
J

A Redesign of Application-Level Stream I/O

Orran Krieger and Michael Stumm, University of Toronto

Ron Unrau, IBM Canada

Many stdio and
even Unix I/O

applications run
faster when linked

to the ASF
application-level

library. Using
the Alloc Stream

Interface improves
performance
even more.

March 1994

he success of the Unix operating system is partly attributable to the design
of its input/output facility. The primary Unix I/O abstraction is a sequen-
tial byte stream provided by an interface of system calls: open, read, write,

seek, close, and ioctl. The U0 facility is simple and versatile and can be uniformly
applied to a variety of I/O services, including disk files, terminals, pipes, network-
ing interfaces, and other low-level devices.' Nevertheless, application programs
running under Unix typically do not use the Unix I/O system calls directly.
Instead, they use higher level facilities implemented either by the programming
language or its application-level libraries - for example, the stdio library for C or
the iostream library for C++.

I/O facilities at the application level offer several advantages. The interfaces can
be made to match the programming-language syntax and semantics, and they can
provide functionality not available at the system level. They increase application
portability because the IIO facility can be ported to run under other operating sys-
tems. Application-level I/O facilities can also significantly improve application
performance, primarily by buffering the input and output to translate multiple
fine-grained application-level I/O operations into individual coarser grained sys-
tem-level operations. For example, if an application inputs one character at a time,
each can be serviced from an application-level buffer without a system call; a sys-
tem-level read must be issued only when the buffer is empty.

The interface and implementation of most application-level I/O facilities have
changed little since the late 1970s.* However, the computing substrate - the com-
puter architecture, hardware technology, and operating system - has changed
substantially in the past 10 to 20 years, and we contend that application perfor-
mance can be significantly improved by adapting both the implementation and
interfaces of application-level I/O facilities to this change.

This article introduces an application-level U0 facility. the Alloc Stream
Facility, that addresses three primary goals. First, ASF addresses recent comput-
ing substrate changes to improve performance, allowing applications to benefit
from specific features such as mapped files. Second, it is designed for parallel sys-
tems, maximizing concurrency and reporting errors properly. Finally, its modular
and object-oriented structure allows it to support a variety of popular I/O inter-
faces (including stdio and C++ stream I/O) and to be tuned to system behavior,
exploiting a system's strengths while avoiding its weaknesses.

On a number of standard Unix systems, I/O-intensive applications perform sub-
stantially better when linked to our facility - in the best case, up to twice as good.

0018-Ylh2/Y4/$4(NIO l Y W IEFE 75

Also, modifying applications to use a
new interface provided by our facility
can improve performance by another
f ac to r of two. These performance
improvements are achieved primarily
by reducing data copying and the num-
ber of system calls. Not visible in these
improvements is the extra degree of
concurrency our facility brings to multi-
threaded and parallel applications.

Changes in comput-
ing substrate

Recent changes in the computing
substrate have significantly affected the
cost of I/O and its composition.

First, the available physical memory
has increased by several orders of mag-
nitude. Many personal workstations
now have 64-megabyte main memories,
and that will probably increase to hun-
dreds of megabytes over the next sev-
eral years. Once accessed, files can
often remain cached in memory, so
many operating system I/O calls no
longer involve accesses to I/O devices.
In fact, many files a re created and
deleted without ever being written to
secondary ~ t o r a g e . ~ Thus, much 110
overhead stems from copying data from
one memory buffer t o another and
from calls to the operating system.

Second, because processor speeds
have improved much more dramati-
cally than main memory speeds, large
memory caches have become neces-
sary. This increases the cost of buffer
copying relative to processor speeds,
since copying occurs either through the
cache, destroying the cache contents, or
directly t o and from (the relatively
slow) memory. Moreover, in today’s
parallel computer systems, memory has
become a critical, contended resource.
For example, researchers who have
dramatically improved file I/O band-
width (by introducing disk arrays) have
found that the memory bottleneck
makes it difficult to exploit this band-
width.4

Third, the cost of a system call has
been increasing relative to processor
speeds5 Again, this is partially due to
the effects of slower relative memory
speeds and the increased number of
registers modern processors need to
save and restore on context switches.
But it can also be due to new operat-
ing-system structures that use a micro-

kernel and a set of user-level servers
for system control. In these systems,
the actual operating system is imple-
mented as a set of servers running in
application address spaces provided by
the microkernel, and a system call is
translated into a message o r remote
procedure call from the invoking pro-
gram to a server. As a result, minimiz-
ing calls to the operating system has
gained importance.

