
USENIX reaffirms its commitment to diversity, equity, and inclusion.
Black Lives Matter | Stop Asian Hate

About Conferences Publications Membership Students

Investigating Managed Language
Runtime Performance

TT

Why JavaScript and Python are 8x and 29x slower than C++, yet Java and Go can be
faster?

June 30, 2022

ARTICLE: RESEARCH

Authors: David Lion, Adrian Chiu, Michael Stumm, Ding Yuan

Article shepherded by: Rik Farrow

here wasn’t any research that compares the performance in-depth of
popular managed languages, JS, Python and Java, to each other or to
compiled languages like C++ and Go. We built benchmarks and

instrumented the runtimes for JS, Java, and Python, and determined which is
faster (under our benchmark) as well as why performing GC in Java can result in
a net speedup when compared with C++.

The most widely used programming languages today are managed languages. The
three most popular languages on GitHub since 2015 are JavaScript, Java, and
Python [12]. These languages offer the promise of productivity and thus faster
product-to-market because of a variety of features they offer, including easier
readability and usability, dynamic type checking, memory management with
garbage collection, and dynamic memory safety checks.

When selecting a programming language for a new service, the performance of the
language is rarely a consideration at the outset, as engineers frequently opt for
productivity, in part because of the belief that performance issues can be addressed
later, perhaps through horizontal scaling by simply adding hardware. Some go as
far as to claim “Choosing a language for your application simply because it’s ‘fast’ is
the ultimate form of premature optimization” [20].

However, performance will ultimately become a priority as the usage of the service
begins to scale and the service becomes too slow or the cost of hardware becomes
too high. Developers then begin a large sequence of performance optimizations that
can grow into herculean efforts. But there can come a point where incremental
optimizations (requiring much time and effort) no longer suffice and a more radical
solution must be considered, namely switching to a “better performing” language. A

Donate Today

Join the conversation

Back to ;login: Online

https://www.usenix.org/
https://www.usenix.org/about
https://www.usenix.org/conferences
https://www.usenix.org/publications
https://www.usenix.org/membership
https://www.usenix.org/students
https://www.usenix.org/conferences/diversity-and-inclusion
https://www.usenix.org/blog/usenix-statement-racism-and-black-african-american-and-african-diaspora-inclusion
https://www.usenix.org/blog/usenix-statement-racism-and-anti-api-hate
https://www.usenix.org/publications/loginonline/investigating-managed-language-runtime-performance#David%20Lion
https://www.usenix.org/publications/loginonline/investigating-managed-language-runtime-performance#Adrian%20Chiu
https://www.usenix.org/publications/loginonline/investigating-managed-language-runtime-performance#Michael%20Stumm
https://www.usenix.org/publications/loginonline/investigating-managed-language-runtime-performance#Ding%20Yuan
https://connect.clickandpledge.com/w/Form/a9f96acc-aa05-4c52-a9b4-e12ab505abdf
https://www.usenix.org/user/login
https://www.usenix.org/search/site
https://www.usenix.org/publications/loginonline

few examples from industry: Stream abandoned Python for Go, as Python would
spend 10ms creating objects from data that Cassandra took 1ms to fetch, noting
that “We’ve been optimizing Cassandra, PostgreSQL, Redis, etc. for years, but
eventually, you reach the limits of the language you’re using.” Discord switched from
Go to Rust claiming that “Rust was able to outperform the hyper hand-tuned Go
version.” [16]. Performance issues are also cited as the main reason Twitter was
forced to switch from Ruby on Rails to Scala and Java [14, 15].

When selecting a new language for performance reasons, the question is: what
language? Understanding the performance and scalability implications of a (new)
language today is non-trivial, especially for managed languages. This is for several
reasons.

First, no empirical studies exist that scientifically compare the different managed
languages. The primary source of information available today is the blogosphere
containing heated “religious” debates that include tunnel-visioned anecdotes with
few rigorous measurements to back up stated claims. For example, while many
believe programs written in Java run slower than when written in C/C++ [9], others
suggest that Java programs can be faster than C, because the JIT compiler produces
faster machine code by leveraging a runtime profile [8]. Similarly, there have been
polarized debates with respect to the performance of JavaScript [3,13], Go [16,19]
and even Python – for example, sources from Paypal claimed that Python offered
superior performance over other languages and reported multiple cases where
Python outperformed their C++ and Java counterparts while requiring less code [1].

