
This paper is included in the Proceedings of the
2022 USENIX Annual Technical Conference.

July 11–13, 2022 • Carlsbad, CA, USA
978-1-939133-29-8

Open access to the Proceedings of the
2022 USENIX Annual Technical Conference

is sponsored by

Investigating Managed Language Runtime
Performance: Why JavaScript and Python are 8x
and 29x slower than C++, yet Java and Go can be

Faster?
David Lion, University of Toronto and YScope Inc.; Adrian Chiu and Michael

Stumm, University of Toronto; Ding Yuan, University of Toronto and YScope Inc.

https://www.usenix.org/conference/atc22/presentation/lion

Investigating Managed Language Runtime Performance
Why JavaScript and Python are 8x and 29x slower than C++, yet Java and Go can be faster?

David Lion*†, Adrian Chiu*, Michael Stumm*, Ding Yuan*†
*University of Toronto, †YScope

Abstract

The most widely used programming languages today are
managed languages. They are popular because their vast fea-
tures improve many aspects of code development, including
increased productivity and safety. However, as a product or
service scales in usage, performance issues become a prob-
lem. Developers are then often faced with complex choices
as they must decide whether the desired performance can be
squeezed from existing code, or whether their language has
reached its performance limits, requiring years of code to be
ported to a new more-performant language. To make matters
worse, runtime performance is shrouded in mystery as it in-
volves complex interactions of different components, such
as interpreter, just-in-time (JIT) compiler, thread library, and
Garbage Collection (GC) system.

We present an in-depth performance analysis and com-
parison of Java, Go, JavaScript, and Python, using C++ as a
baseline. We carefully instrumented the different language
runtimes, so that developers can precisely measure the num-
ber of cycles taken to execute any bytecode instruction, or
the overhead of dynamic type checking in JavaScript. This
allows us to accurately identify sources of overhead. We fur-
ther created 6 applications from the ground up to establish
the LangBench benchmark; the applications cover a range of
complexity, and they cover a variety of application scenarios
differing in compute intensity, memory usage, network and
disk I/O intensity, and available concurrency. We comprehen-
sively analyze their completion times, resource usage, and
scalability.

Overall, we found that V8/Node.js and CPython exhibit
excessive overheads, executing applications 8.01x and 29.50x
slower on average than their C++ counterparts, respectively.
Making matters worse, applications on these two runtimes
scale poorly in that they cannot effectively utilize more than
one core. In contrast, OpenJDK and Go applications are per-
formance competitive to C++, running only 1.43x and 1.30x
slower, respectively, and they can easily scale to multiple
cores. There are applications where OpenJDK and Go outper-
form their C++ counterparts.

1 Introduction

Programming languages with integrated run-time environ-
ments have continuously grown in popularity. The three most
popular languages on GitHub since 2015 are JavaScript, Java,
and Python [38]. These languages offer the promise of im-
proved developer productivity and thus faster product cre-
ation and adaptation because of a variety of features they
offer, including easier readability and usability, dynamic type
checking, memory management with garbage collection, and
dynamic memory safety checks. We use the term “managed
languages” to refer to these type of programming languages.

Managed languages are increasingly being used to imple-
ment systems software where performance is critical. Both
Hadoop [54] and Spark [76] run on a Java Virtual Machine
(JVM) [61] as they are implemented in Java and Scala respec-
tively. Kubernetes [21], etcd (a distributed key-value store [4]),
and M3 (a distributed time series database and query engine
built by Uber [14]) are all implemented in Go. Recently, even
an operating system (OS) kernel, Biscuit [52], was imple-
mented in Go [8]. Openstack [18], Paypal [1], Instagram [22],
and Dropbox all heavily utilize Python; Python is Dropbox’s
“most widely used language both for backend services and
the desktop client app” with almost 4 million lines of Python
code in one repository [20]. As a final example, JavaScript
is used in the performance critical path for the Bladerunner
pub/sub system at Facebook [49].

Several factors come into play when selecting a program-
ming language for a new service, including current developer
expertise and experience, constraints imposed by existing
ecosystems (e.g., home-grown libraries, development, debug-
ging tools, performance monitoring and logging systems, etc.),
and developer productivity. Managed languages are an attrac-
tive proposition, precisely because they offer the promise of
higher developer productivity, leading to faster project com-
pletion times. The performance of the language is rarely a
consideration at the outset, in part because of the belief that
performance issues can be addressed later, perhaps through
horizontal scaling by simply adding hardware. Some go as
far as to claim “Choosing a language for your application

USENIX Association 2022 USENIX Annual Technical Conference 835

simply because it’s ‘fast’ is the ultimate form of premature
optimization” [47].

