
Proceedings of the First International EURO-PAR Conference, August 1995, pages 327--338, LNCS 966.Implementing Flexible Computation Rules withSubexpression-level Loop TransformationsDattatraya Kulkarni*, Michael Stumm*, and Ronald C. Unrau***Department of Computer Science andDepartment of Electrical & Computer EngineeringUniversity of Toronto, Toronto, Canada, M5S 1A4Email: kulki@cs.toronto.edu**Parallel Compiler DevelopmentIBM Toronto LaboratoryToronto, Canada, M3C 1V7Abstract. Computation Decomposition and Alignment (CDA) is a newloop transformation framework that extends the linear loop transforma-tion framework and the more recently proposed Computation Alignmentframeworks by linearly transforming computations at the granularity ofsubexpressions. It can be applied to achieve a number of optimizationobjectives, including the removal of data alignment constraints, the elim-ination of ownership tests, the reduction of cache conicts, and improve-ments in data access locality.In this paper we show how CDA can be used to e�ectively implementexible computation rules with the objective of minimizing communi-cation and, whenever possible, eliminating intrinsics that test whethercomputations need to be executed or not. We describe CDA, show howit can be used to implement exible computation rules, and present analgorithm for deriving appropriate CDA transformations.1 IntroductionIn a SPMD framework such as HPF [7], data alignments and distributions areusually speci�ed by the user or suggested by some automatic tool such asPARADIGM [8]. Given the data alignments and distributions, the compiler thenmaps computations to processors using a computation rule. The choice of com-putation rule can have a signi�cant impact on performance, since it a�ects theamount of communication generated and the number of intrinsics needed in thecode.Traditionally, computation rules have been �xed in that they do not takealignments and distributions of all references into account. For example, theowner-computes rule is a �xed rule and is used almost exclusively. It maps astatement instance to the processor which owns the lhs (left hand side) dataelement of the statement [7], even if it would be more e�cient to compute thestatement on another processor, and it always maps a statement instance inits entirety. Fixed computation rules provide a general schema for computation

mapping and hence simplify code generation, especially the insertion of commu-nication code.In contrast, exible computation rules take into account the location of all thedata needed for the computation and the cost of communication when decidingwhere a computation is to be executed [5]. The granularity of the computationbeing mapped is usually at the subexpression level. It is therefore possible toachieve optimal or near optimal computation mappings. However, the code gen-eration is much more complex. Flexible computation rules are also importanton shared memory multiprocessors. For example, it is important to minimizeremote memory accesses on shared memory multiprocessors with non-uniformaccess times. Moreover, the location of computations can signi�cantly a�ectcache locality and interference patterns.In this paper, we show how the recently proposed CDA loop transformationframework [13, 14] can be used to e�ciently implement a exible computationrule called P-Computes. Section 2 briey reviews the most important relatedwork. Section 3 introduces the P-Computes rule. We show by example how P-Computes can be implemented with CDA in Section 4 and present the formalalgorithms in Section 5.2 Related WorkThere has been much work in developing techniques that improve the perfor-mance of SPMD code. Linear loop transformation is a general technique devel-oped in 1990 that changes the execution order of the iterations [4, 15, 17, 23]and can be used, for example, to reduce communication overhead by movingcommunications to the outer loop levels [17, 23]. However, linear loop transfor-mations are limited in their optimization capabilities, since they leave iterationsunchanged as they map the original iteration space onto a new one.Over the last three years, Computation Alignment (CA) frameworks havebeen proposed that extend the capabilities of linear transformations [9, 12, 21]by transforming loops at the granularity of statements.1 By applying a separatetransformation to each statement in the loop body they change the executionorder of each statement, thus e�ectively changing the constitution of the itera-tions. CA transformations have been applied to improve SPMD code in a varietyof ways [12, 22]. For example, CA may be used to align the statements in theloop body so that all lhs data elements accessed in an iteration are located onthe same processor in the hope of eliminating the need for ownership tests.Computation Decomposition and Alignment (CDA) [13] is a generalizationof CA and goes a step further in that it can transform computations of granu-larity smaller than a statement. Instead of transforming the statements as writ-ten by the programmer, CDA �rst partitions the original statements into �nerstatements and then aligns the statements at this �ner granularity. This creates1 The origins of CA can be traced to loop alignment [1, 19], which is a special case ofCA.

