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Abstract. In this paper, we stress the need for aggressive loop transformation
techniques, such as CDA (Computation Decomposition and Alignment), that
have improved ability to optimize nested loops. Unfortunately, these types of
aggressive techniques may also generate complex nested loops with relatively
higher overheads. In this paper, we demonstrate that the computational and spa-
tial overhead in complex transformed loops can be effectively reduced, often by
simple techniques.

1 Introduction

Techniques for linearly transforming nested loops have matured immensely during the
past several years [1,5,8,9,11] to the point where today’s production compilers can trans-
form arbitrary perfect loop nests with affine references to arrays and pointer structures
that have a single level of indirection [4]. However, we believe that more aggressive
techniques are necessary in order to exploit the performance of uniprocessor and multi-
processor systems to the fullest degree possible. The need for more aggressive transfor-
mation techniques is even more critical when considering the forthcoming processors
with over 1GHz clock frequency. On these processors, the miss penalties for memory
references will be large enough to warrant program transformations that improve locality
of reference at the cost of a higher computational and spatial overhead in the transformed
code. In fact, these processors may well require a new family of optimizations, capable
of hiding the multiple cycle latency to access cache memory.

Several groups have been involved in research exploring extensions to the linear
loop transformation framework [2,3,6,10]. The extended frameworks are considerably
more aggressive and more powerful than the linear loop transformation framework,
because the transformations in the new frameworks can alter not only the execution
order of the iterations, but also the composition of the new iterations [7]. In particular,
they i) examine computation structures in loops at much finer granularity, ii) explore
transformation spaces left unexplored by linear loop transformations, and iii) consider
loops that are not perfectly nested.

One undesirable side effect of improved transformation capability is increased code
complexity of the transformed loops. The transformed loops may have complex loop
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control structures and higher computational and spatial overhead when compared to
linearly transformed loops. The overhead in linearly transformed loop nests tends to be
small relative to the execution time of the original loop. Therefore, it has sufficed for the
compilers to use only traditional optimization techniques to minimize the overhead of
linearly transformed loops. In the extended frameworks, however, the overhead created is
much more significant, requiring techniques to reduce the overhead as much as possible.
In this paper we demonstrate that simple techniques exist that can substantially reduce
the overhead in complex transformed loops.

2 CDA: A Representative Extended Transformation Framework

Computation Decomposition and Alignment (CDA) is a representative example of a
framework that extends the linear loop transformation framework [3,7]. We use it here
to illustrate our techniques and thus briefly describe it first in this section.

A CDA transformation consists of two stages. In the first stage, Computation De-
composition decomposes the loop body initially into its individual statements, and then
optionally the individual statements into statements of finer granularity. A statement is
decomposed by rewriting it as a sequence of smaller statements that produce the same
result as the original statement. In doing so, it is necessary to introduce temporary varia-
bles to pass intermediate results between the new statements. For example, the statement
a = b + c + d + e can be partitioned into t = d + e and a = b + c + t, where t is a
temporary variable used to pass the result of the first statement to the second.A statement
can be decomposed multiple times into possibly many statements. The choice of which
sub-expressions to elevate to the status of statements is a key decision in CDA optimiza-
tion and is determined largely by the specific optimization objective being pursued.

A sequence of decompositions produces a new loop body that can have more state-
ments than the original, but the loop references and loop bounds remain unchanged. For
each new statement S, there is a computation space, CS(S), which is an integer space
that represents all execution instances of statement S in the loop.

In the second stage of CDA, Computation Alignment applies a separate linear trans-
formation to each of the computation spaces. The set of all transformed computation
spaces together defines the new iteration space. Unlike the original iteration space, the
new iteration space may be non-convex, so the corresponding new loop may have com-
plex bounds.