Discussions on scalability are even muddier. For example, in a popular blog by the
official Node.js account, developers conclude that by being event-driven and
asynchronous, JavaScript is ideal for scaling to millions of concurrent connections,
despite its event loop only executes on a single thread [18]. As another example,
while it should be well-known that CPython, the de facto runtime for Python today,
uses a global interpreter lock (GIL) that serializes all concurrent thread executions,
Paypal’s engineering blog claims that it scales well, and noted that “Dropbox,
Disqus, Eventbrite, Reddit, Twilio, Instagram, Yelp, EVE Online, Second Life, and, yes,
eBay and PayPal all have Python scaling stories that prove scale is more than just
possible: it’s a pattern” [1].

Second, no benchmark suite is publicly available today that enables a meaningful
comparison between different managed languages (and their implementations). As
a result, any comparison on language runtime performance often compares apples
to oranges.

Third, language runtime systems are extremely complex software systems, providing
multiple abstractions that all affect performance. For example, a developer must
understand the interpreter, possibly multiple JIT compilers (e.g., the OpenJDK JVM
contains 4 levels of JIT compilation), a memory management subsystem that
performs garbage collect, the behavior of thread libraries, etc. But there are no
helpful, publicly available profiling tools for understanding the overheads of
language runtime systems. The language subsystems themselves expose little
profiling information on their internals. For example, while it is widely speculated
that dynamic type checking adds significant overhead [17], V8/Node.js does not
expose any performance counters to report this overhead.

In this work, we present an in-depth quantitative performance analysis of four of the
popular managed languages with their most widely used runtime systems: CPython,
OpenJDK, Node.js with the V8 engine for JavaScript, and the reference Go compiler
[5, 7, 10, 12]. We compare their performance characteristics with that of C++ on
GCC as the baseline. Our focus is primarily on understanding their differences with
respect to speed and scalability. We chose these languages not just because of their

popularity, but also because they represent different designs along the following
three dimensions:

Typing. JavaScript and Python are dynamically typed, meaning the
runtime must determine the type of objects at run time, whereas others are
statically typed.

Execution modes. Only Go is ahead-of-time compiled. OpenJDK and
V8/Node.js first interpret bytecode, and compile hot functions Just-In-Time
(JIT). CPython only has an interpreter and no JIT compiler.

Concurrency models. V8/Node.js is event driven where event handlers are
executed sequentially on a single thread. Similarly, CPython’s GIL only
allows one thread to execute at a time. Go has its own scheduler and
provides user threads as “goroutines.” Its scheduler decides how many
kernel threads to use for the developer’s goroutines. OpenJDK’s Thread is
simply a kernel thread.

1 Instrumentations and Benchmark Suite
We instrumented three runtimes: OpenJDK, Node.js/V8, and CPython. Our
instrumentations measure two types of information: (1) the performance of the
execution of any bytecode instruction in the interpreter, and (2) the dynamic type
and bounds checking overhead in V8’s JIT compiled code. Users can specify a
bytecode instruction to measure its overhead, or any JavaScript (JS) function to
measure the type and bounds checking overhead when executing that function.

Why profile interpreter performance? Some have the view that interpreter
performance is not important as it mostly affects the startup time, which will be
amortized by “warm execution.” We do not share this view. While
interpreter performance may have been irrelevant over a decade ago when
workloads ran in large, long-running monolithic applications that handle all requests
[26], the paradigm shift to the cloud [23, 24, 27] and data analytics [22] expose the
run-time’s startup performance as being significant. For example, auto-scaling in
the cloud often results in the bringing up of additional instances in the face of a load
spike [23, 24]; the problem is also exemplified by short-running instances in
Function-as-a-Service platforms [23, 27]. In 2020, the median AWS Lambda
invocation ran for only 60 milliseconds [11], while startup times for the JVM and V8
are on the order of hundreds of milliseconds or even seconds [22, 23, 27, 28].
Similarly, data analytics systems face a fundamental tension between parallelizing
long running jobs into shorter tasks and the runtime’s start-up overhead [22]. And
bytecode-level profiling can enable effectual optimizations. For instance, Instagram
engineers instrumented CPython to identify the byte-code instructions with high
overheads, and then optimized their code to avoid using these expensive
instructions [6].