additional opportunities for optimization. In later sections we show how CDAcan be used to implement exible computation rules.A number of optimization techniques have been proposed that reduce com-munication by transforming data. Bala and Ferrante [3] proposed the insertionof XDP directives that explicitly move data to transfer ownerships. XDP canthus be used to implement variations of owner-computes rule. In this context,dynamic data alignment [11] can be considered as a structured form of implicitdata movement. Earlier approaches resorted to static solutions by deriving bestdata alignments [16] and distributions [2, 8] considering global constraints.Chatterjee et al. [5] developed algorithms that derive communication optimalexible computation rules for a class of expressions. They take the machinetopology into account to �nd optimal mappings of subexpressions onto processorsin polynomial time.3 P-Computes RulesThe P-Computes operator,
, can be used to specify exible computation rules.A P-Computes rule,
p (expr), speci�es that the expression expr is to be exe-cuted on processor p. Generally, p and expr will be functions of the enclosingloop iterators. If expr does not assign value to a lhs, then the result of executing
p(expr) is to be sent to the processor designated by the enclosing P-Computesoperator.The speci�cation of p in
p(expr) can be either direct or indirect . If theprocessor is speci�ed as a direct function of the iterators, then the P-Computesrule is direct. Otherwise, if the processor is speci�ed in terms of the locationof array elements, then the rule is indirect. The indirect speci�cation can beachieved through an intrinsic similar to iown(e) used by owner-computes thatevaluates to true on the processor that owns data element e. Here we use avariant, owner(e), that returns the processor that has data element e. Hence,iown(e) is equivalent to the conditional (myid = owner(e)).The
 operator is very general and can be used to express a variety of com-putation rules. For example:
owner(e1)(e1 = e2+ e3)
f(I)(e1 =
g(I)(e2+
h(I)(e3 + e4)))
owner(A(I))(e1 =
owner(B(I))(e2 + e3) +
owner(C(I))(e4 + e5))are all valid P-Computes rules, where the e's are subexpressions. The �rst ex-ample above is equivalent to the application of the owner-computes rule. Thesecond example speci�es the processors directly as a function of the loop itera-tors, whereas the mapping is indirect in the last example.To compare the di�erence between a P-Computes rule and the owner-computes, consider the following loop:

for i = 1;nfor j = 1;nS1 :
owner(A(i;j)) (A(i;j) =
owner(A(i�1;j)) (A(i� 1;j) + A(i� 1;j� 1) + B(i� 1;j))+B(i;j+ 1) + A(i;j� 1))S2 :
owner(B(i;j�1)) (B(i;j� 1) = A(i;j� 1) + B(i;j))end forend forAssume that each iteration is mapped onto a di�erent processor and that B(i; j)is aligned to A(i; j), perhaps due to constraints from a previous loop. If theowner-computes rule were applied directly, then six non-local accesses wouldbe necessary. In contrast, the speci�ed P-Computes rule requires �ve non-localaccesses, one of which is due to sending the result from
owner(A(i�1;j)) instatement S1. Thus, the P-Computes rule can reduce communication by takingthe location of data into account. As we will see in Section 4, CDA transforma-tions can be applied to further reduce the number of communications to three.4 CDA Implementation of P-Computes RulesTo implement a exible computation rule speci�ed with P-Computes operators,we transform the loop in a three stage process. The �rst two stages correspondto CDA, as described in [13]. In the �rst stage, the statements in the loop aredecomposed so that statements can be assigned to processors in their entirety.This may require the introduction of new temporary arrays. Second, the (possiblynew) set of statements are linearly transformed so as to eliminate (or reduce)the need for intrinsics. Finally, in a third stage, the newly introduced temporaryarrays are data aligned to the existing arrays so that the given computation rulecan be speci�ed relative to the ownership of the lhs temporaries. In this sectionwe give an overview of how these techniques can be applied, using the exampleof Section 3.4.1 Computation DecompositionComputation Decomposition is the �rst stage of our method. It decomposes theloop body into statements so that each statement can be mapped in its entiretyto a processor. The P-Computes rules specify how the loop is to be decomposed.In a �rst step, each P-Computes rule that contains more than one statement issplit, so that an equivalent P-Computes rule is applied to each statement sepa-rately. In a second step, those statements containing more than one P-Computesrule are split into multiple statements so that each new statement has a single
 operator. If a statement must be split, then the expression of the embeddedP-Computes rule will be elevated to the status of a statement and a temporaryarray is introduced to accumulate the results of the expression and to pass the

