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tFS is a new file system that aims to exploit the characteristics of byte-
addressable persistent memory (PM) so as to reduce file access overheads.
It achieves these gains by representing each file as a contiguous region of

virtual memory and leveraging memory management abstractions and hardware
to efficiently navigate the file. In particular, translating an offset to a file address
becomes a simple arithmetic offset operation followed by a mapping of the
target virtual address to a physical address which can be performed efficiently
by the hardware MMU. This translation incurs a fraction of the overhead of
traditional (e.g., extent-tree) index lookups in software.

Byte-addressable persistent memory (PM) fundamentally blurs the boundary
between memory and persistent storage. For example, Intel’s Optane DC persistent
memory is byte-addressable and can be integrated as a memory module. Its
performance is orders of magnitude faster than traditional storage devices: the
sequential read, random read, and write latencies of Intel Optane DC are 169ns,
305ns, and 94ns, respectively, which are the same order of magnitude as DRAM
(86ns) [7]. Many new file systems for PM have emerged in recent years. For example,
Linux introduced Direct Access support (DAX) for some of its file systems (ext4, xfs,
and ext2) that eliminates the use of the page cache and directly accesses PM using
memory operations (memcpy()). Other designs bypass the kernel by mapping
different file system data structures into user space to reduce the overhead of
switching into the kernel [3,4,8,10,15]. SplitFS, a stateof-the-art PM file system,
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aggressively uses memorymapped I/O [8] for significantly improved performance.

With PM closing the performance gap between DRAM and persistent storage, file
access bottlenecks have shifted from I/O to file indexing overhead. As shown in
Figure 1, the file indexing overhead can be as high as 45% of the total runtime on
ext4-DAX for write workloads with many append operations. Yet all existing file
systems still rely on traditional tree-based file indexing, first proposed by Unix [13] in
the 70s, when the speed of memory and disk differed by several orders of
magnitude. While memorymapped I/O (mmap()) can reduce indexing overheads [6],
it does not remove them, but only shifts their timing to page fault handling or
mmap() operations (when pre-fault is used). Even with SplitFS, file indexing
contributes to 62% of its runtime in append-heavy workloads. ctFS, on the other
hand, nearly eliminates file indexing overhead, achieving 7.7x speedup against ext4-
DAX and 3.1x against SplitFS on the append workload (Figure 1).

An alternative to using index-structured files is to use contiguous file allocation.
While simple contiguous allocation designs like fixed-size or variable-size partitions
are known [14], they face three major design challenges: (1) internal fragmentation
for fixed-size partitions, (2) external fragmentation for variable-size partitions, and
(3) file resizing. The only use of contiguous file allocation in practice is in CD-ROM,
where files are read-only [14]. ctFS addresses the challenges associated with
contiguous file allocation and exploits hardware for memory translation. Its source
code will be available at https://github.com/robinlee09201/ctFS. ctFS was designed
from the ground up with the following design elements:

Each file (and directory) is contiguously allocated in the 64-bit virtual
memory space. Hence we can leverage existing MMU hardware to
efficiently perform virtual-to-physical translation, even as the file needs
not be contiguous in the physical address space. 64-bit virtual address
spaces are so large that contiguous allocation is practical for any existing
system. Furthermore, the virtual address space is carefully managed by
using a hierarchical layout of memory paritions, similar to that of the
buddy memory allocator [9], in which each  partition is subdivided into 8
equal-size sub-partitions. This design speeds up allocation, avoids
external fragmentation, and minimizes internal fragmentation.

A file’s virtual-to-physical mapping is managed using the persistent page
tables (PPTs). PPTs have a structure similar to that of regular, volatile page
tables for virtual addresses in DRAM, but they are stored persistently on
PM. Upon a page fault on an address that is within ctFS’s region, the OS
looks up the PPTs to create the mappings in the DRAM-based page tables.

Initially, a file is allocated within a partition whose size is just large enough
for the file. When a file outgrows its partition, it is moved to a larger
partition in virtual memory without copying any physical persistent
memory. ctFS does this by remapping the file’s physical pages to the new
partition using atomic swap, or pswap(), a new OS system call we
proposed that atomically swaps the virtual-to-physical mappings.