Fourth, many modern operating sys-
tems now support mapped files. A file
can be mapped into the application’s
virtual address space and directly
accessed in the mapped memory
region. Mapped I/O requires no data
copying between system space and
application space; the data is usually
made available t o the application
through page table manipulat ions
alone. Although mapped files have

Much I/O overhead
stems from copying

data from one memory
buffer to another

and from calls to the
operatiqg system.

been available for several years and can
improve performance, they a re not
widely used. We believe this is because
mapped files have not been integrated
into standard I/O interfaces. Also, they
cannot provide a uniform interface for
I/O - that is, they can be used for file
U0 but not, for example, for terminal
IIO. In this article, we show how to
exploit the performance advantages of
mapped file IIO, while still supporting a
uniform I/O interface.

Fifth, multithreaded programs are
becoming more common, both because
of the increasing availability of multi-
processor systems and because of their
suitability as a structuring mechanism
for some applications. Current I/O
interfaces, however, are grossly inade-
quate for multithreaded programs. An
obvious inadequacy of the Unix U0
facility, for example, is the reporting of
errors to applications via a single global
variable (errno)?

Reducing I/O over-
head

I/O overhead is frequently an impor-
tant factor in application performance.
Consider, for example, a typical Unix
filter that iteratively reads some input,
performs a transformation, and writes
some output. If the transformation is
simple, the application’s performance
will be dominated by input and output.

Figure l a illustrates the data flow
using a traditional implementation of
the stdio U 0 library. The filter itera-
tively (1) calls fread to copy data from
the stdio library input buffer to the
application input buffer, (2) transforms
the data from the application input
buffer to the application output buffer,
and (3) calls fwrite t o copy the data
from the application output buffer to
the library output buffer. Whenever the
library input buffer is empty, stdio calls
the Unix I/O read system call to copy
data from the system input file buffer
t o the library buffer. Whenever the
library output buffer is full, stdio calls
the Unix I/O write system call to copy
data from the library output buffer to
the system output file buffer.

Ignoring the transformation, this sim-
ple stdio filter requires copying each
input-stream character four times: (1)
from the system input buffer t o the
library input buffer, (2) from the library
input buffer to the application input
buffer, (3) from the application output
buffer to the library output buffer, and
(4) from the library output buffer to the
system output buffer.

ASF can reduce the number of times
data is copied. Figure l b illustrates
dataflow when the ASF implementa-
tion of stdio uses mapped files. Rather
than buffering data in the library, and
using Unix 110 operations to copy data
from the system buffers to the library
buffers, the system buffers are mapped
into the application address space by
the virtual memory system and used
directly by the l ibrary. The data is
copied only twice: (1) from the mapped
system input buffer to the application
input buffer and (2) from the applica-
tion output buffer to the mapped sys-
tem-output buffer.

ASF also supports a new I/O inter-
face called the Alloc Stream Interface
(ASI). Like the Unix I/O and stdio
interfaces, AS1 is a character-stream
interface that can be used uniformly for

76 COMPUTER

all types of IIO. The key difference is
that, instead of having the application
specify a buffer for copying I/O data,
AS1 allows the application direct access
to the I/O library's internal buffers.

ASI's direct use of system buffers
fur ther reduces copying. Figure I C
shows dataflow when the fi l ter is
rewritten to use AS1 implemented on
top of mapped files. Da ta copying
occurs only when the application trans-
forms the data between the system
input and output buffers.

Alloc Stream
Interface

The Alloc Stream Interface is used
internally in the Alloc Stream Facility
and is also available to the application
programmer. It is modeled after the
standard C memory-allocation inter-
face; thus, C programmers find it natu-
ral and easy to use.

