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Abstract

We present the linear loop transformation framework which is the formal basis
for state of the art optimization techniques in restructuring compilers for parallel
machines. The framework unifies most existing transformations and provides a
systematic set of code generation techniques for arbitrary compound loop trans-
formations. The algebraic representation of the loop structure and its transforma-
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loop and deriving the desired linear transformation.
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1 Introduction

In order to execute a program in parallel, it is necessary to partition and map the
computation and data onto the processors and memories of a parallel machine. The
complexity of parallel architectures has increased in recent years, and an efficient exe-
cution of programs on these machines requires that the individual characteristics of the
machine be taken into account. In the absence of an automatic tool, the computation
and data must be partitioned by the programmer herself. Her strategies usually rely on
experience and intuition. However, considering the massive amount of sequential code
with high computational demands that already exists, the need for automatic tools is
urgent.

Automatic tools have a greater role than just salvaging proverbial dusty decks. As
the architectural characteristics of parallel hardware become more complex, trade offs
in parallelizing a program become more involved, making it more difficult for the pro-
grammer to do so in an optimal fashion. This increases the need for tools that can
partition computation and data automatically, taking the hardware characteristics into
account. Even in the uniprocessor case, the sequential computation model and the
architecture is well understood, yet code optimizers still improve the execution of a
program significantly. We believe that automatic tools have great promise in improving
the performance of parallel programs in a similar fashion. Thus we view such automatic
tools as optimizers for parallel machines rather than automatic parallelization tools.

Nested loops are of interest to us because they are the core of scientific and en-
gineering applications which access large arrays of data. This paper deals with the
restructuring of nested loops so that a partitioning of the loops and data gives the best
execution time on a target parallel machine. These restructurings are called transfor-
mations. While some of the problems in loop partitioning are computationally hard,
efficient approximate solutions often exist. In this paper we describe linear loop trans-
formations, the state of the art loop transformation technique, and their advantages.

In order to illustrate some of the goals of a transformation consider a system com-
prised of collection of processor-memory pairs connected by an interconnection network.
Each processor has a private cache memory. Suppose the two dimensional array A is
of size n by n and the linear array B is of size n. Given a two dimensional loop with
n > m:

for i=0,m

for j=1,n
A(i,3) = A(1i—1,3)+B(3)
end for

end for
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suppose that we map each instance of the outer loop onto a processor so that each
processor executes the inner loop iterations sequentially and that there are enough pro-
cessors to map each instance of outer loop onto a different processor. Hence, processor
k executes all iterations with ¢ = k. Suppose we map the data so that processor k
stores in its local memory A(k, *), where * denotes all elements in that dimension of
the array, and element B(j) is stored in (j mod (m + 1))—th processor’s memory.

B(0),B(m+1) B(1),B(m+2) B(2),B(m+3) B(m)
A0,%),A(M+1*)  A(LX)AM+2*)  A(2,%),A(m+3,%) A(m,*)

Thin lines correspond to movement of elements of B.
Thick dotted lines correspond to movement elements of A.

Figure 1: An example mapping

In this scenario, depicted in Figure 1, processor k executes n — k + 1 iterations. At
least (n — [n/(m + 1)]) elements of array B() must be obtained remotely from other
processors and processor k must fetch A(k — 1, ) from processor (k — 1)

Now, consider the following transformed loop nest that is semantically identical to
the above loop.

for j=0,n
for 1i=0,min(j,m)
A(1,3) = A(1 — 1,3) + B(j)
end for
end for
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=0 j=2 j=n
i=0 i=0..2 i=0..m
Po P1 P2 oo e Pn |
B(0) B(1) B(2) B(n)
A0 A(*,1) A(*,2) A(*.n)

Figure 2: Another mapping

If processor k executes all iterations with 57 = &, and has stored in its local memory
B(k) and A(*, k) then processor k will execute min(k,m) + 1 iterations. Because B(k)
is never modified, it can reside in a register (or possibly the cache). Moreover, the
elements of A accessed by a processor are all in its local memory (Figure 2).