In ctFS, the translation from file offset to the physical address now needs to go
through the virtual-to-physical memory mapping, which is no less complex than the
conventional file-to-block indexes. The key difference is that page translation can be
sped up by existing hardware support. Translations that are cached by TLB will be
handled transparently from the software and completed in one cycle. In contrast, a
file system’s file-to-block translation can only be cached by software. Additionally,
ctFS can adopt various optimizations for memory mapping, such as using huge
pages, to further speed up its operations.

https://github.com/robinlee09201/ctFS


A limitation of ctFS is that we implement it as a userspace, library file system that
trades protection for performance. While this maximizes performance by
aggressively bypassing the kernel, it sacrifices protection in that it only protects
against unintentional bugs instead of intentional attacks. At the same time, we see
no reason why ctFS could not be implemented in the OS kernel.

Figure 1: Overhead breakdown for ext4-DAX, SplitFS, and ctFS using persistent memory.

Analysis of File Indexing Overhead
We analyzed the performance overhead of block address translation in Linux’s ext4-
DAX, the port of the ext4 extent-based file system to PM and in SplitFS [8] using the
six microbenchmarks listed in Table 1. The experiments were performed on a Linux
server with 256GB Intel Optane DC persistent memory.

Table 1: Six microbenchmarks for evaluating file indexing overheads. Each operates
on 10GB files. RR, RW perform the reads/writes 2,621,440 times.

Append Append 10 GB of data, 4KB at a time to an initially empty file

SWE Sequentially write 10 GB of data, 1GB at a time, to an initially empty file

RR &
RW

Read/write 4KB at a time from/to a random (4KB-aligned) offset of a
previously allocated file

SR &
SW

Sequentially read/write 10 GB of data, 1GB at a time, from a previously
populated file

Figure 1 shows the breakdown of the completion time of each benchmark. For ext4-
DAX, we observe that indexing overhead is significant in Append and Sequential
Write Empty (SWE), spending at least 45% of the total runtime on indexing. In both
cases, the index time includes the time to build the index. For the random access
workloads, RR and RW, the proportion of time spent on indexing is lower, but still
considerable: at 18% and 15% respectively.

Compared to ext4-DAX, SplitFS spends an even higher proportion of the total
runtime on indexing in the Append (63%), SWE (45%), and RW workloads (38%),
even though its total runtime is shorter. This is because SplitFS's speedup further
shifts the bottleneck and exacerbates the indexing overhead. SplitFS splits the file
system logic into a user-space library (U-Split) and a kernel space component (K-
Split), where K-Split reuses ext4-DAX. A file is split into multiple 2MB regions by
USplit, where each region is mapped to one ext4-DAX file. Both U-Split and K-Split
participate in indexing: U-Split maps a logical file offset to the corresponding ext4-
DAX file, and the ext4-DAX in K-Split further searches its extent index to obtain the
actual physical address.



To understand its indexing overhead in more detail, consider the Append workload.
SplitFS spends a total of 6.62s on indexing overhead. The majority (4.37s) comes
from the kernel indexing time during page fault handling. SplitFS converts all read
and write operation to memory mapped I/O; hence an operation could trigger a page
fault, which in turn triggers kernel indexing. The time spent in mmap() itself is
smaller (1.39s). The remaining 0.84s comes from the indexing time in its user-space
component, U-Split, spent on mapping a file offset to the corresponding ext4-DAX
file.

In comparison, ctFS successfully eliminates most of the indexing time: in all six
benchmarks, the vast majority (at least 97%) of the runtime is spent on I/O, instead
of indexing. As a result, it achieves a 7.7x speedup against ext4-DAX and 3.1x
against SplitFS on the Append benchmark, whereas its average speedups on the
other benchmarks are 2.17x and 1.97x over ext4-DAX and SplitFS, respectively.