The two most important AS1 opera-
t ions a r e salloc, which allocates a
region of an I/O library buffer, and
sfree, which releases a previously allo-
cated region. They correspond to two C
library memory-allocation operations:
malloc, which allocates a memory
region and returns a pointer t o that
region, and free, which releases a previ-
ously allocated region. The arguments
to salloc and sfree differ from the mem-
ory-allocation operations in their inclu-
sion of a stream handle to identify the
target stream. For both salloc and mal-
loc, the allocated region is located in
the application address space and man-
aged by an application-level library.

Salloc is used with sfree for both input
and output. For input, salloc returns a
pointer to the memory region contain-
ing the requested data and advances the
stream offset by the specified length.
Sfree informs the library when the appli-
cation has finished accessing the region,
at which point the library can discard
any associated state. For output, salloc
returns a pointer to the memory region
where the data should be placed and
advances the stream offset. The applica-
tion can then use this region as a buffer
for data to be written to the stream.
Sfree informs the library when the
buffer modifications are complete.

Since salloc returns a pointer to the
library buffers, the library never has to
copy data between application and

Application Transformation
address space

Y

Application I address space 1 Transformalion

.....

.... Applkation-level
uonbraly

.= my/.''.
input buffer

Applicalion Translornialinn
address spam I

Figure 1. The flow of data for a simple Unix filter using a typical stdio implemen-
tation (a), the Alloc Stream Facility implementation of the stdio interface (b), and
the Alloc Stream Interface supported by the Alloc Stream Facility (c).

library buffers; the application simply
uses the buffers provided by the library.
Also, since the library chooses the
address, it can ensure that the align-
ment allows for optimizations such as
mapped files. The idea of having the
I 1 0 facility choose the I/O data location
is not new. For record I/O, both Cobol
and PL/I reads provide a current
record, the location of which is deter-
mined by the language implementation.
Also, the sfio library's sfpeek opera-
tion' allows application access to the
library's internal buffers. However,

with both the read defined by Cobol
and PLII and the sfpeek operation
defined by sfio, the data is available
only until the next U0 operation, which
is not suitable for multithreaded appli-
cations. In contrast, AS1 data is avail-
able until it is explicitly freed.

AS1 was designed from the start to
support multithreaded applications.
Because all AS1 operations return an
error code directly, it's always clear
which thread incurred an error. Also,
AS1 has an sallocAt operation, which
atomically moves the stream offset to a

March 1994 77

ture of ASF offers several advantages.
First. since each stream module sup-
ports on ly a single stream type. it can
be optimally tuned to support accesses
to that stream type. For this reason. we
provide many specific modules instead
of a few general ones. For example.
read-only files are supported by a dif-
fe re n t s t re am m odul e than re ad - w ri t e
files. Because read-only files require
substantially less checking. their imple-
mentation is simpler and faster than
that o f read-write files. In contrast. typ-
ical stdio implementations must check
thc type of stream, with an attendant
dcgradation in perlormance. (In fact. t o
avoid slowing down all other stream
types, most versions of stdio d o not
properly support disk files opened for
both input and output. They require
the application to insert fseek calls
between input and output operations.)

Second. because each stream module
exports only a small set o f functions,
writing a new stream module is simple.
We've ported ASF to a variety of oper-
ating systems. including SunOS. IRIX.
AIX, HPUX. and Hurricane. Although
most of these systems support some
variant o f Unix. IiO pcrforniance is
improved by adapting ASF to each sys-
tem's particular characteristics.

Third. the interface modules a re
in te roperable because they d o not
buffer data; only the strcam modules
buffer data. Operations from different
interfaces can therefore be intermixed.
For example, the application can use
the stdio fread to read the first IO bytcs
of a file and the emulated Unix 1 1 0
read to read the next five bytes. This
allows using a library implemented
with. for example. stdio cvcn if the rest
of the application uses Unix IiO. This
improves code reusability and. more
importantly. allows the programmer to
exploit ASl's performance advantages
by rewriting just the IiO-intensive parts
of the application. Because the inter-
faces are interopcrable. AS1 appears to
the programmer as an extension t o the
other (already existing) interfaces.

Implementation
We've impletncntcd the ASF back-

plane and numerous interface and
s t rea in mod u I es.