The above mappings use m and n processors, respectively. Since n is larger than
m, the second mapping exploits more parallelism out of the loop than the first. In
fact, there is no parallelism in the first mapping. In the second mapping, all of the
computations are independent and all data is local, so remote accesses are not necessary.
In contrast the first mapping involves considerable inter-processor data movement. The
second version of the loop and mapping has better (in this case perfect) static locality
and has no overhead associated with accesses to remote data. More over, the elements
of B can be kept in a register or at worst in the cache for reuse in each iteration, resulting
in a better dynamic locality. In the first mapping, references to the same element of B
are distributed across different processors and hence the reuse of accesses to B are not
exploited.

Since each processor executes a different number of iterations, the computational
load on each processor varies. High variance in computational load has a detrimental
effect on the performance. Between the above two loops, the second one has a lower
variance, and thus the load balance is better.

From the above examples we see that semantically equivalent nested loops can have
different execution times based on parallelism, static and dynamic locality, and load
balance. There are also other aspects we have not considered, such as replicating array
B on all processors. The objective of the restructuring process is to obtain a program
that is semantically equivalent, yet performs better on the target parallel machine
due to improvements in parallelism, locality, and load balance. Instead of presenting
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a collection of apparently unrelated existing loop transformations, we present linear
transformations that subsume any sequence of existing transformations. We discuss in
detail the formalism and techniques for linear transformations.

The paper is organized as follows. We discuss the algebraic representation of the
loop structure in Section 2. The mathematics of linear loop transformations is pre-
sented in Section 3 along with techniques to generate the transformed loop. Section
3 concludes summarizing the advantages of linear transformations over conventional
approach. Finding an optimal linear transform is a computationally hard problem, and
Section 4 presents two classes of linear transforms aimed at improving parallelism and
locality which can be derived in polynomial time. We conclude with Section 5.

2 Representing the Loop Structure

2.1 Affine Loop

Consider the following generic nested loop which serves as a program model for the
loop structure.

for I1 = L1,U1
for I2 = LQ(Il),UQ(Il)

for In:Ln(I17"7I1‘1—1)7U1’1(I17"7I1’1—1)

H(Iy, ..., In)
end for
end for
end for
I, ..., I, are the iteration indices; [L; and U;, the lower and upper loop limits, are

linear functions of iteration indices [q,..,[;_1; and implicitly a stride of one is as-
sumed. I= (Ii,...,I,)T is called the iteration vector. M is the body of the nested
loop. Typically, an access to an m-dimensional array A in the loop body has the form
A fi(ly, oo L)y ooy fn(hy ooy 1)), where f; 's are functions of the iteration indices, and
are called subscript functions. A loop of the above form with linear subscript functions
is called an affine loop.

Definition 1 (Iteration space) 7 C Z" such that
T=A(t1,eesin) | L1 < tn S Uy ooy Loty ooy tim1) <t S Uty 0y t0m1) b

is an iteration space, where iy, ..., i, are the iteration indices, and (L1,Uy), ..., (L, U,)
are the respective loop limits.
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Individual iterations are denoted by tuples of iteration indices. Thus, there is a lexi-
cographical order defined on the iterations, and this order corresponds to the sequential
execution order.

Definition 2 (Lexicographic order <) ! Tuplesi = (i1,...,4,) and j = (1, -+, Jn)
satisfy 1 < j iff there exists an integer k, 1 < k < n such that iy = j1, ... 1k—1 = Jr-1
and 1, < Jg.

A linear transformation of a loop is a linear transformation of its iteration space.

2.2 Loop Bounds

As is evident from the definition, we characterize the iteration space by a set of in-
equalities corresponding to loop limits. A bound matriz is a succinct way of specifying
the bounds of the loop iteration space. Since each of the lower and upper bounds are
affine functions of the iteration vector, the set of bounds can be written in a matrix
vector notation. The set of lower bounds can be represented by

SrI>1

where Sp, is an n by n integer lower triangular matrix, I is the n by 1 iteration vector,
and 1 is a n by 1 integer vector. Similarly, upper bounds can be represented by

SuI<u or —Syl> —u

We denote the inequalities corresponding to both the upper and lower bounds by a
combined set of inequalities S and c.