Why profile type and bounds checking? Dynamic type and bounds checking is a
major source of V8’s overhead, as we will show later. Similar to bytecode profiling,
programmers can optimize their JS programs to avoid such overhead once the
source is identified. Our instrumentation also enables eliminating type and bounds
checking entirely for those functions where developers know that they are safe. For
instance, say a JS function accesses a[i], the element at index i of array a, and their
types never change (known as “monotype”). V8 detects that a and i are monotype,
and it speculatively compiles the function: it checks a against the array type (instead
of other types) and i against integer, before accessing a[i]. But to ensure safety, it

cannot remove the checks because their types could dynamically change in the
future. In that case, the check will fail, forcing the JIT-compiled function to exit and
be destroyed, and V8 will re-execute the function in its interpreter before
recompiling it.

By disabling the checking logic for any JS function, we effectively create a
significantly more efficient, albeit unsafe, version of the function. In the above
example, developers could enable this feature to turn off the checks when they know
a and i are monotype, so the JIT-compiled code will directly access a[i] by indexing
into a without any checks (effectively turning the JS function into a C function).

Benchmark suite. We created 6 realistic applications from the ground up. The
applications, which range from micro- benchmarks to real applications, cover a
variety of scenarios, differing in compute intensity, memory usage, I/O intensity,
relative startup time, and the degree of available concurrency. Three of the six
applications are parallel, and we parallelize them using both multithreading and
multiprocessing where applicable. From the six applications, we created twelve
benchmarks by varying degrees of concurrency, and exploring alternative
implementations of the applications. We implemented these applications in each of
the 5 languages. While the design of every implementation of an application is
conceptually identical, each implementation is optimized for the language: we used
our best effort to make the code idiomatic. The benchmark suite is called
LangBench. The source code of our instrumented runtimes and LangBench can be
found at https://github.com/topics/langbench. More details can be found in our ATC
paper [21].

Figure 1: Relative completion times for various language implementations normalized to GCC. Note the

logarithmic scale of the y axis. Sudoku, Sort, etc., are different benchmark under LangBench (“LA” refers to

the log analysis benchmark). The numbers at the bottom shows the benchmark’s absolute execution time

in the C++ implementation.

2 Overview of Results
Figure 1 shows the run times for the benchmarks in LangBench. For benchmarks
with concurrency, the “Best” bars are annotated with the thread count that results in
best completion time. For key-value store and file server it is the number of client
threads, not the number of threads used server side. For GCC and OpenJDK, the
server creates 1 thread to handle each client thread, so the number of server-side
threads is the same as the client. For both Node.js and CPython, their best
completion time in key-value store is achieved when using a single server-side
thread (due to their scalability characterstic described in §4). As for the file server
benchmark, both Node.js and CPython’s best performance is achieved when using
64 server-side threads (§4). The number of server-side threads in Go is
automatically determined by the runtime as described in §5.2. The number of
threads for log analysis is the number of worker threads (as there is no client).

https://github.com/topics/langbench

Unsurprisingly, GCC was the fastest on average, with Go and OpenJDK close behind,
being 1.30x and 1.43x slower than GCC. Impressively, Go and OpenJDK outperform
GCC for 3 out of the 12 benchmarks. V8/Node.js and CPython performed the worst
with run times 8.01x and 29.50x slower than GCC. At the extreme, CPython was
129.66x slower than GCC (for the sort benchmark). V8/Node.js and CPython were
competitive with GCC only when the workload is bottlenecked by disk I/O, i.e., in the
file server benchmark.

We also found that V8/Node.js and CPython are limited with respect to achievable
parallelism. Their design serializes the threads’ computation, and requires expensive
serialization for different threads (V8) or processes (CPython) to communicate. This
leads to the unintuitive result that adding additional threads actually slows down
parallel applications as more serialization is required. In fact, for both the key-value
store and parallel log analysis benchmark, the best performance is achieved using
only a single thread. In contrast, both Go and OpenJDK scale to multicores. Go
achieves a 1.02x speedup over GCC in the multithreaded key-value store
benchmark, despite being slower in the single threaded version.

Next, we use our instrumented runtimes to provide detailed analyses that explain
these results.

3 Runtime Overhead (Single-thread)
This section investigates the source of runtime overheads on single-threaded
applications that performed poorly. Specifi- cally, we found (1) type and bounds
checking (§3.1) is the bottleneck for V8 in its slowest benchmarks (Sudoku and Sort);
(2) interpreter performance (§3.2) is the major cause of CPython’s overhead –-
despite lacking a JIT compiler, its interpreter performs much worse compared to
OpenJDK and V8; (3) GC write barrier (§3.3) can be the bottleneck for both OpenJDK
and Go, even when heap usage is small.