However, performance will ultimately become a priority
as the usage of the service begins to scale and the service
becomes too slow or the cost of hardware becomes too high.
Developers then begin a large sequence of performance opti-
mizations that can grow into herculean efforts. For example,
Twitch.tv and others use tricks and tweaked parameters to
meet desired GC performance in Go [5, 19]; project Tungsten
in Spark goes as far as to bypass the JVM, to squeeze out
performance [23].

But there can come a point where incremental optimiza-
tions (requiring much time and effort) no longer suffice and a
more radical solution must be considered, namely switching
to a “better performing” language. A few examples from in-
dustry: Stream abandoned Python for Go, as Python would
spend 10ms creating objects from data that Cassandra took
1ms to fetch, noting that “We’ve been optimizing Cassandra,
PostgreSQL, Redis, etc. for years, but eventually, you reach
the limits of the language you’re using.” Discord switched
from Go to Rust claiming that “Rust was able to outperform
the hyper hand-tuned Go version.” [43]. Performance issues
are also cited as the main reason Twitter was forced to switch
from Ruby on Rails to Scala and Java [40, 42].

When selecting a new language for performance reasons,
the question is: what language? Understanding the perfor-
mance and scalability implications of a (new) language today
is non-trivial, especially for managed languages. This is for
several reasons.

First, no empirical studies exist that scientifically compare
the different managed languages. The primary source of infor-
mation available today is the blogosphere containing heated
“religious” debates that include tunnel-visioned anecdotes
with few rigorous measurements to back up stated claims. For
example, while many believe programs written in Java run
slower than when written in C/C++ [27], others suggest that
Java programs can be faster than C, because the JIT compiler
produces faster machine code by leveraging a runtime pro-
file [26]. Similarly, there have been polarized debates with re-
spect to the performance of JavaScript [11,39], Go [43,46] and
even Python – for example, sources from Paypal claimed that
Python offered superior performance over other languages and
reported multiple cases where Python outperformed their C++
and Java counterparts while requiring less code [1]. Similarly,
developers reported that Python could outperform both C/C++
and Java when using regular expressions or strings [33–35].

Discussions on scalability are even muddier. For exam-
ple, in a popular blog by the official Node.js Medium ac-
count, developers conclude that by being event-driven and
asynchronous, JavaScript is ideal for scaling to millions of
concurrent connections, despite its event loop only executing
on a single thread [45]. As another example, while it should
be well-known that CPython, the de facto runtime for Python
today, uses a global interpreter lock (GIL) that will serialize

all concurrent thread executions, Paypal’s engineering blog
claims that it scales well, and noted that “Dropbox, Disqus,
Eventbrite, Reddit, Twilio, Instagram, Yelp, EVE Online, Sec-
ond Life, and, yes, eBay and PayPal all have Python scaling
stories that prove scale is more than just possible: it’s a pat-
tern” [1].

Second, no benchmark suite is publicly available today that
enables a meaningful comparison between different managed
languages (and their implementations). Existing benchmark
suites target specific languages or applications. Extending
these benchmarks to other languages is often impossible; for
example, the DaCapo benchmark for Java contains applica-
tions such as Eclipse, a full-featured IDE [50]. As a result, any
comparison on language runtime performance often compares
apples to oranges.

Third, language runtime systems are extremely complex
software systems, providing multiple abstractions that all
affect performance. For example, a developer must under-
stand the interpreter, possibly multiple JIT compilers (e.g.,
the OpenJDK JVM contains 4 levels of JIT compilation), a
memory management subsystem that performs garbage col-
lect, the behavior of thread libraries, etc.

Finally, there are no helpful, publicly available profiling
tools for understanding the overheads of language runtime
systems. The language subsystems themselves expose little
profiling information on their internals. For example, while it
is widely speculated that dynamic type checking adds signifi-
cant overhead [44], V8/Node.js does not expose any perfor-
mance counters to report this overhead.

In this paper, we present an in-depth quantitative perfor-
mance analysis of four of the popular managed languages with
their most widely used runtime systems: CPython, OpenJDK,
Node.js with the V8 engine for JavaScript, and the reference
Go compiler [15, 24, 36, 38]. We compare their performance
characteristics with that of C++ on GCC as the baseline. Our
focus is primarily on understanding their differences with
respect to speed and scalability.1 We chose these languages
not just because of their popularity, but because they represent
different designs along the following three dimensions:

• Typing. JavaScript and Python are dynamically typed,
meaning the runtime must determine the type of objects at
run time, whereas others are statically typed. This allows
us to understand the performance impact of dynamic type
checking.