Rl

the polyhedral shape of the iteration space can now be represented by

SI>c

If maximum and minimum functions exist in the expressions for the loop bounds then
the number of inequalities will increase. For example, if a lower bound for index I is
max(I1,10 — Iy), then Io—I;> 0 and Io4I1> 10 both belong to the set of inequalities
St

!Note that the symbol < is used to compare numbers as well as to compare tuples. Although,
this may be some what confusing at first, it simplifies the notation greatly, and the intended meaning
should be clear from the context.
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Consider the following doubly nested loop which serves as a running example to
illustrate the techniques in linear loop transformations. We refer to this loop as loop L
in future.

for I;=0,10
for I, =0,10
A(Il,Ig)ZZ A(Il-— 1,12) +—A(11,Ig ——1) +—A(Il —2,I,+ 1)
end for
end for

“Loop L”

From the upper and lower loop limits of loop L we can identify the following:

a=[o0] =[] =[] = [W]

Thus the loop bounds can be represented by

1 0 0
0 1 I 0
- - > |
—1 0 [b ] - —10
0 —1

—10

2.3 Data Dependence

The analysis of precedence constraints on the execution of the statements of a program
is a fundamental step in parallelizing the program. The dependence relation between
two statements constrains the order in which the statements may be executed. The
then clause of an if statement is control dependent on the branching condition. A
statement that uses the value of a variable assigned by an earlier statement is data
dependent on the earlier statement[Ban88]. In this paper, we concern ourselves only
with data dependence. Control dependence is important to identify functional level
parallelism, and to choose between various candidates for data distribution, among
other things. Since, our discussion is limited to analysis of dependence between loop
iterations, control dependence does not concern us much. We briefly discuss the basic
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concepts in data dependence and the computational complexity of deciding the exis-
tence of a dependence. [Ban88] serves as a very good reference of early development in
the area. Recent developments can be found in [LYZ90, WT92, Pug92, MHL91].

There are four types of data dependences: flow, anti, output, and input dependence.
The only true dependence is flow dependence. The other dependences are the result of
reusing the same location of memory and are hence called pseudo dependences. They
can be eliminated by renaming some of the variables [CF87]. For this reason we write
S1 6 52 to mean flow dependence from Sy to Sy from now on.

Definition 3 (Flow Dependence) An iteration j € T is flow dependent on iteration
i € I, denoted 1 03, iff there exists an element of an array assigned to in i and
referenced in j, such that i < j and there is no k,i < k < j with kéj for the same
array element.

The sequential semantics of a loop suggests that a flow dependence is always positive.
This property determines the validity or legality of a loop transformation.

Finding the dependence information information however is a computationally hard
problem. Given iterations i and j, two references to an m-dimensional array A,
A(fi(1), ..., frn(1)) and A(g1(3), .-, gm(j)) are to the same element iff fi(i) = ¢1(7)
s ooy fr(1) = gm(3)). For conciseness we denote this set of equalities by F'(1) = G(j).
The dependence problem can then be stated as follows: Do there exist iterations i and
j in the iteration space such that F'(i) = G(j) 7 In other words, we need to know
whether the following integer programming problem has integer solutions:

F(i) =G()

We know that the above problem is NP-complete. Moreover, for restructuring purposes
we need more information than the mere existence of a dependence. We often need to
know all the pairs of iterations that are dependent and the precise relationship between
them, such as the dependence distance vector.

Definition 4 (Dependence Distance Vector) For a pair of iterations i = (t1,...,,)
and 3 = (J1,...,Jn) such that 1 63, the vector 3 -1 = (J1 — t1y ..oy Jn — 1) 05 called the
dependence distance vector.

The dependence distance vector is called a constant or uniform dependence if it
contains only constants. For example, (1,2) is a constant dependence. In contrast,
(7,0), is a linear dependence. In this paper “dependence” refers to a uniform depen-
dence distance vector. (A vector of +, — or 0 corresponding to whether a dependence
component is positive, negative or zero is called a direction vector.)



