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he success of the Unix operating system is partly attributable to the design 
of its input/output facility. The primary Unix I/O abstraction is a sequen- 
tial byte stream provided by an interface of system calls: open, read, write, 

seek, close, and ioctl. The U0 facility is simple and versatile and can be uniformly 
applied to a variety of I/O services, including disk files, terminals, pipes, network- 
ing interfaces, and other low-level devices.' Nevertheless, application programs 
running under Unix typically do not use the Unix I/O system calls directly. 
Instead, they use higher level facilities implemented either by the programming 
language or its application-level libraries - for example, the stdio library for C or 
the iostream library for C++. 

I/O facilities at the application level offer several advantages. The interfaces can 
be made to match the programming-language syntax and semantics, and they can 
provide functionality not available at the system level. They increase application 
portability because the IIO facility can be ported to run under other operating sys- 
tems. Application-level I/O facilities can also significantly improve application 
performance, primarily by buffering the input and output to translate multiple 
fine-grained application-level I/O operations into individual coarser grained sys- 
tem-level operations. For example, if an application inputs one character at a time, 
each can be serviced from an application-level buffer without a system call; a sys- 
tem-level read must be issued only when the buffer is empty. 

The interface and implementation of most application-level I/O facilities have 
changed little since the late 1970s.* However, the computing substrate - the com- 
puter architecture, hardware technology, and operating system - has changed 
substantially in the past 10 to 20 years, and we contend that application perfor- 
mance can be significantly improved by adapting both the implementation and 
interfaces of application-level I/O facilities to this change. 

This article introduces an application-level U0 facility. the Alloc Stream 
Facility, that addresses three primary goals. First, ASF addresses recent comput- 
ing substrate changes to improve performance, allowing applications to benefit 
from specific features such as mapped files. Second, it is designed for parallel sys- 
tems, maximizing concurrency and reporting errors properly. Finally, its modular 
and object-oriented structure allows it to support a variety of popular I/O inter- 
faces (including stdio and C++ stream I/O) and to be tuned to system behavior, 
exploiting a system's strengths while avoiding its weaknesses. 

On a number of standard Unix systems, I/O-intensive applications perform sub- 
stantially better when linked to our facility - in the best case, up to twice as good. 
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Also, modifying applications to use a 
new interface provided by our facility 
can improve performance by another 
f ac to r  of two. These performance 
improvements are achieved primarily 
by reducing data copying and the num- 
ber of system calls. Not visible in these 
improvements is the extra degree of 
concurrency our facility brings to multi- 
threaded and parallel applications. 

Changes in comput- 
ing substrate 

Recent changes in the computing 
substrate have significantly affected the 
cost of I/O and its composition. 

First, the available physical memory 
has increased by several orders of mag- 
nitude. Many personal workstations 
now have 64-megabyte main memories, 
and that will probably increase to hun- 
dreds of megabytes over the next sev- 
eral  years. Once accessed, files can 
often remain cached in memory, so 
many operating system I/O calls no 
longer involve accesses to I/O devices. 
In  fact, many files a re  created and 
deleted without ever being written to 
secondary ~ t o r a g e . ~  Thus, much 110 
overhead stems from copying data from 
one memory buffer t o  another  and 
from calls to the operating system. 

Second, because processor speeds 
have improved much more dramati- 
cally than main memory speeds, large 
memory caches have become neces- 
sary. This increases the cost of buffer 
copying relative to  processor speeds, 
since copying occurs either through the 
cache, destroying the cache contents, or 
directly t o  and from (the relatively 
slow) memory. Moreover, in today’s 
parallel computer systems, memory has 
become a critical, contended resource. 
For example, researchers who have 
dramatically improved file I/O band- 
width (by introducing disk arrays) have 
found that  the memory bottleneck 
makes it difficult to exploit this band- 
width.4 

Third, the cost of a system call has 
been increasing relative to processor 
speeds5 Again, this is partially due to 
the effects of slower relative memory 
speeds and the increased number of 
registers modern processors need to 
save and restore on context switches. 
But it can also be due to new operat- 
ing-system structures that use a micro- 

kernel and a set of user-level servers 
for system control. In these systems, 
the actual operating system is imple- 
mented as a set of servers running in 
application address spaces provided by 
the microkernel, and a system call is 
translated into a message o r  remote 
procedure call from the invoking pro- 
gram to a server. As a result, minimiz- 
ing calls to the operating system has 
gained importance. 

