
International Conference on Parallel Processing 1993.LOCALITY AND LOOP SCHEDULING ON NUMAMULTIPROCESSORSHui Li, Sudarsan Tandri, Michael Stumm, and Kenneth C. SevcikComputer Systems Research InstituteUniversity of TorontoToronto ON M5S 1A4CANADAAbstractAn important issue in the parallel execution of loopsis how to partition and schedule the loops onto theavailable processors. While most existing dynamicscheduling algorithms manage load imbalances well,they fail to take locality into account and thereforeperform poorly on parallel systems with non-uniformmemory access times. In this paper, we proposea new loop scheduling algorithm, Locality-based Dy-namic Scheduling (LDS), that exploits locality, anddynamically balances the load.Key Words: Locality, Loop Scheduling, NUMAMultiprocessors, Data Partitioning, Locality-basedDynamic Scheduling.1 IntroductionLoops are a major source of parallelism for todaysparallelizing compilers. An important issue in theparallel execution of loops is how to partition andschedule the loops onto the available processors. Anumber of algorithms have been proposed for thispurpose. For example, static scheduling algorithmssuch as block, cyclic, and block-cyclic scheduling, par-tition the loop into �xed-sized chunks and distributethe chunks evenly across processors statically at thebeginning of the computation. Dynamic schedul-ing algorithms, on the other hand, assign the looppartitions at run time, depending on the speed andprogress of the processors. For example, self schedul-ing [5] partitions the loop into �xed size chunks,which are conceptually organized in a single system-wide queue, and each processor obtains a new chunkfrom the queue when it has completed its previ-ous chunk. More recent proposals, such as guidedself scheduling (GSS) [10], factoring [4], and trape-zoid [13], vary the size of the chunks; they start withlarge chunks in order to reduce the overhead in ac-

cessing the central queue and then progressively usesmaller chunks in order to maintain good load bal-ance. These scheduling algorithms are described indetail in Section 2.All of the loop scheduling algorithms listed aboveassume a shared memory architecture with uniformmemory access (UMA) costs, and hence need not takedata locality into consideration. However, many ofthe more modern, especially scalable, shared mem-ory multiprocessors have non-uniform memory access(NUMA) cost; i.e., the cost of accessing memory in-creases with the distance between the accessing pro-cessor and the target memory. Examples of multi-processors with non-uniform memory access costs in-clude DASH [6], Hector [14], BBN [12], RP3 [7], andCedar [8]. In these systems, data locality is impor-tant for good application performance, and the loopscheduling algorithms should take this into account.In this paper, we introduce a new loop schedulingalgorithm that takes data locality into consideration,and compare its performance with other well knownscheduling algorithms. The next section describessome of the existing loop scheduling algorithms. Sec-tion 3 describes data locality and why it is an impor-tant factor that cannot be neglected in loop schedul-ing algorithms. In particular, we argue that datalocality is important even in systems with hardware-based cache coherence and in cache-only-memory ar-chitectures (COMA), such as the KSR [1]. The lo-cality based dynamic scheduling (LDS) algorithm wepropose in this paper is described in Section 4, andcompared against the a�nity scheduling algorithmdeveloped at the University of Rochester, the onlyother loop scheduling algorithm we are aware of thatalso takes memory access locality into consideration.In Section 5, the results of experiments comparingLDS to the other scheduling algorithms are described.Page 1