Kulkarni and Stumm: Linear Loop Transformations 9

Dependence (1,0)
/ Dependence (2,-1)

(0,5) |
)
Dependence (0,1)
)
12
O -0 -0 -0 -0 O
(0,0) (5,0

11

Figure 3: Dependences in iteration space (only a 5 x 5 space is shown for clarity)

A dependence (dy,..,d,,) is positive if the first nonzero element dj is positive, and
we say that the dependence is carried by the &' loop. The Dependence matriz, D, is
an n by m integer matrix, where n is the dimension of the nested loop and m is the
number of dependences. That is, each column of D contains a dependence distance
vector D;.

We return to loop L and notice that there are 3 dependences corresponding to 3
pairs of reads and the writes to array A : [A([q, I2), A([1—1, I5)], [A([1, I2), A(11, I5—1)]
and [A(f, 1), A(l; — 2,1, + 1)]. Consider the third pair of references. With iterations
i = (11,72) and j = (J1,J2) such that 1 <j, if & = j; — 2 and 13 = j, + 1 then 16j.
Therefore, the dependence distance and direction vectors are, (j1 — 1, jo —12) = (2, —1)
and (+1,—1) respectively. The other dependence distances are (1,0) and (0,1) (with
directions (+1,0), (0,+1) respectively). The dependence matrix therefore is

10 2
D:[01—1]

Figure 3 shows the dependences in the iteration space.

Because the problem of determining the existence of a dependence is NP-complete,
one often employs efficient algorithms that solve restricted cases or provide approximate
solutions in practice. GCD test [Ban88] finds the existence of an integer solution to
the dependence problem with only a single subscript in an unbounded iteration space.
Some algorithms find real valued solutions in bounded iteration spaces and dependence
direction information [LYZ90, WT92]. Recently, Pugh noted that integer programming
solutions, with exponential worst case complexity have much lower average complex-
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ity [Pug92]. A modified Fourier-Motzkin variable elimination [Sch86] produces exact
solutions in a reasonable amount of time for many problems.

3 Linear Loop Transformations

3.1 Motivation for the Theory

Until recently, the various loop transformations such as reversal, skewing, permuta-
tions, and inner/outer loop parallelization were handled independently, and determin-
ing which loop transformations to apply to a given nested loop and in what order
remained an open issue. The concept of linear transformations for loop partitioning
were introduced independently by Banerjee [Ban90], and by Wolf and Lam [WL90].

In the conventional approach there exist several loop apparently independent trans-
formations, including loop interchange, loop permutation, skew, reversal, wavefront,
and tiling.

Loop interchange[Wol90], as the name suggests, exchanges two loop levels. In a
doubly nested loop, a loop interchange can expose parallelism at the inner loop level
enabling vectorization or it can expose parallelism at the outer loop. Loop permutation
is a generalization of loop interchange and corresponds to a sequence of interchanges
of loop levels.

Wavefront[LLam74] identifies sets of independent iterations and restructures the loop
to execute these sets sequentially. All the available parallelism is thus at inner loop
level which achieves finer grain of parallelism. Loop skewing, parameterized by a skew
factor, is an instance of wavefront transformation.

Tiling[RS90, WLI1, I'T88] strips several loop levels so that outer loops step through
a space of iteration tiles, and inner loops step through the iterations in a tile. Since the
block size is smaller than the original loop size, the chances are that the reused data
still exists in the cache. Typically, another transformation prior to tiling is performed
so that all the reuse occurs in inner loop levels. Thus tiling can improve the cache hit
rate.

To fully exploit the features of complex architectures it is generally necessary to
apply compound transformations, a combination of two or more of the above transfor-
mations. Viewing compound transformations as sequences of simpler transformations
has its problems, and identifying a legal sequence of transformations that constitutes
the compound transformation involves search in a space that can be very large. For
example, finding a sequence of interchanges for a desired permutation of a loop requires
a search in a space of all permutations of the loop; a loop skew has infinite instances
based on the skew factor. It is difficult to characterize the optimality of a sequence of
transformations with respect to a particular goal. Thus, pruning the search space by

?The accompanying catalogue of loop transformations provides details on these transformations,
and their implications.
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evaluating the contribution of a subsequence of transformations to over all “goodness”
is not easy. Even when we find the right sequence of transformations, applying them
one by one can produce complex loop bounds.