Fourth, many modern operating sys- 
tems now support mapped files. A file 
can be mapped into the application’s 
virtual address  space and directly 
accessed in the mapped memory 
region. Mapped I/O requires no data 
copying between system space and 
application space; the data is usually 
made  available t o  the application 
through page table  manipulat ions 
alone. Although mapped files have 

Much I/O overhead 
stems from copying 

data from one memory 
buffer to another 

and from calls to the 
operatiqg system. 

been available for several years and can 
improve performance, they a re  not 
widely used. We believe this is because 
mapped files have not been integrated 
into standard I/O interfaces. Also, they 
cannot provide a uniform interface for 
I/O - that is, they can be used for file 
U0 but not, for example, for terminal 
IIO. In this article, we show how to 
exploit the performance advantages of 
mapped file IIO, while still supporting a 
uniform I/O interface. 

Fifth, multithreaded programs are 
becoming more common, both because 
of the increasing availability of multi- 
processor systems and because of their 
suitability as a structuring mechanism 
for some applications. Current  I/O 
interfaces, however, are grossly inade- 
quate for multithreaded programs. An 
obvious inadequacy of the Unix U0 
facility, for example, is the reporting of 
errors to applications via a single global 
variable (errno)? 

Reducing I/O over- 
head 

I/O overhead is frequently an impor- 
tant factor in application performance. 
Consider, for example, a typical Unix 
filter that iteratively reads some input, 
performs a transformation, and writes 
some output. If the transformation is 
simple, the application’s performance 
will be dominated by input and output. 

Figure l a  illustrates the data flow 
using a traditional implementation of 
the stdio U 0  library. The filter itera- 
tively (1) calls fread to copy data from 
the stdio library input buffer to the 
application input buffer, (2) transforms 
the data from the application input 
buffer to the application output buffer, 
and (3) calls fwrite t o  copy the data 
from the application output buffer to 
the library output buffer. Whenever the 
library input buffer is empty, stdio calls 
the Unix I/O read system call to copy 
data from the system input file buffer 
t o  the library buffer. Whenever the 
library output buffer is full, stdio calls 
the Unix I/O write system call to copy 
data from the library output buffer to 
the system output file buffer. 

Ignoring the transformation, this sim- 
ple stdio filter requires copying each 
input-stream character four times: (1) 
from the system input buffer t o  the 
library input buffer, (2) from the library 
input buffer to the application input 
buffer, (3) from the application output 
buffer to the library output buffer, and 
(4) from the library output buffer to the 
system output buffer. 

ASF can reduce the number of times 
data  is copied. Figure l b  illustrates 
dataflow when the ASF implementa- 
tion of stdio uses mapped files. Rather 
than buffering data in the library, and 
using Unix 110 operations to copy data 
from the system buffers to the library 
buffers, the system buffers are mapped 
into the application address space by 
the virtual memory system and used 
directly by the l ibrary.  The  data  is 
copied only twice: (1) from the mapped 
system input buffer to the application 
input buffer and (2) from the applica- 
tion output buffer to the mapped sys- 
tem-output buffer. 

ASF also supports a new I/O inter- 
face called the Alloc Stream Interface 
(ASI).  Like the Unix I/O and stdio 
interfaces, AS1 is a character-stream 
interface that can be used uniformly for 
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all types of IIO. The key difference is 
that, instead of having the application 
specify a buffer for copying I/O data, 
AS1 allows the application direct access 
to the I/O library's internal buffers. 