result to the statement corresponding to the enclosing
 operators. The tempo-rary variables are typically chosen as arrays in order to reduce the number ofdependences introduced by the decomposition, allowing for more freedom in thesubsequent search for alignments.Considering the example of Section 3, statement S1 is decomposed into state-ments S1:1 and S1:2. S1:1 corresponds to the expression of the P-Computes ruleembedded in statement S1. The result of evaluating that expression is assignedto the temporary t so that it can be passed to the remainder of S1, namely S1:2.The loop body after computation decomposition becomes:for i = 1;nfor j = 1;nS1:1 :
owner(A(i�1;j)) (t(i;j) = A(i� 1;j) + A(i� 1;j� 1) + B(i� 1;j))S1:2 :
owner(A(i;j)) (A(i;j) = t(i;j) + B(i;j+ 1) + A(i;j� 1))S2 :
owner(B(i;j�1)) (B(i;j� 1) = A(i;j� 1) + B(i;j))end forend forThere are three things worth noting in this loop. First, each new statementhas a single P-Computes rule. Second, each statement is mapped to a di�erentprocessor, so it is necessary to evaluate intrinsics, resulting in considerable over-head. Stage 2 will attempt to eliminate the need for the intrinsics. Finally, notethat S1:1 as is does not use owner-computes. Stage 3 of our process will translatethe existing P-Computes rule to an owner-computes rule.If the programmer does not explicitly specify the P-Computes rule (as in theabove example), then the compiler will have to derive it automatically. A partof that process is to decide which subexpressions are to be elevated to the statusof statements. The other part is deciding which processors those subexpressionsshould be mapped onto.4.2 Computation AlignmentThe computation decomposition of Section 4.1 produces a new loop body thatcan have more statements than the original. We can now employ CA to sepa-rately transform each statement of the new loop body in attempting to elim-inate the need for intrinsics [12, 22]. Intuitively, the mapping causes a relativemovement of the statement instances across iterations. The idea is to move thecomputations so that those that are mapped to the same processor belong tothe same iteration.Just as there is an iteration space for the loop body, there is a computationspace for a statement S, CS(S), which is an integer space representing all exe-cution instances of S in the loop. CA applies a separate linear transformation toeach computation space. That is, if the decomposition produces a loop body withstatements S1; . . . ; SK, which have computation spaces CS(S1); . . . ; CS(SK),then we can separately transform these computation spaces with linear transfor-mations T1; . . . ; TK , respectively. Before the alignment, an iteration (i1; . . . ; in)

i

j

(1,1)

owner(A(i−1,j))

owner(B(i,j−1))

owner(A(i,j))

S1.1 S1.2
S2

(1,1) i

j

owner(B(i,j))

owner(A(i,j)) owner(A(i,j))