Linear loop transformations [Ban90, Ban93, Ban94, WL90, Dow90, KKBPI1,
KKB91, LP92, KP92] unify all possible sequences of most of the existing transfor-
mations and alleviate the problems in applying sequences of many different kinds of
transformations. A non-singular integer matrix determines the transformed loop and
dependences; encapsulates the objective function for “goodness” of the transformation
(in some direct or indirect way); and in conjunction with the dependences provides the
legality criterion. When this matrix is unimodular it ensures that the mapping is one
to one and onto with unit stride. Further elaboration on this aspect and the advantages
of the unified approach are discussed in a following subsection.

3.2 Mathematics of Linear Transforms

A loop transformation can be viewed as a reorganization of the loop iterations. It can
thus be characterized by a transformation of the iteration space. A linear transforma-
tion is defined by an n by n unimodular integer matrix U, which maps the iteration
vector I into a new iteration vector K = (Ki,...K,)T,

UI =K (1)
and each dependence vector D; in D into a new vector D!:
UD; = D:. (2)

The transformation is legal iff each of the D! is lexicographically positive. The positivity
of transformed dependences is a necessary and sufficient condition to ensure the legality
of the transform.

To perform the loop transformation, the references in the original loop must be
substituted with new ones, and new loop bounds must be derived. Each reference in
the body of the loop can be replaced by substituting the original iteration indices with
the equivalent expressions in terms of the new iteration indices using the following
equation:

U'k=1 (3)

Determining the new loop bounds is however nontrivial. We know from the bound
matrix that
SI>c

So,
SUTUI>c
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and therefore,
SUTK>c (4)

This new set of inequalities describes a convex polyhedron, and the sought after loop
bounds are the set of affine functions specify the polyhedron. If S = § U~! is lower
triangular (in both upper and lower halves) then it is clear that the new loop bounds
can be directly obtained from the rows of S’. In general, variable elimination techniques
such as Fourier-Motzkin[Sch86] has to be applied on S’ to obtain the new loop bounds.

The basic idea in a variable elimination procedure is as follows. Suppose a’s and
(3’s are linear expressions in Kq,..., K,,_1, and a’s and b’s are constants. The two sets of
inequalities, 3 < bK,, and aK,, > « provide the lower bound for K, max([a/a]) and
upper bound min(|3/b]). Elimination of K, gives us the sets of inequalities a3 < ba
that do not have K, in them. By rearranging this new set of inequalities, we can get
bounds for K,_; as functions of K'1,..., K,,_5 in a similar way. Continuing in a similar
way we get bounds for K as constants.

When the transformation is unimodular the above approach results in the trans-
formed space that corresponds exactly to the original space. The unimodularity of the
transformation matrix ensures that the stride in the transformed loop is unit as well.
Banerjee[Ban90] computes the bounds for a two dimensional loop directly. Kumar
and Kulkarni [KKB91] compute the bounds for a loop of any dimension by transform-
ing the bounding hyper planes in the original loop and substituting for the extremes
points of the polyhedron. The approach is elegant when the bounds are constants,
and becomes complex when the original loop bounds are linear expressions. All of
the above methods fail to produce exact bounds when the transformation is not uni-
modular. Ramanujam|[Ram92] and Kumar[Kum93] compute the new bounds for any
non-singular transformation by stepping aside the non-existent iterations. The loop
strides can be obtained by diagonalizing the transformation. Consider the following
loop on the left hand which is linearly transformed to the one on the right hand.

for I1 = nl,Nl for K1 = ml,Ml
for I2 = ng,Ng for K2 = mg(Kl),Mg(Kl)
H(I1,I2) . H(£(K1,K2), g(K1,K2))
end for end for
end for end for

For simplicity let the transformation U be unimodular

[ — [Un Um]
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From Equation 1 the new iteration vector is,
(KlaKz)T =U (]17]2)T = (uiny + wizdy, ugr Iy + ugaly) (5)

With A = det(U) = £1, and with Au;; denoting det(U) * u;;, we know that U~ is

U_l - Au22 —Au12
N —Augyy Auqy
Hence from Equation 3 we have,
(]1, ]2)T = U_l ([(1, [(Q)T = (AUQQI(I - Aungg, _Au21[(1 —|— Auan) (6)

This enables us to replace the references to [; and I3 in the body of the loop with
Auge Ky — Aupa Ky and Iy by —Aug K7 4+ Auqq K5 respectively.

