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Kulkarni and Stumm: Linear Loop Transformations 21 IntroductionIn order to execute a program in parallel, it is necessary to partition and map thecomputation and data onto the processors and memories of a parallel machine. Thecomplexity of parallel architectures has increased in recent years, and an e�cient exe-cution of programs on these machines requires that the individual characteristics of themachine be taken into account. In the absence of an automatic tool, the computationand data must be partitioned by the programmer herself. Her strategies usually rely onexperience and intuition. However, considering the massive amount of sequential codewith high computational demands that already exists, the need for automatic tools isurgent.Automatic tools have a greater role than just salvaging proverbial dusty decks. Asthe architectural characteristics of parallel hardware become more complex, trade o�sin parallelizing a program become more involved, making it more di�cult for the pro-grammer to do so in an optimal fashion. This increases the need for tools that canpartition computation and data automatically, taking the hardware characteristics intoaccount. Even in the uniprocessor case, the sequential computation model and thearchitecture is well understood, yet code optimizers still improve the execution of aprogram signi�cantly. We believe that automatic tools have great promise in improvingthe performance of parallel programs in a similar fashion. Thus we view such automatictools as optimizers for parallel machines rather than automatic parallelization tools.Nested loops are of interest to us because they are the core of scienti�c and en-gineering applications which access large arrays of data. This paper deals with therestructuring of nested loops so that a partitioning of the loops and data gives the bestexecution time on a target parallel machine. These restructurings are called transfor-mations. While some of the problems in loop partitioning are computationally hard,e�cient approximate solutions often exist. In this paper we describe linear loop trans-formations, the state of the art loop transformation technique, and their advantages.In order to illustrate some of the goals of a transformation consider a system com-prised of collection of processor-memory pairs connected by an interconnection network.Each processor has a private cache memory. Suppose the two dimensional array A isof size n by n and the linear array B is of size n. Given a two dimensional loop withn � m: for i = 0; mfor j = i; nA(i; j) = A(i� 1; j) + B(j)end forend for



Kulkarni and Stumm: Linear Loop Transformations 3suppose that we map each instance of the outer loop onto a processor so that eachprocessor executes the inner loop iterations sequentially and that there are enough pro-cessors to map each instance of outer loop onto a di�erent processor. Hence, processork executes all iterations with i = k. Suppose we map the data so that processor kstores in its local memory A(k; �), where � denotes all elements in that dimension ofthe array, and element B(j) is stored in (j mod (m+ 1))�th processor's memory.
Po P1 P2 Pm

i=0
j=0..n

i=1
j=1..n

i=2
j=2..n

i=m
j=m..n

B(m)
A(m,*)

B(0),B(m+1)
A(0,*),A(m+1,*)

Thin lines correspond to movement of elements of B.
Thick dotted lines correspond to movement elements of A.

B(1),B(m+2)
A(1,*),A(m+2,*)

B(2),B(m+3)
A(2,*),A(m+3,*)Figure 1: An example mappingIn this scenario, depicted in Figure 1, processor k executes n� k + 1 iterations. Atleast (n � dn=(m + 1)e) elements of array B() must be obtained remotely from otherprocessors and processor k must fetch A(k� 1; �) from processor (k � 1)th.Now, consider the following transformed loop nest that is semantically identical tothe above loop. for j = 0; nfor i = 0; min(j; m)A(i; j) = A(i� 1; j) + B(j)end forend for
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A(*,n)Figure 2: Another mappingIf processor k executes all iterations with j = k, and has stored in its local memoryB(k) and A(�; k) then processor k will execute min(k;m) + 1 iterations. Because B(k)is never modi�ed, it can reside in a register (or possibly the cache). Moreover, theelements of A accessed by a processor are all in its local memory (Figure 2).The above mappings use m and n processors, respectively. Since n is larger thanm, the second mapping exploits more parallelism out of the loop than the �rst. Infact, there is no parallelism in the �rst mapping. In the second mapping, all of thecomputations are independent and all data is local, so remote accesses are not necessary.In contrast the �rst mapping involves considerable inter-processor data movement. Thesecond version of the loop and mapping has better (in this case perfect) static localityand has no overhead associated with accesses to remote data. More over, the elementsof B can be kept in a register or at worst in the cache for reuse in each iteration, resultingin a better dynamic locality. In the �rst mapping, references to the same element of Bare distributed across di�erent processors and hence the reuse of accesses to B are notexploited.Since each processor executes a di�erent number of iterations, the computationalload on each processor varies. High variance in computational load has a detrimentale�ect on the performance. Between the above two loops, the second one has a lowervariance, and thus the load balance is better.From the above examples we see that semantically equivalent nested loops can havedi�erent execution times based on parallelism, static and dynamic locality, and loadbalance. There are also other aspects we have not considered, such as replicating arrayB on all processors. The objective of the restructuring process is to obtain a programthat is semantically equivalent, yet performs better on the target parallel machinedue to improvements in parallelism, locality, and load balance. Instead of presenting