2 Scheduling Algorithms2.1 Static SchedulingStatic scheduling algorithms, such as block schedul-ing, cyclic scheduling, and block cyclic scheduling,assign a �xed number of loop iterations to each pro-cessor.Block scheduling divides the loop into blocks ofdN=P e iterations, where N is the number of itera-tions and P is the number of processors. Each pro-cessor is assigned a separate block. If the amountof computation performed by each iteration di�ers,then block scheduling can perform poorly because ofload imbalance. For example, in an iteration spacewhere the amount of computation per iteration in-creases linearly, the �rst few blocks will entail verylittle computation while the latter ones will involvemuch more. The �rst few processors will therefore�nish their computations early and have to wait forothers to complete, resulting in poor speedup.Cyclic scheduling assigns loop iterations to pro-cessors in a cyclic order, so that processor p will ex-ecute the iterations p; p+ P; p + 2P; . . . ; where P isagain the number of processors executing the loop.In contrast to block scheduling, cyclic schedulingobtains better load balance for triangular iterationspaces and other iteration spaces where the amountof computation increases/decreases linearly with theiterations.Block cyclic scheduling is a compromise be-tween block scheduling and cyclic scheduling. Thisalgorithm assigns blocks of a �xed size to processorsin a round robin fashion. If the block size is equalto one, then block-cyclic scheduling degenerates tocyclic scheduling and if the block size is dN=P e, thenblock-cyclic scheduling is same as block scheduling.Hence, block cyclic scheduling forms a continuum be-tween block and cyclic scheduling algorithms.The static algorithms ignore the fact that theamount of computation performed per iteration maydi�er, or that it cannot always be determined a pri-ori (for example, the amount of computation could bedependent on the data). Moreover, the speed of eachprocessor may also di�er because of multitasking in-terference. Therefore static scheduling often su�ersfrom load imbalance, resulting in poor speedup.2.2 Dynamic SchedulingIf the imbalance becomes large, then it is necessaryto dynamically adjust the work assigned to each pro-cessor at run-time in order to balance the load. Thisis done by grouping together one or more iterations

to form subtasks which are dynamically allocated andexecuted by the processors. The subtasks need not beof �xed granularity, and in fact the granularity couldvary dynamically. If the granularity is very large(N=P iterations per subtask) then we e�ectively haveblock scheduling. On the other hand, if the granular-ity is very small, then the data structure controllingthe subtasks could become a bottleneck because ofthe number of accesses each processor must performto this structure. Self scheduling, guided self schedul-ing, factoring, and the trapezoid method are exam-ples of dynamic scheduling algorithms.3 Locality and SchedulingSelf scheduling partitions the loops into subtaskscontaining one or more iterations [5]. Each processorthen continuously allocates and executes one subtaskat a time until no subtasks are left for processing.If the number of iterations per subtask is �xed andgreater than one, then this scheduling strategy is gen-erally referred to as �xed-size chunking [5].With �xed-size chunking it can be di�cult tochoose the correct granularity. Small granularity in-creases the overhead of accessing the data structurecontrolling the subtasks that still need to be executed.Larger granularity can lead to load imbalances whenthe last set of subtasks is being executed. Hence inthe algorithms that follow, the size of the subtasks isdynamically adjusted with the progress of the com-putation.Guided self scheduling(GSS) uses a subtaskgranularity of dn=P e iterations, where n is the totalnumber of remaining iterations [10]. With this algo-rithm, the subtasks are composed of a large number ofiterations at the start of the computation, then pro-gressively fewer until the size is one. In this scheme,there will be at least P � 1 subtasks consisting ofonly one iteration, and each will be executed inde-pendently. When the execution time of the iterationsdi�er, it is possible that an early subtask could beso large that it does not complete by the time allother subtasks have completed [4]; this load imbal-ance problem is addressed by the factoring algorithm.Factoring is similar to GSS in that the size ofthe subtask decreases as the computation progresses,but it assigns dn=(2P)e iterations to P consecutivesubtasks, where n is equal to the number of remain-ing iterations at the beginning of these allocations [4].Hence P consecutive subtasks will be of the same size,before the granularity is decreased. If the variance ofthe amount of computation performed by each iter-Page 2