Note that both SplitFS and ctFS have two modes, sync and strict. The results in
Figure 1 are from their sync mode, because it offers comparable crash consistency
guarantees to ext4-DAX. The results on strict mode, which offers stronger crash
consistency, as well as comparison with other research file systems like NOVA [16]
and pmfs [4], can be found in our FAST'22 paper [12].

Overview of ctFS
ctFS is a high-performance PM file system that directly accesses and manages both
file data and metadata in user space. Each file is stored contiguously in virtual
memory, and ctFS offloads traditional file systems' offset-to-block translations to
the memory management subsystem.  In addition, ctFS provides an efficient atomic
primitive called pswap to ensure data consistency while minimizing double-writing.
Write operations on ctFS are always synchronous, i.e., writes are persisted on PM
before the operation completes; in fact, similar to Linux's DAX PM file systems, all
writes are directly applied on PM without being cached in DRAM.

ctFS's architecture, shown in Figure 2, consists of two components: (1) the user
space file system library, ctU, that provides the file system abstraction, and (2) the
kernel subsystem, ctK, that manages the virtual memory abstraction. ctU
implements the file system structure and maps it into the virtual memory space. ctK
maps virtual addresses to PM's physical addresses using a persistent page table
(PPT), which is stored in PM. Any page fault on a virtual address inside ctU’s
address range is handled by ctK. If the PPT does not contain a mapping for the fault
address, ctK will allocate a PM page, establish the mapping in the PPT, then copy
the mapping from the PPT to the kernel’s regular DRAM page table, allowing virtual
to PM address translation to be carried out by the MMU hardware. When any
mapping in the PPT becomes obsolete, ctK will remove the corresponding mapping
from the DRAM kernel page table and shoot down the mapping in the TLBs.

With this architecture, there is a clear separation of concerns. ctK is not aware of
any file system semantics, which is entirely implemented by ctU using memory
operations.



Figure 2: Architecture of ctFS. Each box represents a page. Two partitions are shown. The file allocated in

partition 1 uses 3 pages (green), and the file in partition 2 uses 5 pages. ctK maintains virtual-to-physical

page mappings in the persistent page table (PPT).

File System Structure (ctU)
ctFS's user-space library, ctU, organizes the file system's virtual memory space into
hierarchical partitions to facilitate contiguous allocations. The size of each partition
at a particular level is identical; and the size of a partition at a particular level is 8x
the size of the partitions at the next lower level. Figure 3 shows the sizes of the ten
levels that ctFS currently supports. The lowest level, L0, has 4KB partitions, whereas
the highest level, L9, has 512 GB partitions. ctFS can be easily extended to support
more partition levels, e.g. L10 (4TB), L11 (32TB), etc.

Figure 3: Size of partitions at levels L0 to L9. PGD, PUD, PMD, and PTE refer to the four levels of page

tables in Linux (from highest to lowest). An L9 partition aligns with PGD, i.e., its starting address has zero

in all of the lower level page tables (PUD, PMD, PTE); Similarly, L6-L8 partitions align with PUD, whereas

L3-L5 partitions align with PMD.

A file or directory is always allocated contiguously in one and only one partition, and
such that the partition is of the smallest size capable of containing the file. For
example, a 1KB file is allocated in an L0 partition (4KB); a 2GB file is allocated in an
L7 partition (8GB).

We chose each next level to be 8x the size of the previous level because the
boundary of the levels should align with the boundary of Linux page table levels
(Figure 3).  This enables the optimization during pswap we describe later. Therefore,
our only options for partition size differences are: 2x (2^1), 8x (2^3), or 512x (2^9).
We chose 8x because 2x would be too small and 512x too large.

Figure 4 shows the layout of ctFS. The virtual memory region is partitioned into two
L9 partitions. The first L9 partition is a special partition used to store file system
metadata: a superblock, a bitmap for inodes, and the inodes themselves. Each inode
stores the file's metadata (e.g., owner, group, protection, size, etc.), and it contains a
single field identifying the virtual memory address of the partition that contains the
file's data. The inode bitmap is used to track whether an inode is allocated or not.



The second L9 partition is used for data storage.  Note that the 512GB allocated for
an L9 partition is in virtual memory; The physical pages underneath it are allocated
on demand.