• Execution modes. Only Go is ahead-of-time compiled. The
other runtimes first interpret bytecode, and compile hot
functions Just-In-Time (JIT). The exception is CPython that
only has an interpreter and no JIT compiler. This enables
us to compare three execution modes: native-only (Go and

1An analysis of resource usage is left to the Appendix, because the find-
ings have largely already been established by prior studies [63], and we did
not need to implement any additional profiling mechanisms.

836 2022 USENIX Annual Technical Conference USENIX Association

C++), a combination of interpreter and JIT-compiled native
(OpenJDK and V8), and interpreter only (CPython).

• Concurrency models. V8/Node.js is event driven where
event handlers are executed sequentially on a single kernel
thread. Similarly, CPython has a global interpreter lock
(GIL) so only one thread can execute Python code at a
time. Go has its own scheduler and provides user threads
as “goroutines.” Its scheduler decides how many kernel
threads to use for the developer’s goroutines. OpenJDK’s
Thread is simply a kernel thread.

Contributions

The contributions of the paper are as follows:
Runtime instrumentations. We are the first to make publicly
available (as artifacts) instrumentations for the three runtime
systems of popular managed languages that are not statically
compiled, namely OpenJDK, V8, and CPython. Implementing
such instrumentations is challenging given the complexity of
these runtimes and the fact that two of them are implemented
in assembly and IR. Our instrumentations enable bytecode-
level profiling of (1) the execution overhead of any target
bytecode in the interpreter and (2) the dynamic type-checking
overhead in Node.js/V8. The profiling information generated,
in turn, can be used to guide optimization efforts at the ap-
plication level and can enable effectual optimizations. The
instrumentations are described in §2.
Benchmark suite. We are the first to make publicly avail-
able (as artifacts) six applications suitable for evaluating
managed languages; these applications were used to cre-
ate twelve benchmarks. The applications, which range from
micro-benchmarks to real applications, cover a variety of sce-
narios, differing in compute intensity, memory usage, I/O
intensity, relative startup time, and the degree of available
concurrency. In particular, we took care to expose the dif-
ferences in the three major design dimensions mentioned
above. Three of the six applications are parallel, and we
parallelize them using both multithreading and multipro-
cessing where applicable. The benchmark suite is called
LangBench and is described in §3. The source code of
our instrumented runtimes and LangBench can be found at
https://github.com/topics/langbench.
Comparative analysis. We quantitatively analyse the perfor-
mance of the benchmarks in our suite and identify how the
individual runtimes improve or hinder performance relative
to the respective C++ implementations. Our objective was to
compare the runtimes of the target managed languages in an
objective, scientific way. Many of our results are not particu-
larly surprising (even if they contradict some views held in the
blogosphere). For example, Go and OpenJDK perform signif-
icantly better than V8/Node.js and CPython, with CPython
performing worst by far, even when compared against V8
and OpenJDK’s interpreter-only execution (§6). CPython and

V8/Node.js do not benefit from parallelism; in fact, increasing
the number of threads systematically decreases performance
(§7). A major source of V8’s relatively poor performance is
its dynamic type checking, even when the JS code only uses
primitive types that never change (§6.1).

Perhaps more surprising is the fact that in many cases, the
abstractions offered by runtimes can actually lead to speedups
over GCC (§8). This contradicts the conventional wisdom that
abstraction comes at the expense of performance [74]. Open-
JDK outperformed GCC in three of the benchmarks, because
the moving garbage collector actually improves cache locality.
This leads to the unintuitive behavior that the more frequently
GC is performed, the better the overall performance. Go ab-
stracts away the usage of kernel threads, reducing the number
of context switches and kernel threads. Finally, abstracting
away low-level I/O operations allows runtimes to use optimal
I/O system call configurations, outperforming the idiomatic
approach in C++.

Limitations

The main limitation of our work is that it does not, and can-
not, comprehensively answer every question one might have
related to the performance of a language runtime. We only
evaluated the runtimes of four languages, and for each lan-
guage we only evaluated the implementation that is the most
widely used. In addition, we only ran our workloads on a
single OS/hardware stack. Our findings pertain to our bench-
marks, which model real-life applications, but may not be rep-
resentative of a vast range of applications. Accordingly, our
study is not meant to determine the best or most performant
programming language for any particular application. Fur-
thermore, our benchmark and analysis do not focus on some
performance aspects. Notably, we do not study the overhead
of garbage collection when under memory pressure (there is
a gap between the working set size of our benchmarks and
the maximum heap size setting). There is a large body of
prior work focusing on this aspect already [51, 63, 79]. Simi-
larly, our benchmark is not meant to measure the various JIT
compiler’s optimizations, as there are also a large number of
existing benchmarks meant to do exactly that [10, 32, 53].