Backplane. The A S F backplane
establishes and manages the conimuni-

c a t i o n b c t w e e 11 t o p - I a ye r i n t e r lac e
modules and bottom-layer stream mod-
ules. A client I/O state (CIOS) data
structure (see Figure 4) is maintained
for each open stream and shared by the
backplane and the stream modules.

The hack p I a ne 1 y pica I 1y i m pl em c nt s
AS1 operations ;IS macros. Figure 4
shows the code executed by salloc and
sfree. As the figure shows. the amount
o f code executed for salloc and sfree is
very small. Despite the fact that thcy
provide functionality equivalent to the
stdio frcad and fwrite functions. thcy
have the simplicity o f the stdio putc and

getc macros (discounting the acquisi-
tion and release of the lock).

I n the common case. when the
request can be satisfied by the current
buffer. salloc (I) acquires the lock for
the ClOS structure. (2) checks that
there is sufficient data (or space) in the
buffer. (3) increments the number of
references t o the buffer, (4) decreases
the amount of data (or space) remain-
ing i n the buffer. (5) advances the
pointer lor the next 110 operation. (6)
releases the lock. and (7) returns a
pointer t o the allocated data. Sfree, in
a dd i t ion to acq u i ri rigire leasing the I oc k .

struct CIOS {
slock lock : /:!: lock for cios entry

/:' stream spccific function pointers :!'/
void 'I: ('"U-salloc) () : int (%_sflush) () ;
int (%-sfrcc) () : void ("U-sclosc) () ;
void 'I' ("u-srealloc) () ; int (':'u-setniode) () ;

void :!' ('k-sallocAt) 0 :

/:!: state o f current buffer :k/

int mode ;
int refcount : outstanding sallocs to buffer
int bufcnt : /:' charactersispace in bufl'er
char ':'butbase ;
char '"ufptr :

/:$ 0 - read mode. 1 - write mode

Pk pointer t o current buffer
/:' pointer for next IiO op

void 'I'sdata :
1 :

/:!' handlc to stream specific data'!'/

void 'l'salloc(FILE ''iop. int *:lenptr)

void :::ptr ;
AcyuireLock(iop->lock) :
ptr = iop->bufptr :
if(iop->bufcnt >= "lenptr)

{

iop->rcfcnt++ :
iop->bufcnt -= '!'lenptr :
iop->bufptr += *''lenptr :

I

1
clsc

RelcascLock(iop->lock) :
return ptr :

ptr = iop->u-s;illoc(iop. lenptr) :

1
int sfree(FILE '"iop, void "ptr)

I
int rc = 0 :
AcquireLock(iop->lock) ;
i f ((ptr <- iop->bufptr) && (ptr >= iop->bulb;ise))

else

KeleaseLock(iop->lock) :
rcturn rc ;

iop->refctit- ;

rc = iop->u_sfree(iop. ptr) :

1

March 1994 Figure 4: The client I/O state structure and backplane code for salloc and sfree.

Figure 5. Read
implemented

using ASI.

int read(int fd, char *buf, int length)

int error ;
FILE *stream = streamptr(fd) ;
if(ptr = Salloc(stream, SA-READ, &length))

bcopy(ptr, buf, length) ;
if(! (error = sfree(stream)))

{

return length ;

else error = length ;
RETURN-ERR(error) ;

1

I

simply decrements the reference count
to the current buffer. If salloc cannot
be satisfied by the current buffer, the
corresponding stream-specific function
is called, a pointer t o which is con-
tained in the CIOS structure. In addi-
t ion t o satisfying the request , the
stream-specific function will make a
new current buffer available for subse-
quent salloc operations. (Special cases
like unbuffered streams are supported
by forcing the bufcnt, bufptr, and buf-
base fields to zero so that each call to
salloc results in a call to the corre-
sponding stream-specific function.)

O t h e r basic AS1 operat ions a re
implemented in the backplane in a sim-
ilar fashion. When possible, they use
the current buffer; otherwise, they call
the corresponding function provided by
the stream module.

Interface modules. T h e simplest
interface module is, of course, the AS1
module. It simply exports the same
interface as the Eackplane so that appli-
cation programs can use it directly.
Two other interfaces supported by our
implementation are the stdio interface
and the emulated Unix I/O interface.
As an example, Figure 5 shows a
slightly simplified version of the algo-
rithm used to implement an emulated
Unix I/O read. Read first calls salloc to
allocate the data from the stream, then
copies the da t a from the allocated
region t o the user-specified buffer,
frees the allocated region, and finally
returns to the application the amount
of data read.