Scheme No. of Iterations = 500 and P = 4GSS 125 94 71 53 40 30 22 17 12 9 7 5 4 3 2 2 1 1 1 1Factoring 63 63 63 63 31 31 31 31 16 16 16 16 8 8 8 8 4 4 4 4 2 2 2 2 1 1 1 1Trapezoid 62 58 54 50 46 42 38 34 30 26 22 18 14 8LDS 63 55 48 42 37 32 28 25 22 19 17 14 13 11 10 8 7 7 6 5 4 4 3 3 3 2 2 2 1 1 1 1 1 1 1 1Table 1: Subtask Sizes for dynamic scheduling algorithms. The GSS, factoring and trapezoid algorithms aredescribed in Section 2. LDS is described in Section 4.Arch. Cache Local Mem. Remote Mem.Hector 1 10 24DASH 1 22 61RP3 1 10 15Table 2: Latency for memory read operation in pro-cessor clocksation is large, then factoring performs better thanGSS [4].The Trapezoid method also assigns a decreas-ing number of iterations to subtasks and thus is avariation of GSS. In this case, however, the subtasksize decreases linearly instead of exponentially [13].The total number of iterations, N , is partitioned intoS = d2N=(f + 1)e subtasks, where f = bN=(2P)c isthe size of the �rst task. Consecutive subtasks di�erby b(f � 1)=(S � 1)c iterations.For comparison, the subtask sizes employed by thedynamic scheduling algorithms GSS, factoring, andthe trapezoid method for a problem size with 500 it-erations executing on four processors is given in Ta-ble 1.In NUMA systems, managing data locality is im-portant due to the increased cost of accessing remotememory. Table 2 shows the di�erence between re-mote memory access costs and local memory accesscosts for di�erent architectures con�gured with 64processors. On these systems having most of the ac-cessed data local to the accessing processor can be amajor factor in improving performance [2, 3, 11].In parallelizing a loop, it is important to considerthe partitioning of both the data space and the loopiteration space, and how both are mapped onto theprocessors. For good performance, it is essential thatthe loop partitions and scheduling match the datapartitions. Best performance is achieved when alldata required by a loop partition is local to the pro-cessor on which the partition is scheduled. A mis-match in the scheduling of the loop partitions and

the data partitions can have a heavy performancepenalty on NUMA multiprocessors, as will be shownin Section 5.Consider for example the simple loop shown in Fig-ure 1. The iteration space and the data space are twodimensional. Because the inner loop j is sequential,the data space must also be partitioned row-wise andimplicitly the iteration space must also partitionedrow-wise. Because of the simple reference pattern,the loop and data partitions match. If the loop par-tition i = 0 is scheduled on the processor which hasthe row A[0][�], then all the accesses to A are local.Otherwise all the accesses would be non-local. Wecall the static scheduling algorithm Block-D if boththe data partitioning and the loop scheduling occurin blocks. (Analogously we use the terms Cyclic-Dand Block-cyclic-D if both data partitioning and theloop scheduling match.)parallel_for(i=0; i < N; i++)for(j=0; j< N; j++)A[i][j] = ...Figure 1: Simple ProgramIn general, dynamic scheduling algorithms canachieve good load balance, but at the cost of de-creased locality in data accesses, since each subtaskmay be scheduled on any of the processors regardlessof the location of the data it must access. The cost ofan average memory access would increase on systemswith non-uniform memory access cost. This can leadto a decrease in performance, not only because of in-creased latencies to access the remote data, but alsobecause of increase in network tra�c and congestion.It is interesting to note that, while cache mem-ory helps reduce the e�ects of non-uniform mem-ory access costs, it does not eliminate them entirely.In practice, even on a multiprocessor with hardwarePage 3