2 Language Runtime Instrumentation

In this section we describe how we instrumented the three run-
times: OpenJDK’s HotSpot JVM, Node.js/V8, and CPython.
Our instrumentations measure two types of information:
(1) the performance of the execution of any bytecode instruc-
tion in the interpreter, and (2) the dynamic type and bounds
checking overhead in V8’s JIT compiled code. Users can
specify a bytecode instruction to measure its overhead, or
any JavaScript (JS) function to measure the type and bounds
checking overhead when executing that function.

USENIX Association 2022 USENIX Annual Technical Conference 837

https://github.com/topics/langbench

Why profile interpreter performance? Some have the view
that interpreter performance is not important as it mostly af-
fects the startup time, which will be amortized by “warm
execution.” We do not share this view. While interpreter
performance may have been irrelevant over a decade ago
when workloads ran in large, long-running monolithic appli-
cations that handle all requests [75], the paradigm shift to
the cloud [65, 69, 77] and data analytics [62] expose the run-
time’s startup performance as being significant. For example,
auto-scaling in the cloud often results in the bringing up of
additional instances in the face of a load spike [65, 69]; the
problem is also exemplified by short-running instances in
Function-as-a-Service platforms [65,77]. In 2020, the median
AWS Lambda invocation ran for only 60 milliseconds [37],
while startup times for the JVM and V8 are on the order of
hundreds of milliseconds or even seconds [62, 65, 77, 80].
Similarly, data analytics systems face a fundamental tension
between parallelizing long running jobs into shorter tasks and
the runtime’s start-up overhead [62].

In practice, instead of ignoring the performance of the in-
terpreter, implementers spend huge efforts in optimizing the
interpreter. For example, OpenJDK has two interpreter imple-
mentations: one in C++ and the other entirely in hand-crafted
x86 assembly; in one benchmark (§6.2), we found that the
C++ interpreter to be 1.93x slower than the assembly one,
which is perhaps why the C++ interpreter is only used on
non-x86 platforms. Similarly, V8’s interpreter is written in
hand-crafted IR, and IBM’s OpenJ9 Java runtime has signifi-
cant optimizations targetting startup time which is featured
as a major advantage over OpenJDK in the cloud [55, 69, 75].

Bytecode-level profiling can guide optimization efforts and
can enable effectual optimizations. For instance, developers
can optimize their programs to avoid the use of bytecode in-
structions with high overheads. Instagram engineers did just
this by instrumenting CPython to identify the bytecode in-
structions with high overheads, and then optimizing their code
to avoid using these expensive instructions [22]. Bytecode-
level profiling also allows us to understand the performance
difference between different runtimes.

Why profile type and bounds checking? As we will show
in §6.1, dynamic type and bounds checking is a major source
of V8’s overhead. Similar to bytecode profiling, programmers
can optimize their JS programs to avoid such overhead once
the source is identified (§6.1). Our instrumentation also en-
ables eliminating type and bounds checking overhead entirely
for those functions where developers know that they are safe.
For instance, say a JS function accesses a[i], the element at
index i of array a, and their types never change (known as
“monotype”). V8 detects that a and i are monotype, and it
speculatively compiles the function: it checks a against the
array type (instead of other types) and i against integer, before
accessing a[i].2 But to ensure safety, it cannot remove the

2It also performs other checks as described in §6.1.

checks because their types could dynamically change in the fu-
ture. In that case, the check will fail, forcing the JIT-compiled
function to exit and be destroyed, and V8 will re-execute the
function in its interpreter before recompiling it.

By disabling the checking logic in V8’s JIT compiler for
any user-specified JS function, we effectively create a signif-
icantly more efficient, albeit unsafe, version of the function.
In the above example, developers could enable this feature to
turn off the checks when they know a and i are monotype, so
the JIT-compiled code will directly access a[i] by indexing
into a without any checks (effectively turning the JS function
into a C function). The difference in execution time of appli-
cations with and without checked functions can be significant:
e.g., in LangBench’s sort benchmark, disabling the checking
in V8 results in 8x speedup (§6.1).