ASI's direct use of system buffers 
fur ther  reduces copying. Figure I C  
shows dataflow when the fi l ter  is 
rewritten to use AS1 implemented on 
top  of mapped files. Da ta  copying 
occurs only when the application trans- 
forms the data  between the system 
input and output buffers. 

Alloc Stream 
Interface 

The Alloc Stream Interface is used 
internally in the Alloc Stream Facility 
and is also available to the application 
programmer. It is modeled after the 
standard C memory-allocation inter- 
face; thus, C programmers find it natu- 
ral and easy to use. 

The two most important AS1 opera- 
t ions a r e  salloc,  which allocates a 
region of an I/O library buffer, and 
sfree, which releases a previously allo- 
cated region. They correspond to two C 
library memory-allocation operations: 
malloc, which allocates a memory 
region and returns a pointer t o  that 
region, and free, which releases a previ- 
ously allocated region. The arguments 
to salloc and sfree differ from the mem- 
ory-allocation operations in their inclu- 
sion of a stream handle to identify the 
target stream. For both salloc and mal- 
loc, the allocated region is located in 
the application address space and man- 
aged by an application-level library. 

Salloc is used with sfree for both input 
and output. For input, salloc returns a 
pointer to the memory region contain- 
ing the requested data and advances the 
stream offset by the specified length. 
Sfree informs the library when the appli- 
cation has finished accessing the region, 
at which point the library can discard 
any associated state. For output, salloc 
returns a pointer to the memory region 
where the data should be placed and 
advances the stream offset. The applica- 
tion can then use this region as a buffer 
for data to  be written to  the stream. 
Sfree informs the library when the 
buffer modifications are complete. 

Since salloc returns a pointer to the 
library buffers, the library never has to 
copy data  between application and 
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Figure 1. The flow of data for a simple Unix filter using a typical stdio implemen- 
tation (a), the Alloc Stream Facility implementation of the stdio interface (b), and 
the Alloc Stream Interface supported by the Alloc Stream Facility (c). 

library buffers; the application simply 
uses the buffers provided by the library. 
Also, since the library chooses the 
address, it can ensure that the align- 
ment allows for optimizations such as 
mapped files. The idea of having the 
I 1 0  facility choose the I/O data location 
is not new. For record I/O, both Cobol 
and PL/I reads provide a current  
record, the location of which is deter- 
mined by the language implementation. 
Also, the sfio library's sfpeek opera- 
tion' allows application access to the 
library's internal buffers. However, 

with both the read defined by Cobol 
and PLII and the sfpeek operation 
defined by sfio, the data is available 
only until the next U0 operation, which 
is not suitable for multithreaded appli- 
cations. In contrast, AS1 data is avail- 
able until it is explicitly freed. 

AS1 was designed from the start to 
support multithreaded applications. 
Because all AS1 operations return an 
error code directly, it's always clear 
which thread incurred an error. Also, 
AS1 has an sallocAt operation, which 
atomically moves the stream offset to a 
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ture of ASF offers several advantages. 
First. since each stream module sup- 
ports on ly  a single stream type. it can 
be optimally tuned to support accesses 
to  that stream type. For this reason. we 
provide many specific modules instead 
of a few general ones. For example. 
read-only files are supported by a dif- 
fe re n t s t re am m odul e than re ad - w ri t e 
files. Because read-only files require 
substantially less checking. their imple- 
mentation is simpler and faster than 
that o f  read-write files. In  contrast. typ- 
ical stdio implementations must check 
thc type of stream, with an attendant 
dcgradation in perlormance. (In fact. t o  
avoid slowing down all other stream 
types, most versions of stdio d o  not 
properly support disk files opened for 
both input and output. They require 
the application to insert fseek calls 
between input and output operations.) 

Second. because each stream module 
exports only a small set o f  functions, 
writing a new stream module is simple. 
We've ported ASF to a variety of oper- 
ating systems. including SunOS. IRIX. 
AIX, HPUX. and Hurricane. Although 
most of these systems support  some 
variant o f  Unix. IiO pcrforniance is 
improved by adapting ASF to each sys- 
tem's particular characteristics. 