3.1 Type and Bounds Checking Overhead
We found that type checking and bounds checking made up 41.83% and 87.43% of
V8’s execution time in the default Sudoku and Sort benchmarks, which are the two
single-threaded benchmarks where V8 showed the worst performance com- pared
to GCC. Next we zoom into the Sudoku benchmark to explain this overhead.

For V8/Node.js, Sudoku spends 93% of its time primarily comparing 2D array
elements of the sudoku board. The majority of this time is spent performing 11 type
and bound checks for each 2D array access, as shown in Figure 2. Each dimension
requires 5 checks, and the 11th check is used for the final value. Table 1 shows the
overhead for these checks.

Table 1: We modified V8’s JIT compiler and removed each of the checks performed
for a 2D array access to board[x][y] shown in Figure 2. We measured the resulting
execution time, and compare it against the default execution time with all checks.

Checks Removed Time (s) Overhead of Checks (%)

None 2.369 -

1-2 (Obj./Int Checks) 2.177 8.105

3 (Shape Check) 2.219 6.332

4 (Bounds Check) 2.154 9.076

5 (Hole Check) 2.051 13.423

1-5 (Remove All Checks) 1.378 41.832

Figure 2: Checks required to access board[x][y] in V8/Node.js. The meaning of each check is explained in

§3.1.

The first check ensures that board is an object pointer, by checking for a tagged bit
to distinguish between an object pointer and an integer. Second, V8 must similarly
check that x is an integer, rather than an object. Omitting these checks made it 8.1%
faster (Table 1) — removing them is safe, as we know that no incorrect type will be
used.

After V8 confirms that board is an object, it checks that the internal type of board,
called a shape, is an array. Fourth, V8 performs a bounds check for the access to
board[x]. Finally, V8 checks if the value accessed is a “hole”. In JavaScript, arrays
may be sparse, meaning not every index has a value. Indexes without values are
called holes. The same checks must be repeated to access the second dimension of
board. To use board[x][y], a last check is necessary to verify it is an integer.

Profiling enabled optimization. Initially, we preallocated the fix-size sudoku board. In
V8, preallocated arrays are created sparse as their values are uninitialized, requiring
the hole checks. Even though the array was filled with integers before being used,
sparse arrays never lose their status.

We implemented an optimized version which would create arrays without holes,
known as “packed” arrays. This optimized version was 1.48x faster (and is what is
shown in Fig. 1). Our optimized sudoku benchmark for V8/Node.js starts with an
empty array, then appends 9 Int8Arrays to create the 2D sudoku board. This allows
V8 to recognize that there are no holes. Using the built in Int8Array, preallocation
initialized it with the default value of 0, rather than a hole.

Unfortunately, these optimizations cannot be applied uni- versally. First, it presents
a trade-off that can only be deter- mined via profiling: while sparse arrays require
hole checking, building a large packed array requires many internal
resizing operations to grow the array. In addition, typed arrays such as Int8Array
only exist for certain integral types. For example, it is not possible to preallocate a
packed array of strings or any user defined type.

3.2 Interpreter Overhead
CPython is slower than the other runtimes because it lacks a JIT compiler and so
programs are strictly interpreted. Therefore we further compare the three runtimes
by running Sudoku on each of them only in interpreter mode. OpenJDK’s interpreter
outperforms both V8 and CPython by 2.59x and 5.34x respectively. This is because
static typing allows OpenJDK to avoid the type checks that V8 and CPython must
perform. OpenJDK has dedicated bytecodes for accessing different types of arrays
(aaload for an array of arrays, iaload for an integer array). In contrast, V8 and
CPython both have a single bytecode (LdaKeyedProperty and BINARY_SUBSCR,
respectively) which must accommodate for any array or dictionary type. Table 2
shows the performance profiling results of dif- ferent bytecode executions, using our
instrumentations.

CPython is still 2.07x slower than V8, even though both of them do dynamic
typechecking. As shown in Table 2, CPython uses 138 instructions and 41.8 cycles
to execute each byte code instruction (BINARY_SUBSCR), whereas Node.js only
spends 90 instructions/26.3 cycles to process each byte code instruction
(LdaKeyedProperty). This is due to the op- timizations of V8’s interpreter: it is hand-
crafted in V8’s intermediate representation (IR), whereas CPython is implemented in
C. Note that OpenJDK’s interpreter is entirely in hand-crafted x86 assembly.