Note that we only instrumented V8’s JIT compiler for iden-
tifying type and bounds checking overheads, but not its in-
terpreter. This is because unlike the JIT compiler that inde-
pendently compiles the different functions, the interpreter’s
checking logic is applied to all functions equally, leaving us
only with the option of either performing checks in all of
an application’s functions or none of them. The latter option
would likely to be too risky to be useful in practice. We fur-
ther note that the checking overhead in the interpreter also
becomes negligible when compared to the other overhead
from the interpreter, whereas their proportion become much
more significant in JIT-compiled code.
Instrumentation Implementation. Conceptually the instru-
mentations we use to profile bytecode execution in the in-
terpreters are simple. We locate the code block in each in-
terpreter that processes a bytecode instruction, and inject in-
strumentation around it to collect metrics from the x86 CPU
performance counters. In practice, however, adding instru-
mentation is challenging. One challenge is the complexity
of the runtimes: JVM, V8, and CPython consist of approxi-
mately 1.2M, 1.0M, and 0.9M lines of code respectively, with
little documentation. Instrumenting JVM and V8 is even more
challenging as their interpreters are not programmed in a high-
level language (e.g., C++) as the other runtimes are, but are
generated dynamically at startup time.

The HotSpot JVM has two interpreters. Its default inter-
preter for x86 is written in hand-crafted assembly (known as
the “assembly interpreter”). It also has a interpreter written
in C++. We instrumented both. Instrumenting the assembly
interpreter brings three challenges. First, one needs to locate
the code blocks that process the different bytecodes by search-
ing the assembly code. Second, one has to carefully ensure
that the instrumented code does not clobber any registers that
are used by the interpreter’s logic. Finally, HotSpot writes the
assembly instructions of the interpreter into memory when
it starts up and then jumps to the memory location of the
beginning of the interpreter. Hence, we need to use the same
mechanism in order to be able to embed our instrumentation
logic (written in assembly) into memory.

838 2022 USENIX Annual Technical Conference USENIX Association

1 push rax
2 push rcx
3 push rdx
4 rdtscp ; saves tsc into EDX and EAX registers
5 shlq rdx,32 ; shift tsc’s higher 32 bits up in rdx
6 orq rax,rdx ; or onto rax
7 movq dst,rax ; output to a scratch register dst
8 pop rdx
9 pop rcx

10 pop rax

Figure 1: The sequence of assembly instructions inlined into the
processing of each bytecode instruction.

Figure 1 shows the instruction sequence we inject as part
of our instrumentation to obtain the CPU’s timestamp counter
(tsc). Line 1-3 saves the registers values.3 The rdtscp in-
struction saves the higher and lower 32 bits of tsc into EDX
and EAX respectively, i.e., the lower 32 bits of RDX and
RAX [68]. It also clears the higher 32 bits of RDX and RAX.
Line 5 shifts the higher 32 bits of tsc, stored in EDX, to the
higher 32 bits of RDX, and line 6 effectively concatenates the
higher and lower 32-bits of tsc, and stores it into RAX. We
embed this instruction sequence at both the beginning and the
end of the processing of the target bytecode instruction, so
that we can measure the latency by computing the difference.4

Similarly, we use rdpmc to read other performance counters,
including those for cycle and instruction counts.

Instrumenting V8 is even more challenging. V8’s inter-
preter is written in hand-crafted intermediate representation
(IR). When the runtime starts up, the interpreter’s binary is
generated dynamically from this IR by the same JIT compiler
used at run time in V8. This required us to instrument both
the IR code of the interpreter and the JIT compiler so that
native instrumentation code is injected correctly.

Specifically, for each target bytecode, we had to locate its
processing logic in the interpreter’s IR and then add a new
type of IR node we introduced. We further had to modify the
JIT compiler, so that when it encounters this new IR node, it
produces the correct assembly instructions that collects the
CPU performance counters. This was challenging because
there is little documentation describing the internals of V8’s
interpreter IR or JIT compiler.

One advantage with JVM and V8 is that developers do
not need to recompile the runtime when they wish to pro-
file a different bytecode instruction, but only need to restart
the runtime. This is because the interpreters are generated
dynamically at startup time. Accordingly, we identify which
bytecode instruction is to be instrumented at startup time,
generate the appropriate instrumentation code so that it is

3We have to manually save the registers because we directly inject code
into the assembly code, in contrast to injecting assembly code into C where
the __asm__ block saves the registers.

4Intel allows tsc to be synchronized across multicore [48], and Linux
enables this synchronization [13]. This ensures a meaningful counter value
even if the interpreter thread is migrated to another core during the processing
of a bytecode instruction. In reality, however, migration is rare given the
processing of bytecode instruction typically only takes tens of cycles.

embedded in the interpreter when written to memory (as with
JVM) or generated by the JIT compiler (as with V8).