This code can be executed by differ-
ent threads concurrently. Both the sal-
loc and sfree operations acquire (and

release) a lock to ensure that the CIOS
structure is updated atomically. Also,
because the stream offset is advanced
by salloc, other threads concurrently
calling salloc for the same stream will
be given different areas of the buffer.
This illustrates a major advantage of
using AS1 as the interface to the back-
plane: Data is copied from the library
to the application buffer with the
stream unlocked, allowing for greater
concurrency than if the stream had to
be locked for the entire read operation.

Stream modules. Stream modules
can be specific to (1) an access mode
(read, write, and read/write), (2) a
buffering policy, (3) a particular I /O
service (disk files, pipes, and sockets,
for example), (4) a particular access
pattern (sequential or random), and (5)
a particular operating system and hard-
ware platform. We’ve implemented
many stream modules and have found
tha t , when opt imized for bo th the
application and system, they substan-
tially improve performance.

A good example of our approach is
the way ASF supports file I/O on differ-
ent Unix systems. Depending on the
particular system, we use three different
types of stream modules: one for sys-
tems where the Unix mmap operation
provides the fastest file access, a second
for systems that do not support mapped
files or whose Unix I /O system calls
provide faster access, and a third for
AIX systems with the shmget mapped-
file facility that outperforms mmap.

The stream modules based on Unix
I/O system calls are similar to trad-
itional stdio implementations. ASF
does have some additional complexity

because it must track buffers for which
there are outstanding salloc operations,
but each stream module is relatively
simple because we use many specific
modules instead of a single general one.

Fo r s t r eam modules based on
mapped-file IIO, file regions of a fixed
size are mapped into the application
address space and managed as buffers.
The Unix mapped-file interface, how-
ever, makes it difficult t o implement
Unix I/O end-of-file semantics in a
mapped-file-based application-level
library. Our solution to this problem is
described in another work.g

Other researchers have also recog-
nized the performance advantage of
implementing stream I/O with mapped
files. For example, Unix U 0 can be
implemented in the operating system
using mapped files, allowing the system
to exploit the virtual-memory hardware
to improve the cache search time.9 The
Mach 3.0 operating system reflects
Unix U0 calls back to the application
level where they are serviced using
mapped files, and the sfio library’ uses
mapped files whenever possible.

To date, we’ve concentrated on disk
file 110, but we believe that new ser-
vice-specific s t r eam modules can
deliver improved performance for
other U 0 services such as pipes or net-
work facilities. Related work by Maeda
and Bershad’O demonstrates substantial
performance advantages from moving
critical portions of network protocol
processing into the application address
space and modifying the networking
interface to avoid unnecessary copying.
With ASF, it is also possible to exploit
specialized facilities for transferring
data between address spaces, such as
Govidan and Anderson’s memory
mapped stream facility” and Druschel
and Peterson’s Fbufs facility.’*

Performance
We’ve compared ASF performance

against the original stdio and Unix I/O
facilities on three systems: an IBM
RS60001350 running AIX Version 3.2, a
Sun 4/40 running SunOS version 4.1.1,
and an SGI Iris 4D/240S running IRIX
System V release 3.3.1.

To make this comparison, we mea-
sured the time to execute

.programs using stdio and Unix I/O
linked to each system’s originally

80 COMPUTER

3.67

I diff compress uncompress cut

Unix I10 AS1 Unix 110 AS1 Unix 110 AS1 Unix I/O AS1

Figure 6. Speedup of stdio and Unix U 0 applications that are (1) linked to the Alloc Stream Facility and (2) modified to use
ASI. Diff compares the contents of two files (identical in our experiments); compress and uncompress use adaptive Lempel-
Ziv coding to respectively compress and uncompress files; cut is a Unix filter that removes selected fields from the input file
and writes the result to an output file; cmp compares the contents of two files; WE counts the number of characters, words, and
lines in a file; cat copies the input file to the standard output; and cp copies one file to another.

installed facilities;
the same programs, with no source
code modifications, linked to ASF
(so that they use the stdio and emu-
lated Unix I/O interfaces); and
the same programs, with source
code modified to use the AS1 inter-
face directly. (Only minor changes
to the programs, typically affecting
fewer than 10 lines of code, were
necessary to adapt them to ASI.)