Kulkarni and Stumm: Linear Loop Transformations 5a collection of apparently unrelated existing loop transformations, we present lineartransformations that subsume any sequence of existing transformations. We discuss indetail the formalism and techniques for linear transformations.The paper is organized as follows. We discuss the algebraic representation of theloop structure in Section 2. The mathematics of linear loop transformations is pre-sented in Section 3 along with techniques to generate the transformed loop. Section3 concludes summarizing the advantages of linear transformations over conventionalapproach. Finding an optimal linear transform is a computationally hard problem, andSection 4 presents two classes of linear transforms aimed at improving parallelism andlocality which can be derived in polynomial time. We conclude with Section 5.2 Representing the Loop Structure2.1 A�ne LoopConsider the following generic nested loop which serves as a program model for theloop structure. for I1 = L1; U1for I2 = L2(I1); U2(I1):::for In = Ln(I1; ::; In�1); Un(I1; ::; In�1)H(I1; :::; In)end for:::end forend forI1; :::; In are the iteration indices; Li and Ui, the lower and upper loop limits, arelinear functions of iteration indices I1; ::; Ii�1; and implicitly a stride of one is as-sumed. I= (I1; :::; In)T is called the iteration vector. H is the body of the nestedloop. Typically, an access to an m-dimensional array A in the loop body has the formA(f1(I1; :::; In); :::; fm(I1; :::; In)), where fi 's are functions of the iteration indices, andare called subscript functions. A loop of the above form with linear subscript functionsis called an a�ne loop.De�nition 1 (Iteration space) I � Zn such thatI = f(i1; :::; in) j L1 � i1 � U1; :::; Ln(i1; :::; in�1) � in � Un(i1; :::; in�1)g;is an iteration space, where i1, ..., in are the iteration indices, and (L1; U1); :::; (Ln; Un)are the respective loop limits.



Kulkarni and Stumm: Linear Loop Transformations 6Individual iterations are denoted by tuples of iteration indices. Thus, there is a lexi-cographical order de�ned on the iterations, and this order corresponds to the sequentialexecution order.De�nition 2 (Lexicographic order <) 1 Tuples i = (i1; . . . ; in) and j = (j1; . . . ; jn)satisfy i < j i� there exists an integer k, 1 � k � n such that i1 = j1, . . . ,ik�1 = jk�1and ik < jk.A linear transformation of a loop is a linear transformation of its iteration space.2.2 Loop BoundsAs is evident from the de�nition, we characterize the iteration space by a set of in-equalities corresponding to loop limits. A bound matrix is a succinct way of specifyingthe bounds of the loop iteration space. Since each of the lower and upper bounds area�ne functions of the iteration vector, the set of bounds can be written in a matrixvector notation. The set of lower bounds can be represented bySLI � lwhere SL is an n by n integer lower triangular matrix, I is the n by 1 iteration vector,and l is a n by 1 integer vector. Similarly, upper bounds can be represented bySUI � u or � SUI � �u.We denote the inequalities corresponding to both the upper and lower bounds by acombined set of inequalities S and c.S = " SL�SU # ; c = " l�u #the polyhedral shape of the iteration space can now be represented bySI � cIf maximum and minimum functions exist in the expressions for the loop bounds thenthe number of inequalities will increase. For example, if a lower bound for index I2 ismax(I1; 10� I1), then I2�I1� 0 and I2+I1� 10 both belong to the set of inequalitiesSL.1Note that the symbol < is used to compare numbers as well as to compare tuples. Although,this may be some what confusing at �rst, it simpli�es the notation greatly, and the intended meaningshould be clear from the context.