Third.  the interface modules a re  
in te roperable  because they d o  not 
buffer data; only the strcam modules 
buffer data. Operations from different 
interfaces can therefore be intermixed. 
For example, the application can use 
the stdio fread to read the first IO bytcs 
of a file and the emulated Unix 1 1 0  
read to  read the next five bytes. This 
allows using a library implemented 
with. for example. stdio cvcn if the rest 
of the application uses Unix IiO. This 
improves code reusability and. more 
importantly. allows the programmer to 
exploit ASl's performance advantages 
by rewriting just the IiO-intensive parts 
of the application. Because the inter- 
faces are interopcrable. AS1 appears to 
the programmer as an extension t o  the 
other (already existing) interfaces. 

Implementation 
We've impletncntcd the ASF back- 

plane and  numerous  interface and  
s t rea in mod u I es. 

Backplane. The  A S F  backplane 
establishes and manages the conimuni- 

c a t i o n b c t w e e 11 t o p  - I a ye r i n t e r lac e 
modules and bottom-layer stream mod- 
ules. A client I/O state (CIOS) data 
structure (see Figure 4)  is maintained 
for each open stream and shared by the 
backplane and the stream modules. 

The hack p I a ne 1 y pica I 1y i m pl em c nt s 
AS1 operations ;IS macros. Figure 4 
shows the code executed by salloc and 
sfree. As the figure shows. the amount 
o f  code executed for salloc and sfree is 
very small. Despite the fact that thcy 
provide functionality equivalent to the 
stdio frcad and fwrite functions. thcy 
have the simplicity o f  the stdio putc and 

getc macros (discounting the acquisi- 
tion and release of the lock). 

I n  the  common case.  when the  
request can be satisfied by the current 
buffer. salloc ( I )  acquires the lock for 
the ClOS structure. ( 2 )  checks that 
there is sufficient data (or space) in the 
buffer. (3)  increments the number of 
references t o  the buffer, (4) decreases 
the amount of data (or space) remain- 
ing i n  the  buffer. ( 5 )  advances the  
pointer lor the next 110 operation. (6) 
releases the lock. and ( 7 )  returns a 
pointer t o  the allocated data. Sfree, in 
a dd i t ion  to acq u i ri rigire leasing the I oc k . 

struct CIOS { 
slock lock : /:!: lock for cios entry 

/:' stream spccific function pointers :!'/ 
void 'I: ('"U-salloc) ( )  : int  (%_sflush) ( )  ; 
int (%-sfrcc) ( )  : void ("U-sclosc) () ; 
void 'I' ("u-srealloc) ( )  ; int (':'u-setniode) ( )  ; 

void :!' ('k-sallocAt) 0 : 

/:!: state o f  current buffer :k/ 

int mode ; 
int refcount : outstanding sallocs to buffer 
int bufcnt : /:' charactersispace in bufl'er 
char ':'butbase ; 
char '"ufptr : 

/:$ 0 - read mode. 1 - write mode 

Pk pointer t o  current buffer 
/:' pointer for next IiO op 

void 'I'sdata : 
1 :  

/:!' handlc to stream specific data'!'/ 

void 'l'salloc( FILE ''iop. int *:lenptr ) 

void :::ptr ; 
AcyuireLock( iop->lock ) : 
ptr = iop->bufptr : 
if( iop->bufcnt >= "lenptr ) 

{ 

iop->rcfcnt++ : 
iop->bufcnt -= '!'lenptr : 
iop->bufptr += *''lenptr : 

I 

1 
clsc 

RelcascLock( iop->lock ) : 
return ptr : 

ptr = iop->u-s;illoc( iop. lenptr ) : 

1 
int  sfree( FILE '"iop, void "ptr ) 

I 
int rc = 0 : 
AcquireLock( iop->lock ) ; 
i f (  (ptr <- iop->bufptr ) && (ptr >= iop->bulb;ise) ) 

else 

KeleaseLock( iop->lock ) : 
rcturn rc ; 

iop->refctit- ; 

rc = iop->u_sfree( iop. ptr ) : 

1 

March 1994 Figure 4: The client I/O state structure and backplane code for salloc and sfree. 