Each system on which we performed
these experiments has its own standard
ASF configuration. The standard config-
uration on the AIX system uses mapped
files (based on shmget) for both input
and output. The standard configuration
on the IRIX and SunOS systems uses

mapped files (based on mmap) for input
and Unix IiO for output.

Results are given in terms of speedup
relative to the same program linked to
the machine’s installed facilities - that
is. the time to run the program linked
to the installed facilities divided by the
time to run the program using ASF.
For these experiments, all I/O is file
based. The numbers indicate the ex-
pected speedup on an idle system with
all file data available in the main mem-
ory file cache. (For more details on our
experiments, see reference 8.)

Figure 6a, shows that several stdio
programs linked to ASF perform a t
least as well as those linked t o t h e
installed system libraries and in some
cases significantly better. For example.

on the AIX system. ASF cuts diff run-
time t o less than half, primarily by
using mapped files.

Most stdio-based programs show fur-
ther improvement when they’re modi-
fied to directly use ASI. For example,
modifying diff improved its perfor-
mance on the AIX system an additional
40 percent, making it 3.67 times faster
than the original program linked to the
installed stdio. The additional gain is
due to the fact that data need not be
copied to (or from) application buffers.

The Unix U0 interface is specific to
the Unix operating system, and for
portability reasons. its direct use is gen-
erally considered poor programming
practice. However, because stdio entailc
an extra level of copying, IiO-intensive

March 1994 81

programs with large-grain I/O often use
the Unix I/O interface directly. Figure 6b
shows the performance of four Unix I/O-
based programs. Surprisingly, unmodi-
fied ASF-linked applications often per-
form better than with direct use of the
Unix U0 system calls. For example, cp is
almost twice as fast when linked to ASF
on the AIX system. Thus, on some sys-
tems, our application-level library imple-
ments the Unix IIO interface more effi-
ciently than the operating system. Using
AS1 provides even greater improvement.
For example, cp modified to use AS1 ran
two-and-a-half times faster than the orig-
inal on the AIX system.

A SF’s modular, object-oriented
structure allows much flexibil-
ity in providing U0 interfaces

and exploiting different systems’ per-
formance potential, and its new 110
interface substantially reduces copying
overhead and maximizes concurrency.
Overall, ASF offers distinct advantages
in performance, concurrency, and func-
tionality.

Performance. Many stdio and even
Unix U 0 applications run faster
when linked to ASF. Performance
improves further when applications
are modified to use the AS1 inter-
face directly. The improvements are
a direct result of the facility’s struc-
ture, which takes advantage of sys-
tem-specific features like mapped
files, and the reduction in I/O over-
head implied by the interface’s defi-
nition.

*Concurrency . Both ASF and AS1
are designed for mult i threaded
applications running on multipro-
cessors. They maximize concur-
rency by keeping the s t ream
unlocked while copying data. AS1
operations also return an error code
directly, so it’s always clear which
thread incurred an error. Finally,
the AS1 sallocAt operation allows
location-specific data allocation
without interference from other
threads.
Functionality. ASF supports a vari-
ety of I/O interfaces and permits
intermixed calls t o the different
interfaces. These features improve
code reusability and allow program-
mers to improve performance by
modifying just the I/O-intensive por-
tions of applications to use ASI. W

1.

2.

3.

4.

5.

6.

7.

8.

9.

Acknowledgments
Thanks go to ~ ~ ~ j ~ ~ i ~ G~~~~ for

his contributions to this article, and to
Zvonko Varensic, Ken Sevcik, and K.-
Phong Vo for their useful comments.

12. P. Druschel and L.L. Peterson, “Fbufs:
A High-Bandwidth Cross-Domain
Transfer Facility.” Proc. 14th ACM
Symp. Operating System Principles,
ACM, N~~ york, 1993. pp, 189-202.