for(k=0; k < N-1; k++) {d0 = A[k][k];parallel_for(j= k+1; j< N; j++) {A[j][k] /= d0;d1 = A[j][k];for (i = k+1; i < N; i++)A[j][i] -= d1*A[k][i];}} Figure 2: LU Decompositioncache consistency (such as the DASH multiproces-sor), the average memory response time can be re-duced by exploiting memory locality. We illustratethis using LU decomposition as an example. The coreof the LU decomposition code is shown in Figure 2.It consists of an outer sequential loop and a parallelloop. In the innermost loop, one of the rows of thematrix A is modi�ed based on the pivot row k. Con-sider the execution of the parallel loop j = 5 runningon processor P1, and trace the computation. P1 ac-cesses the elements of the �fth row and modi�es it,causing a valid copy of this row to be in the cache ofprocessor P1 and the copy in the memory to becomeinvalid (assuming a write-back cache). If in the nextinvocation of the parallel loop, loop j = 5 is executedon another processor (say P7), then the main mem-ory needs to be updated with the values still cachedon P1, and the values in P1 need to be invalidatedwhen P7 modi�es them. Thus the validation andinvalidation tra�c on the network can become exces-sive if there is no locality. Similar e�ects are possiblein cache-only memory architectures (COMA), suchas the KSR.Some multiprocessors, such as RP3 and BBNButtery/TC-2000 allow remote memory to be ac-cessed in an interleaved and/or randomized manner.By distributing the memory accesses more evenlyacross the processors, the number of hot-spots at thememories and in the network is reduced. Thus theNUMA machine behaves like an UMA machine withone cost (close to the maximal one) for accessing thememory. While randomized access has the possibleadvantage of reducing memory and network hotspots,it also has the disadvantage of not exploiting local-ity. Because a single processor can execute using onlylocal memory, the speedup of applications that exclu-sively access shared data in this randomized manner

will be poor. The execution time of the applicationwould be better, if data locality were exploited.4 Locality-based DynamicSchedulingIn this section, we propose a new scheduling algo-rithm, Locality-based Dynamic Scheduling (LDS),that addresses both locality and load balancing. LDS(see Figure 3) is based on the following principles:1. The data space is partitioned to reside on P pro-cessors. Typical data partitions are block, cyclic,and block-cyclic. Often, the partition chosen isconstrained by rest of the computation.2. Each processor, when it is ready to execute thenext subtask, computes the size of this subtask.The size can be chosen as in any of the dynamicscheduling algorithms as a function of the num-ber of remaining iterations and the number ofprocessors. In our experiments, we set the sub-task size to dn=(2P)e (where n is the number ofremaining unscheduled iterations and P is thenumber of processors). This creates subtasksabout half as large as those by GSS in order toavoid overly large initial subtask sizes (see Ta-ble 1.3. Once the subtask size has been determined, theprocessor must decide which iterations to executeas part of its subtask. The dynamic schedulingalgorithms sequentially take iterations from theloop iteration space; that is the �rst subtask ofsize S1 includes iterations 1; 2; . . .; S1, the sec-ond subtask of size S2 includes iterations S1 +1; . . . ; S1 + S2, and so on. In LDS, on the otherhand, the iterations are chosen such that localityis maximized. For example, if the data distribu-tion is cyclic, and the processor p has to executea subtask of S1 iterations, then it executes theiterations p+P; p+2P; . . . ; p+P �S1. If the datadistribution is block then the subtask would in-clude iterations p�B+1; p�B+2; . . . ; p�B+S1,where B is the block size. If all the scheduledlocal iterations are completed, iterations are ac-quired from the processor with the most unsched-uled iterations.The LDS algorithm is related to the a�nityscheduling algorithm (AFS) proposed by Markatosand LeBlanc in that AFS also takes locality into ac-count [9]. AFS divides the iterations of a loop intoblock partitions of dN=P e iterations, where N is thePage 4

1. Determine the subtask size S = dn=(2P)e basedon the total number of unscheduled iterations (n)and the number of processors (P).2. If the processor has r > 0 locally assigned, un-scheduled iterations, then the subtask includesmin(r; S) of those iterations. Otherwise, if r = 0then min(rmax; S) iterations are acquired fromthe processor with the most unscheduled itera-tions, where rmax is the maximum number ofunscheduled iterations on that processor.3. Execute the subtask.4. Repeat 1{3 until n = 0.Figure 3: Locality-based Dynamic Scheduling Algo-rithmtotal number of iterations and P is the number ofprocessors, and assigns each partition to a di�erentprocessor. When a processor becomes free, it takesthe next subtask of 1=k iterations from its local par-tition, where k is a parameter of the algorithm thatis chosen statically between 2 and P . Once the en-tire local partition has been executed, the processordetermines the processor with the most remaining it-erations, and takes fraction d1=P e of them. The im-plementation of AFS uses P local locks to protectthe local partitions and a global lock to protect thedata structure indicating the processor with the mostremaining iterations.LDS is di�erent from AFS in the following ways:� AFS assumes that data is copied into local stor-age when �rst accessed. This can be done byhardware on machines with cache coherence orby the operating system. AFS does not uti-lize the information of data placement. Instead,it assumes that data accessed in iteration j islikely to be adjacent to the data used in itera-tion j+1, and thus partitions the iteration spaceinto blocks and assigns a block to each proces-sor. Therefore, memory locality can be exploitedonly when the data is also partitioned and dis-tributed in blocks. LDS, on the other hand, takesdata placement into account, by always havingthe processor �rst execute those iterations whichhave the data local to the processor. For thisreason, LDS can easily accommodate other datapartitioning methods, such as cyclic or block-cyclic.