S1.1 S1.2
S2

Iterations before alignment Iterations after alignmentFig. 1. Movement of computations in the computation space.consists of computations f(i1; . . . ; in;S1); . . . ; (i1; . . . ; in;SK)g, where (i1; . . . ; in;Sj) is the execution instance of statement Sj in iteration (i1; . . . ; in). After thealignment, iteration (i1; . . . ; in) consists of computations f(T�11 �(i1; . . . ; in);S1);. . . ; (T�1K � (i1; . . . ; in);SK)g.This type of computation movement at the statement level can be used torede�ne the iterations so that all (most) computations in an iteration belongto the same processor. The basic idea in choosing an alignment can be illus-trated with a simple example. Suppose we want to align statement S1 below tostatement SK, where SK assigns to the original lhs array, say A(i; j).S1 :
owner(B(i�c1;j�c2) (t1(i; j) = . . .)SK :
owner(A(i;j)) (A(i; j) = t1(i; j) + . . .)Also assume that A(i; j) and B(i� a1; j� a2) are collocated due to a priordata alignment. We can align S1 to SK by applying a transformation that shiftsthe S1 computations by (c1� a1; c2� a2) relative to the computations of SK.Doing so modi�es the statements to become:S1 :
owner(B(i�a1;j�a2) (t1(i+ c1� a1; j+ c2� a2) = . . .)SK :
owner(A(i;j)) (A(i; j) = t1(i; j) + . . .)and both statements are now to be executed by the same processor.2 We canalign the statements of the decomposed loop of Section 4.1 in a similar way toeliminate the need for intrinsics. The S1:1 computations are moved along the idirection to bring (i+1; j;S1:1) to iteration (i; j). Similarly, the S2 computationsare moved along the j direction so that (i; j+1;S2) is now executed in iteration(i; j). Figure 1 shows these alignments. The resulting CDA transformed loop is:2 The alignment is legal when all dependences between S1 and S2 remain positive.

for i = 0;nfor j = 0;nS1:2 : (i > 0 ^ j > 0)
owner(A(i;j)) (A(i;j) = t(i;j) + B(i;j+ 1) + A(i;j� 1))S2 : (i > 0 ^ j < n)
owner(B(i;j)) (B(i;j) = A(i;j) + B(i;j+ 1))S1:1 : (i < n ^ j > 0)
owner(A(i;j)) (t(i+ 1;j) = A(i;j) + A(i;j� 1) + B(i;j))end forend forand all statement instances in an iteration are nowmapped to the same processorso that the intrinsics can be eliminated altogether.Such a computation alignment changes the references and the dependences inthe loop, as well as the loop bounds. If computation space CS(S) is transformedby T , then reference matrix R of each reference r in S is changed to RT�1.We represent data ow constraints in the loop with dependence relations [20],and we keep the exact dependence information between each pair of read andwrite [6, 18]. Consider a read reference r in statement Sr ow dependent on awrite reference w of statement Sw. The dependence relation w[dwr � I] ! r[I]between the references is changed to w[dwr � Tw � T�1r � I] ! r[I], when Tw isapplied to CS(Sw) and Tr is applied to CS(Sr). The alignment is legal if all newdependence relations are positive.The new loop bounds are obtained by projecting all computation spaces ontoan integer space that becomes the iteration space of the aligned loop. Becauseeach statement can potentially be transformed by a di�erent linear transforma-tion, the new iteration space can be non-convex. There are two basic strategiesthat can be pursued to generate code. First, it is possible to take the convex hullof the new iteration space and then generate a perfect nest that traverses thishull. This is the strategy chosen to generate the above loop, but requires theinsertion of guards that disable the execution of statements where necessary. Asecond, alternative strategy is to generate an imperfect nest that has no guards.Guard-free code is usually desirable for better performance, but a perfect loopmay be desirable in some cases, for instance to avoid non-vector communica-tions or to avoid loop overheads. Algorithms to generate code employing bothstrategies can be found in the literature [9, 10, 12, 21, 22].4.3 Aligning the Temporary ArraysIn the third stage, each temporary array is data aligned to the array used bythe
 operator to specify the processor onto which the computations are to bemapped. The idea is to collocate the lhs reference of a statement (assuming itis to a temporary) and the array reference in the
 operator. This allows theP-Computes rule to be interpreted as the owner-computes rule. In our runningexample, t(i+ 1; j) is data aligned to A(i; j), so that owner(A(i; j)) is equivalent