References
D. Cheriton, “UIO: A Uniform 110
System Interface for Distributed Sys-
tems,” ACM Trans. Computer Systems,
Vol. 5, No. 1, Feb. 1987, pp. 12-46.

W.R. Stevens, Advanced Programming
in the Unix Environment, Addison
Wesley, New York, 1992.

M. Rosenblum and J. Ousterhout, “The
Design and Implementation of a Log-
Structured File System,” Proc. 13th Symp.
Operating System Principles, ACM, New
York, 1991.

A.L. Chervenak and R.H. Katz,
“Performance of a Disk Array Proto-
type,” Proc. ACM Sigmetrics Conf.
Measurement and Modeling of Computer
Systems, ACM, New York, 1991, pp.
188-197.

J. Ousterhout, “Why Aren’t Operating
Systems Getting Faster as Fast as Hard-
ware?” Proc. Summer Usenix Conf.,
Usenix Association, Berkeley, Calif.,
1990, pp. 247-256.

Orran Krieger is completing his PhD in elec-
trical and computer engineering at the
University of Toronto. His research interests
include operating systems, file systems, and
multiprocessors.

Krieger received a BASc from the
University of Ottawa in 1985 and an MASc
from the University of Toronto in 1989, both
in electrical engineering.

Michael Stumm is an
the Departments

associate professor
of Electrical a

in
nd

respectiveiy. He is a member of ACM and
the IEEE Computer Society.

8 1 - Y I .

D. Korn and K.-Phong Vo, “SFIO:
SafelFast StringlFile IIO,” Proc. Usenix
Summer Conf.. Usenix Association,
Berkeley, Calif., 1991, pp. 235-255.

0. Krieger, M. Stumm, and R. Unrau,
“The Alloc Stream Facility: A Re-
design of Application-Level Stream
IIO,” Tech. Report 275, Computer
Systems Research Inst., Univ. of
Toronto. 1993.

A. Braunstein, M, Riley, and J , Wilkes, Ron Unrau is working On advanced corn-
. . ~ ~ ~ ~ ~ ~ i ~ ~ the ~ f f i ~ i ~ ~ ~ ~ of unix File
Buffer Caches,” proc. 12th ACM symp.
operating system principles, ACM, N~~
York, 1989. pp. 71-82.

piler optimizations at the IBM Software
Solutions Lab in Toronto, Canada. His
research interests include parallel operating
systems and compilers.

Unrau received his BASc in computer
10, c, Maeda and B,N. Bershad. c.Protocol

service ~ ~ ~ ~ ~ ~ ~ ~ i ~ i ~ ~ for ~ i ~ ~ - ~ ~ ~ -
formance Networking,33 Proc, 14th ACM
symp, operating system
ACM. New York, lYY3, pp. 244-255.

engineering from the University of Alberta
in 1984 and his MASc in biomedical engi-
neering and PhD in electrical and computer
engineering, both from the University of
Toronto, in Igx9 and ‘993.

11 R. Govidan and D.P. Anderson, Readers may contact Orran Krieger at the
“Scheduling and IPC Mechanisms for University of Toronto, Dept. of Electrical
Continuous Media.” Proc. 13th ACM and Computer Engineering, Toronto.
Synip. Operating System PrincipleJ, Canada M5S 1A4. His e-mail address is
ACM, New York, 1991, pp. 68-109. okrieg@eecg.toronto.edu.

82 COMPUTER

mailto:okrieg@eecg.toronto.edu

optimizations such as direct memory
access, outboard packet buffering, and
programmed I/O to increase through-
put on high-speed networks.

offs presented in this article define a
design space that should help system
architects systematically evaluate
design choices.

The architectural features and trade-

High-Performance I/O for
Massively Parallel
Computers, pp. 59-68
Juan Miguel del Rosario and Alok N.
Choudhary

This article presents an overview of
the many issues related to high-perfor-
mance I/O in parallel computing envi-
ronments. The authors discuss I/O
requirements for Grand Challenge
applications and relevant issues in per-
formance characterization, I/O archi-
tecture alternatives, operating and file
systems, compiler and runtime support,
checkpointing, network I/O, and so on.
They present a status report on current
practice and research in these areas,
discuss outstanding problems, and
describe some alternative solutions.

ers has been accompanied by an
increased demand for I/O systems sup-
port. Data movement to temporary stor-
age, archival storage, visualization sys-
tems, or across the network to other
computing resources has become a
necessity in high-performance comput-
ing. Still, research and development of
I/O systems for this type of environment
are at an early stage of evolution.