Kulkarni and Stumm: Linear Loop Transformations 7Consider the following doubly nested loop which serves as a running example toillustrate the techniques in linear loop transformations. We refer to this loop as loop Lin future. for I1 = 0; 10for I2 = 0; 10A(I1; I2) = A(I1 � 1; I2) + A(I1; I2 � 1) + A(I1 � 2; I2 + 1)end forend for \Loop L"From the upper and lower loop limits of loop L we can identify the following:SL = " 1 00 1 # l = " 00 # SU = " 1 00 1 # u = " 1010 #Thus the loop bounds can be represented by26664 1 00 1�1 00 �1 37775 " I1I2 # � 26664 00�10�10 377752.3 Data DependenceThe analysis of precedence constraints on the execution of the statements of a programis a fundamental step in parallelizing the program. The dependence relation betweentwo statements constrains the order in which the statements may be executed. Thethen clause of an if statement is control dependent on the branching condition. Astatement that uses the value of a variable assigned by an earlier statement is datadependent on the earlier statement[Ban88]. In this paper, we concern ourselves onlywith data dependence. Control dependence is important to identify functional levelparallelism, and to choose between various candidates for data distribution, amongother things. Since, our discussion is limited to analysis of dependence between loopiterations, control dependence does not concern us much. We brie
y discuss the basic



Kulkarni and Stumm: Linear Loop Transformations 8concepts in data dependence and the computational complexity of deciding the exis-tence of a dependence. [Ban88] serves as a very good reference of early development inthe area. Recent developments can be found in [LYZ90, WT92, Pug92, MHL91].There are four types of data dependences: 
ow, anti, output, and input dependence.The only true dependence is 
ow dependence. The other dependences are the result ofreusing the same location of memory and are hence called pseudo dependences. Theycan be eliminated by renaming some of the variables [CF87]. For this reason we writeS1 � S2 to mean 
ow dependence from S1 to S2 from now on.De�nition 3 (Flow Dependence) An iteration j 2 I is 
ow dependent on iterationi 2 I, denoted i �j, i� there exists an element of an array assigned to in i andreferenced in j, such that i < j and there is no k,i < k < j with k�j for the samearray element.The sequential semantics of a loop suggests that a 
ow dependence is always positive.This property determines the validity or legality of a loop transformation.Finding the dependence information information however is a computationally hardproblem. Given iterations i and j, two references to an m-dimensional array A,A(f1(i); :::; fm(i)) and A(g1(j); :::; gm(j)) are to the same element i� f1(i) = g1(j); :::; fm(i) = gm(j)). For conciseness we denote this set of equalities by F (i) = G(j).The dependence problem can then be stated as follows: Do there exist iterations i andj in the iteration space such that F (i) = G(j) ? In other words, we need to knowwhether the following integer programming problem has integer solutions:Si � cSj � cF (i) = G(j)We know that the above problem is NP-complete. Moreover, for restructuring purposeswe need more information than the mere existence of a dependence. We often need toknow all the pairs of iterations that are dependent and the precise relationship betweenthem, such as the dependence distance vector.De�nition 4 (Dependence Distance Vector) For a pair of iterations i = (i1; . . . ; in)and j = (j1; . . . ; jn) such that i �j, the vector j -i = (j1 � i1; :::; jn � in) is called thedependence distance vector.The dependence distance vector is called a constant or uniform dependence if itcontains only constants. For example, (1; 2) is a constant dependence. In contrast,(i; 0), is a linear dependence. In this paper \dependence" refers to a uniform depen-dence distance vector. (A vector of +;� or 0 corresponding to whether a dependencecomponent is positive, negative or zero is called a direction vector.)
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Figure 3: Dependences in iteration space (only a 5 � 5 space is shown for clarity)A dependence (d1; ::; dn) is positive if the �rst nonzero element dk is positive, andwe say that the dependence is carried by the kth loop. The Dependence matrix , D, isan n by m integer matrix, where n is the dimension of the nested loop and m is thenumber of dependences. That is, each column of D contains a dependence distancevector Di.We return to loop L and notice that there are 3 dependences corresponding to 3pairs of reads and the writes to array A : [A(I1; I2); A(I1�1; I2)], [A(I1; I2); A(I1; I2�1)]and [A(I1; I2); A(I1 � 2; I2 + 1)]. Consider the third pair of references. With iterationsi = (i1; i2) and j = (j1; j2) such that i <j, if i1 = j1 � 2 and i2 = j2 + 1 then i�j.Therefore, the dependence distance and direction vectors are, (j1� i1; j2� i2) = (2;�1)and (+1;�1) respectively. The other dependence distances are (1; 0) and (0; 1) (withdirections (+1; 0), (0;+1) respectively). The dependence matrix therefore isD = " 1 0 20 1 �1 #Figure 3 shows the dependences in the iteration space.Because the problem of determining the existence of a dependence is NP-complete,one often employs e�cient algorithms that solve restricted cases or provide approximatesolutions in practice. GCD test [Ban88] �nds the existence of an integer solution tothe dependence problem with only a single subscript in an unbounded iteration space.Some algorithms �nd real valued solutions in bounded iteration spaces and dependencedirection information [LYZ90, WT92]. Recently, Pugh noted that integer programmingsolutions, with exponential worst case complexity have much lower average complex-