Figure 1 illustrates the application of a simple CDA transformation. Computation
decomposition first splits the loop body into two statements S1 and S2. Statement S1 is
further decomposed into two smaller statements S1.1 and S1.2, using a temporary array
t to pass the result of S1.1 to S1.2. The result is a loop with 3 statements in the body:

S1 .1 : t(i , j ) = A(i − 1 , j ) + A(i − 1 , j − 1 ) + B(i − 1 , j )
S1 .2 : A(i , j ) = t(i , j ) + B(i , j + 1 ) + A(i , j − 1 )
S2 : B(i , j − 1 ) = A(i , j − 1 ) + B(i , j )

This computation decomposition effectively partitions the iteration space into three com-
putation spaces, namelyCS(S1.1),CS(S1.2) andCS(S2).The particular decomposition
for S1 was chosen so that it separates all (i−1, ∗) references into a new statement, S1.1.
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for  i  = 0, n
    for j =0, n
        S1.2: (i>0&j>0) A(i,j) = t(i,j)+B(i,j+1)+A(i,j−1)
        S2   : (i>0&j<n) B(i,j) = A(i,j)+B(i,j+1)
        S1.1: (i<n&j>0) t(i+1,j) = A(i,j)+A(i,j−1)+B(i,j)
    end for
end for

CS(S1.1)

CS(S2)CS(S1.2)

Computation  

  Decomposition

Computation  Alignment

for  i  = 1, n
    for j = 1, n
        S1: A(i,j) = B(i,j+1)+A(i,j−1)+
                             A(i−1,j)+A(i−1,j−1)+B(i−1,j)
        S2: B(i,j−1) = A(i,j−1)+B(i,j)
    end for
end for

CS(S1.1)

CS(S1.2)
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Fig. 1. Application of a simple CDA transformation.

This will allow a subsequent transformation to modify the (i−1, ∗) references into (i, ∗)
references, without affecting the other references in S1 that are now in S1.2.

The three computation spaces are computationally aligned by applying transforma-
tions

T1.1 =

[
1 0 −1
0 1 0
0 0 1

]
T1.2 =

[
1 0 0
0 1 0
0 0 1

]
and T2 =

[
1 0 0
0 1 −1
0 0 1

]

to CS(S1.1), CS(S1.2) and CS(S2), respectively. As a result, computation spaces
CS(S1.1) and CS(S2) move relative to CS(S1.2), since T1.2 is the identity matrix.
CS(S1.1) moves one stride in direction i so that the (i − 1, ∗) references in S1.1 change
to (i, ∗) references. CS(S2) moves one stride in direction j so that the B(i, j − 1)
reference changes to B(i, j). The transformations thus align the computation spaces so
that most references are aligned to A(i, j). Figure 1 shows the transformed computation
spaces and highlights three computations that are now executed in one iteration. The
new iteration space is defined by the projection of the transformed computation spaces
onto a plane. Iteration (i, j) in the new iteration space now has new, different instances
of S1.2, S2 and S1.1 computations, namely those that were originally in iterations (i, j),
(i, j + 1) and (i + 1, j), respectively. The new iteration space is non-convex, and the
limits of the new, transformed loop correspond to the convex hull of this new iteration
space.An iteration now no longer necessarily entails the execution of all three statements.
The transformed loop thus requires guards that allow a statement to be executed only if
appropriate.
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for i = 0 ,n
for j = 0 ,n

U (i , j ) = c(0 ) ∗ U (i , j )
R(i , j ) = c(0 ) ∗ R(i , j )

end for
end for

Fig. 2. The loop used to illustrate the effect of techniques to reduce overheads.

3 Computational and Spatial Overheads

The overheads in complex nested loops, such as those generated by applying CDA
transformations, are: i) computational overhead due to empty iterations and guard com-
putations, and ii) spatial overhead for storing temporary variables. In this paper, we
briefly outline techniques to reduce both types of overheads. We illustrate the generated
overheads and the effectiveness of the techniques to reduce them on the nested loops
that result from applying two different CDA transformations on the loop of Figure 2.
The loop is deliberately chosen to be simple so that the transformed loops demonstrate
only the overheads and none of the benefits.