The bounds for Ky and K3 can be computed directly as follows. The bounds of K
are constants, and can be derived from Equation 5 and the upper and lower bounds of
]1 and ]2.

Ky = uiidy + uiads
my = min(uyly + wiglz,ny < Iy < Nyyng < I < Ny)
My = max(ui i + uizdy,ng < I < Nyyng < I, < Ny)
Introducing the notation a* = maz(a,0) and a~ = maxz(—a,0), we can write the above
as

my = ufing — u Ny +ufon, — u, N,
My = ufi N1 — upyng + ufy Ny — upyng (7)
(since one of u;'; or u; will always be equal to zero)

It is possible to compute the lower and upper bounds of K3 as follows. Because
ny < I < Ny and ny < I, < N,, we can substitute for I3 and I, from Equation 6 to
obtain

n1 < Auga Ky — Aua Ky < Ny
ny < —Aun Ky + Aui Ky < N,
This is equivalent to

n1 — AUQQI(I
—Au12

N1 — AUQQI(I
—Auqy

IA

K,

IA

ng + Aug Ky Ny + Aug Ky
Auqy Auqy

which gives us two lower bounds, [b1 and (62, and two upper bounds, ubl and ub2, for

IA

K,

IA
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K3 (depending on the signs of —Awuqy and Awuqy). Thus the lower and upper bounds
for K, are

mo( K1) = [ max(lb1,162) | and My(Ky) = | min(ubl, ub2) | (8)

In order to illustrate the techniques consider loop L again. We noticed that the
dependence matrix for L is

D= {(170)7 (07 1)7 (27 _1)}

Suppose transformation U is applied to L.

B 1 1 1 1 —1
U= l()l] and U —[0 1]

From Equation 3 we have
]1 — [(1 - [(2, ]2 — [(2
and from Equation 2
D= {(1,0),(1,1),(1,-1)}

All the transformed dependences are lexicographically positive, so U is a legal trans-
formation. From Equation 7, K7 bounds are :

my = ufng —u N+ ufng —u Ny
= 1x0+1x0=0
and
M, = ulf,Ny —ung +u Ny — ui.
1 = Uqpd¥1 = Uy 7 UggiVg — UqpTi2

To compute the bounds of K5, note that —Awus = —1x1 = —1 < 0 and Auyy = 1x1 > 0,
SO

(n1 — AUQQI(l)

ubl = = (0K 1= Ky
o= M :AAZ?K” = (10— Ky)/ — 1=K, — 10
by — (2 ZAuflKl) — (04 0)/1 =0

ub? (N Zﬁflm) —10/1 =10

The transformed loop is therefore



Kulkarni and Stumm: Linear Loop Transformations 15

Plane of parallelism
A /
K2=10
0,10)| K2
K2=K1

K2=K1-10
K2=0 Ki

(0,0) (10,0) (20,0)

Figure 4: Example Transformation

for K;=0,20
for Ky =max(0,Kq— 10),min(10,K;)
A(K; — Ko, K2) = A(Ky — Kz — 1,Kg) + A(Ky — Kp,Kp — 1)
+A(K1 — K2 —2,Ka+ 1)
end for
end for

Figure 4 depicts the transformation. Notice that the iterations along the K, axis
are all independent and can be executed in parallel.

To illustrate the computation of the new loop bounds with the Fourier-Motzkin
variable elimination method, consider the description of the original iteration space in
terms of the bound matrix S.

SI>c

10 0

0 1 I 0

10 l I ] = |10

0 -1 —10

From Equation 4 we have,

—1 0

0 1 K 0

-1 1 Ky = —10

0 -1 —10
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ol Lol Y]

The transformation matrices for (a) reversal of outer loop, (b) reversal of inner loop, (c)
reversal of both loops, (d) interchange, (e,f) skew by p in second and first dimensions, and

(g9) wavefront respectively.