Although I/O systems research is not
new, only recently have efforts been
made to comprehensively characterize
the I/O problem encompassing various
perspectives (for instance, U0 in paral-
lel machines, distributed computing,
and mass storage).

The increasing use of parallel comput-

I/O Issues in a Multimedia
System, pp. 69-74
A . L. Narasimha Reddy and James C.
Wyllie

In a multimedia server, disk requests
can require constant data rates and
guaranteed service. The authors discuss
the impact of the real-time nature of

I/O requests on various I/O system
components as well as the impact of
disk scheduling algorithms on the per-
formance of a multimedia system.

uling algorithm, Scan-EDF (earliest
deadline first), which combines a real-
time policy such as EDF with a seek-
optimizing policy such as CScan (circu-
lar Scan). It then shows how Scan EDF
can support a larger number of real-
time streams and simultaneously pro-
vide better response times to aperiodic
requests.

The authors also investigate the
impact of buffer space on the maximum
number of video streams that can be
supported. Then they show that even
more streams can be supported by
using delayed deadlines and larger
requests. Of the two techniques, they
prefer delayed deadlines, which pro-
vide better response times to aperiodic
requests.

When multiple disks are connected
to the system through a single bus such
as SCSI (for Small Computer Systems
Interface), SCSI bus scheduling can
add extra delays to individual requests.
The authors examine the impact of pri-
ority-driven arbitration of a SCSI bus
on disk throughput. They then show
that deadline extension helps to
increase system throughput when mul-
tiple disks are connected on a single
SCSI bus.

This article describes a hybrid sched-

The Alloc Stream Facility:
A Redesign of Application-
Level Stream I/O, pp. 75-82

Orran Krieger, Michael Stumm, and
Ron Unrau

Although the Unix I/O facility is sim-
ple and versatile, application programs
running under Unix typically do not
use its I/O system calls directly.
Instead, they use higher level facilities
implemented by the programming lan-
guage or its application-level libraries.
Using application-level I/O facilities
improves functionality and portability
and can also significantly improve
application performance.

This articles introduces a new appli-
cation-level U0 facility called the Alloc
Stream Facility. ASF addresses recent
computing substrate changes to
improve performance, allowing appli-

cations to benefit from specific features
such as mapped files. It’s also designed
for parallel systems, maximizing con-
currency and reporting errors properly.
Because it’s modular and object orient-
ed, it supports a variety of popular
existing I/O interfaces and can be tuned
to a system’s behavior, exploiting its
strengths while avoiding its weaknesses.

The authors’ experiments demon-
strate that on a number of standard
Unix systems, I/O-intensive applica-
tions perform substantially better when
linked to ASF instead of the facilities
provided - in the best case, up to twice
as well. Modifying the applications to
use a new interface provided with ASF
can improve performance even more.

Container Shipping:
Operating System Support
for I/O-Intensive
Applications, pp. 85-93

Joseph Pasquale, Eric Anderson, and
P. Keith Muller

New I/O devices with data rates rang-
ing from 10 to 100 Mbytes per second
are becoming available for personal
computers and workstations. These
include human-interaction devices for
video capture and display (and audio
record and playback), high-capacity
storage devices, and high-speed network
communication devices. These devices
have enabled I/O-intensive applications
for desktop computing that require
input, processing, and output of very
large amounts of data. This article focus-
es on an important aspect of operating
system support for these applications:
efficient transfer of large data objects
between the protection domains in
which processes and devices reside.

Many operating systems are ineffi-
cient in transferring large amounts of
data between domains. Most of them,
even when they try to avoid physical
copying, offer a data-transfer model that
assumes a need for complete accessibil-
ity to all transferred data. This assump-
tion leads to overheads that can other-
wise be avoided. The authors’ design
for an interdomain transfer facility
(which was inspired by the “container-
shipping” solution from the cargo-
transportation industry) is based on vir-
tual transfers and avoids all unneces-
sary physical copying.

March 1994 13