Figure 4: Layout of ctFS in virtual address space. The space of an entire partition is reserved in the virtual

memory space, whereas the physical PM space is allocated on-demand based on the actual usage.

Headers circled in the dashed-line reside on the same page.

Each partition can be in one of the three states: Allocated (A), Partitioned (P), or
Empty (E). A partition in state A is allocated to a single file; a partition in state P is
divided into eight next-level partitions. We call the higher level partition the parent
of its eight next-level partitions. This parent partition subsumes its eight child
partitions; i.e., these 8 child partitions are sub-regions within the virtual memory
space allocated to the parent.  For example, in Figure 4, an L9 partition in state P is
divided into 8 L8 partitions. The first L8 partition is also in state P, which means it is
divided into 8 L7 partitions, and so on. In this manner, the different levels of
partitions form a hierarchy.

This hierarchy of partitions has three properties. (1) For any partition, all of its
ancestors must be in state P; and any partition in the A or E state does not have any
descendants. (2) Any address in a partition is also an address in the partitions of its
ancestors; e.g., any L3 partition in Figure 4 is contained in its ancestor L4-L9
partitions. (3) The starting address of any partition, regardless of its level, is aligned
to its partition size; this is the case as long as the top-level L9 partitions are 512 GB
aligned.

ctU needs to maintain book keeping information for each partition, such as its state,
as well as information that facilitates fast allocations. To store such metadata, each
partition in P-state has a header which contains the state of each of its child
partitions; ctU stores the header directly in the first page of the partition for fast
lookup that does not involve indirections.

To speed up allocation, the header also has an availability-level field that identifies
the highest level at which a descendent partition is available for allocation.  For
example, the availability-level of the L9 partition in Figure 4 is 8 because this L9
partition has at least 1 L8 child partition in E state. With this information, when
allocating a level-N partition, if a P partition’s availability-level is less than N, ctU
does not need to drill down further to check its child partitions. This results in
constant worst-case time complexity for allocating a partition within an L9 partition
and is far more efficient than using bitmaps.



Because ctU places the header in the first page of a partition in P state, its first child
partition will also contain the same header, and as a result, this first child partition
must also be in P state; it cannot be in the Allocated state because the first page
would need to be used for file content. Therefore, a header page can contain the
headers of multiple partitions in the hierarchy. For example, in Figure 4, the headers
in the dashed circle are all stored on the same page. This is achieved by partitioning
the header page into non-overlapping header spaces for each level from L4-L9.

ctU does not allow partitions in levels L0–L3 to be further partitioned, as the 4KB
header space becomes much more wasteful for smaller partition sizes. Instead, each
L3 partition (2MB) can only be partitioned as (1) 512 L0 child partitions, (2) 64 L1
child partitions, or (3) 8 L2 child partitions, as shown at the bottom of Figure 4. As a
result, there is only one header in each L3 partition that is in state P, and it contains
a bitmap to indicate the status of each of its child partitions, which can only be in
either state A or E, but not P.

Kernel Subsystem Structure (ctK)
ctK manages the PPT and implements pswap(). The structure of the PPT is identical
to Linux's 4-level page table with two key differences: (1) It resides on PM and is
thus persistent; (2) It uses relative addresses for both virtual and physical addresses,
because ctFS's memory region may be mapped to different starting virtual
addresses in different processes due to Address Space Layout Randomization [2,5],
and hardware reconfiguration could change starting physical address. Whereas
each process has its own DRAM page table, ctK has a single PPT that contains the
mapping of all virtual addresses in ctU's memory range (i.e., those inside the
partitions).  The PPT cannot be accessed by the MMU, so mappings in the PPT are
used to populate entries in the DRAM page table on demand as part of page fault
handling.

ctK provides a pswap system call that atomically swaps the mapping of two same-
sized contiguous sequences of virtual pages in the PPT. It has the following
interface:

int pswap(void* A, void* B, unsigned int N, int* flag);

A and B are the starting addresses of each page sequence, and N is the number of
pages in the two sequences. The last parameter flag is an output parameter.
Regardless of its prior value, pswap will set *flag to 1 if and only if the mappings are
swapped successfully. ctU sets flag to point to a variable in the redo log stored on
PM and uses it to decide whether it needs to redo the pswap upon crash recovery.
pswap also invalidates all related DRAM page table mappings.