Table 2: Statistics for array access bytecodes (BC) performed by various interpreters
for the sudoku benchmark.

Runtime Bytecode Insn. per BC Cycles per BC

OpenJDK aaload 12 7.7

OpenJDK iaload 11 7.1

Node.js LdaKeyedProperty 90 26.3

CPython BINARY_SUBSCR 138 41.8

3.3 GC Write Barriers
We were surprised to see that under OpenJDK’s default GC setting, it was 10.03x
slower than GCC for the Sort bench-mark. Sort is also the benchmark where Go

performs the worst relative to GCC: 2.14x slower. The source of the slowdown for
both OpenJDK and Go is the cost of GC write barriers. This cost occurs despite GC
hardly ever running in Sort, as write barriers are necessary to maintain data
structures needed to perform GC. For our in-place merge sort, swapping two
elements is the primary source of write barriers. This requires two write barriers, one
for each element being written. OpenJDK’s default GC algorithm, G1 [4], adds 44
instructions for these write barriers, completely dwarfing the 6 instructions required
to swap the elements and 5 for bounds checking.

4 Scalability Limitations
We found that CPython and Node.js limit the degree of paral- lelism achievable.
Node.js is event driven; by default, it uses a single Node.js thread to drive an event
loop and process all incoming events. If the processing of an event blocks (e.g., on
I/O), the underlying kernel thread will block, and Node.js’s event loop continues with
another kernel thread to process the next event. In other words, multiple threads can
be blocked at the same time, but CPU execution is serialized. While Node.js supports
running multiple Node.js threads (known as worker threads), each runs its own
event loop. Worker threads do not share the heap (to avoid data races); data
sharing requires message passing with data being serialized.

In essence, CPython’s concurrency model is the same as that of Node.js where
multiple kernel threads can block on I/O at the same time, except that it is the
programmer’s job to create the threads; the threads share the same heap. In
CPython’s case, CPU computation is serialized by the Global Interpreter Lock (GIL)
so that only one thread can use the CPU at a time. CPython also supports
multiprocessing, forking different processes to avoid the GIL. However, data sharing
and communication requires serialization.

Node.js and CPython’s scalability on LangBench. We ran three parallel
benchmarks, namely log analysis, key-value store, and file server, under different
configurations, including different number of threads, as well as parallelizing them
with multiple processes in CPython. In log analysis and key-value store, the best
performance is achieved using a single CPython or Node.js thread, whereas the
other runtimes are able to improve performance by adding more threads.

These two benchmarks, namely log analysis and key-value store, are bottlenecked
by CPU or memory accesses, instead of blocking I/O. Therefore, creating multiple
threads offers no advantage in Node.js and CPython as their executions are
serialized. In the case of Node.js, performance degrades significantly when creating
additional worker threads due to the serialization overhead. On indexed search log
analysis, Node.js’s performance drops 4.7x when we use more than one worker
thread. In this benchmark, multiple workers communicate frequently as they share
the same dictionaries. Similarly, serialization overhead slows down CPython when
we switch to multiprocess, resulting in a 4.9x slowdown on the same benchmark.
While multiple CPython threads share the heap, they still introduce thread
management overhead compared to using a single thread.

Specifically, in key-value store, CPython can only scale to one client thread (adding
additional concurrent client threads will worsen the completion time). In comparison,
Node.js/V8 scales up to 96 client threads, even though it only uses 1 Node.js event-
loop thread at server side. However, its completion time can not keep improving with
more client threads, whereas it still can under GCC, Go, and OpenJDK.

https://www.usenix.org/publications/loginonline/investigating-managed-language-runtime-performance#ref4

5 Runtime Advantages
We found that the high-level abstractions provided by the runtimes can, in some
cases, result in better performance and scalability. This is counter-intuitive given the
conventional wisdom that abstractions generally come at the expense of
performance [25]. We discuss three findings: (1) object relocations in OpenJDK’s
moving GC can result in better cache locality; (2) Go’s scheduler automatically maps
user threads to kernel threads, and hence abstracts away the direct usage of kernel
threads, reducing the number of context switches and the number of kernel threads
used; (3) abstracting away the low-level I/O operations allows runtimes to use the
optimal I/O system call configurations.