Kulkarni and Stumm: Linear Loop Transformations 10ity [Pug92]. A modi�ed Fourier-Motzkin variable elimination [Sch86] produces exactsolutions in a reasonable amount of time for many problems.3 Linear Loop Transformations3.1 Motivation for the TheoryUntil recently, the various loop transformations such as reversal, skewing, permuta-tions, and inner/outer loop parallelization were handled independently, and determin-ing which loop transformations to apply to a given nested loop and in what orderremained an open issue. The concept of linear transformations for loop partitioningwere introduced independently by Banerjee [Ban90], and by Wolf and Lam [WL90].In the conventional approach there exist several loop apparently independent trans-formations, including loop interchange, loop permutation, skew , reversal , wavefront ,and tiling.2Loop interchange[Wol90], as the name suggests, exchanges two loop levels. In adoubly nested loop, a loop interchange can expose parallelism at the inner loop levelenabling vectorization or it can expose parallelism at the outer loop. Loop permutationis a generalization of loop interchange and corresponds to a sequence of interchangesof loop levels.Wavefront[Lam74] identi�es sets of independent iterations and restructures the loopto execute these sets sequentially. All the available parallelism is thus at inner looplevel which achieves �ner grain of parallelism. Loop skewing, parameterized by a skewfactor, is an instance of wavefront transformation.Tiling[RS90, WL91, IT88] strips several loop levels so that outer loops step througha space of iteration tiles, and inner loops step through the iterations in a tile. Since theblock size is smaller than the original loop size, the chances are that the reused datastill exists in the cache. Typically, another transformation prior to tiling is performedso that all the reuse occurs in inner loop levels. Thus tiling can improve the cache hitrate.To fully exploit the features of complex architectures it is generally necessary toapply compound transformations, a combination of two or more of the above transfor-mations. Viewing compound transformations as sequences of simpler transformationshas its problems, and identifying a legal sequence of transformations that constitutesthe compound transformation involves search in a space that can be very large. Forexample, �nding a sequence of interchanges for a desired permutation of a loop requiresa search in a space of all permutations of the loop; a loop skew has in�nite instancesbased on the skew factor. It is di�cult to characterize the optimality of a sequence oftransformations with respect to a particular goal. Thus, pruning the search space by2The accompanying catalogue of loop transformations provides details on these transformations,and their implications.