Figure 5. Read 
implemented 

using ASI. 

int read( int fd, char *buf, int length ) 

int error ; 
FILE *stream = streamptr( fd ) ; 
if( ptr = Salloc( stream, SA-READ, &length ) ) 

bcopy( ptr, buf, length ) ; 
if( ! (error = sfree( stream ) ) ) 

{ 

return length ; 

else error = length ; 
RETURN-ERR( error ) ; 

1 

I 

simply decrements the reference count 
to the current buffer. If salloc cannot 
be satisfied by the current buffer, the 
corresponding stream-specific function 
is called, a pointer t o  which is con- 
tained in the CIOS structure. In addi- 
t ion t o  satisfying the request ,  the  
stream-specific function will make a 
new current buffer available for subse- 
quent salloc operations. (Special cases 
like unbuffered streams are supported 
by forcing the bufcnt, bufptr, and buf- 
base fields to zero so that each call to 
salloc results in a call to the corre- 
sponding stream-specific function.) 

O t h e r  basic AS1 operat ions a re  
implemented in the backplane in a sim- 
ilar fashion. When possible, they use 
the current buffer; otherwise, they call 
the corresponding function provided by 
the stream module. 

Interface modules. T h e  simplest  
interface module is, of course, the AS1 
module. It simply exports the same 
interface as the Eackplane so that appli- 
cation programs can use it directly. 
Two other interfaces supported by our 
implementation are the stdio interface 
and the emulated Unix I/O interface. 
As  an example,  Figure 5 shows a 
slightly simplified version of the algo- 
rithm used to implement an emulated 
Unix I/O read. Read first calls salloc to 
allocate the data from the stream, then 
copies the da t a  from the allocated 
region t o  the user-specified buffer,  
frees the allocated region, and finally 
returns to the application the amount 
of data read. 

This code can be executed by differ- 
ent threads concurrently. Both the sal- 
loc and sfree operations acquire (and 

release) a lock to ensure that the CIOS 
structure is updated atomically. Also, 
because the stream offset is advanced 
by salloc, other threads concurrently 
calling salloc for the same stream will 
be given different areas of the buffer. 
This illustrates a major advantage of 
using AS1 as the interface to the back- 
plane: Data is copied from the library 
to  the application buffer with the 
stream unlocked, allowing for greater 
concurrency than if the stream had to 
be locked for the entire read operation. 

Stream modules. Stream modules 
can be specific to (1) an access mode 
(read,  write,  and read/write),  (2) a 
buffering policy, (3) a particular I /O 
service (disk files, pipes, and sockets, 
for example), (4) a particular access 
pattern (sequential or random), and (5) 
a particular operating system and hard- 
ware platform. We’ve implemented 
many stream modules and have found 
tha t ,  when opt imized for  bo th  the 
application and system, they substan- 
tially improve performance. 

A good example of our approach is 
the way ASF supports file I/O on differ- 
ent Unix systems. Depending on the 
particular system, we use three different 
types of stream modules: one for sys- 
tems where the Unix mmap operation 
provides the fastest file access, a second 
for systems that do not support mapped 
files or whose Unix I /O  system calls 
provide faster access, and a third for 
AIX systems with the shmget mapped- 
file facility that outperforms mmap. 

The stream modules based on Unix 
I/O system calls are  similar to trad- 
itional stdio implementations.  ASF  
does have some additional complexity 

because it must track buffers for which 
there are outstanding salloc operations, 
but each stream module is relatively 
simple because we use many specific 
modules instead of a single general one. 

