application�level library has also been ported to a number of other sys�
tems� The �rst section describes our qualitative experiences in implementing HFS
and summarizes results on ASF that have previously been published �Krieger et al�
����� The remaining sections show performance results on Hector�Hurricane� Sec�
tions ��� and ��� provide measurements of the experimental environment and of
some basic �le system operations� Section ��� presents the performance of the �le
system for two �le access patterns� and demonstrates that the 	exibility of HFS is
important in obtaining good performance for these access patterns� Finally� using

HFS� A Performance�Oriented Flexible File System � ��

an extreme stress test� Section ��� shows that the software overhead of our approach
is negligible�

	�� Experiences

As a structuring technique for developing 	exible system software� we found that
building�block composition has a software engineering advantage� resulting in greatly
reduced code complexity� We had developed an earlier �le system prior to HFS that�
like most other �le systems� had code speci�c to each type of �le �e�g�� replicated �le�
distributed �le� etc�� and speci�c to the meta�data of each type of �le� With this
earlier system� the programming e�ort to add a new type of �le was high� In con�
trast� we found that HFS� using building�block compositions� was less complicated
to implement� even though better performance and a great deal more 	exibility was
achieved�
One measure of 	exibility is how easy it is to adapt to new environments� We

ported the ASF application�level library�
 to a number of systems� including SunOS�
IRIX� AIX� HP�UX� and Tornado �Auslander et al� ����� and found the port to be
relatively easy� it was only necessary to change some of the service�speci�c building
blocks to adapt to a new platform�
The 	exibility of ASF allowed us to easily modify the library to exploit the best

features of each host operating system while bypassing any poorly performing ones�
As reported in previous work �Krieger et al� ����� this resulted in substantial perfor�
mance advantages� For instance� a Unix diff application comparing two identical
�les runs nearly four times faster on an AIX system when using ASF instead of
the AIX native stdio library� Performance improvements like these� although repre�
senting extreme cases� indicate the advantages of developing a 	exible system that
can be easily modi�ed to adapt to a particular platform� In the particular example
cited� we were able to exploit a mapped �le I�O facility that is speci�c to the AIX
system�
Another measure of 	exibility of the system is how easy it is to handle require�

ments not foreseen by its developers� We initially had no intention of making
crash recovery fast� but recovering from a system crash involved re�formatting the
disks with our initial implementation� making the system essentially unusable in
our experimental OS�hardware environment� Adding e�cient crash recovery to
HFS required only minor modi�cations to the building blocks that store persistent
building blocks on disk �Section ���� and to the de�nition of the per�partition su�
perblock� As a result� it now only takes seconds to recover from a typical system
crash�
Experimental research in system software always entails compromises� In devel�

oping HFS� the choice of the Hurricane�Hector platform involved both advantages
and disadvantages� The key advantages were that the operating system and hard�
ware could be modi�ed for our experimentation� and that the platformwas available
for system development� The disadvantages were �� much of the basic operating
system and hardware infrastructure required for this research had to be developed
from scratch� and ��� the small size of the system limited the experiments we could

�
Since HFS requires low�level control over the disks� it would have required great e�ort to port
the entire �le system to a di�erent platform�

�� � O�Krieger and M�Stumm

perform� For this reason� we have con�ned our implementation goals to producing
a proof of concept prototype� We have implemented the entire �le system infras�
tructure �e�g�� device drivers� code for marshalling and de�marshalling requests to
the �le system� code for caching persistent building blocks in main memory� etc��
and have implemented many but not all of the building blocks described in the
previous sections��� Nevertheless� our prototype is su�ciently complete to show�

�� The full HFS architecture is implementable� We are con�dent that all building
blocks of the physical and application layers described in the previous sections
are implementable without requiring major changes to either the common in�
terfaces or the non�building�block�speci�c code� While we have less experience
with the logical�layer of HFS� we are also less concerned about this layer� since
it is not heavily involved for reading and writing �le data and hence is not
performance�critical�

��� The overhead of building�block composition is low and� in fact� negligible� Even
with a composition that uses many layers of building blocks� the processing
overhead of HFS is low compared to other processing overhead involved in I�O�
We will show that HFS is capable of delivering the full I�O bandwidth of the
disks on our system�

��� The 	exibility available in HFS �but not other systems� is useful� In particular�
we use two synthetic stress tests with very di�erent access patterns to show
that the 	exibility of HFS is needed to be able to deliver ��� of the disk
bandwidth to the application with these access patterns�

	�� Infrastructure

We �rst describe our hardware infrastructure and the experimental setup� and then
describe the key performance characteristics of the operating system infrastructure�

���� Hardware infrastructure� Our experiments were performed on the Hector
multiprocessor �Vranesic et al� ���� which is constructed from processing modules
�PMs� each with a ���� MHz Motorola ���� processor� �KB data and �KB
instruction caches �������� and a local portion of the globally�addressable memory�
A small number of PMs are connected by a bus to form a station� and several
stations are connected by a high�speed ring� with multiple rings connected together
by higher�level rings� and so on �Figure ��� The particular hardware con�guration
used in our experiments consisted of � PMs per station and � stations connected
by a ring� Hector does not support hardware cache coherence� so many of the
internal data structures used in HFS are not cached� Seven Conner CP���� disks
are connected to the Hector prototype� each directly connected to a di�erent PM�
Requests to a disk must be initiated by its local processor and all disk interrupts are
serviced by that processor� Disks can DMA data to or from any memory module

��Our current implementation includes about ��K lines of C and C�� source code� This includes
about �K lines of code used to cache path names �and shared by a number of system servers�� �K
lines of code for handling I�O requests �and shared by our NFS and disk �le system�� �K lines
of infrastructure code speci�c to the disk �le system� �K lines of device driver code� �K lines of
physical�layer building�block code� �K lines of logical�layer building�block code� and �K lines of
application�level mostly building�block code�

HFS� A Performance�Oriented Flexible File System � �	

central ring

P

station bus

P

Station B Station A

station controller B

local ring 2

local ring 1

station controller A

Station C Station D

local ring 3

inter−ring
interface 1

inter−ring
interface 2

inter−ring
interface 3

P P PP

P
P

P P
P

P

Fig� �� A high�level representation of the Hector multiprocessor� Each processor box in
the system includes a CPU and cache� local memory� and I�O interface�

���

���

���

���

KByte
per
sec�

Block size �bytes�

��� ���� ����� ����

o� station

on station

on processor

�K page size

Fig� �� Basic per�disk I�O throughput on Hector as a function of block size� Solid lines
show performance for requests that are directed to o��station memory� Dashed lines
show performance for on�station requests� dotted lines show performance for on�processor
module requests� The vertical dotted line indicates the performance for
 KByte disk
block requests� corresponding to the Hurricane page size�

in the system���

Figure � shows maximumdisk throughput on our system in KBytes�sec� for dif�

��During a load or store by the disk to memory �local or remote�� the processor co�located with
the disk is blocked from making any memory accesses� which can have a substantial impact on
performance�

�
 � O�Krieger and M�Stumm

ferent block sizes��� To avoid interrupt overhead� we obtained these measurements
by instrumenting the device driver to poll waiting for I�O operations to complete�
The maximum performance obtained from the disk is about ��� KBytes�sec� This
maximumperformance was obtained by making requests larger than � KBytes and
is independent of the memory to which the request is directed� Unfortunately� the
performance is slightly worse with � KByte disk blocks �the memory manager page
size on Hurricane� and depends on the target memory� varying from ���KBytes�sec�
to between ��� and �� KBytes�sec�

����� Operating system infrastructure� HFS was developed as part of the Hur�
ricane operating system �Unrau et al� ���� Unrau et al� ����� In Hurricane� a
micro�kernel provides for basic process and thread management� interprocess com�
munication and memory management� while most of the operating system services
are provided by user�level servers�
The interprocess communication facility of Hurricane� Protected Procedure Calls

�PPC�� has three important characteristics�

�� It is fast��� a null PPC request between two application address spaces varies
between �� and �� �sec� on our hardware� depending on how much of the state
required for the PPC is in the processor cache�

��� In the commoncase� no locks need to be acquired and only local data is accessed�
making the IPC system fully concurrent�

��� New threads are created dynamically �as required� to handle requests in the
server address space �Gamsa et al� ����� This allows the concurrency in the
�le system to match the demands being made on it by application threads�

The speed and concurrency of the PPC facility minimizes the impact of splitting
the �le system into multiple servers and ensures that IPC is not a bottleneck on
�le system requests�
HFS uses mapped��le I�O to minimize copying costs� and hence the Hurricane

memory manager is involved in most requests to read and write �le data� However�
a limitation of the memory manager we have not addressed yet is that it cannot
allocate contiguous physical page frames so that contiguous disk blocks cannot be
read from disk using a single disk request� Hence all requests by the memory
manager to the �le system are for individual � KByte pages� On the other hand�
the memory manager supports prefetch and poststore operations that allow ASF
to request pages to be asynchronously fetched from or stored to disk� a single PPC
operation can request the prefetch or poststore of multiple of �le blocks���

The memory�management overhead to handle a read�page fault when the page is
in the �le cache is on average ��� �sec� on a � processor system� If the data is not

��The numbers we present in this section were obtained either using a microsecond timer with ���
cycle access overhead or by measuring the total time to repeat many similar requests� All reported
times are for the uncontended case� in the case of memory or lock contention� performance can
get arbitrarily worse�
��The performanceof our multiprocessorPPC calls �including the creation of a thread in the target
address space� is competitive with the fastest known uniprocessor IPC implementations �Liedtke
�����
��In our implementation� the memory manager can request from the �le system at most �ve �le
blocks with a single PPC operation�

HFS� A Performance�Oriented Flexible File System � ��

in the �le cache� then the memory�manager overhead to initiate a request to the
�le system is about ��� �sec��� The memory management overhead for a prefetch
request is �� �sec� per request and an additional ��� �sec� per page if the page is
not in memory� �� �sec� per page if the page is in memory but not in the local page
table� and � �sec� per page if the page is already in the local page table�

	�� Basic �le system performance

To measure how much of a disk
s bandwidth the �le system can deliver to a simple
application� we created a �le on a single disk implemented with an extent�based
building block� We then measured the performance of a single thread reading data
into memory on the same PM� the same station� and on a di�erent station as the
disk� respectively� The data rate delivered to the application varies from �� to
��� KBytes�sec� There are two reasons for this relatively poor performance� First�
whenever a request is sent to the disk� the disk is idle� so the �le system incurs the
overhead of waking up a thread local to the target disk to initiate the I�O request���

Second� since there is no request waiting for the disk when a request completes�
there is a large latency between the time a request completes and the time the next
request is sent to the disk�
We ran the same experiment but with the reading thread always issuing a prefetch

request to the page succeeding the page it is about to access� In this case� the �le
system delivers to the application from ��� to �� KBytes�sec�� depending on the
target memory� This corresponds to ��� of the available disk bandwidth� given
the Hurricane page size�
To demonstrate the basic software overhead and concurrency of the �le system

and the PPC facility� we ran a simple experiment where n threads make repeated
requests to the �le system to obtain the length of an open �le� In the uncontended
case this operation takes ���� �sec on average� varying between �� �sec� and �� �sec�
depending on the locality of the requesting thread and the data being accessed by
the �le system and kernel� About �� �sec� of this cost is attributable to the PPC
request� � �sec� to HFS for locating the building blocks in its main memory cache
of persistent building blocks� and � �sec� to the building block� The rest is �le
system overhead to authenticate the request and to marshal and de�marshal the
arguments of the request�
Figure � shows the throughput when multiple threads run the same experiment�

If all requests are to the same �le� then the �le system saturates at about four
threads� Speedup in this case is limited primarily by contention on the locks in
the �le
s building blocks and on the structure used to locate the building blocks in
HFS
s cache of persistent building blocks��� If each thread requests the length of
a di�erent �le� then the speedup is ����� In this case there is no lock contention

��The memory manager cost of a page fault �that results in I�O� is larger than it should be� but
we have not yet optimized this part of the system� However� because in our experiments most
I�O is due to prefetch requests� this cost has little impact on the results shown�
��New disk requests are placed on a shared queue� and when a disk request completes� the �le
system code that handles the interrupt de�queues any pending request from this shared queue�
Hence� as long as the disk does not become idle� it is not necessary to wake up the per�disk thread�
��A hash table is used by HFS to locate cached building blocks� where each hash chain is locked
independently�

� � O�Krieger and M�Stumm

�����

�����

������

������

������

� � � � �� �� �� ��

req�
per
sec�

Number of Threads

�

�

�
� � � � � � � � � � � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

per�processor �le

shared �le

Fig� �� Throughput of concurrent requests to obtain the length of a �le� The solid line
shows the performance when all requests are directed to a single �le� The dashed line
shows the performance when each requester is directing requests to a di�erent �le�

processes

p1 p2 p7

file datafile data

processes

p1 p2 p7

access pattern A access pattern B

Fig� ��� Two �le access patterns� With access pattern A� up to seven threads of a parallel
application concurrently read a di�erent region sequentially� Each thread has its own �le
pointer� With access pattern B� the threads of a parallel application cooperate to read
the �le sequentially� The threads share a common �le pointer�

because di�erent building blocks and hash chains are being locked� Linear speedup
is not entirely achieved because of memory contention� i�e�� concurrent accesses to
di�erent data structures in the same memory modules�
We can deduce from this experiment that is is unlikely that locks in the �le

system will be contended during regular �le accesses� The time per�building block
locks are held in this example is typical of all our building blocks� Even in the case
where all threads are making requests to the same building block �i�e�� the case
that saturates at four threads�� the �le system can handle over ����� requests per
second before lock contention becomes a problem� This rate of requests is an order
of magnitude higher than the maximum rate of requests our disks can sustain� The
only locks not exercised in this experiment are those associated with the per�disk
request queues� and these locks are obviously less of a bottleneck than the disks
they protect�

HFS� A Performance�Oriented Flexible File System � ��

distribution

extent
based

disk
blocks

striped
data

extent
based

disk
blocks

File structure A File structure B

Fig� ��� Files distributed across multiple disks� File structure A implements a �le using
a distribution building block that partitions the �le into seven contiguous regions� each
stored by a di�erent extent�based building block� File structure B implements a �le using
a striped�data building block that stripes �le blocks round robin across seven extent�based
building blocks�

	�� Parallel I
O

In this section we consider the two �le access patterns depicted in Figure � and
show the importance of matching application requirements� With access pattern
A� seven threads of a parallel application concurrently read a �le� each thread
sequentially reads from a di�erent region of the �le� For many parallel applications
this is a natural way to partition �le access �Crockett ����� With access pattern
B� seven threads cooperate to read a �le sequentially� each thread reads a small
amount of data at a time� Such an access pattern is natural for algorithms where
threads proceed at their own rate obtaining the next available unit of work for
processing �Crockett �����

���� File structure� Clearly� the best way to support access pattern A is to have
the �le partitioned into � regions� each stored on a di�erent disk� This balances the
load on the disks� ensures that the requests of one thread don
t interfere with those
of other threads� and allows the sequence of requests of a thread to be mapped to
consecutive disk blocks �minimizing seek operations�� We call this �le structure A�
The physical�layer HFS building blocks used to implement �le structure A are

shown in Figure � A distribution building block partitions the �le into seven
contiguous regions and directs requests for each region to a di�erent extent�based
building block� The extent�based building blocks store �le blocks on disk using
contiguous extents of up to ��� disk blocks� hence minimizing seek operations for
sequential access patterns��	 The size of the regions are speci�ed when the �le is
created�
The best way to support access pattern B is to stripe the �le across all disks in

�	Each of the extent�based building blocks is stored on the same disk as the disk blocks it controls
to ensure that �le system requests for meta�data do not interfere with the �le data requests by
application threads� The only common building block for the seven regions is the distribution
block� and since the operations performed by this building block are simple and hold a lock for
just a short period of time� it is not a source of contention�

�� � O�Krieger and M�Stumm

� � � � � �

���

����

���

����

KByte
per�
sec�

Number of Threads

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �with prefetching

� �no prefetching

Fig� ��� Throughput for access pattern A run on �le structure A� The solid line shows the
performance with no prefetching �as discussed in Section ��
��	� The dashed line shows
the performance with prefetching of a single block �as discussed in Section ��
�	�

the system to balance the requests across the disks so as to give each disk as much
time as possible to pre�fetch into its on disk cache before it must process the next
request� The HFS building blocks used to implement �le structure B are shown in
Figure � The striped�data building block stripes �le blocks round robin across
seven extent�based building blocks��

The similarity of �le structures A and B illustrates the expressive power of
building�block composition� The two compositions di�er only in a single build�
ing block� yet implement completely di�erent �le structures that� as we will show�
result in very di�erent performance characteristics for the two access patterns�

����� File access with no prefetching� We measured the performance of the �le
system with access patterns A and B on both �le structures A and B� and the
results are summarized in Table � In all cases the data is read into application
pages distributed round�robin across the memorymodules of the system� The seven
threads are run on seven consecutive processors� and� to compensate for NUMA
e�ects� the experiment was run repeatedly until every sequence of seven processors
had been used� All disk requests are initiated by page faults� because ASF building
blocks are used that map the �le into the application address space� For access
pattern A� each thread uses an independent ASF building block to maintain a
separate �le o�set� For access pattern B� a single shared ASF building block is
used�
When access pattern A is run on �le structure B� the application receives about

one quarter the bandwidth compared to when �le structure A is used� The reason

�
The striped�data building block adjusts the �le o�set of requests made to the referenced building
blocks so that data can be stored on disk in a dense fashion� That is� a request made to an extent�
based building block for block n is for the nth block stored by the extent�based building block
and not for the nth block of the �le as a whole�

HFS� A Performance�Oriented Flexible File System � ��

Table �� Bandwidth achievable for �le access patterns A and B

access pattern A access pattern B

without �le structure A ��� ���
prefetching �le structure B ���� ���

with �le structure A ���� ���
prefetching �le structure B ���� ����

for the poor performance is that requests by the di�erent threads arrive at disks in
an interleaved fashion� resulting in many seek operations� In fact� our results for
this case are optimistic� in that the extents used by the di�erent regions are likely
to be close to each other on disk given that the disk was otherwise empty�
For access pattern B� the performance di�erence between the two �le structures

is not as large �although we will show that the di�erence becomes signi�cant if
prefetching is used�� When access pattern B is run on �le structure B� the �le
system cannot keep multiple disks busy because only one request is outstanding at
a time� Nevertheless� performance is somewhat better than if the �le is stored on a
single disk� since each disk has time to prefetch data into its on�disk cache� When
access pattern B is run on �le structure A� then the �le system obtains the same
performance as if the �le were stored on a single disk�
For �le access pattern A on �le structure A� we also varied the number of re�

questing threads between one and seven and measured the speedup in terms of
KBytes�sec� to determine the amount of concurrency available in the �le structure�
As shown in Figure �� the speedup with seven threads is ����� This does not cor�
respond to perfect speedup� but it turns out that none of the �le system locks are
heavily contended� and hence we do not believe that the degradation is due to the
�le system� We believe that the degradation is due to �� memory contention as the
disks transfer data to memory� ��� pre�emption of the �le system and application
threads due to disk interrupts� and ��� contention for kernel data structures such
as the ready queues�

����� File access with prefetching� If the full bandwidth of the disks on our system
is to be delivered to the applications� then prefetching is necessary� the �le system
must generate su�cient requests to keep the disks continuously busy� In HFS� this
is accomplished by using ASF building blocks that direct prefetching requests to
the memory manager�
For access pattern A on �le structure A� prefetching should be done on a per�

thread basis� since each thread is accessing a di�erent portion of the �le� Hence�
a separate prefetching ASF building block should be used for each of the threads�
The simplest possible prefetching algorithm is to� on the �rst request to a block�
generate a prefetch request for the next block� With this prefetching policy� we
obtain ���� KBytes�sec� of disk bandwidth for the application� which corresponds
to ��� of the disk bandwidth available on our system� or ����� KBytes�sec� per�
disk� In this case� speedup is perfect �Figure ����� When the same prefetch policy

��This perfect speedup does not imply that there is no lock or memory contention� but that any
increase in overhead is entirely hidden by the cost of accessing the disk� As stated earlier� the

�� � O�Krieger and M�Stumm

�� �� �� �

KByte
per
sec�

prefetch distance �pages�

���

����

���

����

�

�

�

�

�
�

�
�
�
�
� �

�
�

�
�

�
�
�
�

�

��
�

� � � � � �
�

� � �

� � �

prefetch size� � page

prefetch size� � pages

Fig� �� Throughput in KBytes�sec� for access pattern B on �le structure B� Prefetch distance
is how far �in pages� in advance of the current o�set that prefetch requests will be made� The
prefetch amount is the number of pages that are requested on each prefetch�

�� �� �� �

time
per
block
�usec�

prefetch size �in pages�

��

���

����

���
�

�

�

�

�
�

�

�
�
��
���

������������������

�

�

��
�
���������������������������

�� idle disks

�� busy disks

Fig� ��� The per�block processing overhead to execute prefetch requests for sequential �le blocks
with access pattern B run on �le structure B� The top line shows performance for idle disks� while
the bottom line shows performance for busy disks�

HFS� A Performance�Oriented Flexible File System � ��

is used for access pattern A on �le structure B� the application again only receives
about one quarter of the disk bandwidth� This is again due to the large number
of seek operations required� Performance is� however� slightly improved relative to
the no�prefetching case� since sometimes a disk can service sequential requests by
a thread before having to perform a seek to handle the requests of other threads�
For access pattern B on �le structure B� prefetching should be done on a per�

application rather than on a per�thread basis� since the entire �le is being accessed
sequentially� Also� in order to have a request outstanding for each disk� ASF should
generate a prefetch request for the block at least seven blocks in advance of the one
currently being accessed� Figure � shows the I�O performance as we vary the
prefetch distance with prefetch request sizes of and � pages� From the �gure� we
can see that while it is possible to exploit the full disk bandwidth of our system
using such a policy� it is necessary to be aggressive� using a prefetch distance of
thirty and a prefetch request size of �ve�

To understand why access pattern B requires such an aggressive prefetching pol�
icy� we measured the basic per�block software overhead of prefetching � that is� the
system response time for an application prefetch request divided by the number of
blocks requested� This is shown in Figure �� When a disk is idle �the top curve��
the time to execute a single block prefetch request is on average ��� �sec� This
high overhead comes from the cost to wake up a per�disk thread to issue the re�
quest to disk� the cost to cross address spaces boundaries to the memory manager�
�le system� device driver� and back to the application� as well as from the basic
memory manager and �le system overheads described earlier� If the application
issues larger prefetch requests� then the per�block overhead drops quickly because
the cost of crossing address spaces is amortized over more data� Also� if the disks
are busy when a prefetch request is initiated �the bottom curve� then the cost is
reduced because it is not necessary to wake up the per�disk thread�
When the same prefetch policy is used on �le structure A for access pattern B�

the application receives only about one seventh of the available disk bandwidth�
As the threads sequentially access each �le region� their requests are typically all
directed to one disk� and hence the bandwidth of the other disks is not exploited�
In summary� when the access patterns are run on their matching �le structure�

the best prefetching policies di�er in that �� one is per�thread and the other is
per�application� and ��� one is conservative� making requests for single blocks one
block in advance� while the other is aggressive� If a per�thread prefetching policy
were used for access pattern B� then many useless prefetch requests would be is�
sued� If a per�application prefetching policy was used for access pattern A� then
it would be entirely ine�ective� While it would be possible to use an aggressive
prefetching policy for access pattern A as well� it is both unnecessary and could be
counterproductive if prefetched pages displace other pages that are still needed�

����� Summary of parallel I�O results� In this section� we have shown that it is
crucial for the �le structure and policy to match the application access pattern�
For both access pattern A and B� HFS is able to deliver to the application address

disk can handle some latency between requests without any performance degradation� since it uses
that time to prefetch disk blocks into its on�disk cache�

�� � O�Krieger and M�Stumm

distribution

extent
based

disk
blocks

extra distribution objects

Fig� ��� Structure of a �le distributed across seven disks with �� extra layers of building blocks�

space ��� of the disk bandwidth of our system if the �le structures and policies
match the application access pattern� By using an appropriate structure� we are
able to ensure that all disk requests are sequential and avoid seek operations� By
using an appropriate prefetching policy� we are able to exploit the full concurrency
of our disks while minimizing the memory and processing cost of prefetching�

	�	 Building�block overhead

One potential concern in using building blocks is the amount of overhead they
might introduce� In a previous paper �Krieger et al� ����� we showed that the
overhead of ASF building blocks is negligible relative to other overhead� To show
that the overhead at the physical layer is also low� we constructed a distributed �le
that implements �le structure A �of the previous section�� but added � levels of
distribution building blocks between the top level building block and the per�disk
building block �Figure ��� Figure � shows the �le system performance with and
without prefetching when access pattern A is used on this �le�
In this case� HFS delivers �� KBytes�sec� of data to a single application thread

with no prefetching� about ��� worse than with no extra building blocks� This
degradation is due to the �le system overhead to traverse the extra building blocks�
and amounts to about ��� �sec� for each disk block request� or about �� �sec� per
building block� The speedup with seven threads is ���� compared to ���� for the
case with only one distribution building block� It is di�cult to determine the source
of this degradation� We suspect that increased memory contention is the culprit�
the increased number of memory accesses to �le structure data �building blocks and
hash tables in this case� compete in the memory with the DMA accesses from the
disks�
With prefetching� the �le system delivers the full disk bandwidth of our system

to the application threads with perfect speedup as the number of processors is
varied from one to seven� Again� this speedup does not imply that there is no extra
overhead� just that the overhead is masked by other time consuming operations�
We can conclude that the impact of implementing a �le using many layers of