Kulkarni and Stumm: Linear Loop Transformations 11evaluating the contribution of a subsequence of transformations to over all \goodness"is not easy. Even when we �nd the right sequence of transformations, applying themone by one can produce complex loop bounds.Linear loop transformations [Ban90, Ban93, Ban94, WL90, Dow90, KKBP91,KKB91, LP92, KP92] unify all possible sequences of most of the existing transfor-mations and alleviate the problems in applying sequences of many di�erent kinds oftransformations. A non-singular integer matrix determines the transformed loop anddependences; encapsulates the objective function for \goodness" of the transformation(in some direct or indirect way); and in conjunction with the dependences provides thelegality criterion. When this matrix is unimodular it ensures that the mapping is oneto one and onto with unit stride. Further elaboration on this aspect and the advantagesof the uni�ed approach are discussed in a following subsection.3.2 Mathematics of Linear TransformsA loop transformation can be viewed as a reorganization of the loop iterations. It canthus be characterized by a transformation of the iteration space. A linear transforma-tion is de�ned by an n by n unimodular integer matrix U , which maps the iterationvector I into a new iteration vector K = (K1; :::Kn)T ,UI = K (1)and each dependence vector Di in D into a new vector D0i:UDi = D0i (2)The transformation is legal i� each of theD0i is lexicographically positive. The positivityof transformed dependences is a necessary and su�cient condition to ensure the legalityof the transform.To perform the loop transformation, the references in the original loop must besubstituted with new ones, and new loop bounds must be derived. Each reference inthe body of the loop can be replaced by substituting the original iteration indices withthe equivalent expressions in terms of the new iteration indices using the followingequation: U�1K = I (3)Determining the new loop bounds is however nontrivial. We know from the boundmatrix that SI � cSo, S U�1 UI � c



Kulkarni and Stumm: Linear Loop Transformations 12and therefore, S U�1 K � c (4)This new set of inequalities describes a convex polyhedron, and the sought after loopbounds are the set of a�ne functions specify the polyhedron. If S 0 = S U�1 is lowertriangular (in both upper and lower halves) then it is clear that the new loop boundscan be directly obtained from the rows of S 0. In general, variable elimination techniquessuch as Fourier-Motzkin[Sch86] has to be applied on S 0 to obtain the new loop bounds.The basic idea in a variable elimination procedure is as follows. Suppose �'s and�'s are linear expressions in K1; :::;Kn�1, and a's and b's are constants. The two sets ofinequalities, � � bKn and aKn � � provide the lower bound for Kn max(d�=ae) andupper bound min(b�=bc). Elimination of Kn gives us the sets of inequalities a� � b�that do not have Kn in them. By rearranging this new set of inequalities, we can getbounds for Kn�1 as functions of K1; :::;Kn�2 in a similar way. Continuing in a similarway we get bounds for K1 as constants.When the transformation is unimodular the above approach results in the trans-formed space that corresponds exactly to the original space. The unimodularity of thetransformation matrix ensures that the stride in the transformed loop is unit as well.Banerjee[Ban90] computes the bounds for a two dimensional loop directly. Kumarand Kulkarni [KKB91] compute the bounds for a loop of any dimension by transform-ing the bounding hyper planes in the original loop and substituting for the extremespoints of the polyhedron. The approach is elegant when the bounds are constants,and becomes complex when the original loop bounds are linear expressions. All ofthe above methods fail to produce exact bounds when the transformation is not uni-modular. Ramanujam[Ram92] and Kumar[Kum93] compute the new bounds for anynon-singular transformation by stepping aside the non-existent iterations. The loopstrides can be obtained by diagonalizing the transformation. Consider the followingloop on the left hand which is linearly transformed to the one on the right hand.for I1 = n1; N1for I2 = n2; N2H(I1; I2)end forend for =) for K1 = m1; M1for K2 = m2(K1); M2(K1)H(f(K1; K2); g(K1; K2))end forend forFor simplicity let the transformation U be unimodularU = " u11 u12u21 u22 #