Fo r  s t r eam modules  based on 
mapped-file IIO, file regions of a fixed 
size are  mapped into the application 
address space and managed as buffers. 
The Unix mapped-file interface, how- 
ever, makes it difficult t o  implement 
Unix I/O end-of-file semantics in a 
mapped-file-based application-level 
library. Our solution to this problem is 
described in another work.g 

Other researchers have also recog- 
nized the performance advantage of 
implementing stream I/O with mapped 
files. For  example, Unix U 0  can be  
implemented in the operating system 
using mapped files, allowing the system 
to exploit the virtual-memory hardware 
to improve the cache search time.9 The 
Mach 3.0 operating system reflects 
Unix U0 calls back to the application 
level where they are  serviced using 
mapped files, and the sfio library’ uses 
mapped files whenever possible. 

To date, we’ve concentrated on disk 
file 110, but we believe that new ser- 
vice-specific s t r eam modules  can 
deliver improved performance for  
other U 0  services such as pipes or net- 
work facilities. Related work by Maeda 
and Bershad’O demonstrates substantial 
performance advantages from moving 
critical portions of network protocol 
processing into the application address 
space and modifying the networking 
interface to avoid unnecessary copying. 
With ASF, it is also possible to exploit 
specialized facilities for transferring 
data between address spaces, such as 
Govidan  and  Anderson’s  memory  
mapped stream facility” and Druschel 
and Peterson’s Fbufs facility.’* 

Performance 
We’ve compared ASF performance 

against the original stdio and Unix I/O 
facilities on three systems: an IBM 
RS60001350 running AIX Version 3.2, a 
Sun 4/40 running SunOS version 4.1.1, 
and an SGI Iris 4D/240S running IRIX 
System V release 3.3.1. 

To  make this comparison, we mea- 
sured the time to execute 

.programs using stdio and Unix I/O 
linked to each system’s originally 
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3.67 

I diff compress uncompress cut 

Unix I10 AS1 Unix 110 AS1 Unix 110 AS1 Unix I/O AS1 

Figure 6.  Speedup of stdio and Unix U 0  applications that are (1) linked to the Alloc Stream Facility and (2) modified to use 
ASI. Diff compares the contents of two files (identical in our experiments); compress and uncompress use adaptive Lempel- 
Ziv coding to respectively compress and uncompress files; cut is a Unix filter that removes selected fields from the input file 
and writes the result to an output file; cmp compares the contents of two files; WE counts the number of characters, words, and 
lines in a file; cat copies the input file to the standard output; and cp copies one file to another. 

installed facilities; 
the same programs, with no source 
code modifications, linked to  ASF 
(so that they use the stdio and emu- 
lated Unix I/O interfaces); and 
the  same programs, with source 
code modified to use the AS1 inter- 
face directly. (Only minor changes 
to  the programs, typically affecting 
fewer than 10 lines of code, were 
necessary to  adapt them to  ASI.) 

Each system on which we performed 
these experiments has its own standard 
ASF configuration. The standard config- 
uration on the AIX system uses mapped 
files (based on shmget) for both input 
and output. The standard configuration 
on the IRIX and SunOS systems uses 

mapped files (based on mmap) for input 
and Unix IiO for output. 

Results are given in terms of speedup 
relative to  the same program linked to 
the machine’s installed facilities - that 
is. the time to  run the program linked 
to the installed facilities divided by the 
time to  run the program using ASF. 
For these experiments, all I/O is file 
based. The  numbers indicate the ex- 
pected speedup on an idle system with 
all file data available in the main mem- 
ory file cache. (For more details on our 
experiments, see reference 8.) 

Figure 6a, shows that several stdio 
programs linked to  ASF  perform a t  
least as  well as  those linked t o  t h e  
installed system libraries and in some 
cases significantly better. For example. 

on the AIX system. ASF cuts diff run- 
time t o  less than half, primarily by 
using mapped files. 

