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�� INTRODUCTION

The Hurricane File System �HFS� supports a large� expandable set of �le struc�
tures� interfaces� and policies� and allows an application to customize the �les it
uses to match its I�O requirements� This high degree of 	exibility is achieved by
having many �ne�grained building blocks� each of which de�nes a portion of a �le
s
structure or implements a simple set of policies� The application can control the
composition of the building blocks used to implement �les on a per �le and per
open �le instance basis� This allows the �le
s implementation to be customized to
best meet the application
s I�O requirements�
A parallel �le system di�ers from uniprocessor �le systems both because of the

hardware resources it must manage and because of the requirements of the applica�
tions it must support� HFS is designed for �potentially large�scale� shared�memory
multiprocessors� Such systems have a large number of disks and memory modules
distributed across the system� To optimize I�O performance� a �le system must
properly exploit these resources� For example� data should be distributed across
the disks to improve I�O bandwidth� cached in memory to reduce the demand on
the system disks� and prefetched from disk in order to hide the latency of disk I�O
from applications�
Many important supercomputer applications have massive I�O requirements �del

Rosario and Choudhary ���� Galbreath et al� ���� Intel ���� Lin and Zhou
���� Miller and Katz ��� Poole ���� Scott ����� These parallel applications
have needs that are di�erent than those of the typical sequential Unix applications
for which many �le systems have been optimized� First� for many supercomputer
applications� most of the I�O bandwidth goes to accessing temporary �les� say for
data sets that cannot �t in main memory�� Because the �les are created speci��
cally for the application� the �le structure can be optimized for the particular access
pattern of the application that will use it� Second� such applications are much less
likely to access an entire �le sequentially� although they may still have predictable
access patterns that can be used to optimize I�O performance� Finally� the in�
terface requirements of such applications di�er from traditional Unix applications�
Unix read�write requests both implicitly impose synchronization that unnecessarily
constrains performance and results in poor performance when requests are not to
sequential data�
Optimizing a �le system for I�O�intensive parallel applications is complicated

by the fact that the requirements of these applications are poorly understood�
and hence there is currently little understanding of the �le structures� policies�
and I�O interfaces required in order to best satisfy these requirements� This poor
understanding exists� in part� because most current parallel machines have poor
support for high performance I�O� and as a result the parallel processing community
has mainly studied applications that have small I�O requirements �Crandall et al�
���� del Rosario and Choudhary �����
The 	exibility of HFS allows a �le to be customized to match the needs of a

particular application on a particular hardware platform� and the application can

�Another reason why many supercomputer applications access temporary �les is that the massive
�les used may require storage on tertiary rather than secondary storage� and the �les are only
transfered to disk when an application will actively be using them�
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directly control this customization� An HFS application can choose how �le data
is to be distributed across the disks� how the data is to be distributed on each
of the disks� whether to store redundant copies for fault tolerance� how to hide
latencies� what advisory or enforced synchronization policies to use� and whether
to transparently invoke compression�decompression algorithms on the data� We
contend that this level of 	exibility is necessary in order to be able to accommodate
the diverse I�O requirements of applications executing on parallel hardware�
While we have focused on I�O intensive parallel scienti�c applications� HFS has

been designed to be a general �le system that can e�ciently support the needs
of a wide variety of applications� As as result� HFS also e�ciently supports the
interface standards used by sequential applications� This is important for the �le
system of a shared�memory multiprocessor� since these machines are expected to
�concurrently� support applications that range from sequential interactive jobs to
very large parallel applications� and from scienti�c applications to transactional
data base systems �Frank et al� ���� Kuskin et al� ���� Lenoski et al� �����
Overall� the 	exibility of HFS is important for a number of reasons� First� it is

crucial in allowing a large class of I�O�intensive supercomputer applications to ex�
ploit the full I�O bandwidth of the disks attached to the system� Second� given the
poorly understood requirements of I�O�intensive parallel applications� 	exibility is
necessary to ensure that the �le system doesn
t constrain application developers�
Third� the 	exibility allows HFS to easily adapt to new I�O interfaces� new op�
erating systems� new demands on the �le system functionality� and new hardware
platforms� Fourth� the 	exibility allows the requirements of other workloads� such
as sequential Unix applications� to be met without imposing additional overheads�
Finally� the 	exibility is important for experimentation� making it easy to explore
di�erent policies and �le structures in the context of a common system environment�
For parallel processing� 	exibility and customizability is of little use if the asso�

ciated overhead results in poor performance� We demonstrate that the 	exibility
of HFS comes with negligible overhead when compared to the other costs associ�
ated with I�O� Moreover� we argue that in many cases the ability to customize an
implementation of a �le to its expected demands can result in lower overhead than
a more generic implementation�
In the next section we describe the building�block composition technique� The

following section presents the architecture of HFS and shows how building�block
compositions are implemented by our �le system� Subsequent sections present
performance results obtained from our implementation of HFS as a part of the
Hurricane operating system �Unrau et al� ���� on the Hector shared�memory mul�
tiprocessor �Vranesic et al� ���� Our experimental results show that �� it is
feasible to implement a �le system based on building�block compositions� ��� the
performance overhead is low� and ��� the basic goal of 	exibility is indeed important�

�� BUILDING�BLOCK COMPOSITION

Each HFS �le is implemented by combining together a set of building blocks� A
building block can de�ne a portion of a �le
s structure or implement a simple set
of policies� For example� di�erent types of building blocks exist to store �le data
on a single disk� distribute �le data to other building blocks� replicate �le data to
other building blocks� store �le data with redundancy for fault tolerance� pre�fetch
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Fig� �� This HFS building�block composition implements a �le� Building blocks C and D
may each store data on a single disk� building block B might be a distribution building
block that distributes the �le data to C and D� and building block A might be a compres�
sion�decompression building block that decompresses data read from B and compresses
data being written to B�

�le data into main memory� enforce security� manage locks� and interact with the
memory manager to cache �le data� Building blocks are implemented as objects
and thus contain state and a set of operations that manipulate that state�
A building�block object exports an interface that speci�es the operations that can

be invoked by other building blocks� It may also import �one or more� interfaces
that are exported by other building blocks� Two building blocks are said to be
connected if one of them can invoke operations of the other� and the building block
is then also said to reference the other� Two building blocks may be connected only
if the exported interface of the one is imported by the other�
The particular composition of building blocks that implements a �le �i�e�� the

set of building blocks and the way they are connected� determines the behavior
and performance of the �le� As a simple example� Figure  shows four building
blocks and how they are connected� Building block B contains references to C
and D� and in turn is referenced by A� Building blocks C and D may each store
data on a di�erent disk� B might be a distribution building block that distributes
the �le data to C and D� and A might be a compression�decompression building
block that de�compresses data read from B and compresses data being written to
B� The imported and exported interfaces are indicated by the pattern at the top
and bottom of each building block� If two building blocks are connected then the
corresponding imported and exported interfaces must match�

It is important to note that each �le and each open �le instance will �at least
in part� have a di�erent building�block composition� For example� two open �le
instances �even of the same �le� will be implemented by a di�erent set of build�
ing blocks� possibly with a di�erent topology� making it possible to o�er highly
customized services�

��� Flexibility

In our building�block framework� 	exibility can be achieved in a number of ways�
First� given a particular composition� it is possible to exchange one building block
for another as long as the imported and exported interfaces of the two are the same�
For example� in Figure � building block B could be replaced by another building
block B� that implements a di�erent distribution� Thus for each type of building
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block� multiple implementations may exist� each supporting a di�erent policy or
optimized for a di�erent application behavior� In practice this is achieved by hav�
ing multiple subclasses provide separate implementations with identical interfaces
inherited from a common superclass� Even with only a few subclasses for each
building block� the combinatorial e�ect on the behavior of an entire composition
can be huge�
Second� new building blocks can be added to an existing structure if the connect�

ing interfaces match� thus modifying the topology� This can be used to add new
functionality� For example� a new building block E �that� say� implements prefetch�
ing of some sort� can be inserted between A and B� as long as both the imported
and the exported interface of E are the same as that exported by B� Building
blocks that import the same interface they export can be arbitrarily stacked� As
another example� to implement a replicated �le� one can imagine just adding a
replication building block F between A and B that is connected to both B and a
second subtree rooted by another distribution building block similar to B�

Finally� it is possible to support new interfaces to applications by introducing
new building blocks that export these interfaces� but import existing interfaces so
that they can be connected to existing structures�
In general� the �ner the granularity of the building blocks used in a composition

�and thus the larger the number of building blocks in the composition� the larger
the degree of 	exibility� In our implementation� we have found that we tend to
use many �ne�grained building blocks in a composition� as opposed to using a few
large ones� For example� the distribution building blocks B above might execute
only ��� lines of C code in a typical 	ow of control through the building block�
Similarly� the larger the number of building�block types with identical interfaces
is� the more 	exibility exists in de�ning compositions� This is particularly true for
building blocks that export the same interface they import�

��� Operation

In our model� control is passed from one building block to another by having the
�rst invoke an exported operation of the other� The 	ow through building�block
compositions is initiated either by an application invoking an operation on one of
the building blocks� or as a result of a page fault or disk interrupt� In the case of
a building block that resides in a di�erent address space�� an RPC�like facility is
used to pass control� In our implementation� the building block code is executed
by a thread that is created in the target address space as a by�product of the
Hurricane protected procedure call �PPC� facility �Gamsa et al� ����� The degree
of concurrency in servicing I�O requests is thus equal to the number of requests
issued�
A crucial aspect of our work is that we allow applications to specify the initial

composition of the �les they create� and we allow applications to modify �in part�
the existing building�block compositions of the �les they are accessing� Arguments
to a constructor specify how that building block is to be connected to the other
already existing building blocks� Because the applications that specify compositions

�As will be seen in the next section� the �le system is partitioned across a number of address
spaces�
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maybe untrusted� it is necessary to validate the safety of these compositions� Hence�
once the building blocks have been instantiated� they verify that each referenced
building block is of the correct type �i�e�� the right interface� and that any other
required constraints are met� For example� if some building block requires that a
particular �le block size be supported� it veri�es that all building blocks it references
can in fact support that block size� In system servers� only hierarchical compositions
are allowed �i�e�� no loops�� and only unidirectional links between building blocks
are allowed� This simpli�es validating the safety of the compositions�
Some building blocks� such as those that de�ne �le structure� are persistent and

exist �on disk� as long as the �le exists� In our current implementation these
building blocks cannot be changed once created� Other building blocks� such as
those that represent state for open �le instances� are transitory and exist only
when a �le is open� These building blocks can be changed at any time� say to
conform to a speci�c application
s access pattern�

��� Performance considerations

Since performance is the ultimate goal of our work� the overhead of our building�
block framework is an important concern� If a �le is implemented using many layers
of simple� �ne�grain building blocks� then one might suspect that the overhead of
traversing these layers would be a problem� In practice� we have found the overhead
to be small for the following �ve reasons�

�� Even if a �le is implemented with many layers of building blocks� requests are
often serviced by traversing only a small number of layers� For example� many
building blocks cache data� so read and write requests can often be satis�ed
from a cache managed by a building block that is close to the client�

��� Our approach naturally reduces the amount of cross�address space communica�
tion� Building�block composition di�ers from other approaches for customizing
system software by not requiring the system to redirect requests to the appli�
cation address space or to a separate server �Druschel ���� Heidemann and
Popek ���� Khalidi and Nelson ����� With our approach� the customization
occurs in the server providing the service� thus naturally avoiding cross�address
space communication�

��� We have found it possible to de�ne building�block interfaces that have extremely
low overhead� For example� the interfaces we have developed for our building
blocks typically allow control to pass through multiple building blocks without
requiring data to be copied�

��� Since the functions and data of a building block are speci�c to the policies it
implements� it is often possible to avoid executing conditional statements �e�g��
to determine the policy to use� that a more traditional approach would require�
Avoiding such conditional statements can reduce system overhead �Massalin
and Pu ����� Also� since the data is optimized to provide exactly the informa�
tion required� it can be represented more compactly� reducing the main memory
and caching overhead of the system�

��� If the use of many building blocks happens to result in excessive overhead
for some important new workload� then it is straightforward for a systems
programmer to de�ne and add a new type of building block to speci�cally
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Fig� �� This �gure illustrates the relationship between the di�erent components of the
Hurricane �le system� The Alloc Stream Facility �ASF	 is an application�level I�O library�
The physical layer of the HFS �le system implements �les and controls the system disks�
The logical layer server provides �le system authentication services� Most �le I�O occurs
through mapped �les� so the memory manager is involved in most requests to read or
write �le data�

handle the demands of this workload� possibly by combining a set of simple
building blocks into a single more complex building block�

�� ARCHITECTURE AND IMPLEMENTATION

The Hurricane File System �HFS� implements �les using building�block composi�
tions� HFS is logically divided into three layers� the application layer� the physical
layer� and a logical layer between the two �Figure ��� The Alloc Stream Facility
�ASF� is an I�O library that makes up the application layer of HFS �Krieger et al�
����� We provide as much functionality as possible in this layer in order to mini�
mize communication with servers in other address spaces� The HFS physical layer�
which implements �les and controls the system disks� and the HFS logical layer�
which provides �le system authentication services� are system servers of the Hurri�
cane operating system� The memory manager is involved in most requests to read
or write �le data� because ASF ensures that most �le I�O occurs through mapped
�les� We describe each of the three layers of HFS in turn�

��� The Alloc Stream Facility

Application requests for I�O are often handled by an application�level I�O library�
such as stdio� that acts as an intermediary between the application and the I�O
servers of the system� The Alloc Stream Facility �ASF� is another such library�
which we developed using our building�block approach� It handles all I�O on Hur�
ricane �e�g�� terminal� socket� disk� and pipe I�O�� is suitable for multiprocessor
operation� and exports a number of di�erent I�O interfaces �such as the Unix
read�write and stdio interfaces� to applications �Krieger et al� ����� AFS has
been ported to a number of uniprocessor and multiprocessor systems� including
SunOS� IRIX� AIX� and HP�UX�
The ASF I�O package is an example where we have clearly found it advantageous

to de�ne a large number of simple building blocks� instead of a smaller number
of more general ones� Most of the building blocks import and export the same
interface� so there is much 	exibility in the compositions� This common interface�
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Fig� � Example of an ASF building�block composition used by a multi�threaded applica�
tion to access a �le stored on disk in a compressed format� All building blocks other than
the service�speci�c one import and export the ASI interface� The application is assumed
to use ASI directly� so no interface building blocks are shown�

the Alloc Stream Interface �ASI� was carefully designed to minimize the amount of
data copying required as control is passed from one building block to another��

The implementation of ASF supports three types of building�blocks� �� ASI
building blocks� ��� service�speci�c building blocks� and ��� interface building blocks�
ASI building blocks import and export the ASI interface� and can hence be con�
nected in arbitrary ways� We have de�ned ASI building blocks that implement
policies for latency hiding� compression�decompression and advisory locking �for
multi�threaded applications�� To simplify the task of the application programmer�
we have de�ned ASI building blocks that allow applications to have customized
views of �le data��

Service�speci�c building blocks import the interface of a particular I�O service
�e�g�� terminal� �le� network connection� and export the ASI interface� For good
performance� we have found it important that data be transferred to and from
server address spaces using service�speci�c interfaces� For example� on Hurricane
large �les are most e�ciently accessed using mapped��le I�O� while terminal I�O is
best accessed using a read�write interface� We also de�ne a separate building block
for read�only� write�only� and read�write access for each I�O service� respectively�
Separate� direction�speci�c building blocks are more e�cient than more general