Kulkarni and Stumm: Linear Loop Transformations 13From Equation 1 the new iteration vector is,(K1;K2)T = U (I1; I2)T = (u11I1 + u12I2; u21I1 + u22I2) (5)With � = det(U) = �1, and with �uij denoting det(U) � uij, we know that U�1 isU�1 = " �u22 ��u12��u21 �u11 #Hence from Equation 3 we have,(I1; I2)T = U�1 (K1;K2)T = (�u22K1 ��u12K2;��u21K1 +�u11K2) (6)This enables us to replace the references to I1 and I2 in the body of the loop with�u22K1 ��u12K2 and I2 by ��u21K1 +�u11K2 respectively.The bounds for K1 and K2 can be computed directly as follows. The bounds of K1are constants, and can be derived from Equation 5 and the upper and lower bounds ofI1 and I2. K1 = u11I1 + u12I2m1 = min(u11I1 + u12I2; n1 � I1 � N1; n2 � I2 � N2)M1 = max(u11I1 + u12I2; n1 � I1 � N1; n2 � I2 � N2)Introducing the notation a+ = max(a; 0) and a� = max(�a; 0), we can write the aboveas m1 = u+11n1 � u�11N1 + u+12n2 � u�12N2M1 = u+11N1 � u�11n1 + u+12N2 � u�12n2 (7)(since one of u+ij or u�ij will always be equal to zero)It is possible to compute the lower and upper bounds of K2 as follows. Becausen1 � I1 � N1 and n2 � I2 � N2, we can substitute for I1 and I2 from Equation 6 toobtain n1 � �u22K1 ��u12K2 � N1n2 � ��u21K1 +�u11K2 � N2This is equivalent to n1 ��u22K1��u12 � K2 � N1 ��u22K1��u12n2 +�u21K1�u11 � K2 � N2 +�u21K1�u11which gives us two lower bounds, lb1 and lb2, and two upper bounds, ub1 and ub2, for



Kulkarni and Stumm: Linear Loop Transformations 14K2 (depending on the signs of ��u12 and �u11). Thus the lower and upper boundsfor K2 are m2(K1) = d max(lb1; lb2) e and M2(K1) = b min(ub1; ub2) c (8)In order to illustrate the techniques consider loop L again. We noticed that thedependence matrix for L is D = f(1; 0); (0; 1); (2;�1)gSuppose transformation U is applied to L.U = " 1 10 1 # and U�1 = " 1 �10 1 #From Equation 3 we have I1 = K1 �K2; I2 = K2and from Equation 2 D0 = f(1; 0); (1; 1); (1;�1)gAll the transformed dependences are lexicographically positive, so U is a legal trans-formation. From Equation 7, K1 bounds are :m1 = u+11n1 � u�11N1 + u+12n2 � u�12N2= 1 � 0 + 1 � 0 = 0and M1 = u+11N1 � u�11n1 + u+12N2 � u�12n2= 1 � 10 + 1 � 10 = 20To compute the bounds ofK2, note that ��u12 = �1�1 = �1 < 0 and �u11 = 1�1 > 0,so ub1 = (n1 ��u22K1)��u12 = (0�K1)= � 1 = K1lb1 = (N1 ��u22K1)��u12 = (10 �K1)=� 1 = K1 � 10lb2 = (n2 +�u21K1)�u11 = (0 + 0)=1 = 0ub2 = (N2 +�u21K1)�u11 = 10=1 = 10The transformed loop is therefore
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Figure 4: Example Transformationfor K1 = 0; 20for K2 = max(0; K1� 10); min(10;K1)A(K1 � K2; K2) = A(K1 � K2 � 1; K2) + A(K1 � K2; K2 � 1)+A(K1 � K2 � 2; K2 + 1)end forend forFigure 4 depicts the transformation. Notice that the iterations along the K2 axisare all independent and can be executed in parallel.To illustrate the computation of the new loop bounds with the Fourier-Motzkinvariable elimination method, consider the description of the original iteration space interms of the bound matrix S. SI � c26664 1 00 1�1 00 �1 37775 " I1I2 # � 26664 00�10�10 37775From Equation 4 we have,26664 1 �10 1�1 10 �1 37775 " K1K2 # � 26664 00�10�10 37775