Figure 5: Example 2d transformations

Since the new bound matrix is not in lower triangular form, we apply the variable
elimination method in the following way. From the new set of inequalities, it is clear
that,

0< Ky <10and K; —10 < Ky < K,y

Thus the bounds for K,
Ky > max(K; —10,0) and Ky < min(Ky,10)

Once K, is eliminated the above inequalities provide the following projections on K;.
K; —10<10,0 < Ky, 0<10, and Ky < Ky + 10. Ignoring the redundant constraints
we have constant bounds for K.

[(1 Z 0 and [(1 S 20

3.3 Advantages of Linear Transforms

Linear loop transformations have several advantages over conventional approach. A
linear transformation can be a primary transformation such as an interchange or it can
be a combination of two or more primary transformations. Figure 5 shows some of
the possible primary transformations for the two dimensional case. The transformation
matrix for a given permutation is just a permuted identity matrix. A transformation
matrix that reverses the &' loop level is an identity matrix with & row multiplied by
—1.

A compound transformation is represented by a matrix which results from the mul-
tiplication of the component transformations in the opposite order in which the trans-
formations are applied. The legality of the compound transformation, the new loop
bounds, and the references are determined in one step at the end rather than doing
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so for each of the constituent transformations. The computation of the transformed
loop structure is done in the same systematic way irrespective of the transformation
employed.

The “goodness” of a transformation can be specified in terms of certain aspects
of the transformed loop, such as, parallelism at outer (inner) loop level, volume of
communication, the average load, and load balances. In the conventional approach,
where some primary transformation like interchange, or an a priori sequence of such
transformations is applied, there is no way of evaluating how good a transformation
is. On the other hand, a unimodular matrix completely characterizes the transformed
loop, and hence the goodness criterion can be specified in quantitative terms. The
parallelism at outer (inner) loop level, volume of communication, the average load, and
load balances for the transformed loop can be specified in terms of the elements of the
transformation matrix, dependences, and original loop bounds [KKBP91].

For example, we may want to find a transformation that minimizes the size of the
outer loop level, because it is sequential. The first row of the transformation matrix in
conjunction with the original loop bounds gives a measure of the size of the outer loop
in the transformed loop. This function provides us with the goodness of a candidate
transformation.

As another example, we may desire that most of the dependences be independent
of the inner loop levels.?> The dependences in the transformed loop can be expressed in
terms of the original dependences and the elements of the transformation matrix.

Finally, suppose the outer most level of a transformed loop is to be executed in
parallel. Using the transformation matrix elements and the original loop bounds we
have a way of establishing the load imbalance — the variance of the number of iterations
in each instance of the outer loop.

3.4 Optimal Linear Transform

Unfortunately, the derivation of a linear transformation that satisfies the desired re-
quirements is hard in general. The problem is NP-complete for unrestricted loops,
and even affine loops with non-constant dependence distances [Dow90]. A unimodular
matrix can however be found in polynomial time for affine loops with only constant
dependences [Dow90, KKB91].

A dependence matrix can provide a good indication as to the desired transforma-
tions. In fact, it is common to start with a dependence matrix augmented with the
identity matrix. The transformations sought are then those that result in dependences
with a particular form — for example, no dependences within a particular loop level.
Proofs on the existence of a transformation that achieves certain goals tend to be con-
structive, and by themselves provide algorithms to derive the transformation. In the

3In a loop with only constant dependences, it is possible to make all dependences independent of
the inner loop.
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following section we discuss two instances of identifying the structure of a transforma-
tion given specific goals for the transformed loop.

4 Two Classes of Linear Transforms

4.1 Internalization

Consider the execution of a nested loop on a hierarchical memory architecture, where
non-uniform memory access times exist. Suppose we partition the iterations in the loop
into different groups where each group is executed in parallel. The degree of parallelism
is the number of such groups. Suppose that the data to be computed resides on the
processor computing it, and that the read-only data is replicated.* The dependences
that exist between iterations that belong to different groups result in non-local accesses.
The dependences that exist between iterations in the same group result in local accesses.