5.1 GC Improved Cache Locality
OpenJDK’s moving garbage collector can significantly improve cache locality,
resulting in speedups in three bench- marks: single threaded key-value store and
both iterative and recursive implementations graph coloring. In particular, OpenJDK
was much faster than GCC at the single threaded key-value store, with 1.46x
speedup. This is the largest speedup any runtime had over GCC.

Key-value store. We found that the source of cache locality was from iterating over
linked lists. Our key-value store implements a hashtable with separate chaining,
meaning hash collisions are added to a bucket by appending the key-value (KV) pair
to a list. This is shown as the white boxes in Figure 3. For example, N2, N3, and N6
are different KV pairs hashed to the same bucket B1.

Figure 3: The key-value store before and after a GC pause. White boxes logically represent Java objects,

and the shaded boxes represent the objects’ location in the JVM heap. A ‘B’ denotes a bucket mapped to by

the hash function, and an ‘N’ denotes a node in the bucket’s linked list. The number of the node represents

the order they are inserted into the hashtable. The memory for the nodes of the bucket begins scattered,

but after GC relocation is ordered by the traversal of the bucket’s linked lists.

OpenJDK uses bump pointer allocation. Therefore, nodes in the hashtable are laid
out sequentially in memory based on their insertion order. Figure 3 (a) shows how
the nodes of a bucket would be initially laid out in memory. There is little locality, as
adjacent nodes of the same linked list are scattered. Therefore, whenever there is a
lookup, insertion, or a deletion of a key in the linked list, the traversal of the linked list
is expensive due to poor locality.

However, OpenJDK’s moving GC reorders the objects in memory. It scans for all live
objects that are reachable from the GC roots (e.g., objects on the stack) by following
the pointers, copying them to a different memory region, before freeing the old
region. For the linked list, this means that the objects will be allocated adjacently, in
the same order as in the linked list, as shown in Figure 3 (b).

In comparison, GCC uses a size segregated allocator (malloc). Since nodes have the
same size, they will be placed in the same region, resulting in a similar pattern as
with bump pointer allocation, with nodes laid out in insertion order. When profiling
the iteration, we found that GCC actually executed fewer instructions than OpenJDK,
but was still slower. In the tight loop iteration, the bucket GCC took only 5 assembly
instructions compared to OpenJDK’s 11.

This behavior presents the unintuitive case where the more frequently GC is
performed, the better the performance. Figure 4 shows that with more frequent GC
cycles, objects are re-ordered in memory more often, leading to improved
performance. We control the frequency of GC by using different heap sizes. The
larger the heap, the fewer GC cycles. When it is 128 GB, performance is the worst
because GC is never triggered; objects are never moved, so there is no locality.

Figure 4: The OpenJDK single threaded key-value store benchmark run with increasing heap sizes,

corresponding to fewer GC cycles.

Graph coloring. We found OpenJDK outperformed GCC (by 1.37x) on graph
coloring, when the C++ program uses the standard library. Our investigation showed
that GC had a similar effect as for the key-value benchmark given that graph
coloring also uses a hash table. Both hash table implementations on OpenJDK
(HashMap and HashSet) and C++’s standard libraries (std::unordered_set and
std::unordered_map) use an open hashing design; i.e., it uses separate chaining to
connect the elements in a linked list upon collision. As a result, both GCC and
OpenJDK suffer from poor locality initially. However, OpenJDK quickly gains locality
through GC, as with the key-value store benchmark. We optimized our C++
benchmark by switching to hashtable implementations from Google’s Abseil library
[2], which uses a closed hashing implementation that achieves better locality.

5.2 Scalability in Go
In the multithreaded key-value store implementation, Go has a 1.02x speedup
compared to GCC, despite being 1.16x slower than GCC in the single threaded
version. Go outperforms GCC by avoiding 2.2 million context switches through the
use of asynchronous networking I/O and significantly fewer kernel threads. With

GCC, network I/O is performed using synchronous system calls, blocking the kernel
thread, resulting in a context switch. When goroutines perform I/O, the work is
offloaded to an internal goroutine which uses asynchronous system calls. A
goroutine performing I/O is blocked by Go’s scheduler, but the underlying kernel
thread is not blocked; instead, Go schedules another goroutine on the same kernel
thread. As a result, Go only uses at most 42 kernel threads, regardless of the number
of concurrent client threads.