Kulkarni and Stumm: Linear Loop Transformations 16" �1 00 1 #(a) " 1 00 �1 #(b) " �1 00 �1 #(c)" 0 11 0 #(d) " 1 p0 1 #(e) " 1 0p 1 #(f) " 1 11 2 #(g)The transformation matrices for (a) reversal of outer loop, (b) reversal of inner loop, (c)reversal of both loops, (d) interchange, (e,f) skew by p in second and �rst dimensions, and(g) wavefront respectively.Figure 5: Example 2d transformationsSince the new bound matrix is not in lower triangular form, we apply the variableelimination method in the following way. From the new set of inequalities, it is clearthat, 0 � K2 � 10 and K1 � 10 � K2 � K1Thus the bounds for K2K2 � max(K1 � 10; 0) and K2 � min(K1; 10)Once K2 is eliminated the above inequalities provide the following projections on K1.K1 � 10 � 10, 0 � K1, 0 � 10, and K1 � K1 + 10. Ignoring the redundant constraintswe have constant bounds for K1.K1 � 0 and K1 � 203.3 Advantages of Linear TransformsLinear loop transformations have several advantages over conventional approach. Alinear transformation can be a primary transformation such as an interchange or it canbe a combination of two or more primary transformations. Figure 5 shows some ofthe possible primary transformations for the two dimensional case. The transformationmatrix for a given permutation is just a permuted identity matrix. A transformationmatrix that reverses the kth loop level is an identity matrix with kth row multiplied by�1.A compound transformation is represented by a matrix which results from the mul-tiplication of the component transformations in the opposite order in which the trans-formations are applied. The legality of the compound transformation, the new loopbounds, and the references are determined in one step at the end rather than doing



Kulkarni and Stumm: Linear Loop Transformations 17so for each of the constituent transformations. The computation of the transformedloop structure is done in the same systematic way irrespective of the transformationemployed.The \goodness" of a transformation can be speci�ed in terms of certain aspectsof the transformed loop, such as, parallelism at outer (inner) loop level, volume ofcommunication, the average load, and load balances. In the conventional approach,where some primary transformation like interchange, or an a priori sequence of suchtransformations is applied, there is no way of evaluating how good a transformationis. On the other hand, a unimodular matrix completely characterizes the transformedloop, and hence the goodness criterion can be speci�ed in quantitative terms. Theparallelism at outer (inner) loop level, volume of communication, the average load, andload balances for the transformed loop can be speci�ed in terms of the elements of thetransformation matrix, dependences, and original loop bounds [KKBP91].For example, we may want to �nd a transformation that minimizes the size of theouter loop level, because it is sequential. The �rst row of the transformation matrix inconjunction with the original loop bounds gives a measure of the size of the outer loopin the transformed loop. This function provides us with the goodness of a candidatetransformation.As another example, we may desire that most of the dependences be independentof the inner loop levels.3 The dependences in the transformed loop can be expressed interms of the original dependences and the elements of the transformation matrix.Finally, suppose the outer most level of a transformed loop is to be executed inparallel. Using the transformation matrix elements and the original loop bounds wehave a way of establishing the load imbalance { the variance of the number of iterationsin each instance of the outer loop.3.4 Optimal Linear TransformUnfortunately, the derivation of a linear transformation that satis�es the desired re-quirements is hard in general. The problem is NP-complete for unrestricted loops,and even a�ne loops with non-constant dependence distances [Dow90]. A unimodularmatrix can however be found in polynomial time for a�ne loops with only constantdependences [Dow90, KKB91].A dependence matrix can provide a good indication as to the desired transforma-tions. In fact, it is common to start with a dependence matrix augmented with theidentity matrix. The transformations sought are then those that result in dependenceswith a particular form { for example, no dependences within a particular loop level.Proofs on the existence of a transformation that achieves certain goals tend to be con-structive, and by themselves provide algorithms to derive the transformation. In the3In a loop with only constant dependences, it is possible to make all dependences independent ofthe inner loop.