The pswap() system call guarantees crash consistency: it is atomic, and its result is
durable as it operates on PPT.  Moreover, concurrent pswap() operations occur as if
they are serialized, which guarantees isolation between multiple threads and
processes.

To optimize performance, pswap() avoids swapping every target entry in the PTEs
(the last level page table) of the PPT whenever possible. Figure 5 shows an example
where pswap needs to swap two sequences of pages - A and B - each containing
262,658 (512 x 512 + 512 + 2) pages. pswap only needs to swap 4 pairs of page
table entries or directories in the PPT (as shown in red and blue colors in Figure 5),
as all 262,658 pages are covered by a single PUD entry (covering 512x512 pages),
a single PMD entry (covering 512 pages), and two PTE entries (covering 2 pages).



Figure 5: An example of pswap. The shaded entries in the page tables are the ones used to map the two-

page arrays A and B. The red and blue page table entries are the ones that are modified by pswap. Before

pswap, A maps to the red pages and B maps to the blue pages, whereas after pswap A maps to blue

pages and B maps to red pages. The last 39 bits of A and B’s address are shown at the bottom.

Figure 6 shows the performance of pswap as a function of the number of pages that
are swapped. We compare it with the performance of the same swap implemented
with memcpy that approximates the use of conventional write ahead or redo
logging that requires copying data twice. The curve of pswap performance shows a
wavelike pattern: as the number of pages increases, the pswap latency first
increases and then drops back as soon as it can swap one entry in a higher-level
page table instead of 512 entries in the lower-level table. The two drop points in
Figure 6 are when N is 512 (mapped by a single PMD entry) and 262,144 (mapped
by a single PUD entry). In comparison, memcpy's latency increases linearly with the
number of pages. When N is 1,048,576 (representing 4GB of memory), memcpy
takes 2.2 seconds, whereas pswap only takes 62μs. However, when N is less than 4,
memcpy is more efficient than pswap.



Figure 6: Comparing the performance of pswap and memcpy. Both the X and Y axis are log scale.

There are two use cases of pswap. First, when a write (append) triggers an upgrade
to a larger partition or a truncate triggers a downgrade, instead of copying the file
data from the old partition to the new partition, ctU uses pswap to atomically
change the mapping. Second, pswap can be used to support atomic write on any
amount of data. To do so, ctU first writes the data to a staging partition, and when
the write is complete, it swaps the newly written data to the memory region
belonging to the target file.

Performance on Real-world Application
We evaluated ctFS on LevelDB [11], using the YCSB [1] benchmark.
(Microbenchmark results were shown in Figure 1.) YCSB includes six different key-
value access workloads, including update heavy (A), read mostly (B), read only (C),
read records that were recently inserted (D), range query (E), and read-modify-write
(F), as well as two load workloads (A and E).

Figure 7 shows the performance of different PM file systems on LevelDB using YCSB
workload. ctFS outperforms all other file systems of comparable consistency levels
in every workload. ctFS achieves the most significant speedup in write-heavy
workloads, Load A and E and Run A, B, F. Among these write-heavy workloads,
ctFS-sync's throughput is 1.64x of the throughput of SplitFS-sync on average, with
1.82x in the best-case (in Load E). Compared with ext4-DAX, ctFS-sync's
throughput is 2.88x on average with 3.62x in the best case (in Run A). In strict mode,
ctFS's throughput is 1.30x of SplitFS on average, with 1.50x in the best-case (in
Load A). In comparison, ctFS's speedups on read-heavy workloads are smaller. But
it still achieves an average of 1.25x - 1.36x speedup over ext4-DAX.



Figure 7: YCSB on LevelDB. Results are measured in throughput that is normalized to ext4-DAX in the

sync/POSIX group and NOVA-strict in the strict group. The number on top shows the absolute throughput.
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