The transformed iteration space for the first transformation is shown on the left hand
side of Figure 3, where one of the computation spaces is applied an offset alignment of
(k, k), where k is a positive integer. The left hand side of Figure 4 shows the transformed
iteration space for the second transformation, where one of the computation spaces is
skewed with respect to the other. We will refer to the CDA transformed loops as Loop 1
and Loop 2, respectively.

The overhead for these two loops was measured on a Sun workstation with hyper-
SPARC CPU, and is shown in Figure 3. For the purpose of the experiments, the loop size
n was set to 1000 and k was set to 5, unless otherwise specified. The overhead of Loop 1
with the loop bounds generated by a simplistic algorithm that generates the subsumption
of the union of computation spaces is shown as the first five bars on the right hand side
of Figure 3. The overhead increases slightly with large k’s, due to increasing number of
empty iterations and guard computations. For k = 5, the overhead is about 22% of the
execution time of the original loop. The last five bars on the right hand side of Figure 3
correspond to Loop 1 optimized using the techniques outlined in the following sections;
the overhead is then less than 0.1% of the original loop.

The overheads can also be reduced significantly when the alignments are more ge-
neral than offsets. The overhead of Loop 2 with the bounds generated by the simplistic
algorithm mentioned above is shown as the first bar on the right hand side of Figure 4.
The overhead can be much higher than when using offset alignments (nearly 78% of the
original loop in this case), since nearly one quarter of the iterations are empty. However,
the overhead is reduced to about 5% of the original loop when Loop 2 is optimized by
removing empty iterations and guards, using the techniques outlined next.



Optimizing Computational and Spatial Overheads in Complex Transformed Loops 371

i

j

n0
0

n

n+k

k

k n+k

bounds using 
CDA−bounds

AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA AAAAAA AAAAAA AAA

AA
AA

Fig. 3. Overheads in a CDA transformed loop with offset alignments (k, k). The bars on the
left correspond to the execution times of Loop 1 with overheads, whereas the bars on the right
correspond to the execution times of Loop 1 after reducing overheads with the techniques described
in this paper.
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Fig. 4. Overheads in Loop 2, CDA-transformed with a linear alignment.

4 Removing Empty Iterations

The iteration space of a CDA transformed loop is the union of the transformed computa-
tion spaces projected onto an integer space (which we refer to as the union of computation
spaces for conciseness). It is desirable to derive tight loop bounds so that a CDA trans-
formed loop scans integer points in the smallest convex polytope containing the union
of computation spaces. With tighter loop bounds, the overhead of empty iterations and
the guard computations they contain is reduced.

While deriving tight loop bounds, it is desirable to keep the CDA transformed loop
perfectly nested, because it may be necessary to apply other loop transformations in
later stages, and most transformations require that the loop be perfectly nested. In order
to obtain a perfectly nested CDA transformed loop, the polytope that the loop scans
must be convex.3 Our algorithm removes empty iterations by finding the convex-hull
of the union of computation spaces. When the union is a convex polytope itself, then

3 Only in some cases do non-convex polytopes correspond to perfect nestings.
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Fig. 5. Empty iterations in an iteration space with tight bounds.

the derived loop bounds are exact in that the transformed loop does not have any empty
iterations.

As an example of applying our technique to reduce empty iterations, consider again
the transformed computation spaces for Loop 2 on the left hand side of Figure 4. The
algorithm computes the convex-hull as defined by the lines:

i = 0, i = 2n, j = 0, j = n, j = i − n

from which the algorithm produces the following inequalities:

i ≥ 0, i ≤ 2n, j ≥ 0, j ≤ n, j ≥ i − n

After variable elimination, these inequalities provide the loop bounds,

0 ≤ i ≤ 2n, max(0, i − n) ≤ j ≤ n

These inequalities bound the shaded area in the figure. The loop bounds are exact in this
case, since the union is a convex polygon, so it no longer includes empty iterations.