Most stdio-based programs show fur- 
ther improvement when they’re modi- 
fied to directly use ASI. For example, 
modifying diff improved its perfor- 
mance on the AIX system an additional 
40 percent, making it 3.67 times faster 
than the original program linked to  the 
installed stdio. The additional gain is 
due to the fact that data need not be 
copied to  (or from) application buffers. 

The Unix U0 interface is specific to 
the  Unix operating system, and  for  
portability reasons. its direct use is gen- 
erally considered poor programming 
practice. However, because stdio entailc 
an extra level of copying, IiO-intensive 
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programs with large-grain I/O often use 
the Unix I/O interface directly. Figure 6b 
shows the performance of four Unix I/O- 
based programs. Surprisingly, unmodi- 
fied ASF-linked applications often per- 
form better than with direct use of the 
Unix U0 system calls. For example, cp is 
almost twice as fast when linked to ASF 
on the AIX system. Thus, on some sys- 
tems, our application-level library imple- 
ments the Unix IIO interface more effi- 
ciently than the operating system. Using 
AS1 provides even greater improvement. 
For example, cp modified to use AS1 ran 
two-and-a-half times faster than the orig- 
inal on the AIX system. 

A SF’s modular, object-oriented 
structure allows much flexibil- 
ity in providing U0 interfaces 

and exploiting different systems’ per- 
formance potential, and its new 110 
interface substantially reduces copying 
overhead and maximizes concurrency. 
Overall, ASF offers distinct advantages 
in performance, concurrency, and func- 
tionality. 

Performance. Many stdio and even 
Unix U 0  applications run  faster 
when linked to ASF. Performance 
improves further when applications 
are modified to use the AS1 inter- 
face directly. The improvements are 
a direct result of the facility’s struc- 
ture, which takes advantage of sys- 
tem-specific features like mapped 
files, and the reduction in I/O over- 
head implied by the interface’s defi- 
nition. 

*Concurrency .  Both ASF and AS1 
are  designed for  mult i threaded 
applications running on multipro- 
cessors. They maximize concur- 
rency by keeping the s t ream 
unlocked while copying data. AS1 
operations also return an error code 
directly, so it’s always clear which 
thread incurred an error. Finally, 
the AS1 sallocAt operation allows 
location-specific data  allocation 
without interference from other  
threads. 
Functionality. ASF supports a vari- 
ety of I/O interfaces and permits 
intermixed calls t o  the  different 
interfaces. These features improve 
code reusability and allow program- 
mers to improve performance by 
modifying just the I/O-intensive por- 
tions of applications to use ASI. W 
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optimizations such as direct memory 
access, outboard packet buffering, and 
programmed I/O to increase through- 
put on high-speed networks. 

offs presented in this article define a 
design space that should help system 
architects systematically evaluate 
design choices. 

The architectural features and trade- 

High-Performance I/O for 
Massively Parallel 
Computers, pp. 59-68 
Juan Miguel del Rosario and Alok N. 
Choudhary 

This article presents an overview of 
the many issues related to high-perfor- 
mance I/O in parallel computing envi- 
ronments. The authors discuss I/O 
requirements for Grand Challenge 
applications and relevant issues in per- 
formance characterization, I/O archi- 
tecture alternatives, operating and file 
systems, compiler and runtime support, 
checkpointing, network I/O, and so on. 
They present a status report on current 
practice and research in these areas, 
discuss outstanding problems, and 
describe some alternative solutions. 

ers has been accompanied by an 
increased demand for I/O systems sup- 
port. Data movement to temporary stor- 
age, archival storage, visualization sys- 
tems, or across the network to other 
computing resources has become a 
necessity in high-performance comput- 
ing. Still, research and development of 
I/O systems for this type of environment 
are at an early stage of evolution. 

Although I/O systems research is not 
new, only recently have efforts been 
made to comprehensively characterize 
the I/O problem encompassing various 
perspectives (for instance, U0 in paral- 
lel machines, distributed computing, 
and mass storage). 