Let us now consider the restricted case where we intend to execute every instance
of the outermost loop in parallel (assuming we have sufficient number of processors to
do so0), and that each group is executed purely sequential. The amount of parallelism is
the size of the outer loop. Any dependences carried by the outer loop result in non-local
accesses.

Internalization [KKBP91, KKB91] transforms a loop so that as many dependences
as possible are independent of the outer loop, and so that the outer loop is as large
as possible. For example, the (1,1) dependence in the left hand loop is internalized to
obtain the transformed loop on the right hand.

for 1i=0,n for Ky = -—n,n
for j=0,n for Ky =max(0,—Ki),min(n,n—Ky)
A(i,j):A(i—l,j —1) . A(K1+K2,K2):A(K1+K2—1,K2—1)
end for end for
end for end for

The intended transformation matrix should transform should internalize (1,1), in
other words change to (0,1) dependence. This would render a fully parallel outer loop.
One unimodular matrix U (of many) that achieves the above internalization (1,1) is:

[t

n other words, we follow the ownership rule to distribute the data.
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The general framework for internalization and Algorithms to find a good internal-
ization in polynomial time can be found in [KKB91, KKB92, KKB].

One can only internalize n —1 linearly independent dependences in an n-dimensional
loop. The choice of dependences to internalize has an impact on such factors as the va-
lidity of the transformation, the size of the outer level in the transformed loop, the load
balance, locality etc. Kulkarni and Kumar [KKBP91] introduced the notion of weight to
a dependence to characterize the net volume of non-local accesses. They also provided
metrics for parallelism and load imbalance for the two dimensional case. Internalization
can be further generalized to mapping with multiple parallel levels [KKB92]. Locality
can be improved by internalizing a dependence or a reference with reuse. In other words,
internalization is a transformation that enhances parallelism and locality[KKB92].

4.2 Access Normalization

Ideally, we want a processor to own all the data it needs in the course of its computation.
In that case we wish to transform a loop so that it matches the existing layout of the
data in the memory of the parallel system. For example, consider the loop on the
left hand below. Suppose processors own complete columns of matrices A and B, and
suppose each iteration of the following outer loop is executed in parallel:

for 1=0,N;—1 for u=p,b—1,P
for j=1,1+b—-1 for v=u,u4+ N1 4Ny -2
for k=0,Ny—1 for w=0,N; -1
B(i,j— 1) =B(i,j—1i)+A(i,j+ k):> B(w,u) = B(w,u) + A(w,v)
end for end for
end for end for
end for end for

Since a processor needs to access the rows of each matrix, a large number of non-local
accesses. If it is possible to transform the loop so as to reflect the data owned by
each processor, then the number of remote accesses will be reduced significantly. For
this we need the references to the second dimension to be the outer loop index in the
transformed loop.

Three different access patterns that appear in the above nested loop can be repre-
sented by a matrix-vector pair as below.

11 0] j—i
01 1||jl=]|j+k
10 0]k

¢
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This is called an access matrix. It is interesting to note that the access matrix itself can
be a transformation matrix. The access normalized loop is shown on the right above.
All accesses to B now become local, although A still has some non-local accesses. To
be a valid transformation the access matrix has to be invertible. The techniques to
make the access matrix invertible do so at the cost of reduced normalization [LP92].

5 Concluding Remarks

We presented linear loop transformation framework which is the formal basis for state
of the art optimization techniques in restructuring compilers for parallel machines.
The framework unifies most existing transformations and provides a systematic set
of code generation techniques for arbitrary compound transformations. The algebraic
representation of the loop structure and its transformation give way to quantitative
techniques for optimizing performance on parallel machines. We also discussed in detail
the techniques for generating the transformed loop. The framework is extended recently
[KSb, KP92] to handle imperfectly nested loops. The new framework [KSb] reorganizes
computations at a much finer granularity than existing techniques and helps implement
a class of flexible computation rules. Most of the current work of interest involves
combining loop transformation, data alignment and partitioning techniques for local

and global optimization [AL93, KSb].
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