Do not consider ConsiderLocality LocalityBlock Block-DStatic Cyclic Cyclic-DBlock-cyclic Block-cyclic-DGSSDynamic Self AFSFactoring LDSTrapezoidTable 3: Comparing the various scheduling algo-rithms� In AFS, each processor independently schedulesiterations from its local partition using a param-eter k. The best value for k will depend on theapplication and may be di�cult to choose. If kis small, then a processor with an exceptionallylarge proportion of the workload assigned to itcould make the size of the �rst subtask too largeso that later dynamic scheduling will not be ableto adjust for the load imbalance. The maximumload imbalance in a loop with a linear iterationspace in AFS is N(P�k)P (P�1)k + 1 iterations. When kapproaches P , on the other hand, the worst-caseload-imbalance approaches that of GSS, but atthe cost of an increase in the number of syn-chronization operations by a factor of P , sincethe total number of lock operations performedby AFS is O(kP log NkP) + O(P log NP2) [9]. InLDS, the worst-case load-imbalance will be oneiteration and the number of synchronization op-erations will be O(P log(N)).� AFS uses one way to determine the number ofiterations to be taken from a local partition andanother way to determine the number of itera-tions to be taken from other partitions. LDSuses the same algorithm for the both.Table 3 gives a comparative classi�cation of thescheduling algorithms we have discussed. The di�er-ences between AFS and LDS in particular are sum-marized in Table 4. Di�erences in performance areshown in the next section.5 Experimental ResultsIn this section, we present performance results fromexperiments involving four benchmark programs:Matrix Multiplication, LU Decomposition, SuccessivePage 5

AFS LDSLocality block only any data dist.Lock Ops O(kP log NkP)+ O(P log(N))O(P log NP2)Max Imbal. N(P�k)P (P�1)k + 1 iters one iter.Table 4: Comparison of AFS and LDSOver Relaxation, and Transitive Closure.� Matrix Multiplication: The regular matrix mul-tiplication i-j-k algorithm is parallelized at theouter i loop, multiplying 400�400 matrix of dou-ble precision numbers.� LU Decomposition: This algorithm has a sequen-tial outer loop, a parallel loop and an inner mostsequential loop. A matrix of 400 � 400 doubleprecision numbers is partitioned by row. Thecomputation of LU decomposition is skewed inthat the lower rows must be recalculated morefrequently than the upper rows; i.e., row 1 is cal-culated only once, where as elements of row N�1are processed in N � 1 iterations.� Successive Over Relaxation: SOR is similar toLU decomposition in that it has a sequentialouter loop and a parallel inner loop. Becauseeach processor must access all the neighboringelements of the element being computed, local-ity plays a major role in obtaining good perfor-mance.� Transitive Closure: Transitive closure has a loopstructure similar to LU decomposition. Un-like the previous algorithms, the sequential in-ner most loop may or may not be executed, andhence the computation is dynamic. The inputvalues determine the variation of iteration exe-cution time. High variance can cause load im-balance. A matrix size of 800 � 800 integers isprocessed.The experiments were performed on Hector, a scal-able shared memory multiprocessor [14, 11]. Hectorconsists of sets of processor-memory pairs connectedtogether by buses, several buses connected togetherby local rings, and several local rings connected to-gether by a global ring (see Figure 4). Hector pro-vides a single global physical address space; eachmemory module contains one portion of the globalmemory. Access time to memory is a function ofmemory hierarchy.