Kulkarni and Stumm: Linear Loop Transformations 18following section we discuss two instances of identifying the structure of a transforma-tion given speci�c goals for the transformed loop.4 Two Classes of Linear Transforms4.1 InternalizationConsider the execution of a nested loop on a hierarchical memory architecture, wherenon-uniform memory access times exist. Suppose we partition the iterations in the loopinto di�erent groups where each group is executed in parallel. The degree of parallelismis the number of such groups. Suppose that the data to be computed resides on theprocessor computing it, and that the read-only data is replicated.4 The dependencesthat exist between iterations that belong to di�erent groups result in non-local accesses.The dependences that exist between iterations in the same group result in local accesses.Let us now consider the restricted case where we intend to execute every instanceof the outermost loop in parallel (assuming we have su�cient number of processors todo so), and that each group is executed purely sequential. The amount of parallelism isthe size of the outer loop. Any dependences carried by the outer loop result in non-localaccesses.Internalization [KKBP91, KKB91] transforms a loop so that as many dependencesas possible are independent of the outer loop, and so that the outer loop is as largeas possible. For example, the (1,1) dependence in the left hand loop is internalized toobtain the transformed loop on the right hand.for i = 0; nfor j = 0; nA(i; j) = A(i� 1; j� 1)end forend for =) for K1 = �n; nfor K2 = max(0;�K1); min(n; n� K1)A(K1 + K2; K2) = A(K1 + K2 � 1; K2 � 1)end forend forThe intended transformation matrix should transform should internalize (1,1), inother words change to (0,1) dependence. This would render a fully parallel outer loop.One unimodular matrix U (of many) that achieves the above internalization (1; 1) is:U = " 1 �10 1 #4In other words, we follow the ownership rule to distribute the data.



Kulkarni and Stumm: Linear Loop Transformations 19The general framework for internalization and Algorithms to �nd a good internal-ization in polynomial time can be found in [KKB91, KKB92, KKB].One can only internalize n�1 linearly independent dependences in an n-dimensionalloop. The choice of dependences to internalize has an impact on such factors as the va-lidity of the transformation, the size of the outer level in the transformed loop, the loadbalance, locality etc. Kulkarni and Kumar [KKBP91] introduced the notion of weight toa dependence to characterize the net volume of non-local accesses. They also providedmetrics for parallelism and load imbalance for the two dimensional case. Internalizationcan be further generalized to mapping with multiple parallel levels [KKB92]. Localitycan be improved by internalizing a dependence or a reference with reuse. In other words,internalization is a transformation that enhances parallelism and locality[KKB92].4.2 Access NormalizationIdeally, we want a processor to own all the data it needs in the course of its computation.In that case we wish to transform a loop so that it matches the existing layout of thedata in the memory of the parallel system. For example, consider the loop on theleft hand below. Suppose processors own complete columns of matrices A and B, andsuppose each iteration of the following outer loop is executed in parallel:for i = 0; N1 � 1for j = i; i+ b� 1for k = 0; N2 � 1B(i; j� i) = B(i; j� i) + A(i; j+ k)end forend forend for =) for u = p; b� 1; Pfor v = u; u+ N1 + N2 � 2for w = 0; N1 � 1B(w; u) = B(w; u) + A(w; v)end forend forend forSince a processor needs to access the rows of each matrix, a large number of non-localaccesses. If it is possible to transform the loop so as to re
ect the data owned byeach processor, then the number of remote accesses will be reduced signi�cantly. Forthis we need the references to the second dimension to be the outer loop index in thetransformed loop.Three di�erent access patterns that appear in the above nested loop can be repre-sented by a matrix-vector pair as below.264 �1 1 00 1 11 0 0 375264 ijk 375 = 264 j � ij + ki 375



Kulkarni and Stumm: Linear Loop Transformations 20This is called an access matrix. It is interesting to note that the access matrix itself canbe a transformation matrix. The access normalized loop is shown on the right above.All accesses to B now become local, although A still has some non-local accesses. Tobe a valid transformation the access matrix has to be invertible. The techniques tomake the access matrix invertible do so at the cost of reduced normalization [LP92].5 Concluding RemarksWe presented linear loop transformation framework which is the formal basis for stateof the art optimization techniques in restructuring compilers for parallel machines.The framework uni�es most existing transformations and provides a systematic setof code generation techniques for arbitrary compound transformations. The algebraicrepresentation of the loop structure and its transformation give way to quantitativetechniques for optimizing performance on parallel machines. We also discussed in detailthe techniques for generating the transformed loop. The framework is extended recently[KSb, KP92] to handle imperfectly nested loops. The new framework [KSb] reorganizescomputations at a much �ner granularity than existing techniques and helps implementa class of 
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