5.3 I/O System Calls in the File Server
To read a file in the file server benchmark in C++, we initially used the more general,
idiomatic approach which uses iterators. This results in repeated fixed size read
system calls. Unlike C++, all the managed runtimes abstract away the low-level
system call interfaces when performing I/O, so that they can transparently issue
system calls in an optimal way, by first calling fstat to get the file size, followed by a
single read for its entire contents. All runtimes use this approach. So any developer
using the runtimes will benefit from the optimizations without any burden of
knowledge. In comparison, we have to manually optimize our C++ implementation
to switch to fstat and read, leading to a 2x speedup.

References:

[1] 10 Myths of Enterprise Python. https://medium.com/paypal-engineering/10-myths-
of-enterprise-python-8302b8f21f82.

[2] Abseil. https://abseil.io/.

[3] JavaScript is slow. https://kariera.future-processing.pl/blog/javascript-is-slow/.

[4] JEP 248:Make G1 the Default Garbage Collector. http://openjdk.java.net/jeps/248.

[5] Most popular languages on GitHub. https://github.com/oprogramador/github-
languages.

[6] Profiling CPython at Instagram. https://instagram-engineering.com/profiling-
cpython-at-instagram-89d4cbeeb898.

[7] PYPL PopularitY of Programming Language. http://pypl.github.io/PYPL.html.

[8] Quora: In what cases is Java faster than C. https://www.quora.com/In-what-cases-
is- Java-faster-if-at-all-than-C.

[9] Quora: In what cases is Java slower than C by a big margin.
https://www.quora.com/In-what-cases- is-Java-slower-than-C-by-a-big-margin.

[10] The State of Developer Ecosystem 2019.
https://www.jetbrains.com/lp/devecosystem-2019/.

[11] The State of Serverless. https://www.datadoghq.com/state-of-serverless/.

Download PDF

https://medium.com/paypal-tech/10-myths-of-enterprise-python-8302b8f21f82
https://abseil.io/
https://kariera.future-processing.pl/blog/javascript-is-slow/
https://openjdk.org/jeps/248
https://github.com/oprogramador/github-languages
https://instagram-engineering.com/profiling-cpython-at-instagram-89d4cbeeb898
https://pypl.github.io/PYPL.html
https://www.quora.com/In-what-cases-is-Java-faster-if-at-all-than-C
https://www.quora.com/In-what-cases-is-Java-slower-than-C-by-a-big-margin
https://www.jetbrains.com/lp/devecosystem-2019/
https://www.datadoghq.com/state-of-serverless/
https://www.usenix.org/sites/default/files/paper_0.pdf

[12] The State of the Octoverse. https://octoverse.github.com.

[13] Transducers Speed Up JavaScript Arrays. https://itnext.io/using-transducers-to-
speed-up-javascript-arrays-92677d000096.

[14] TwitterShiftingMoreCodetoJVM,CitingPerformance and Encapsulation As Primary
Drivers. https://www.infoq.com/articles/twitter-java-use/.

[15] Why did Twitter switch from Ruby on Rails?
https://medium.com/@mittalyashu/why-did-twitter-switch-from-ruby-on-rails-
dac66150044d.

[16] Why Discord is switching from Go to Rust. https://discord.com/blog/why-discord-is-
switching-from-go-to-rust

[17] Why is Dynamic Type Checking Expensive?
https://stackoverflow.com/questions/41622341/why-is-type-checking-expensive.

[18] Why the Hell Would You Use Node.js. https://medium.com/the-node-js-
collection/why-the-hell-would-you-use-node-js-4b053b94ab8e.

[19] Why we switched from Python to Go. https://getstream.io/blog/switched-python-
go/#reason-performance.

[20] Yes, Python is Slow, and I Don’t Care. https://medium.com/pyslackers/yes-python-
is-slow-and-i-dont-care-13763980b5a1.

[21] David Lion, Adrian Chiu, Michael Stumm, and Ding Yuan. Investigating managed
language runtime per- formance: Why javascript and python are 8x and 29x slower
than c++, yet java and go can be faster? In Proc. USENIX Annual Technical Conf.
(USENIX-ATC'22). USENIX Association, 2022.

[22] David Lion, Adrian Chiu, Hailong Sun, Xin Zhuang, Nikola Grcevski, and Ding Yuan.
Don’t get caught in the cold, warm-up your JVM: Understand and eliminate JVM warm-
up overhead in data-parallel systems. In Proc. 12th Symp. on Operating Systems
Design and Implementation (OSDI'16), pages 383–400. USENIX Association, November
2016.