The increasing use of parallel comput- 

I/O Issues in a Multimedia 
System, pp. 69-74 
A .  L. Narasimha Reddy and James C. 
Wyllie 

In a multimedia server, disk requests 
can require constant data rates and 
guaranteed service. The authors discuss 
the impact of the real-time nature of 

I/O requests on various I/O system 
components as well as the impact of 
disk scheduling algorithms on the per- 
formance of a multimedia system. 

uling algorithm, Scan-EDF (earliest 
deadline first), which combines a real- 
time policy such as EDF with a seek- 
optimizing policy such as CScan (circu- 
lar Scan). It then shows how Scan EDF 
can support a larger number of real- 
time streams and simultaneously pro- 
vide better response times to  aperiodic 
requests. 

The authors also investigate the 
impact of buffer space on the maximum 
number of video streams that can be 
supported. Then they show that even 
more streams can be supported by 
using delayed deadlines and larger 
requests. Of the two techniques, they 
prefer delayed deadlines, which pro- 
vide better response times to aperiodic 
requests. 

When multiple disks are connected 
to the system through a single bus such 
as SCSI (for Small Computer Systems 
Interface), SCSI bus scheduling can 
add extra delays to individual requests. 
The authors examine the impact of pri- 
ority-driven arbitration of a SCSI bus 
on disk throughput. They then show 
that deadline extension helps to 
increase system throughput when mul- 
tiple disks are connected on a single 
SCSI bus. 

This article describes a hybrid sched- 

The Alloc Stream Facility: 
A Redesign of Application- 
Level Stream I/O, pp. 75-82 

Orran Krieger, Michael Stumm, and 
Ron Unrau 

Although the Unix I/O facility is sim- 
ple and versatile, application programs 
running under Unix typically do not 
use its I/O system calls directly. 
Instead, they use higher level facilities 
implemented by the programming lan- 
guage or its application-level libraries. 
Using application-level I/O facilities 
improves functionality and portability 
and can also significantly improve 
application performance. 

This articles introduces a new appli- 
cation-level U0 facility called the Alloc 
Stream Facility. ASF addresses recent 
computing substrate changes to 
improve performance, allowing appli- 

cations to  benefit from specific features 
such as mapped files. It’s also designed 
for parallel systems, maximizing con- 
currency and reporting errors properly. 
Because it’s modular and object orient- 
ed, it supports a variety of popular 
existing I/O interfaces and can be tuned 
to  a system’s behavior, exploiting its 
strengths while avoiding its weaknesses. 

The authors’ experiments demon- 
strate that on a number of standard 
Unix systems, I/O-intensive applica- 
tions perform substantially better when 
linked to ASF instead of the facilities 
provided - in the best case, up to twice 
as well. Modifying the applications to 
use a new interface provided with ASF 
can improve performance even more. 

Container Shipping: 
Operating System Support 
for I/O-Intensive 
Applications, pp. 85-93 

Joseph Pasquale, Eric Anderson, and 
P. Keith Muller 

New I/O devices with data rates rang- 
ing from 10 to 100 Mbytes per second 
are becoming available for personal 
computers and workstations. These 
include human-interaction devices for 
video capture and display (and audio 
record and playback), high-capacity 
storage devices, and high-speed network 
communication devices. These devices 
have enabled I/O-intensive applications 
for desktop computing that require 
input, processing, and output of very 
large amounts of data. This article focus- 
es on an important aspect of operating 
system support for these applications: 
efficient transfer of large data objects 
between the protection domains in 
which processes and devices reside. 

Many operating systems are ineffi- 
cient in transferring large amounts of 
data between domains. Most of them, 
even when they try to avoid physical 
copying, offer a data-transfer model that 
assumes a need for complete accessibil- 
ity to all transferred data. This assump- 
tion leads to overheads that can other- 
wise be avoided. The authors’ design 
for an interdomain transfer facility 
(which was inspired by the “container- 
shipping” solution from the cargo- 
transportation industry) is based on vir- 
tual transfers and avoids all unneces- 
sary physical copying. 
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