to owner(t(i+ 1; j)). Hence, we implement a exible computation rule, but canretain the simplicity of owner-computes for code generation.4.4 Properties of CDA Transformed LoopsNotice that the transformed loop implements the speci�ed P-Computes rule.For instance, subexpression A(i� 1; j)+A(i� 1; j� 1)+B(i� 1; j) is computedon the owner of A(i� 1; j). The transformation has separated out the complexcomputation rule into its constituent simpler rules, which happen to be owner-computes here. Moreover, the computation alignment has made the loop e�cientby moving the computations relative to each other so that all computations inan iteration are to be computed by the same processor, namely owner(A(i; j)).The intrinsics can now be eliminated altogether by changing the loop strides.The end result is a loop that requires only three non-local accesses, compared tosix in the original (assuming again that each iteration is mapped to a di�erentprocessor).One drawback of our approach is that the computation alignmentmay changethe loop independent dependences on the temporaries to become loop carrieddependences. This can reduce the degree of available parallelism in the loop.5 AlgorithmsIn this section we outline speci�c algorithms that implement a given P-Computesrule under the assumption that there is one statement in the original loop body.The algorithms correspond to the three stages discussed in Section 4. They canbe easily extended to handle the case where the original loop body has multiplestatements. We assume that the references are a�ne functions of iteration vectorI and are represented by a reference matrix. The a�ne function f in a referenceA(f(I)) is used to denote the reference matrix as well. Data alignments also havea matrix representation, and data alignment of dj on an array changes eachreference r to the array to be djr.Algorithm comp-decomp decomposes the statement so that each P-Computesoperator maps a separate statement. In each iteration of the algorithm, each in-nermost
-subexpression is rewritten as a full statement with a new temporaryarray element as its lhs, and the
-subexpression is replaced by the correspond-ing reference to the temporary.Algorithm : comp-decompDecompose statement S :
owner (A(f(I))) (lhs= rhs)begini 1while rhs of S has a P-Computes operatorChoose an innermost
owner (B(g(I))) (expr) in Sti (new temporary arraygenerate statement Si :
owner (B(g(I))) (ti(I) = expr)

replace
owner (B(g(I))) (expr) in rhs by ti(I)i i+ 1end whileK igenerate SK :
owner (A(f(I))) (lhs = rhs)endThe second stage uses algorithm comp-align in attempting to �nd a compu-tation alignment that aligns the K statements generated by the decompositionstage so that all statement instances in an iteration are mapped to the sameprocessor. The search space of all legal computation alignments is large, andtherefore it is not possible to exhaustively search this space in reasonable time.For this reason, we apply a heuristic.We know that a statement Sj with P-Computes operator
owner (Aj(fj(I)))can be aligned to statement Si with operator
owner (Ai(fi(I))) by applying atransformation Tj = fi�1djfj to Sj, where array Aj is data aligned to array Aiby transformation dj. Since there are K statements in the loop, we can constructK computation alignments, � = f�1; . . . ; �Kg, with computation alignment �ialigning each statement of the loop to statement Si. Some of these computationalignments may be illegal. If there are legal alignments, then the algorithm willchoose the one that results in a loop with the minimal communication overhead.If there are no legal alignments, then the algorithm attempts to make an illegalcomputation alignment legal by discarding individual statement alignments thatviolate dependences. The algorithm then selects the computation alignment withthe fewest discarded statement alignments.Algorithm : comp-alignGiven: statements S1; . . . ;SK,where Si has the P-Computes operator
owner (A(fi(I))). Statements S1; . . . ;SK�1have temporary variables on the lhs. SK has the same lhs as the original statement.beginStep 1: Construct a set of K computation alignments, �. Each alignment �i 2 �contains K statement alignments, �i = fT1; . . . ;TKg, such that Tj aligns Sj to Si.Hence, Tj = fi�1djfj, where array Aj is data aligned to Ai by dj.Step 2: If � contains no legal computation alignments, then go to Step 3. Other-wise, choose alignment �i 2 � that (1) is legal and (2) results in a transformedloop with lowest communication overhead. Return �i.Step 3: If none of the K computation alignments in � are legal, then modify each�k 2 � to make it legal:(i) While the alignment �k is illegal due to a violated ow dependence on atemporary