Instrumenting CPython is far more straightforward because
it is written in C++. However, the CPython runtime will have
to be recompiled whenever profiling is to be enabled or the
target bytecode instruction that should be instrumented is
changed. In theory, one could, before the execution of each
bytecode, check whether the bytecode is one of the specified
target bytecodes, and conditionally execute the instrumenta-
tion, but this would add too much overhead.
Instrumentation Overhead. Although our instrumentation
could incur noteworthy overhead when enabled on frequently
executed bytecode instructions, we only used them to mea-
sure a specific bytecode instruction, instead of end-to-end
runtime. We only count the number of instructions inside of
the measurement instructions, not including our instrumented
instructions. This is possible as we control the exact assembly
instructions generated, and we verify said assembly using
objdump, gdb, and outputting the JIT-compiled assembly.5

However, our cycle measurements could be skewed by the
measuring instructions limiting the processor’s out-of-order
execution and pipelining capabilities. This is a limitation, and
it is extremely difficult to accurately measure this overhead
due to the fact that the very act of measuring the cycle count
disrupts pipelining (similar to the observer effect in physics).

3 LangBench

Our goal is to compare realistic applications across differ-
ent languages. We cannot reuse existing benchmarks as they
target specific languages, and extending these benchmarks
to other languages is infeasible. For example, porting the
DaCapo benchmark requires us to implement Eclipse, a full-
featured IDE, in four other languages [50]. Therefore, we
chose to build 6 applications from the ground up to cover
a variety of workloads. We implemented these applications
in each of the 5 languages: C++, Go, Java, JavaScript, and
Python. From the six applications, we created twelve bench-
marks by varying degrees of concurrency, and exploring alter-
native implementations of the applications.

We made a best-effort attempt at covering a variety of
different types of workloads. Our applications range from
micro-benchmarks to real world applications, and they stress
three major resource usage categories in different ways, being
one or more CPU-intensive, memory bound, and I/O bound.
Additionally, we implemented parallel versions of the appli-
cations where applicable. They also vary from short running
to long running ones. The applications and their categories
are shown in Table 1.

It was important to ensure that the applications were im-
plemented in a similar and fair manner in each of the five

5There is no overhead for removing the type and bounds checking in V8
as the compiler only removes instructions.

USENIX Association 2022 USENIX Annual Technical Conference 839

Application CPU Memory I/O Parallel
Sudoku solver
String sorting

Graph coloring
Key-Value store

Log analysis
File server

Table 1: The applications and the component(s) they stress.

languages. The design of every implementation of an applica-
tion is conceptually identical: they use the same algorithms
and control flow. Each application is relatively small, so that it
could be built in all languages using the same algorithms and
data structures. This kept the complexity of the application
similar across the languages.

Yet, we fully rewrote the applications in each language, pro-
viding our best effort to make the code idiomatic. We referred
to official language documentation (e.g. [7]). In certain cases
we also implemented different versions of the code. For exam-
ple, in the JavaScript Sudoku implementation we re-wrote the
code multiple times to change the storage of the arrays (see
§6.1 for details). For Python and JavaScript we also tried ver-
sions that create parallelism (e.g. multiprocessing in Python)
and versions that only provide concurrency (e.g. threading in
Python). In general, as we analysed each bottleneck, we also
tried to find any more performant implementations.

The six applications are:
Sudoku Solver. We implemented an exhaustive search su-
doku solver, borrowing from the Spec CPU 2017 bench-
mark [30]. The algorithm recursively labels all empty cells.
At each cell, it verifies the grid state, using the next digit for
the cell if verification fails. If all digits are exhausted for a
cell, it backtracks to the previous cell.
String Sorting. We implemented the in-place merge sort
algorithm described by Katajainen et al. [59] and use it to
sort strings. First, we permute every possible string of length
6 with 18 possible letters, creating 186 strings. These strings
are stored in an array, which are then sorted.
Graph Coloring. Graph coloring labels each vertex in a
graph, such that no two vertices with an edge between them
have the same label. We implemented the algorithm presented
by Wigderson [78] which uses a bounded number of col-
ors with run time complexity polynomial in the number of
vertices, edges, and the chromatic number. The benchmark
colors the YouTube social network and ground-truth com-
munities graph from the Stanford Large Network Dataset
Collection [60]. We implemented both a recursive and an
iterative version of the algorithm.
Key-Value Store. We implemented an in-memory key-value
store based on the general architecture of Redis [28]. We stress
the server with Redis’ packaged benchmark by running a SET

test followed by a GET test. Each test makes 2 million requests,
randomly selecting a key from a space of 500 thousand keys,
using a value size of 64 bytes. The Redis benchmark opens

a configured number of client connections to the key-value
store. Each connection performs an equal number of requests
and is treated as a unit of concurrency (such as a thread). The
clients are run on a machine separate from the one running
the key-value store.