[23] Colt McAnlis. Improving cloud function cold ctart time, Google Cloud Performance
Atlas. https://medium.com/@duhroach/improving-cloud-function-cold-start-time-
2eb6f5700f6.

[24] Marius Pirvu. Optimize JVM start-up with Eclipse OpenJ9.
https://developer.ibm.com/articles/optimize-jvm-startup-with-eclipse-openjj9/.

[25] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end Arguments in System Design.
ACM Trans. Comput. Syst., 2(4):277–288, November 1984.

[26] Hang Shao,Marius Pirvu,Tobi Ajila,and Vijay Sundaresan. Innovations for Java
running in containers. https://blog.openj9.org/2021/06/15/innovations-for-java-running-
in-containers/.

[27] Kai-Ting Amy Wang, Rayson Ho, and Peng Wu. Re- playable execution optimized
for page sharing for a man- aged runtime environment. In Proc. 14th European Conf. on
Computer Systems (EUROSYS’19). Association for Computing Machinery, 2019.

[28] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian Lu, Pingchao Yang,
Chenggang Qin, and Haibo Chen. Characterizing serverless platforms with
Serverlessbench. In Proc. 11th ACM Symp. on Cloud Computing (SOCC’20), page 30–
44. Association for Computing Machinery, 2020.

https://octoverse.github.com/
https://itnext.io/using-transducers-to-speed-up-javascript-arrays-92677d000096
https://www.infoq.com/articles/twitter-java-use/
https://medium.com/@mittalyashu/why-did-twitter-switch-from-ruby-on-rails-dac66150044d
https://discord.com/blog/why-discord-is-switching-from-go-to-rust
https://stackoverflow.com/questions/41622341/why-is-type-checking-expensive
https://medium.com/the-node-js-collection/why-the-hell-would-you-use-node-js-4b053b94ab8e.
https://getstream.io/blog/switched-python-go/#reason-performance
https://medium.com/pyslackers/yes-python-is-slow-and-i-dont-care-13763980b5a1
https://medium.com/@duhroach/improving-cloud-function-cold-start-time-2eb6f5700f6
https://developer.ibm.com/articles/optimize-jvm-startup-with-eclipse-openjj9/
https://blog.openj9.org/2021/06/15/innovations-for-java-running-in-containers/

Tags: Language runtime, programming languages, Java, Python, JavaScript, Go, C++

Last updated July 21, 2022

AUTHORS: AUTHORS:
David Lion is a PhD candidate in the
Electrical and Computer Engineering
Department of the University of Toronto. His
research interest is in language runtimes and
their performance.

david.lion@mail.utoronto.ca

Adrian Chiu is a PhD student in the Electrical
and Computer Engineering Department of
the University of Toronto. His research
interests are in language runtimes,
compilers, and programming languages.

adrian.chiu@mail.utoronto.ca

Michael Stumm is a professor in the
Electrical and Computer Engineering
department of University of Toronto. He
works in the general area of computer
systems software with an emphasis on
operating systems for distributed systems
and multiprocessors. He co-founded two
companies, SOMA Networks, and OANDA, a
currency trading company. He ran OANDA
from 2001 until 2012.

stumm@ece.utoronto.ca

Ding Yuan is an associate professor in the
Electrical and Computer Engineering
department of University of Toronto, and the
Canada Research Chair in Systems
Software. He works in the general area of
computer systems software. He is a co-
founder of YScope.

yuan@ece.utoronto.ca

Log in or Register to post comments

© USENIX 2022
Website designed and built
by Giant Rabbit LLC

Privacy Policy

Contact Us

Sign up for Our Newsletter:

First Name Last Name Email

reCAPTCHA
I'm not a robot

Privacy - Terms

Submit

mailto:david.lion@mail.utoronto.ca
mailto:adrian.chiu@mail.utoronto.ca
mailto:stumm@ece.utoronto.ca
mailto:yuan@ece.utoronto.ca
https://www.facebook.com/pages/USENIX-Association/124487434386
https://twitter.com/usenix
https://www.linkedin.com/company/usenix-association/
https://www.youtube.com/user/USENIXAssociation
https://www.usenix.org/
https://giantrabbit.com/
https://www.usenix.org/privacy-policy
https://www.usenix.org/contact
https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/terms/
https://www.usenix.org/user/login?destination=node/281853%23comment-form
https://www.usenix.org/user/register?destination=node/281853%23comment-form