PM PM PM

PMPMPM

PM PM PM

PMPM PMPM

PM PM PM

PMPMPM

Local Ring

cpu/

Station
Local Ring

cache mem

Processor
Module

Global RingFigure 4: General Architecture of Hector
0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16

E
xe

cu
tio

n
T

im
e

(S
ec

)

Number of Processors

"LDS"
"AFS"

"Block-D"
"Self"

"Factoring"
"GSS"

"Cyclic-D"

Figure 5: Execution Times for Matrix MultiplyFigures 5-8 show the response times of the fourapplications listed above when run with the di�erentscheduling policies.In matrix multiplication, all processes must accessall of the matrix B. Assuming B does not �t in thecache, thus the overhead of accessing B will dom-inate the total overhead of accessing the data ele-ments. Good locality in accessing the elements ofmatrices A and C is automatically achieved throughthe caching. For this reason, and because the load inthis computation is well balanced, all of the schedul-ing algorithms perform equally well, as shown in Fig-ure 5. Our results for matrix multiplication di�erfrom those of a similar experiment performed on theRP3 by Hummel et al. [4]. In our case, static par-Page 6

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14 16

E
xe

cu
tio

n
T

im
e

(S
ec

)

Number of Processors

"Self"
"Factoring"

"GSS"
"AFS"

"Block-D"
"LDS"

"Cyclic-D"

Figure 6: Execution Times for LU Decompositiontitioning, namely cyclic-D, performs marginally bet-ter than the other scheduling algorithms. Hummel'sresults indicate that static partitioning performs farworse than the dynamic schemes. We believe thisdiscrepancy is due to a mismatch between the datapartitioning and loop partitioning in the RP3 exper-iments, making the static algorithm perform poorly.For LU decomposition, static cyclic scheduling(cyclic-D) outperforms all other scheduling algo-rithms, because cyclic loop partitioning and schedul-ing matches the cyclic data partitioning, and bal-ances the load well for the triangular iteration spaceof LU decomposition. LDS performs almost as wellas cyclic-D, and better than the other algorithms forthe same reasons. The execution time of the programusing LDS is slightly higher than that for cyclic-Dbecause of the run-time scheduling overhead. Theresults are shown in Figure 6.For SOR, the static scheduling algorithm thatmatches the data partitioning, namely block-D, per-forms best, and the best results are obtained when thedata and iteration spaces are partitioned into blocks.Again, LDS performs almost as well as block-D be-cause its iteration space is e�ectively also partitionedinto blocks, given the block distribution of data. Inthis case a�nity scheduling (AFS) performs equallyas well because of block partitioning. From Figure 7,it is interesting to note that the performance of theother dynamic algorithms is substantially worse thanBlock-D, LDS, and AFS because of the lack of datalocality.The transitive closure experiment was chosen asa representative of computationally imbalanced iter-

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16

E
xe

cu
tio

n
T

im
e

(S
ec

)

Number of Processors

"Self"
"Cyclic-D"
"Factoring"

"GSS"
"AFS"
"LDS"

"Block-D"

Figure 7: Execution Times for Successive Over Re-laxationation spaces. In this case, LDS outperforms all ofthe other scheduling algorithms, because it is able todynamically balance the load, and yet exploit datalocality. Block-D performs almost as well, because inthis case the variance in the amount of computationof the blocks is not very large. One would expectthat AFS could perform as well or better than block-D scheduling, but our results indicate that the over-head AFS incurs for locking will increase quadrati-cally with the number of processors. For example,with P = 16, the number of lock operations per-formed will be about 431, with most locking occur-ring towards the end of the computation. The de-terioration of AFS's performance as the number ofprocessors increases is visible in Figure 8.Our results indicate that no �xed scheduling algo-rithm will perform satisfactorily for all applicationswithout taking data locality into account. The staticalgorithms perform better if the iteration partitionsmatch the data partitioning. With the exception ofLDS, the dynamic algorithms are all similar.6 ConclusionsIn this paper we have argued that data localityis an important factor to consider in partitioningand scheduling loops. While most existing dynamicscheduling algorithms manage load imbalances well,they fail to take locality into account and thereforeperform poorly on parallel systems with non-uniformmemory access times. We have presented a newscheduling algorithm, LDS, that is dynamic, yet takesPage 7