Log Analysis. We implemented the algorithm of CLP that
parses logs by separating highly repetitive static text from
variable values, and stores them in two different indexes [73].
Logs are queried, returning the matching log messages by
searching the index and raw log. We separate the searching
into two separate tests. “Regex” searches the raw logs us-
ing regular expressions, whereas “Indexed” searches using
indexes. Both tests can be run with parallelism, where the
files to be searched are partitioned equally. We process 7000
log files totalling 1.21 GB on disk with an average size of 181
KB. The logs were generated by running various jobs from
HiBench [56, 57]. Each test first indexes the logs and then
performs 7 queries.

File Server. We implemented an HTTP server that serves
static files from a directory. A single C++ client is always
used that spawns a configured number of threads; each thread
connects to the server and requests an equal partition of 1000
real log files with an average size of 16.8 MB. The server
implementations handle these connections concurrently, treat-
ing each connection as a unit of concurrency. The client and
server run on different machines.

4 Methodology

We ran our experiments on two in-house servers, each having
2 Xeon E5-2630V3, 16 virtual cores, 2.4 GHz CPUs, 256 GB
DDR4 RAM and two 7200 RPM hard drives. They are run-
ning Linux 4.15.0 and connected by a 10 Gbps interconnect.
For C++ programs we used GCC 9.3.0 compiling with -O3

against the C++17 standard. For OpenJDK 13 [17], CPython
3.8.1 [25], and Go 1.14.1 [6], we used the reference imple-
mentations for each respective language. We use Node.js
13.12.0 [16] which uses V8 7.9.317.25 [41].

We ran each benchmark 5 times and report the average.
The key-value store, log parser, and file server benchmarks
were run with the number of both client and worker threads
ranging from 1 to 1024. For OpenJDK and V8 the minimum
amount of memory was set by determining the first heap
configuration that did not cause a crash; for Go, GOGC was
set to 5%. We then continuously increased the heap settings
until performance no longer improved. We used the results
from the first setting (i.e., the smallest heap size) that resulted
in optimal performance. For the log parser and file server
benchmarks, the used log files were stored on a distributed
file system with a replication factor of 2. We cleared Linux’s
page cache before running each benchmark.

840 2022 USENIX Annual Technical Conference USENIX Association

Sudoku Sort
Graph

Iterative
Graph

Recursive
Key-Value

Store 1 Thread
Key-Value
Store Best

LA Regex
1 Thread

LA Regex
Best

LA Indexed
1 Thread

LA Indexed
Best

File Server
1 Thread

File Server
Best

Average
Factor

0.1

1

10

100

0.2

0.4
0.6
0.8

2

4
6
8

20

40
60
80

C
o
m

p
le

ti
o
n

 T
im

e

5
1
2

1
6

1
6

6
4

2
5

6 6
4

9
6

6
41
6

0 1
6

6
4

6
4

9
6

1

1

6
4

1

1

1

6
4

GCC (s) 0.715 8.295 19.175 18.572 281.978 38.091 143.319 19.383 44.074 9.231 63.012 16.852

GCC Go OpenJDK Node.js/V8 CPython

Figure 2: Relative completion times for various language implementations normalized to optimized code under GCC. Note the logarithmic
scale of the y axis. “LA” refers to the log analysis application. The numbers at the bottom shows the benchmark’s absolute execution time in the
C++ implementation. For benchmarks with concurrency, the “Best” bars are annotated with the thread count that results in best completion time.
For key-value store and file server it is the number of client threads, not the number of threads used server side. For GCC and OpenJDK, the
server creates 1 (kernel) thread to handle each client thread, so the number of server-side threads is the same as the client. For both Node.js and
CPython, their best completion time in key-value store is achieved when using a single server-side thread (due to their scalability characterstic
described in §7). As for the file server benchmark, both Node.js and CPython’s best performance is achieved when using 64 server-side threads
(§7). The number of server-side threads in Go is automatically determined by the runtime as described in §8.2. The number of threads for log
analysis is the number of worker threads (as there is no client).

5 Overview of Results

Figure 2 shows the run times for the benchmarks in Lang-
Bench. Unsurprisingly, optimized GCC was the fastest on
average, with Go and OpenJDK close behind, being 1.30x
and 1.43x slower than GCC. Impressively, Go and Open-
JDK outperform optimized GCC for 3 out of the 12 bench-
marks. V8/Node.js and CPython performed the worst with
run times 8.01x and 29.50x slower than GCC. At the extreme,
CPython was 129.66x slower than GCC (for the sort bench-
mark). V8/Node.js and CPython were competitive with GCC
only when the workload is bottlenecked by disk I/O, i.e., in
the file server benchmark.