In some cases, the bounds derived using our algorithm may not remove all empty
iterations. Consider the union of the computation spaces of Loop 1 depicted on the left
hand side of Figure 3, where the union is a non-convex polygon. The dotted lines on
the left hand side of Figure 5 show the loop bounds that are derived by the simplistic
algorithm. The dotted lines at the center of the figure show the bounds obtained by our
algorithm.

Figure 6 compares the overhead of the unoptimized Loops 1 and 2 with the overhead
of the optimized loops, where the bounds are derived using our algorithm. The reduction
in the overhead of Loop 1 (of Figure 3) is not significant, since it contains only a small
number of empty iterations. The application of our algorithm to Loop 2 (of Figure 4)
reduces the overhead by about 45%, since nearly one quarter of its iterations were empty.
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Fig. 6. Performance benefits of eliminating empty iterations.

5 Reducing the Overhead of Guard Computations

Guards are often necessary in CDA transformed loops, both to step off empty iterations
and to prevent inappropriate computations from executing in the new iterations. Guards
may incur considerable run-time overhead, but in many cases it is possible to remove
them. Here, we outline a relatively simple technique that incrementally removes guards
from selected regions of the union of computation spaces; however it results in non-
perfectly nested loop nests. It is targeted primarily towards CDA transformations, where
the intersection of the computation spaces makes up a large portion of the union of the
computation spaces.We illustrate the technique with an example, namely the transformed
iteration space on the left of Figure 7. The CDA transformations in the figure are such that
the computation space of statement S2 is moved up by k in the I2 direction with respect
to the computation space of statement S1, and the computation space of statement S3 is
moved right by k in the I1 direction with respect to the computation space of statement
S1. We refer to the CDA transformed loop corresponding to this iteration space as Loop
3. Our algorithm removes guards using the following steps:

1. The bounds of the intersection of the computation spaces are derived. For instance,
the shaded area in Figure 7 is the intersection of the three computation spaces. The
iterations in the intersection require the execution of all three statements S1, S2 and
S3. Therefore, if we partition the new iteration space to separate out the intersection,
the code generated for the iterations in the intersection does not require any guards.

2. The iteration space is partitioned along the first dimension I1 so as to delineate the
intersection in that dimension. In our example, the CDA transformed iteration space
of Figure 7 is divided into three partitions, namely, L1, L2 and L3, based on the fact
that the I1 bounds for the intersection are k and n. Partition L1 has iterations with
I1 values between 0 and k − 1; partition L2 has iterations with I1 values between k
and n, (the two I1 bounds for the intersection); and partition L3 has iterations with
the I1 values between n + 1 and n + k.

3. Code is generated for partition L2. This code consists of a sequence of subnests.
The first subnest includes those iterations with I2 values that do not belong to the
intersection, thus requiring guards. The second subnest includes the iterations that
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// Code for L1
      ...

// code for L2

for I1 = k, n
   for I2 = 0, k−1
      g(S1)  S1:
      g(S2)  S2:
      g(S3)  S3:
   end for
   for I2 = k, n
             S1:
             S2:
             S3:
   end for
   for I2 = n+1, n+k
      g(S1)  S1:
      g(S2)  S2:
      g(S3)  S3:
   end for
end for

// code for L3
      ...

Fig. 7. Transformed computations spaces to illustrate steps in algorithm to remove guards. The
transformed loop corresponding to the transformed computation spaces is called Loop 3.

belong to the intersection. This code constitutes most of the iterations of the loop
that need to be executed and require no guards. The final subnest includes those
iterations with I2 values higher than those of the intersection, thus requiring guards
again. The three subnests for our example are shown on the right hand side of
Figure 7. Note that the subnest corresponding to the intersection does not have any
guard computations.

4. The algorithm is applied recursively to remove guards from partitions L1 and L3.
The iterations in these partitions contain only a subset of the statements of the
original loop body. Thus, only a subset of the computation spaces participate in the
intersections of these partitions. Recursive application of the algorithm to partition
L1, does not partition it further along I1, since the intersection of computation spaces
for S1 and S2 spans the entire I1 bounds of L1. The intersection in L1 has I2 bounds
of k and n, and guards can be similarly removed from L1.