�While having a common interface is important� it is also important that building blocks be
able to export additional building block�speci�c functions for extensibility� For example� if a
�le system supports prefetching� the service�speci�c building blocks for that �le system should
export an interface that allows for prefetching� ASI supports this by providing a special function
�similar to the default function Heidemann and Popek �Heidemann and Popek ����� de�ne for
their stackable �le system� that handles any class�speci�c requests� When a building block cannot
directly interpret a special request� it re�directs it to the building blocks it references�
�This is similar to the functionality provided by the ELFS �le system �Grimshaw and Loyot �����
that allow the semantic structure of a �le �e�g�� a �le containing a two dimensional matrix� to
be taken into account� Similarly� we have de�ned other ASI building blocks that implement the
mapping functions de�ned by the Vesta �le system �Corbett and Feitelson ������
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ones� since less checking is necessary when they are specialized�
Interface building blocks import the ASI interface but export a standard I�O

interface to the application� such as the �emulated� standard Unix I�O system
call interface and the stdio interface� �Applications can also use the ASI interface
directly�� Language interfaces� such as the C�� iostream� could also be supported�
although we have not yet implemented them�
Figure � illustrates how ASF building blocks might be used in a building�block

composition for a �le being accessed by a multi�threaded application where each
thread sequentially accesses a di�erent part of a single �le stored on disk in a
compressed format� Each application thread has a per thread building block that
maintains the �le o�set for that thread� Since each thread accesses data sequen�
tially� but the �le as a whole is not accessed sequentially� each per�thread building
block references a di�erent prefetching building block� The prefetching building
blocks all reference a single building block that implements some advisory lock�
ing policy�� This building block� in turn� references a compression�decompression
building block� which decompresses data read from the �le and compresses data
being written to the �le� Finally� the compression�decompression building block
makes requests to access �le blocks to a service�speci�c building block� which maps
the �le into the application address space� and translates I�O requests for �le data
into accesses to the mapped region�
An application that creates a �le can specify which ASF building blocks should

be instantiated by default when the �le is opened�� Once a �le has been opened�
the accessing application can customize the �le by modifying the set of building
blocks used� For example� the number of threads and the way threads access the �le
are speci�c to the application� so the per�thread prefetching and locking building
blocks shown in Figure � are instantiated explicitly by the application at run time�
These ASF building blocks can be subsequently changed to adapt to the di�erent
access patterns an application might have in di�erent phases of its execution� For
example� an application traversing a matrix �rst by row and then by column would
bene�t from changing the ASF building blocks used when its access pattern to the
data changes�

��� Physical�layer �le service

The physical layer of HFS implements �les and controls the disks on the system�
It handles disk block placement and is thus responsible for cylinder clustering�
load balancing� and locality management� Logically� the physical layer of HFS is
situated below the memory manager� as shown in Figure �� so that mapped �le I�O

�Any locking policy implemented in the application address space can only be advisory �rather
than enforced�� since there is no way to ensure that the application cannot bypass the library
and call the �le system servers directly� For scalability� building blocks through which all control
must pass� such as the locking building block shown� must be implemented using sophisticated
techniques in order to properly handle concurrency� caching and NUMA e�ects �Parsons et al�
������
�Having application�layer building blocks instantiated automatically is important in order to pro�
vide functionality transparent to the application� For example� if the compression�decompression
building block of Figure  is instantiated automatically� then ASF can hide the fact that compres�
sion is being done from applications� This allows standard utilities� such as editors� to process
compressed �les without knowledge of this fact�
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Fig� �� Example building�block composition in the physical layer of the HFS �le system�

can exploit the facilities of the physical layer� This allows an application to map a
large portion of a �le into its address space even if the disk blocks are distributed
across a number of disks�
All building blocks used in the physical layer of HFS import and export the same

interface� except for those that interact directly with the disks� Again� this allows
the building blocks to be composed in a wide variety of ways� and hence allows
for much 	exibility in the policies implemented by this layer of the �le system�
The interface used here is similar to the ASI interface used in the application�level
library� where the key operations to read and write �le blocks involve no copying
as control passes through the building blocks�
We have implemented three types of per�disk building blocks that organize �le

data on the disk� extent based building blocks store �le data using contiguous
extents of up to ��� disk blocks �Sweeney et al� ����� random access building
blocks always write �le blocks to a �new� location near the current disk head
position �Rosenblum and Ousterhout ���� and sparse data building blocks are
optimized for �les with large un�populated areas�
Physical�layer building blocks that import and export the same interface include�

Striped data� stripes data in a round�robin fashion across the referenced building
blocks�

Distribution� partitions a �le into contiguous regions� each stored by a di�erent
referenced building block�

Write�mostly� takes into account disk proximity or load to optimize write per�
formance�

Replication� replicates data to each referenced building block�

Parity� computes and stores parity information for fault recovery �Patterson et al�
�����

Application speci�c distribution� maintains an application speci�ed table that
de�nes how data is distributed to referenced building blocks� and

Small data� stores the data of a small �le together with the �le meta�data��

�Multiple small data building blocks can be packed into a single disk block to minimize disk
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These building blocks are for the most part simple and are described �together with
their interfaces� in more detail in �Krieger �����
Figure � illustrates how the simple building blocks of the physical layer can

be combined together to create very complex �le structures� In this example� a
replication building block replicates data to two distribution building blocks� each
of which distribute data across a number of per�disk building blocks� Such a �le
structure would allow �le data to be replicated to di�erent parts of a large scale
multiprocessor� allowing requests for �le data to be serviced from a nearby replica�
The structure of a �le is determined by how the initial building blocks are in�

stantiated and connected� and this is controlled directly by the application� The
structure is de�ned in a bottom up fashion� As the �le grows� the �le system
may instantiate new building blocks to store the additional data� but does so while
retaining the basic �le structure de�ned by the application�
Unlike application�layer building blocks� the physical�layer building blocks asso�

ciated with a �le are persistent and cannot be changed at run time�� Therefore�
some building blocks at this layer must implement more than a single policy to
be able to handle di�erent application requirements� For example� the replication
building block might implement two policies for directing read requests� �� to the
object on the least loaded disk� or ��� to the object on the disk closest to the target
memory� Which policy to use can then be speci�ed �and changed� at run time�
Persistent building blocks� such as those described in this section� are stored on

disk with the �le data� and only cached in memorywhen they are needed� One novel
feature of our system is that the persistent building blocks themselves are stored
in a regular �le that is itself stored on disk �by other persistent building blocks��	

When an application instantiates a persistent building block� it can specify which
�le should be used to store that building block� This means that all the same policies
used for storing �le data can be used to store the building blocks themselves� This
	exibility makes it possible� for example� to co�locate building blocks near other
related data� to take advantage of the disk head position when writing out building
blocks� or to store building blocks redundantly for fault tolerance�

��� Logical�layer �le service

The logical layer of HFS implements all �le system functionality that does not have
to be implemented at the physical layer and� for security or performance reasons�
should not be implemented in the application layer� In our implementation� this
layer provides naming �i�e�� directories�� authentication� and locking services� In
order for locks on �le data to be enforced �rather than just advisory� they must be
implemented by a system server that can prevent applications from accessing data
that has been locked by others�
The logical layer of HFS di�ers from the other layers in that there is less 	exibility

in how building blocks can be composed� Building blocks in this layer �t into four
basic types� Naming building blocks maintain the name space of HFS and the

fragmentation�
�We are currently exploring techniques to ease this restriction so that �le structures can be
modi�ed dynamically without requiring a copy�
	On each disk� there are a small number of persistent building blocks whose location on disk is
recorded in a well known location�
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Fig� �� An example of a logical�layer building�block composition�

particular type of building block used for a directory determines how the directory
is to be cached in main memory� Open�authentication building blocks authenticate
requests to open a �le� Access�authentication building blocks authenticate requests
to access �i�e�� read� write or map� �le data� Locking building blocks enforce locking
policies�

Figure � illustrates a typical composition of logical�layer building blocks and
shows how these building blocks interact with the building blocks in the applica�
tion and physical layer� Open requests are resolved by naming building blocks that
use the pathname speci�ed by the application to locate the open�authentication
building block for the �le� After authenticating the request� for example by us�
ing an access list based policy� these building blocks return to ASF information
which identi�es both the application�layer building blocks to be instantiated �by
default� and a handle of the access�authentication building block to which subse�
quent requests are to be directed� In the application layer� service�speci�c ASF
building blocks direct requests to read� write� or map the �le data to the access�
authentication building block returned by an open request� After authenticating
the request� the access�authentication building block directs the request to the lock�
ing building block which enforces locking constraints� In the case of mapped �le
I�O� the request is then forwarded to the memory manager� Otherwise� read and
write requests are satis�ed by corresponding requests made to the physical layer�

As with physical layer building blocks� the logical layer building blocks are per�
sistent and instantiated by the application when the �le �or directory� is created�

We have put in less work developing the logical layer of HFS than we have
developing the other layers� primarily because the logical layer has very little e�ect
on performance in our system� Except for small �les� we have found that mapped
�le I�O results in the best performance� and hence most accesses to �le data on
our system do not go through the logical layer� Nevertheless� we believe that the
	exibility of the building block approach could be usefully exploited even for this
layer� making it easy to experiment with new mechanisms for caching directory
information� authenticating open requests �e�g�� using access lists or Unix style
permissions� and enforcing locking protocols�
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��� Putting it all together

Figure � shows how the di�erent layers of HFS discussed in the previous sections
work together when an application is accessing a �le� The building blocks implement
a �le where �� there are two replicas of the �le data� ��� each of the replicas is
distributed across a di�erent set of disks� ��� the data is stored in the �le in a
compressed format� ��� the �le is being accessed by a multi�threaded application�
and ��� each thread is sequentially accessing a di�erent part of the �le data�
The �gure demonstrates the strength of the building�block approach employed

by HFS� The application is able to customize a �le and open��le instance to match
its speci�c access pattern by customizing both the �le structure and the �le system
policies implemented by all three layers of the �le system� Not only does each of
the layers provide its functionality in a 	exible fashion� but a combinatorial e�ect
arises because compositions span all layers of the system� While �le systems such
as Vesta �Corbett and Feitelson ���� support quite complex �le structures� and
systems such as ELFS �Grimshaw and Loyot ��� allow for customized policies
at the application level� HFS is unique in having a single consistent technique for
customized functionality at all levels of the system�
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It is clear from the above discussion that the development of HFS di�ered from
most other �le systems in that we took a holistic view of the �le system� considering
all the system servers and layers that a�ect I�O performance together� Looking at
the system in this fashion resulted in numerous software engineering and perfor�
mance advantages� For example� the physical layer of the �le system could rely
on ASF to guarantee that all accesses to large �les use mapped �le I�O� making
it unnecessary to support multiple techniques for accessing the same �le with the
attendant required e�ort to provide consistency� As another example� ASF can rely
on the logical layer to tell it what building blocks should be instantiated by default�
allowing the compression implemented by ASF to be transparent to the application
accessing a �le�

�� MINIMIZING APPLICATION COMPLEXITY

There is a tradeo� between 	exibility and the complexity an application program�
mer is faced with when developing applications to use the system� While we have
found writing application�level code to create HFS �les to be straightforward� we
do not� in general� expect application programmers to write such code themselves�
Instead� we believe that a number of approaches will allow even novice users to
exploit the 	exibility of our �le system�

ASF defaults� The application�level library can create �les using reasonable de�
faults if no information is available from the application�

Library functions� We have constructed a variety of library routines that imple�
ment the most common types of data distribution� including all examples described
in the previous section� These routines hide the process of instantiating building
blocks from the application programmer�

Compiler support� A compiler has been developed that for a class of applications
hides all I�O operations from the application programmer� while exploiting the
	exibility of HFS to achieve good performance �Mowry et al� �����

	� EVALUATION

In this section we describe our experiences with� and show performance results from�
our implementation of HFS� Our goal is to demonstrate that �� it is feasible to
implement a �le system based on building�block compositions� ��� the performance
overhead is low� and ��� the basic goal of 	exibility is indeed important� While it is
di�cult to quantify 	exibility� we will argue in Section � that HFS is signi�cantly
more 	exible than other existing and proposed multiprocessor �le systems�
We have implemented HFS as part of the Hurricane operating system �Unrau

et al� ���� on the Hector shared�memory multiprocessor �Vranesic et al� ����
The ASF application�level library has also been ported to a number of other sys�
tems� The �rst section describes our qualitative experiences in implementing HFS
and summarizes results on ASF that have previously been published �Krieger et al�
����� The remaining sections show performance results on Hector�Hurricane� Sec�
tions ��� and ��� provide measurements of the experimental environment and of
some basic �le system operations� Section ��� presents the performance of the �le
system for two �le access patterns� and demonstrates that the 	exibility of HFS is
important in obtaining good performance for these access patterns� Finally� using
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an extreme stress test� Section ��� shows that the software overhead of our approach
is negligible�

	�� Experiences

As a structuring technique for developing 	exible system software� we found that
building�block composition has a software engineering advantage� resulting in greatly
reduced code complexity� We had developed an earlier �le system prior to HFS that�
like most other �le systems� had code speci�c to each type of �le �e�g�� replicated �le�
distributed �le� etc�� and speci�c to the meta�data of each type of �le� With this
earlier system� the programming e�ort to add a new type of �le was high� In con�
trast� we found that HFS� using building�block compositions� was less complicated
to implement� even though better performance and a great deal more 	exibility was
achieved�
One measure of 	exibility is how easy it is to adapt to new environments� We

ported the ASF application�level library�
 to a number of systems� including SunOS�
IRIX� AIX� HP�UX� and Tornado �Auslander et al� ����� and found the port to be
relatively easy� it was only necessary to change some of the service�speci�c building
blocks to adapt to a new platform�
The 	exibility of ASF allowed us to easily modify the library to exploit the best

features of each host operating system while bypassing any poorly performing ones�
As reported in previous work �Krieger et al� ����� this resulted in substantial perfor�
mance advantages� For instance� a Unix diff application comparing two identical
�les runs nearly four times faster on an AIX system when using ASF instead of
the AIX native stdio library� Performance improvements like these� although repre�
senting extreme cases� indicate the advantages of developing a 	exible system that
can be easily modi�ed to adapt to a particular platform� In the particular example
cited� we were able to exploit a mapped �le I�O facility that is speci�c to the AIX
system�
Another measure of 	exibility of the system is how easy it is to handle require�

ments not foreseen by its developers� We initially had no intention of making
crash recovery fast� but recovering from a system crash involved re�formatting the
disks with our initial implementation� making the system essentially unusable in
our experimental OS�hardware environment� Adding e�cient crash recovery to
HFS required only minor modi�cations to the building blocks that store persistent
building blocks on disk �Section ���� and to the de�nition of the per�partition su�
perblock� As a result� it now only takes seconds to recover from a typical system
crash�
Experimental research in system software always entails compromises� In devel�

oping HFS� the choice of the Hurricane�Hector platform involved both advantages
and disadvantages� The key advantages were that the operating system and hard�
ware could be modi�ed for our experimentation� and that the platformwas available
for system development� The disadvantages were �� much of the basic operating
system and hardware infrastructure required for this research had to be developed
from scratch� and ��� the small size of the system limited the experiments we could

�
Since HFS requires low�level control over the disks� it would have required great e�ort to port
the entire �le system to a di�erent platform�



�� � O�Krieger and M�Stumm

perform� For this reason� we have con�ned our implementation goals to producing
a proof of concept prototype� We have implemented the entire �le system infras�
tructure �e�g�� device drivers� code for marshalling and de�marshalling requests to
the �le system� code for caching persistent building blocks in main memory� etc��
and have implemented many but not all of the building blocks described in the
previous sections��� Nevertheless� our prototype is su�ciently complete to show�

�� The full HFS architecture is implementable� We are con�dent that all building
blocks of the physical and application layers described in the previous sections
are implementable without requiring major changes to either the common in�
terfaces or the non�building�block�speci�c code� While we have less experience
with the logical�layer of HFS� we are also less concerned about this layer� since
it is not heavily involved for reading and writing �le data and hence is not
performance�critical�

��� The overhead of building�block composition is low and� in fact� negligible� Even
with a composition that uses many layers of building blocks� the processing
overhead of HFS is low compared to other processing overhead involved in I�O�
We will show that HFS is capable of delivering the full I�O bandwidth of the
disks on our system�

��� The 	exibility available in HFS �but not other systems� is useful� In particular�
we use two synthetic stress tests with very di�erent access patterns to show
that the 	exibility of HFS is needed to be able to deliver ��� of the disk
bandwidth to the application with these access patterns�

	�� Infrastructure

We �rst describe our hardware infrastructure and the experimental setup� and then
describe the key performance characteristics of the operating system infrastructure�

���� Hardware infrastructure� Our experiments were performed on the Hector
multiprocessor �Vranesic et al� ���� which is constructed from processing modules
�PMs� each with a ���� MHz Motorola ���� processor� �KB data and �KB
instruction caches �������� and a local portion of the globally�addressable memory�
A small number of PMs are connected by a bus to form a station� and several
stations are connected by a high�speed ring� with multiple rings connected together
by higher�level rings� and so on �Figure ��� The particular hardware con�guration
used in our experiments consisted of � PMs per station and � stations connected
by a ring� Hector does not support hardware cache coherence� so many of the
internal data structures used in HFS are not cached� Seven Conner CP���� disks
are connected to the Hector prototype� each directly connected to a di�erent PM�
Requests to a disk must be initiated by its local processor and all disk interrupts are
serviced by that processor� Disks can DMA data to or from any memory module

��Our current implementation includes about ��K lines of C and C�� source code� This includes
about �K lines of code used to cache path names �and shared by a number of system servers�� �K
lines of code for handling I�O requests �and shared by our NFS and disk �le system�� �K lines
of infrastructure code speci�c to the disk �le system� �K lines of device driver code� �K lines of
physical�layer building�block code� �K lines of logical�layer building�block code� and �K lines of
application�level mostly building�block code�
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in the system���

Figure � shows maximumdisk throughput on our system in KBytes�sec� for dif�

��During a load or store by the disk to memory �local or remote�� the processor co�located with
the disk is blocked from making any memory accesses� which can have a substantial impact on
performance�
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ferent block sizes��� To avoid interrupt overhead� we obtained these measurements
by instrumenting the device driver to poll waiting for I�O operations to complete�
The maximum performance obtained from the disk is about ��� KBytes�sec� This
maximumperformance was obtained by making requests larger than � KBytes and
is independent of the memory to which the request is directed� Unfortunately� the
performance is slightly worse with � KByte disk blocks �the memory manager page
size on Hurricane� and depends on the target memory� varying from ���KBytes�sec�
to between ��� and �� KBytes�sec�

����� Operating system infrastructure� HFS was developed as part of the Hur�
ricane operating system �Unrau et al� ���� Unrau et al� ����� In Hurricane� a
micro�kernel provides for basic process and thread management� interprocess com�
munication and memory management� while most of the operating system services
are provided by user�level servers�
The interprocess communication facility of Hurricane� Protected Procedure Calls

�PPC�� has three important characteristics�

�� It is fast��� a null PPC request between two application address spaces varies
between �� and �� �sec� on our hardware� depending on how much of the state
required for the PPC is in the processor cache�

��� In the commoncase� no locks need to be acquired and only local data is accessed�
making the IPC system fully concurrent�

��� New threads are created dynamically �as required� to handle requests in the
server address space �Gamsa et al� ����� This allows the concurrency in the
�le system to match the demands being made on it by application threads�

The speed and concurrency of the PPC facility minimizes the impact of splitting
the �le system into multiple servers and ensures that IPC is not a bottleneck on
�le system requests�
HFS uses mapped��le I�O to minimize copying costs� and hence the Hurricane

memory manager is involved in most requests to read and write �le data� However�
a limitation of the memory manager we have not addressed yet is that it cannot
allocate contiguous physical page frames so that contiguous disk blocks cannot be
read from disk using a single disk request� Hence all requests by the memory
manager to the �le system are for individual � KByte pages� On the other hand�
the memory manager supports prefetch and poststore operations that allow ASF
to request pages to be asynchronously fetched from or stored to disk� a single PPC
operation can request the prefetch or poststore of multiple of �le blocks���

The memory�management overhead to handle a read�page fault when the page is
in the �le cache is on average ��� �sec� on a � processor system� If the data is not

��The numbers we present in this section were obtained either using a microsecond timer with ���
cycle access overhead or by measuring the total time to repeat many similar requests� All reported
times are for the uncontended case� in the case of memory or lock contention� performance can
get arbitrarily worse�
��The performanceof our multiprocessorPPC calls �including the creation of a thread in the target
address space� is competitive with the fastest known uniprocessor IPC implementations �Liedtke
�����
��In our implementation� the memory manager can request from the �le system at most �ve �le
blocks with a single PPC operation�
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in the �le cache� then the memory�manager overhead to initiate a request to the
�le system is about ��� �sec��� The memory management overhead for a prefetch
request is �� �sec� per request and an additional ��� �sec� per page if the page is
not in memory� �� �sec� per page if the page is in memory but not in the local page
table� and � �sec� per page if the page is already in the local page table�

	�� Basic �le system performance

To measure how much of a disk
s bandwidth the �le system can deliver to a simple
application� we created a �le on a single disk implemented with an extent�based
building block� We then measured the performance of a single thread reading data
into memory on the same PM� the same station� and on a di�erent station as the
disk� respectively� The data rate delivered to the application varies from �� to
��� KBytes�sec� There are two reasons for this relatively poor performance� First�
whenever a request is sent to the disk� the disk is idle� so the �le system incurs the
overhead of waking up a thread local to the target disk to initiate the I�O request���

Second� since there is no request waiting for the disk when a request completes�
there is a large latency between the time a request completes and the time the next
request is sent to the disk�
We ran the same experiment but with the reading thread always issuing a prefetch

request to the page succeeding the page it is about to access� In this case� the �le
system delivers to the application from ��� to �� KBytes�sec�� depending on the
target memory� This corresponds to ��� of the available disk bandwidth� given
the Hurricane page size�
To demonstrate the basic software overhead and concurrency of the �le system

and the PPC facility� we ran a simple experiment where n threads make repeated
requests to the �le system to obtain the length of an open �le� In the uncontended
case this operation takes ���� �sec on average� varying between �� �sec� and �� �sec�
depending on the locality of the requesting thread and the data being accessed by
the �le system and kernel� About �� �sec� of this cost is attributable to the PPC
request� � �sec� to HFS for locating the building blocks in its main memory cache
of persistent building blocks� and � �sec� to the building block� The rest is �le
system overhead to authenticate the request and to marshal and de�marshal the
arguments of the request�
Figure � shows the throughput when multiple threads run the same experiment�

If all requests are to the same �le� then the �le system saturates at about four
threads� Speedup in this case is limited primarily by contention on the locks in
the �le
s building blocks and on the structure used to locate the building blocks in
HFS
s cache of persistent building blocks��� If each thread requests the length of
a di�erent �le� then the speedup is ����� In this case there is no lock contention