HFS� A Performance�Oriented Flexible File System � �	

� � � � � �

���

����

���

����

KByte
per
sec�

Number of Threads

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �with prefetching

� �no prefetching

Fig� ��� Throughput for multiple readers of a single distributed �le� with �� extra levels
of building blocks� The solid line shows the performance with no prefetching� The dashed
line shows the performance with prefetching of a single block�

building blocks is small� The case considered is extreme in that eleven distribution
building blocks su�ce to create a �le distributed across more than eight trillion
disks� Moreover� while some impact in performance is observable� we believe that
this impact is largely due to the particular characteristics of the Hector multipro�
cessor �i�e�� slow memory system� lack of cache coherence� and the mechanism used
to implement atomic operations��

�� LESSONS LEARNED

The �nal HFS implementation is the product of the lessons learned by �� imple�
menting and measuring a prior �le system that we eventually discarded� and ��� at
least two re�implementations of each part of HFS� These lessons taught us that it
is crucial to consider�

Copying overhead� Our �rst �le system implementation primarily used the tra�
ditional read�write I�O interfaces and made little use of mapped��le I�O� We only
realized how important it is to minimize copying costs when we found that the ma�
jority of the time spent accessing �le data in the �le cache was spent copying that
data� and that it was impossible to exploit the full disk bandwidth of our platform
because of the processor time and memory bandwidth consumed copying data�

Overhead of crossing address spaces� We originally thought that the cost to cross
address spaces would be negligible compared to the overhead of a disk access� How�
ever� when the �le system organizes �le data on disk so that on�disk caches have
high hit rates� then disk accesses frequently have low overhead� The Hurricane
PPC facility �Gamsa et al� ���� was developed when we found that it was impos�
sible to exploit the full disk bandwidth of our system with the original messaging
facility provided by Hurricane� Even with the low overhead of PPC requests� we
found that it was important to amortize the cost of crossing address spaces over

�
 � O�Krieger and M�Stumm

several blocks by having the application make multi�block prefetch requests to the
memory manager and the memory manager make multi�block prefetch requests to
the physical layer of HFS�

Persistent building�block cache overhead� Our implementation �rst used a single
cache of persistent building blocks� and we found that ��� of the time spent making
a request to a cached persistent building block was spent �� locating the building
block in the cache� ��� enqueuing and dequeuing it from various queues �e�g�� the
free list of the cache�� and ��� acquiring and releasing various locks� We now have
multiple caches� each with di�erent locking and replacement policies� The cache to
be used for each type of building block is chosen to match the demands on that
type of building block��� For most requests and types of building blocks� the time
spent executing cache management code is now less than ��� of the total time
taken to handle a request�

State distribution and replication� For good performance� we had to spend a large
part of our implementation e�ort on developing techniques to distribute and repli�
cate �le system state across multiple memorymodules to increase locality and avoid
memory contention� This may have partly been an artifact of our ��mature � hard�
ware base that was not cache coherent� However� we believe that similar e�orts are
necessary on more modern NUMA multiprocessors� both because �le system state
often does not remain in the cache between successive requests and because of such
issues as false sharing �Gamsa et al� ���� Parsons et al� �����

On�disk caches� We have found it important to take the behavior of disk caches
into account� In particular� there is an interesting tradeo� between having the data
for a request spread across multiple disks to increase concurrency and having data
on consecutive disk blocks on a single disk to make e�ective use of the on�disk
caches�

Interface compatibility� ASF allows the application to interleave requests to dif�
ferent interfaces� even if the requests are directed to a single stream��� This allows
us� for example� to exploit the performance advantages of ASI by modifying just
the I�O�intensive parts of an application� No other user�level I�O facility provides
similar functionality� and we did not consider it important until we developed a
new I�O interface and were faced with the task of re�writing applications to use
this new interface�

�� COMPARISON TO OTHER SYSTEMS

The HFS structure� based on building�block compositions� is unique� It provides �le
system support with unprecedented 	exibility� HFS is more 	exible than all other

��To illustrate how di�erent policies are appropriate for di�erent building blocks� consider dis�
tribution building blocks and per�disk random�access building blocks� The latter have a large
amount of data and may be accessed for a long time� Hence� we maintain strict information about
which was used most recently for replacement� and lock them using a reader�writer lock� The
former are small and accessed for a short time� Hence� we can cache many and avoid keeping
exact state about when each was used� Also� we can use an exclusive lock on distribution building
blocks� since the lock will be held for just a short period of time�
��A � byte request to stdio� followed by a �� byte Unix I�O request and a � byte ASI request� all
to the same �le� return the expected data�

HFS� A Performance�Oriented Flexible File System � ��

existing and proposed parallel �le systems we are aware of� including CFS �Pierce
���� for the Intel iPSC� sfs �LoVerso et al� ���� for the CM��� PIOFS and
Vesta �Corbett and Feitelson ���� Corbett et al� ���� for the SP�� XFS �Sweeney
et al� ���� for SGI multiprocessors� the OSF� �le system �Zajcew et al� ����� the
nCUBE �le system �DeBenedictis and del Rosario ����� the Bridge �le system �Dib�
ble et al� ����� the RAMA �le system �Miller and Katz ����� and the Galley �le
system �Nieuwejaar and Kotz ����� Our current implementation supports or can
easily be extended to support all of the policies used by these �le systems to dis�
tribute �le data across the disks� In addition� HFS allows for 	exibility in how
�le data is stored on the disks� allows for 	exibility in how �le system meta�data
that describes a �le is stored� and provides for fast crash recovery� The HFS archi�
tecture is designed to support the following capabilities typically not available on
other systems �although not all have been implemented��

Dynamic distributions� HFS is designed so that dynamic policies can be used to
distribute requests across the disks� where the load on the disks and the location of
the requesting thread can be used to determine the target disk for a read or write
request� It is important to consider disk load in multiprogrammed environments�
where other applications may be competing for the same disks� Locality is impor�
tant in large scale NUMA systems� where the bandwidth available can depend on
the distance between the processor and the disk� All other existing parallel �le sys�
tems distribute �le data across the disks using some static policy� where the o�set
of the data in the �le and the �le structure �or some mapping function speci�ed in
part by the application� determine the target disk�

Latency tolerance� Applications can specify the prefetching policy on a per�open�
�le instance and per�thread basis� As we have seen in Section ������ this capability
is crucial to allow applications to exploit the full disk bandwidth of our system� All
other existing �le systems either do not prefetch �le data or have a single prefetching
policy invoked automatically by the �le system on a per��le or per�open��le basis�

Maintaining redundancy� An application can specify on a per��le basis the kind
of redundancy �for fault tolerance� that should be maintained for its �le
s data
and meta�data� Redundancy imposes a performance cost� but choosing a policy
to match the target application
s access pattern can reduce this overhead� All
other existing parallel �le systems we are aware of either do not provide for any
redundancy or have a single policy that is applied uniformly to the data and meta�
data of all �les�

The full implementation of the HFS architecture will also support a variety of �le
system interfaces� advisory and enforced locking policies� and compression�decom�
pression policies�
Parallel �le I�O research is attempting to address the portability problem for I�O�

intensive parallel applications by establishing standards for I�O interfaces �Corbett
et al� ���� and by developing facilities that can easily be ported above any native
�le system to provide a common application interface �Huber et al� ���� Moyer
and Sunderam ����� Also� there have been several projects to develop libraries and
servers speci�cally targeted to meet the needs of scienti�c applications �Seamons
et al� ���� Thakur et al� ���� Vengro� and Vitter ����� The 	exibility of HFS
allows it to be easily extended to support new interface standards as they are

� � O�Krieger and M�Stumm

developed� Moreover� because HFS supports common I�O interfaces� we expect it
to be a simple target for libraries and servers that use native �le systems for their
I�O� Once a facility has been ported� it can then be incrementally optimized to
take advantage of HFS
s unique properties�
Most of the system development e�orts discussed above have concentrated on

particular aspects of I�O performance instead of taking a holistic approach as we
did with HFS� These systems depend on other layers of system software to inde�
pendently handle other concerns� For example� the XFS �Sweeney et al� ���� �le
system for IRIX addresses scalability and concurrency issues in �le system data
structures� but assumes that lower layers of software e�ciently manage the system
disks� HFS spans all layers of the system� allowing an application to customize
all aspects of I�O performance to match its speci�c requirements in a consistent
fashion� For example� an HFS application can control everything from the way
its threads accessing �le data synchronize �in ASF building blocks� to how the
�le blocks are organized on the individual system disks �in physical�layer building
blocks��
Conceptually� HFS has more in common with 	exible �le systems designed for

uniprocessors than it does with other parallel �le systems� For example� stackable
�le systems �Heidemann and Popek ���� implement a �le using �layer building
blocks in the same way that HFS uses building blocks� However� the goals of stack�
able �le systems are very di�erent from those of HFS� and hence the architectures
have little in common� The primary goal of stackable �le systems is to allow layers
to be developed by independent vendors and �stacked by a system administrator�
the layers are potentially available only in binary form� Hence� a single layer is
used for a large number of �les� the relationship between the layers is determined
for all �les when the layers are mounted� and all interactions between layers must
pass through the operating system kernel� In contrast� HFS building blocks are
speci�c to a single �le� the relationship between the building blocks is determined
on a per��le �or per�open��le� or per�thread� basis� and most interactions between
building blocks are between building blocks implemented in the same address space�

� CONCLUDING REMARKS

We have developed building�block composition as a technique for structuring 	ex�
ible �le systems� and described the Hurricane File System that is based on this
technique� We showed that even with a small number of simple building blocks�
the ability to compose them gives the application tremendous 	exibility in de�ning
a large number of di�erent �le structures and �le system policies� The performance
results obtained from the HFS implementation on Hector�Hurricane demonstrate
that �� it is practical to implement a �le system based on building�block composi�
tions� ��� the overhead of this approach can be made very low� and ��� the 	exibility
is important for good performance�
HFS di�ers from most other parallel �le systems in that it has been designed

for a shared�memory multiprocessor as opposed to a distributed�memory multi�
computer� Hence� it is reasonable to question whether the architecture of HFS is
appropriate for multicomputer systems� and whether the techniques others have
developed to optimize I�O performance can be adapted to mapped �le I�O using
building�block composition� While a multicomputer implementation will be quite

HFS� A Performance�Oriented Flexible File System � ��

di�erent from HFS� we believe that the building�block composition approach and
the use of mapped �le I�O applies equally well to multicomputer systems� Also� it
appears to us that the techniques proposed by others to optimize performance can
also be implemented in our environment� for example� we are studying adopting
Kotz
s disk�directed I�O �Kotz ���� in our system�
HFS was developed in conjunction with Hurricane� a microkernel�based research

operating system� The basic techniques of HFS� however� also �t well with sys�
tems with more monolithic operating systems� because customization occurs in the
address space providing the service and does not require redirecting requests to
other processes� Moreover� we believe the techniques of HFS are also applicable
in current and future commercial systems� because 	exibility and customizability
is provided to applications by letting them compose trusted building blocks� and
the compositions can easily be validated to be safe� This is in contrast to other
more aggressive techniques for customizability that allow untrusted programmers
to extend operating system functionality with new code �Bershad et al� ���� Engler
et al� ���� Seltzer et al� ����� Also� it is already well accepted for I�O system
software to employ object oriented technology for 	exibility �Peterson et al� ����
Ritchie ���� Rosenthal �����
In this paper we have focused on validating the HFS design� Synthetic stress

tests have been used to measure basic �le system performance and demonstrate the
bene�ts of 	exibility� Since this paper was submitted� we have experimented with
out�of�core scienti�c applications and demonstrated that HFS is able to achieve very
good performance for these applications �Mowry et al� ����� These applications
have working sets many times the size of the physical memory available on our
system� and hence provided an extreme test of our system� We found that HFS
could handle this new workload with only trivial modi�cations�
One of the most novel aspects of the more recent work ��Mowry et al� �����

was that the good performance was accomplished in a fully automated fashion�
the code to exploit the features of HFS was generated by a compiler developed for
this purpose� We believe that in the future such compiler technology will become
more e�ective for a wider class of applications �Bordawekar et al� ���� Cormen
and Colvin ���� Mowry et al� ����� This will simplify the introduction of new
non�standard features such as those we propose� since one only has to change a
compiler to exploit those features� and not a large set of applications�
The building�block composition technique we developed for HFS is now being

employed by the Tornado multiprocessor operating system from the University
of Toronto� and the Kitchawan multiprocessor operating system from IBM re�
search �Auslander et al� ����� In this context� the HFS work is being extended
in several ways� First� building�block compositions will be supported by all com�
ponents of the new operating systems� including the memory manager� This will
address one of the main limitations in HFS� namely the lack of 	exibility in the
memory manager� a crucial component for I�O performance� Second� HFS will be
incorporated into these systems and will hence be ported to new hardware plat�
forms� This will allow experiments to be performed on systems that are more
modern and larger scale� Finally� HFS will be available from a very early stage on
the new systems providing us with a much better insight into the advantages and
limitations in using building�block compositions for �le I�O�

�� � O�Krieger and M�Stumm

ACKNOWLEDGMENTS

Ronald Unrau and Benjamin Gamsa developed much of the Hurricane infrastruc�
ture we depended on for this research and also contributed substantially to the
design and implementation of the Hurricane File System� Ron White and Jan
Medved implemented and maintained the hardware� We also gratefully acknowl�
edge the help of Angela Demke� Karen Reid� Paul Lu� and Eric Parsons�

REFERENCES

Auslander� M�� Franke� H�� Gamsa� B�� Krieger� O�� and Stumm� M� ����� Customiza�
tion lite� In Proc� �th Workshop on Hot Topics in Operating Systems �HotOS� VI� �May
������ pp� �����

Bershad� B�� Savage� S�� Pardyak� P�� Sirer� E�� Becker� D�� Fiuczynski� M�� Chambers�

C�� and Eggers� S� ����� Extensibility� safety and performance in the SPIN operating
system� In Proc� ��th Symp� on Operating Systems Principles ������� pp� ��������

Bordawekar� R�� Choudhary� A�� and Ramanujam� J� ����� Compilation and commu�
nication strategies for out�of�core programs on distributed�memory machines� Journal of
Parallel and Distributed Computing 	
� � �November�� ��������

Corbett� P�� Feitelson� D�� Fineberg� S�� Hsu� Y�� Nitzberg� B�� Prost� J��P�� Snir� M��

Traversat� B�� and Wong� P� ����� Overview of the MPI�IO parallel I�O interface�
In IPPS ��� Workshop on InputOutput in Parallel and Distributed Systems �April ������
pp� �����

Corbett� P� F� and Feitelson� D� G� ����� The Vesta parallel �le system� ACM Trans�
actions on Computer Systems ��� �August�� ��������

Corbett� P� F�� Feitelson� D� G�� Prost� J��P�� Almasi� G� S�� Baylor� S� J�� Bolmarcich�

A� S�� Hsu� Y�� Satran� J�� Snir� M�� Colao� R�� Herr� B�� Kavaky� J�� Morgan� T� R��

and Zlotek� A� ����� Parallel �le systems for the IBM SP computers� IBM Systems
Journal� ��������

Cormen� T� H� and Colvin� A� ����� ViC�� A preprocessor for virtual�memory C�� Tech�
nical Report PCS�TR����� �November�� Dept� of Computer Science� Dartmouth College�

Crandall� P� E�� Aydt� R� A�� Chien� A� A�� and Reed� D� A� ����� Input�output
characteristics of scalable parallel applications� In Proc� of Supercomputing ��� �Dec� ������

Crockett� T� W� ����� File concepts for parallel I�O� In Proceedings of Supercomputing
�
� ������� pp� ��������

DeBenedictis� E� P� and del Rosario� J� M� ���� Modular scalable I�O� Journal of
Parallel and Distributed Computing ��� ��� �Jan�Feb�� ��������

del Rosario� J� M� and Choudhary� A� ����� High performance I�O for massively parallel
computers� Problems and prospects� IEEE Computer ��� �March�� ������

Dibble� P�� Scott� M�� and Ellis� C� ����� Bridge� A high�performance �le system for
parallel processors� In Proc� of the Eighth International Conference on Distributed Com�
puter Systems �June ������ pp� ��������

Druschel� P� ���� E�cient support for incremental customization of OS services� In
Proc� of the Third International Workshop on Object Orientation in Operating Systems
�Asheville� NC� Dec� ����� pp� ��������

Engler� D�� Kaashoek� F�� and Jr� J� O� ����� Exokernel� An operating system architec�
ture for application�level resource management� In Proc� ��th Symp� on Operating Systems
Principles ������� pp� ��������

Feitelson� D� G�� Corbett� P� F�� Baylor� S� J�� and Hsu� Y� ����� Parallel I�O subsys�
tems in massively parallel supercomputers� IEEE Parallel and Distributed Technology 	� �
����

Frank� S�� Rothnie� J�� and Burkhardt� H� ���� The KSR�� Bridging the gap between
shared memory and MPPs� In IEEE Compcon ���	 Digest of Papers ������ pp� ��������

Galbreath� N�� Gropp� W�� and Levine� D� ���� Application�driven parallel I�O� In
Proc� Supercomputing ������ pp� ������ IEEE Comput� Soc� Press�

HFS� A Performance�Oriented Flexible File System � ��

Gamsa� B�� Krieger� O�� Parsons� E� W�� and Stumm� M� ����� Performance issues
for multiprocessor operating systems� Technical Report CSRI�� �November�� Computer
Systems Research Institute� University of Toronto�

Gamsa� B�� Krieger� O�� and Stumm� M� ����� Optimizing IPC performance for shared�
memory multiprocessors� In Proc� ���� Intl� Conf� on Parallel Processing �ICPP� �Boca
Raton� FL� Aug� ������ pp� �������� CRC Press�

Grimshaw� A� S� and Loyot� E� C�� Jr� ����� ELFS� Object�oriented extensible �le sys�
tems� In Proc� of the First International Conference on Parallel and Distributed Informa�
tion Systems ������� pp� ��������

Heidemann� J� S� and Popek� G� J� ����� File�system development with stackable layers�
ACM Transactions on Computer Systems ��� � �Feb��� ������

Huber� J�� Elford� C� L�� Reed� D� A�� Chien� A� A�� and Blumenthal� D� S� �����
PPFS� A high performance portable parallel �le system� In Proc� of the �th ACM Interna�
tional Conference on Supercomputing �Barcelona� July ������ pp� ������

Intel� ����� Concurrent I�O application examples� Intel Corporation Background Informa�
tion�

Khalidi� Y� A� and Nelson� M� N� ���� Extensible �le systems in Spring� In Proc� of the
Fourteenth ACM Symposium on Operating Systems Principles ������ pp� �����

Kotz� D� ����� Disk�directed I�O for MIMD multiprocessors� In Proc� of the ���� Sympo�
sium on Operating Systems Design and Implementation �Nov� ������ pp� ������

Krieger� O� ����� HFS� A �exible �le system for shared memory multiprocessors� Ph� D�
thesis� Departmentof Electrical and Computer Engineering�University of Toronto� Toronto�
Canada�

Krieger� O�� Stumm� M�� and Unrau� R� ����� The Alloc Stream Facility� A redesign of
application�level stream I�O� IEEE Computer ��� �March�� ������

Kuskin� J�� Ofelt� D�� Heinrich� M�� Heinlein� J�� Simoni� R�� Gharachorloo� K�� Chapin�

J�� Nakahira� D�� Baxter� J�� Horowitz� M�� Gupta� A�� Rosenblum� M�� and Hen�

nessy� J� ����� The Stanford FLASH multiprocessor� In Proc� of the ��st International
Symposium on Computer Architecture �Chicago� IL� April ������ pp� ����� ACM�

Lenoski� D�� Laudon� J�� Gharachorloo� K�� Weber� W� D�� Gupta� A�� Henessy� J��

Horowitz� M�� and Lam� M� S� ����� The StanfordDASH multiprocessor� IEEE Com�
puter ��� �March�� �����

Liedtke� J� ���� Improving IPC by kernel design� In Proc� of the Fourteenth ACM Sym�
posium on Operating System Principles �North Carolina� Dec� ����� pp� ��������

Lin� Z� and Zhou� S� ���� Parallelizing I�O intensive applications on a workstation cluster�
a case study� In IPPS ��	 Workshop on InputOutput in Parallel Computer Systems ������
pp� �����

LoVerso� S� J�� Isman� M�� Nanopoulos� A�� Nesheim� W�� Milne� E� D�� and Wheeler�

R� ���� sfs� A parallel �le system for the CM��� In Proc� of the ���	 Summer Usenix
Conference ������ pp� �������

Massalin� H� and Pu� C� ����� Threads and input�output in the Synthesis kernel� In
Proc� of the Twelfth Symposium on Operating Systems Principles �Arizona� Dec� ������
pp� ��������

Miller� E� and Katz� R� ����� Input�output behavior of supercomputing applications� In
Proc� Supercomputing �Nov� ������ pp� ������� IEEE Comput� Soc� Press�

Miller� E� L� and Katz� R� H� ���� RAMA� A �le system for massively�parallel com�
puters� In Proc� of the Twelfth IEEE Symposium on Mass Storage Systems ������ pp�
�������

Mowry� T� C�� Demke� A� K�� and Krieger� O� ����� Automatic compiler�inserted I�O
prefetchingfor out�of�coreapplications� InProceedings of the ���� Symposium on Operating
Systems Design and Implementation �October ������ pp� ���� USENIX Association�

Moyer� S� A� and Sunderam� V� S� ����� PIOUS� a scalable parallel I�O system for
distributedcomputingenvironments� In Proc� of the Scalable High�Performance Computing
Conference ������� pp� ������

�� � O�Krieger and M�Stumm

Nieuwejaar� N� and Kotz� D� ����� The Galley parallel �le system� Parallel Comput�
ing �	� � �June�� ����

Parsons� E�� Gamsa� B�� Krieger� O�� and Stumm� M� ����� �De��clustering objects
for multiprocessor system software� In Proc� �th Intl� Workshop on Object Orientation in
Operating Systems �� �IWOOOS���� ������� pp� ������

Patterson� D�� Gibson� G�� and Katz� R� ����� A case for redundantarrays of inexpensive
disks �RAID�� In ACM SIGMOD Conference �June ������ pp� ��������

Peterson� L�� Hutchinson� N�� O�Malley� S�� and Rao� H� ����� The x�kernel� A plat�
form for accessing internet resources� IEEE Computer �	� � �May�� ���

Pierce� P� ����� A concurrent �le system for a highly parallel mass storage system� In
Fourth Conference on Hypercube Concurrent Computers and Applications ������� pp� ����
����

Poole� J� T� ����� Preliminary survey of I�O intensive applications� Technical Report
CCSF��� Scalable I�O Initiative� Caltech Concurrent Supercomputing Facilities� Caltech�

Ritchie� D� ����� A stream input�output system�AT�T Bell Laboratories Technical Jour�
nal �	� � �Oct��� ����������

Rosenblum� M� and Ousterhout� J� K� ����� The design and implementation of a log�
structured �le system� In Proceedings of �	th ACM Symposium on Operating Systems
Principles �October ������ pp� ����� Association for Computing Machinery SIGOPS�

Rosenthal� D� S� H� ����� Evolving the vnode interface� In USENIX Conference Proc�
�Anaheim� CA� Summer ������ pp� �������� USENIX�

Scott� D� S� ���� Parallel I�O and solving out of core systems of linear equations� In Proc�
of the ���	 DAGSPC Symposium �Hanover� NH� June ����� pp� ������ Dartmouth
Institute for Advanced Graduate Studies�

Seamons� K� E�� Chen� Y�� Jones� P�� Jozwiak� J�� and Winslett� M� ����� Server�
directed collective I�O in Panda� In Proc� of Supercomputing ��� �Dec� ������

Seltzer� M�� Endo� Y�� Small� C�� and Smith� K� ����� Dealing with disaster� Surviv�
ing misbehaved kernel extensions� In Proc� �nd Symp� on Operating Systems Design and
Implementation ������� pp� �������

Sweeney� A�� Doucette� D�� Hu� W�� Anderson� C�� Nishimoto� M�� � and Peck� G� �����
Scalability in the XFS �le system� In USENIX Technical Conference �Jan� ������ pp� �����
Usenix�

Thakur� R�� Bordawekar� R�� Choudhary� A�� Ponnusamy� R�� and Singh� T� �����
PASSION runtime library for parallel I�O� In Proc� of the Scalable Parallel Libraries Con�
ference �Oct� ������ pp� ��������

Unrau� R� C�� Krieger� O�� Gamsa� B�� and Stumm� M� ����� Experiences with lock�
ing in a NUMA multiprocessor operating system kernel� In Operating System Design and
Implementation �Nov� ������ pp� �������

Unrau� R� C�� Krieger� O�� Gamsa� B�� and Stumm� M� ����� Hierarchical clustering�
A structure for scalable multiprocessor operating system design� Journal of Supercomput�
ing �� ���� �������

Vengroff� D� E� and Vitter� J� S� ����� I�O�e�cient scienti�c computation using TPIE�
In Proc� of the ���� IEEE Symposium on Parallel and Distributed Processing �Oct� ������
pp� ������

Vranesic� Z� G�� Stumm� M�� White� R�� and Lewis� D� ����� The Hector Multiprocessor�
IEEE Computer ��� � �Jan��� ������

Zajcew� R�� Roy� P�� Black� D�� Peak� C�� Guedes� P�� Kemp� B�� LoVerso� J��

Leibensperger� M�� Barnett� M�� Rabii� F�� and Netterwala� D� ���� An OSF��
UNIX for massively parallel multicomputers� In USENIX Winter Conference �Jan� �����
pp� �������� Usenix�

	Text8: Appeared in ACM Trans. On Computer Systems, 15(3), August 1997, pp. 286-321.