The result of applying the guard removal algorithm is thus a sequence of loop nests,
which typically are imperfectly nested. The right hand side of Figure 7 shows a template
of the code generated for the transformed computation spaces on the left hand side.

Figure 8 shows the effectiveness of the guard removal algorithm. The dark bars
correspond to the overhead of CDA transformed code with guards, where the algorithm
to remove empty iterations was applied to remove as many empty iterations as possible.
The grey bars correspond to code for which the guard removal algorithm was applied.
The figure shows that additional removal of guards can reduce the overhead substantially,
when the loops are transformed by offset alignments. The reduction in overhead for Loop
2 was not as large as for Loops 1 and 3, since the code for Loop 2 continues to have
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Fig. 8. Performance benefits of removing guards.

guards in nearly one quarter of the iterations, but the benefits of applying the guard
removal algorithm is still significant.4

6 Optimization of Spatial Overhead for Temporaries

The temporary variables introduced during Computation Decomposition may increase
the number of references to memory and may add to space requirements and the cache
footprint. A number of optimizations can reduce some of these overheads.

– Temporaries needed in a loop may be replaced by dead variables, which are not used
in the later flow of the program.

– While decomposing a statement, it is possible to eliminate the need for temporary
variables altogether by using the lhs array elements to store the intermediate results.
Such a replacement is legal if the dependence relations remain legal. Even though
a Computation Decomposition does not modify dependences, eliminating the tem-
porary variable this way can modify dependences. For example, it is legal to replace
t(i, j) by a(i, j) in the following decomposition,

a(i , j ) = a(i , j ) + a(i − 1 , j ) + a(i , j − 1 )
⇒

a(i , j )
t(i , j )——– = a(i , j ) + a(i − 1 , j )

a(i , j )
a(i , j ) = t(i , j )——– + a(i , j − 1 )

However, such a replacement would be illegal in the following decomposition, be-
cause a(i, j) would be modified before it is used in the second statement so the
temporary variable needs to be retained.

4 These iterations correspond to the region bounded by 0 ≤ i ≤ n and i + 1 ≤ j ≤ n on the
left of Figure 4.
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a(i , j ) = a(i , j ) + a(i − 1 , j ) + a(i , j − 1 ) ⇒
t(i , j ) = a(i − 1 , j ) + a(i , j − 1 )
a(i , j ) = t(i , j ) + a(i , j )

Hence, storage requirements can be reduced in this way for only some decomposi-
tions. Moreover, note that the dependences introduced by replacing the temporary
variable can constrain later opportunities for Computation Alignment. It is therefore
better to replace the references to the temporary by references to the lhs after the
CDA transformation.

– Temporary variables that were introduced in one loop can be reused in subsequent
loops. This is possible since the temporaries are intended to store only the results
inside a loop, and these results are not needed outside the loop.

– Temporary arrays are typically initially chosen to have the same dimension and
size as the iteration space, since the subexpressions that generate values for the
temporaries potentially have a new value in each iteration. The dimension and size
of the temporary arrays can be reduced following the CDA transformation. It is only
necessary to have as many storage locations as there are iterations between when
the temporary is defined and when it is used. For simple offset alignments, the size
of the temporary arrays can be just a fraction of the size of the iteration space. For
example, consider the decomposition of a statement S in a two dimensional loop
into statements S1 and S2. The results of S1 are stored in a temporary array t. When
statement S1 is aligned to statement S2 along the outer loop level by an offset c,
then t need only be of size c × n, assuming n iterations in the inner loop.

7 Concluding Remarks

In this paper, we observed the need for aggressive transformation techniques that have
improved ability to optimize nested loops, but that may also generate complex nested
loops with attendant overhead. We demonstrated that the computational and spatial
overhead in these complex transformed loops can be effectively reduced, often by simple
techniques. We believe that with the reduction in overhead achieved using the techniques
we have described, complex loop transformations become suitable for integration into
production compilers.
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