��The memory manager cost of a page fault �that results in I�O� is larger than it should be� but
we have not yet optimized this part of the system� However� because in our experiments most
I�O is due to prefetch requests� this cost has little impact on the results shown�
��New disk requests are placed on a shared queue� and when a disk request completes� the �le
system code that handles the interrupt de�queues any pending request from this shared queue�
Hence� as long as the disk does not become idle� it is not necessary to wake up the per�disk thread�
��A hash table is used by HFS to locate cached building blocks� where each hash chain is locked
independently�
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Fig� ��� Two �le access patterns� With access pattern A� up to seven threads of a parallel
application concurrently read a di�erent region sequentially� Each thread has its own �le
pointer� With access pattern B� the threads of a parallel application cooperate to read
the �le sequentially� The threads share a common �le pointer�

because di�erent building blocks and hash chains are being locked� Linear speedup
is not entirely achieved because of memory contention� i�e�� concurrent accesses to
di�erent data structures in the same memory modules�
We can deduce from this experiment that is is unlikely that locks in the �le

system will be contended during regular �le accesses� The time per�building block
locks are held in this example is typical of all our building blocks� Even in the case
where all threads are making requests to the same building block �i�e�� the case
that saturates at four threads�� the �le system can handle over ����� requests per
second before lock contention becomes a problem� This rate of requests is an order
of magnitude higher than the maximum rate of requests our disks can sustain� The
only locks not exercised in this experiment are those associated with the per�disk
request queues� and these locks are obviously less of a bottleneck than the disks
they protect�
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Fig� ��� Files distributed across multiple disks� File structure A implements a �le using
a distribution building block that partitions the �le into seven contiguous regions� each
stored by a di�erent extent�based building block� File structure B implements a �le using
a striped�data building block that stripes �le blocks round robin across seven extent�based
building blocks�

	�� Parallel I
O

In this section we consider the two �le access patterns depicted in Figure � and
show the importance of matching application requirements� With access pattern
A� seven threads of a parallel application concurrently read a �le� each thread
sequentially reads from a di�erent region of the �le� For many parallel applications
this is a natural way to partition �le access �Crockett ����� With access pattern
B� seven threads cooperate to read a �le sequentially� each thread reads a small
amount of data at a time� Such an access pattern is natural for algorithms where
threads proceed at their own rate obtaining the next available unit of work for
processing �Crockett �����

���� File structure� Clearly� the best way to support access pattern A is to have
the �le partitioned into � regions� each stored on a di�erent disk� This balances the
load on the disks� ensures that the requests of one thread don
t interfere with those
of other threads� and allows the sequence of requests of a thread to be mapped to
consecutive disk blocks �minimizing seek operations�� We call this �le structure A�
The physical�layer HFS building blocks used to implement �le structure A are

shown in Figure � A distribution building block partitions the �le into seven
contiguous regions and directs requests for each region to a di�erent extent�based
building block� The extent�based building blocks store �le blocks on disk using
contiguous extents of up to ��� disk blocks� hence minimizing seek operations for
sequential access patterns��	 The size of the regions are speci�ed when the �le is
created�
The best way to support access pattern B is to stripe the �le across all disks in

�	Each of the extent�based building blocks is stored on the same disk as the disk blocks it controls
to ensure that �le system requests for meta�data do not interfere with the �le data requests by
application threads� The only common building block for the seven regions is the distribution
block� and since the operations performed by this building block are simple and hold a lock for
just a short period of time� it is not a source of contention�
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the system to balance the requests across the disks so as to give each disk as much
time as possible to pre�fetch into its on disk cache before it must process the next
request� The HFS building blocks used to implement �le structure B are shown in
Figure � The striped�data building block stripes �le blocks round robin across
seven extent�based building blocks��


The similarity of �le structures A and B illustrates the expressive power of
building�block composition� The two compositions di�er only in a single build�
ing block� yet implement completely di�erent �le structures that� as we will show�
result in very di�erent performance characteristics for the two access patterns�

����� File access with no prefetching� We measured the performance of the �le
system with access patterns A and B on both �le structures A and B� and the
results are summarized in Table � In all cases the data is read into application
pages distributed round�robin across the memorymodules of the system� The seven
threads are run on seven consecutive processors� and� to compensate for NUMA
e�ects� the experiment was run repeatedly until every sequence of seven processors
had been used� All disk requests are initiated by page faults� because ASF building
blocks are used that map the �le into the application address space� For access
pattern A� each thread uses an independent ASF building block to maintain a
separate �le o�set� For access pattern B� a single shared ASF building block is
used�
When access pattern A is run on �le structure B� the application receives about

one quarter the bandwidth compared to when �le structure A is used� The reason

�
The striped�data building block adjusts the �le o�set of requests made to the referenced building
blocks so that data can be stored on disk in a dense fashion� That is� a request made to an extent�
based building block for block n is for the nth block stored by the extent�based building block
and not for the nth block of the �le as a whole�
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Table �� Bandwidth achievable for �le access patterns A and B

access pattern A access pattern B

without �le structure A ��� ���
prefetching �le structure B ���� ���

with �le structure A ���� ���
prefetching �le structure B ���� ����

for the poor performance is that requests by the di�erent threads arrive at disks in
an interleaved fashion� resulting in many seek operations� In fact� our results for
this case are optimistic� in that the extents used by the di�erent regions are likely
to be close to each other on disk given that the disk was otherwise empty�
For access pattern B� the performance di�erence between the two �le structures

is not as large �although we will show that the di�erence becomes signi�cant if
prefetching is used�� When access pattern B is run on �le structure B� the �le
system cannot keep multiple disks busy because only one request is outstanding at
a time� Nevertheless� performance is somewhat better than if the �le is stored on a
single disk� since each disk has time to prefetch data into its on�disk cache� When
access pattern B is run on �le structure A� then the �le system obtains the same
performance as if the �le were stored on a single disk�
For �le access pattern A on �le structure A� we also varied the number of re�

questing threads between one and seven and measured the speedup in terms of
KBytes�sec� to determine the amount of concurrency available in the �le structure�
As shown in Figure �� the speedup with seven threads is ����� This does not cor�
respond to perfect speedup� but it turns out that none of the �le system locks are
heavily contended� and hence we do not believe that the degradation is due to the
�le system� We believe that the degradation is due to �� memory contention as the
disks transfer data to memory� ��� pre�emption of the �le system and application
threads due to disk interrupts� and ��� contention for kernel data structures such
as the ready queues�

����� File access with prefetching� If the full bandwidth of the disks on our system
is to be delivered to the applications� then prefetching is necessary� the �le system
must generate su�cient requests to keep the disks continuously busy� In HFS� this
is accomplished by using ASF building blocks that direct prefetching requests to
the memory manager�
For access pattern A on �le structure A� prefetching should be done on a per�

thread basis� since each thread is accessing a di�erent portion of the �le� Hence�
a separate prefetching ASF building block should be used for each of the threads�
The simplest possible prefetching algorithm is to� on the �rst request to a block�
generate a prefetch request for the next block� With this prefetching policy� we
obtain ���� KBytes�sec� of disk bandwidth for the application� which corresponds
to ��� of the disk bandwidth available on our system� or ����� KBytes�sec� per�
disk� In this case� speedup is perfect �Figure ����� When the same prefetch policy

��This perfect speedup does not imply that there is no lock or memory contention� but that any
increase in overhead is entirely hidden by the cost of accessing the disk� As stated earlier� the
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is used for access pattern A on �le structure B� the application again only receives
about one quarter of the disk bandwidth� This is again due to the large number
of seek operations required� Performance is� however� slightly improved relative to
the no�prefetching case� since sometimes a disk can service sequential requests by
a thread before having to perform a seek to handle the requests of other threads�
For access pattern B on �le structure B� prefetching should be done on a per�

application rather than on a per�thread basis� since the entire �le is being accessed
sequentially� Also� in order to have a request outstanding for each disk� ASF should
generate a prefetch request for the block at least seven blocks in advance of the one
currently being accessed� Figure � shows the I�O performance as we vary the
prefetch distance with prefetch request sizes of  and � pages� From the �gure� we
can see that while it is possible to exploit the full disk bandwidth of our system
using such a policy� it is necessary to be aggressive� using a prefetch distance of
thirty and a prefetch request size of �ve�

To understand why access pattern B requires such an aggressive prefetching pol�
icy� we measured the basic per�block software overhead of prefetching � that is� the
system response time for an application prefetch request divided by the number of
blocks requested� This is shown in Figure �� When a disk is idle �the top curve��
the time to execute a single block prefetch request is on average ��� �sec� This
high overhead comes from the cost to wake up a per�disk thread to issue the re�
quest to disk� the cost to cross address spaces boundaries to the memory manager�
�le system� device driver� and back to the application� as well as from the basic
memory manager and �le system overheads described earlier� If the application
issues larger prefetch requests� then the per�block overhead drops quickly because
the cost of crossing address spaces is amortized over more data� Also� if the disks
are busy when a prefetch request is initiated �the bottom curve� then the cost is
reduced because it is not necessary to wake up the per�disk thread�
When the same prefetch policy is used on �le structure A for access pattern B�

the application receives only about one seventh of the available disk bandwidth�
As the threads sequentially access each �le region� their requests are typically all
directed to one disk� and hence the bandwidth of the other disks is not exploited�
In summary� when the access patterns are run on their matching �le structure�

the best prefetching policies di�er in that �� one is per�thread and the other is
per�application� and ��� one is conservative� making requests for single blocks one
block in advance� while the other is aggressive� If a per�thread prefetching policy
were used for access pattern B� then many useless prefetch requests would be is�
sued� If a per�application prefetching policy was used for access pattern A� then
it would be entirely ine�ective� While it would be possible to use an aggressive
prefetching policy for access pattern A as well� it is both unnecessary and could be
counterproductive if prefetched pages displace other pages that are still needed�

����� Summary of parallel I�O results� In this section� we have shown that it is
crucial for the �le structure and policy to match the application access pattern�
For both access pattern A and B� HFS is able to deliver to the application address

disk can handle some latency between requests without any performance degradation� since it uses
that time to prefetch disk blocks into its on�disk cache�



�� � O�Krieger and M�Stumm

distribution

extent
based

disk
blocks

extra distribution objects

Fig� ��� Structure of a �le distributed across seven disks with �� extra layers of building blocks�

space ��� of the disk bandwidth of our system if the �le structures and policies
match the application access pattern� By using an appropriate structure� we are
able to ensure that all disk requests are sequential and avoid seek operations� By
using an appropriate prefetching policy� we are able to exploit the full concurrency
of our disks while minimizing the memory and processing cost of prefetching�

	�	 Building�block overhead

One potential concern in using building blocks is the amount of overhead they
might introduce� In a previous paper �Krieger et al� ����� we showed that the
overhead of ASF building blocks is negligible relative to other overhead� To show
that the overhead at the physical layer is also low� we constructed a distributed �le
that implements �le structure A �of the previous section�� but added � levels of
distribution building blocks between the top level building block and the per�disk
building block �Figure ��� Figure � shows the �le system performance with and
without prefetching when access pattern A is used on this �le�
In this case� HFS delivers �� KBytes�sec� of data to a single application thread

with no prefetching� about ��� worse than with no extra building blocks� This
degradation is due to the �le system overhead to traverse the extra building blocks�
and amounts to about ��� �sec� for each disk block request� or about �� �sec� per
building block� The speedup with seven threads is ���� compared to ���� for the
case with only one distribution building block� It is di�cult to determine the source
of this degradation� We suspect that increased memory contention is the culprit�
the increased number of memory accesses to �le structure data �building blocks and
hash tables in this case� compete in the memory with the DMA accesses from the
disks�
With prefetching� the �le system delivers the full disk bandwidth of our system

to the application threads with perfect speedup as the number of processors is
varied from one to seven� Again� this speedup does not imply that there is no extra
overhead� just that the overhead is masked by other time consuming operations�
We can conclude that the impact of implementing a �le using many layers of
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of building blocks� The solid line shows the performance with no prefetching� The dashed
line shows the performance with prefetching of a single block�

building blocks is small� The case considered is extreme in that eleven distribution
building blocks su�ce to create a �le distributed across more than eight trillion
disks� Moreover� while some impact in performance is observable� we believe that
this impact is largely due to the particular characteristics of the Hector multipro�
cessor �i�e�� slow memory system� lack of cache coherence� and the mechanism used
to implement atomic operations��

�� LESSONS LEARNED

The �nal HFS implementation is the product of the lessons learned by �� imple�
menting and measuring a prior �le system that we eventually discarded� and ��� at
least two re�implementations of each part of HFS� These lessons taught us that it
is crucial to consider�

Copying overhead� Our �rst �le system implementation primarily used the tra�
ditional read�write I�O interfaces and made little use of mapped��le I�O� We only
realized how important it is to minimize copying costs when we found that the ma�
jority of the time spent accessing �le data in the �le cache was spent copying that
data� and that it was impossible to exploit the full disk bandwidth of our platform
because of the processor time and memory bandwidth consumed copying data�

Overhead of crossing address spaces� We originally thought that the cost to cross
address spaces would be negligible compared to the overhead of a disk access� How�
ever� when the �le system organizes �le data on disk so that on�disk caches have
high hit rates� then disk accesses frequently have low overhead� The Hurricane
PPC facility �Gamsa et al� ���� was developed when we found that it was impos�
sible to exploit the full disk bandwidth of our system with the original messaging
facility provided by Hurricane� Even with the low overhead of PPC requests� we
found that it was important to amortize the cost of crossing address spaces over
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several blocks by having the application make multi�block prefetch requests to the
memory manager and the memory manager make multi�block prefetch requests to
the physical layer of HFS�

Persistent building�block cache overhead� Our implementation �rst used a single
cache of persistent building blocks� and we found that ��� of the time spent making
a request to a cached persistent building block was spent �� locating the building
block in the cache� ��� enqueuing and dequeuing it from various queues �e�g�� the
free list of the cache�� and ��� acquiring and releasing various locks� We now have
multiple caches� each with di�erent locking and replacement policies� The cache to
be used for each type of building block is chosen to match the demands on that
type of building block��� For most requests and types of building blocks� the time
spent executing cache management code is now less than ��� of the total time
taken to handle a request�

State distribution and replication� For good performance� we had to spend a large
part of our implementation e�ort on developing techniques to distribute and repli�
cate �le system state across multiple memorymodules to increase locality and avoid
memory contention� This may have partly been an artifact of our ��mature � hard�
ware base that was not cache coherent� However� we believe that similar e�orts are
necessary on more modern NUMA multiprocessors� both because �le system state
often does not remain in the cache between successive requests and because of such
issues as false sharing �Gamsa et al� ���� Parsons et al� �����

On�disk caches� We have found it important to take the behavior of disk caches
into account� In particular� there is an interesting tradeo� between having the data
for a request spread across multiple disks to increase concurrency and having data
on consecutive disk blocks on a single disk to make e�ective use of the on�disk
caches�

Interface compatibility� ASF allows the application to interleave requests to dif�
ferent interfaces� even if the requests are directed to a single stream��� This allows
us� for example� to exploit the performance advantages of ASI by modifying just
the I�O�intensive parts of an application� No other user�level I�O facility provides
similar functionality� and we did not consider it important until we developed a
new I�O interface and were faced with the task of re�writing applications to use
this new interface�

�� COMPARISON TO OTHER SYSTEMS

The HFS structure� based on building�block compositions� is unique� It provides �le
system support with unprecedented 	exibility� HFS is more 	exible than all other

��To illustrate how di�erent policies are appropriate for di�erent building blocks� consider dis�
tribution building blocks and per�disk random�access building blocks� The latter have a large
amount of data and may be accessed for a long time� Hence� we maintain strict information about
which was used most recently for replacement� and lock them using a reader�writer lock� The
former are small and accessed for a short time� Hence� we can cache many and avoid keeping
exact state about when each was used� Also� we can use an exclusive lock on distribution building
blocks� since the lock will be held for just a short period of time�
��A � byte request to stdio� followed by a �� byte Unix I�O request and a � byte ASI request� all
to the same �le� return the expected data�
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existing and proposed parallel �le systems we are aware of� including CFS �Pierce
���� for the Intel iPSC� sfs �LoVerso et al� ���� for the CM��� PIOFS and
Vesta �Corbett and Feitelson ���� Corbett et al� ���� for the SP�� XFS �Sweeney
et al� ���� for SGI multiprocessors� the OSF� �le system �Zajcew et al� ����� the
nCUBE �le system �DeBenedictis and del Rosario ����� the Bridge �le system �Dib�
ble et al� ����� the RAMA �le system �Miller and Katz ����� and the Galley �le
system �Nieuwejaar and Kotz ����� Our current implementation supports or can
easily be extended to support all of the policies used by these �le systems to dis�
tribute �le data across the disks� In addition� HFS allows for 	exibility in how
�le data is stored on the disks� allows for 	exibility in how �le system meta�data
that describes a �le is stored� and provides for fast crash recovery� The HFS archi�
tecture is designed to support the following capabilities typically not available on
other systems �although not all have been implemented��

Dynamic distributions� HFS is designed so that dynamic policies can be used to
distribute requests across the disks� where the load on the disks and the location of
the requesting thread can be used to determine the target disk for a read or write
request� It is important to consider disk load in multiprogrammed environments�
where other applications may be competing for the same disks� Locality is impor�
tant in large scale NUMA systems� where the bandwidth available can depend on
the distance between the processor and the disk� All other existing parallel �le sys�
tems distribute �le data across the disks using some static policy� where the o�set
of the data in the �le and the �le structure �or some mapping function speci�ed in
part by the application� determine the target disk�

Latency tolerance� Applications can specify the prefetching policy on a per�open�
�le instance and per�thread basis� As we have seen in Section ������ this capability
is crucial to allow applications to exploit the full disk bandwidth of our system� All
other existing �le systems either do not prefetch �le data or have a single prefetching
policy invoked automatically by the �le system on a per��le or per�open��le basis�

Maintaining redundancy� An application can specify on a per��le basis the kind
of redundancy �for fault tolerance� that should be maintained for its �le
s data
and meta�data� Redundancy imposes a performance cost� but choosing a policy
to match the target application
s access pattern can reduce this overhead� All
other existing parallel �le systems we are aware of either do not provide for any
redundancy or have a single policy that is applied uniformly to the data and meta�
data of all �les�

The full implementation of the HFS architecture will also support a variety of �le
system interfaces� advisory and enforced locking policies� and compression�decom�
pression policies�
Parallel �le I�O research is attempting to address the portability problem for I�O�

intensive parallel applications by establishing standards for I�O interfaces �Corbett
et al� ���� and by developing facilities that can easily be ported above any native
�le system to provide a common application interface �Huber et al� ���� Moyer
and Sunderam ����� Also� there have been several projects to develop libraries and
servers speci�cally targeted to meet the needs of scienti�c applications �Seamons
et al� ���� Thakur et al� ���� Vengro� and Vitter ����� The 	exibility of HFS
allows it to be easily extended to support new interface standards as they are
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developed� Moreover� because HFS supports common I�O interfaces� we expect it
to be a simple target for libraries and servers that use native �le systems for their
I�O� Once a facility has been ported� it can then be incrementally optimized to
take advantage of HFS
s unique properties�
Most of the system development e�orts discussed above have concentrated on

particular aspects of I�O performance instead of taking a holistic approach as we
did with HFS� These systems depend on other layers of system software to inde�
pendently handle other concerns� For example� the XFS �Sweeney et al� ���� �le
system for IRIX addresses scalability and concurrency issues in �le system data
structures� but assumes that lower layers of software e�ciently manage the system
disks� HFS spans all layers of the system� allowing an application to customize
all aspects of I�O performance to match its speci�c requirements in a consistent
fashion� For example� an HFS application can control everything from the way
its threads accessing �le data synchronize �in ASF building blocks� to how the
�le blocks are organized on the individual system disks �in physical�layer building
blocks��
Conceptually� HFS has more in common with 	exible �le systems designed for

uniprocessors than it does with other parallel �le systems� For example� stackable
�le systems �Heidemann and Popek ���� implement a �le using �layer building
blocks in the same way that HFS uses building blocks� However� the goals of stack�
able �le systems are very di�erent from those of HFS� and hence the architectures
have little in common� The primary goal of stackable �le systems is to allow layers
to be developed by independent vendors and �stacked by a system administrator�
the layers are potentially available only in binary form� Hence� a single layer is
used for a large number of �les� the relationship between the layers is determined
for all �les when the layers are mounted� and all interactions between layers must
pass through the operating system kernel� In contrast� HFS building blocks are
speci�c to a single �le� the relationship between the building blocks is determined
on a per��le �or per�open��le� or per�thread� basis� and most interactions between
building blocks are between building blocks implemented in the same address space�

� CONCLUDING REMARKS

We have developed building�block composition as a technique for structuring 	ex�
ible �le systems� and described the Hurricane File System that is based on this
technique� We showed that even with a small number of simple building blocks�
the ability to compose them gives the application tremendous 	exibility in de�ning
a large number of di�erent �le structures and �le system policies� The performance
results obtained from the HFS implementation on Hector�Hurricane demonstrate
that �� it is practical to implement a �le system based on building�block composi�
tions� ��� the overhead of this approach can be made very low� and ��� the 	exibility
is important for good performance�
HFS di�ers from most other parallel �le systems in that it has been designed

for a shared�memory multiprocessor as opposed to a distributed�memory multi�
computer� Hence� it is reasonable to question whether the architecture of HFS is
appropriate for multicomputer systems� and whether the techniques others have
developed to optimize I�O performance can be adapted to mapped �le I�O using
building�block composition� While a multicomputer implementation will be quite
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di�erent from HFS� we believe that the building�block composition approach and
the use of mapped �le I�O applies equally well to multicomputer systems� Also� it
appears to us that the techniques proposed by others to optimize performance can
also be implemented in our environment� for example� we are studying adopting
Kotz
s disk�directed I�O �Kotz ���� in our system�
HFS was developed in conjunction with Hurricane� a microkernel�based research

operating system� The basic techniques of HFS� however� also �t well with sys�
tems with more monolithic operating systems� because customization occurs in the
address space providing the service and does not require redirecting requests to
other processes� Moreover� we believe the techniques of HFS are also applicable
in current and future commercial systems� because 	exibility and customizability
is provided to applications by letting them compose trusted building blocks� and
the compositions can easily be validated to be safe� This is in contrast to other
more aggressive techniques for customizability that allow untrusted programmers
to extend operating system functionality with new code �Bershad et al� ���� Engler
et al� ���� Seltzer et al� ����� Also� it is already well accepted for I�O system
software to employ object oriented technology for 	exibility �Peterson et al� ����
Ritchie ���� Rosenthal �����
In this paper we have focused on validating the HFS design� Synthetic stress

tests have been used to measure basic �le system performance and demonstrate the
bene�ts of 	exibility� Since this paper was submitted� we have experimented with
out�of�core scienti�c applications and demonstrated that HFS is able to achieve very
good performance for these applications �Mowry et al� ����� These applications
have working sets many times the size of the physical memory available on our
system� and hence provided an extreme test of our system� We found that HFS
could handle this new workload with only trivial modi�cations�
One of the most novel aspects of the more recent work ��Mowry et al� �����

was that the good performance was accomplished in a fully automated fashion�
the code to exploit the features of HFS was generated by a compiler developed for
this purpose� We believe that in the future such compiler technology will become
more e�ective for a wider class of applications �Bordawekar et al� ���� Cormen
and Colvin ���� Mowry et al� ����� This will simplify the introduction of new
non�standard features such as those we propose� since one only has to change a
compiler to exploit those features� and not a large set of applications�
The building�block composition technique we developed for HFS is now being

employed by the Tornado multiprocessor operating system from the University
of Toronto� and the Kitchawan multiprocessor operating system from IBM re�
search �Auslander et al� ����� In this context� the HFS work is being extended
in several ways� First� building�block compositions will be supported by all com�
ponents of the new operating systems� including the memory manager� This will
address one of the main limitations in HFS� namely the lack of 	exibility in the
memory manager� a crucial component for I�O performance� Second� HFS will be
incorporated into these systems and will hence be ported to new hardware plat�
forms� This will allow experiments to be performed on systems that are more
modern and larger scale� Finally� HFS will be available from a very early stage on
the new systems providing us with a much better insight into the advantages and
limitations in using building�block compositions for �le I�O�
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