Choose such a dependenceAssume it is from Si to Sj(that is the lhs of Si is accessed in Sj and Ti 6� Tj)3Set Ti Tj(ii) While the alignment �k is illegal due to a violated dependence on the lhsof SK Choose such a dependenceIf it is a ow dependence from SK to Sithen set Ti Tj where Tj is chosen such that Ti < Tjand there is no other Tr with Ti < Tr < Tjelse (it is an anti-dependence from Si to SK)then set Ti Tj where Tj is chosen such that Ti > Tjand there is no other Tr with Ti > Tr > TjReturn the computation alignment with the fewest discarded statement alignments.endFinally, algorithm data-align-temp aligns the temporaries to existing arraysso that P-Computes rules can be replaced by simple owner-computes rules.Algorithm : data-align-tempData Align the temporary arrays introduced in Stage 1.The alignment chosen in stage two is �k = fT1; . . . ;TKg.beginfor each statement Si :
Ai(fi(I)Ti�1) (ti(T�1i I) = . . .)data align ti to Ai by fiend forendAs discussed before, this data alignment makes it possible to convert the P-Computes rule for the loop into the familiar owner-computes rule, assuming theP-Computes rule for statement SK is
owner (AK(fK(I))).6 Concluding RemarksWe have shown how P-Computes, a representative exible computation rule,can be e�ectively implemented by using CDA loop transformations. The imple-mentation eliminates intrinsics whenever possible. Since the P-Computes rule is�nally translated into the familiar owner-computes rule, the code generation fora given P-Computes is simpler than if the rule were implemented directly.We have assumed that the P-Computes rule was speci�ed by the programmerso as to minimize communication. Ideally, a compiler should be able to automat-ically derive the most appropriate P-Computes rules. However, the derivation of3 Ti � Tj denotes that for all iterations I, TiI is lexicographically less than or equalto TjI.

an optimal P-Computes is still an open problem. We believe that it is possible toproduce near optimal computation rules by �rst deriving CDA transformationsthat minimize the number of distinct references, and then employing existing al-gorithms that derive exible computation rules [5]. For example, previous workby Chatterjee et al. shows that subexpressions can be optimally mapped to pro-cessors in polynomial time [5]. However, their results have to be extended if CDAtransformations are taken into account. If each data element in the statementA(i; j) = A(i� 1; j) + A(i� 1; j� 1) + A(i; j� 1) + A(i; j)is mapped to a di�erent processor, then Chatterjee's algorithm would map theexecution of this statement to the processor that owns A(i; j), resulting in threeremote accesses. However, the statement can be CDA transformed to:t(i+ 1; j) = A(i; j) + A(i; j� 1)A(i; j) = t(i; j) + A(i; j� 1) + A(i; j)With the temporary appropriately data aligned, the original statement is now ef-fectively executed on two di�erent processors, namely those that own A(i� 1; j)and A(i; j). The execution of the transformed statements require only two remoteaccesses.CDA is a general subexpression-level transformation framework which weapplied here only for SPMD code optimization. CDA can be used in severalother optimization contexts, for example to remove data alignment constraints,improve locality, eliminate cache conicts, or reduce register pressure [13, 14].Our current work includes the development of e�cient algorithms that de-rive P-Computes rules and an analysis of their complexity. We are also workingon more e�cient algorithms to eliminate intrinsics that take intermediate align-ments into account while constructing partial alignments.References1. R. Allen, D. Callahan, and K. Kennedy. Automatic decomposition of scienti�cprograms for parallel execution. In Conference Record of the 14th Annual ACMSymposium on Principles of Programming Languages, pages 63{76, Munich, WestGermany, January 1987.2. J. Anderson and M. Lam. Global optimizations for parallelism and locality onscalable parallel machines. In Proceedings of the ACM SIGPLAN '93 Conferenceon Programming Language Design and Implementation, volume 28, June 1993.3. V. Bala, J. Ferrante, and L. Carter. Explicit data placement (xdp): Amethodologyfor explicit compile-time representation and optimization of data movement. InProceedings of the 4th ACM SIGPLAN Symposium on Principles and Practice ofParallel Programming, volume 28, pages 139{149, San Diego, CA, July 1993.4. Utpal Banerjee. Unimodular transformations of double loops. In Proceedings ofThird Workshop on Programming Languages and Compilers for Parallel Comput-ing, Irvine, CA, August 1990.5. S. Chatterjee, J.R. Gilbert, , R. Schreiber, and S. Teng. Optimal evaluation ofarray expressions on massively parallel machines. ACM Transactions on Program-ming Languages and Systems, 17(1):123{156, January 1995.6. P. Feautrier. Dataow analysis of array and scalar references. International Jour-nal of Parallel Programming, 20, 1991.