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16

E
xe

cu
tio

n
T

im
e

(S
ec

)

Number of Processors

"Self"
"Factoring"

"GSS"
"AFS"

"Cyclic-D"
"LDS"

"Block-D"

Figure 8: Execution Times for Transitive Closurelocality into account. We have presented experimen-tal results that indicate:� on NUMA systems, scheduling algorithms do notperform well over a variety of applications if theydo not take locality into account;� no single scheduling algorithm performed bestacross all applications considered;� of all the dynamic scheduling algorithms, LDSperformed best for the applications considered;and� unless large load imbalances exist (that is, vari-ance in loop execution times are high), appro-priate static algorithms outperform the dynamicscheduling algorithms.We are currently working on extending LDS tohandle irregular data distributions.References[1] Gordon Bell. Ultracomputers: A teraop beforeits time. CACM, 35(8):27{47, August 1992.[2] William J. Bolosky, Michael L.Scott, Robert P.Fitzgerald, Robert J. Fowler, and Alan L. Cox.NUMA policies and their relation to memory ar-chitecture. In ASPLOS-IV Proccedings, pages212{221, April 1991.[3] Stephen Curran and Michael Stumm. A com-parison of basic CPU scheduling algorithms for

multiprocessor Unix. Computing Systems, 3(4),Fall 1990.[4] Susan F. Hummel, Edith Schonberg, andLawrence E. Flynn. Factoring: A method forscheduling parallel loops. CACM, 35(8):90{101,August 1992.[5] Clyde P. Kruskal and Alan Weiss. Allocating in-dependent subtasks on parallel processors. IEEETransactions on Software Eng., SE-11(10):1001{1016, October 1985.[6] Daniel Lenoski, James Laudon, Kourosh Ghara-chorloo, Wolf-Dietrich Weber, Anoop Gupta,John Hennessy, Mark Horowitz, and Monica S.Lam. The Stanford DASH multiprocessor. IEEEComputer, 25(3):63{79, March 1992.[7] Jack G. Lipovski and Miroslaw Malek. Paral-lel Computing: Theory and Comparisons, Ap-pendix C: The RP3. John Wiley and Sons, 1987.[8] Jack G. Lipovski and Miroslaw Malek. Paral-lel Computing: Theory and Comparisons, Ap-pendix D: Cedar. John Wiley and Sons, 1987.[9] Evangelos P. Markatos and Thomas J. LeBlanc.Using processor a�nity in loop scheduling onshared-memory multiprocessors. In Supercom-puting 92, pages 104{113, November 1992.[10] Constantine Polychronopoulos and David Kuck.Guided self scheduling: A practical schedulingscheme for parallel computers. IEEE Transac-tions on Computers, C-36(12):1425{1439, De-cember 1987.[11] Michael Stumm, Zvonko G. Vranesic, RonWhite, Ron Unrau, and Keith Farkas. Experi-ences with the Hector multiprocessor. In Inter-national Parallel Processing Symposium, April1993.[12] Arthur Trew and Greg Wilson. Past, Present,Parallel: A Survey of Available Parallel Com-puter Systems. Springer-Verlag, 1991.[13] Ten H. Tzen and Lionel M. Ni. Dynamic loop-scheduling for shared memory multiprocessors.In Proceedings International Conference on Par-allel Processing, pages 247{250, August 1991.[14] Zvonko G. Vranesic, Michael Stumm, David M.Lewis, and Ron White. Hector: A hierarchicallystructured shared memory multiprocessor. IEEEComputer, 24(1):72{79, January 1991. Page 8