7. HPF Forum. HPF: High performance fortran language speci�cation. Technicalreport, HPF Forum, 1993.8. M. Gupta. Automatic data partitioning on distributed memory multicomputers.Technical report, Dept of computer Science, University of Illinois at Urbana Cham-paign, 1992.9. W. Kelly and W. Pugh. A framework for unifying reordering transformations.Technical Report UMIACS-TR-92-126, University of Maryland, 1992.10. W. Kelly, W. Pugh, and E. Rosser. Code generation for multiple mappings. Tech-nical Report UMIACS-TR-94-87, University of Maryland, 1994.11. K. Knobe, J.D. Lucas, and W.J. Dally. Dynamic alignment on distributed mem-ory systems. In Proceedings of the Third Workshop on Compilers for ParallelComputers, Vienna, pages 394{404, 1992.12. D. Kulkarni and M. Stumm. Computational alignment: A new, uni�ed programtransformation for local and global optimization. Technical Report CSRI-292,Computer Systems Research Institute, University of Toronto, January 1994.13. D. Kulkarni and M. Stumm. CDA loop transformations. In Proceedings of Thirdworkshop on languages, compilers and run-time systems for scalable computers,Troy, NY, May 1995.14. D. Kulkarni, M. Stumm, R. Unrau, and W. Li. A generalized theory of linearloop transformations. Technical Report CSRI-317, Computer Systems ResearchInstitute, University of Toronto, December 1994.15. K.G. Kumar, D. Kulkarni, and A. Basu. Deriving good transformations for map-ping nested loops on hierarchical parallel machines in polynomial time. In Proceed-ings of the 1992 ACM International Conference on Supercomputing, Washington,July 1992.16. J. Li and M. Chen. The data alignment phase in compiling programs for dis-tributed memory machines. Journal of parallel and distributed computing, 13:213{221, 1991.17. W. Li and K. Pingali. A singular loop transformation framework based on non-singular matrices. In Proceedings of the Fifth Workshop on Programming Lan-guages and Compilers for Parallel Computing, August 1992.18. D.E. Maydan, J.L. Hennessy, and M.S. Lam. E�cient and exact data dependenceanalysis. SIGPLAN Notices, 26(6):1{14, 1991.19. D. Padua. Multiprocessors: Discussion of some theoretical and practical problems.PhD thesis, University of Illinois, Urbana-Champaign, 1979.20. W. Pugh. Uniform techniques for loop optimization. In International Conferenceon Supercomputing, pages 341{352, Cologne, Germany, 1991.21. J. Torres and E. Ayguade. Partitioning the statement per iteration space usingnon-singular matrices. In Proceedings of 1993 International Conference on Super-computing, Tokyo, Japan, July 1993.22. J. Torres, E. Ayguade, J. Labarta, and M. Valero. Align and distribute-based lin-ear loop transformations. In Proceedings of Sixth Workshop on Programming Lan-guages and Compilers for Parallel Computing, 1993.23. M.E. Wolf and M.S. Lam. An algorithmic approach to compound loop transforma-tion. In Proceedings of Third Workshop on Programming Languages and Compilersfor Parallel Computing, Irvine, CA, August 1990.This article was processed using the LaTEX macro package with LLNCS style