We also found that V8/Node.js and CPython are limited
with respect to achievable parallelism. Their design serializes
the threads’ computation, and requires expensive serialization
for different threads (V8) or processes (CPython) to communi-
cate. This leads to the unintuitive result that adding additional
threads actually slows down parallel applications as more
serialization is required. In fact, for both the key-value store
and parallel log analysis benchmark, the best performance is
achieved using only a single thread. In contrast, both Go and
OpenJDK scale to multicores. Go achieves a 1.02x speedup
over GCC in the multithreaded key-value store benchmark,
despite being slower in the single threaded version.

In the subsequent sections, we use our instrumented run-
times to provide detailed analyses that explain these results.
Specifically, for each runtime, we analyze (at minimum) the
two worst performing benchmarks, considering both single-
threaded (§6) and multi-threaded (§7) variants for those with
parallelism. We further analyzed every case where the runtime
outperforms GCC (§8).

board[x][y]

board[x][y] safe to use

hole value?

int?

hole value?

int?

int?

object?

object?

shape?

shape?

board[x]

board

x

y

bounds check?

bounds check?

1st Array Dimension

Access

2nd Array Dimension

Access

Figure 3: Checks required to access board[x][y] in V8/Node.js.

6 Runtime Overhead (Single-thread)

This section investigates the source of runtime overheads on
the LangBench single-threaded applications that performed
poorly. Specifically, we found (1) type and bounds checking
(§6.1) is the bottleneck for V8 in its slowest benchmarks
(Sudoku and Sort); (2) interpreter performance (§6.2) is the
major cause of CPython’s overhead – despite lacking a JIT
compiler, its interpreter performs much worse compared to
OpenJDK and V8; (3) GC write barrier (§6.3) is the bottleneck
in the Sort benchmark for both OpenJDK and Go, which is
their slowest workload, even when heap usage is small.

6.1 Type and Bounds Checking Overhead
We found that type checking and bounds checking made up
41.83% and 87.43% of V8’s execution time in the default su-

USENIX Association 2022 USENIX Annual Technical Conference 841

Code Version Time (s) Overhead of
Checks (%)

Default 2.369 –
1-2 Remove Obj./Int Checks 2.177 8.105

3 Remove Shape Check 2.219 6.332
4 Remove Bounds Check 2.154 9.076
5 Remove Hole Check 2.051 13.423

1-5 Remove All Checks 1.378 41.832

Table 2: We modified V8’s JIT compiler and removed each of the
checks performed for a 2D array access to board[x][y] shown in
Figure 3. We measured the resulting execution time, and compare it
against the default execution time with all checks. We also show the
execution time when all checks are removed.

doku and sort benchmarks, which are the two single-threaded
benchmarks where V8 showed the worst performance com-
pared to GCC. Note that V8 has other sources of overhead,
such as execution being partially interpreted, when compared
with GCC. For the numbers in this sub-section, we compare
against the default execution time when the runtime binary is
in Linux’s page cache, unlike the results in Figure 2, where
we clear the page cache before each test. Next we zoom into
the Sudoku benchmark to explain this overhead, and how we
can leverage our bytecode profiling information to optimize
our JavaScript code.

For V8/Node.js, Sudoku spends 93% of its time primar-
ily comparing 2D array elements of the sudoku board. The
majority of this time is spent performing 11 type and bound
checks for each 2D array access, as shown in Figure 3. Each
dimension requires 5 checks, and the 11th check is used for
the final value. Table 2 shows the overhead for these checks.

The first check ensures that board is an object pointer, by
checking for a tagged bit to distinguish between an object
pointer and a primitive integer value. (V8 stores both object
pointers and primitive integers in a 8 byte word, so that in-
tegers can be stored inline instead of being allocated on the
heap.) Second, V8 must similarly check that x is an integer,
rather than an object. Omitting these checks made it 8.1%
faster (shown in Table 2) — removing them is safe, as we
know that no incorrect type will be used.

After V8 confirms that board is an object, it checks that the
internal type of board, called a shape, is an array. Fourth, V8
performs a bounds check for the access to board[x]. Finally,
V8 checks if the value accessed is a “hole”. In JavaScript,
arrays may be sparse, meaning not every index has a value. In-
dexes without values are called holes, which V8 must convert
to undefined if accessed. The same checks must be repeated
to access the second dimension of board. To use board[x][y],
a last check is necessary to verify it is an integer.

Profiling enabled optimization. Initially, we preallocated the
fix-size sudoku board. In V8, preallocated arrays are created
sparse as their values are uninitialized, requiring the hole
checks. Even though the array was filled with integers before
being used, sparse arrays never lose their status.

/ / OpenJDK : bounds check board [x] . l e n g t h > 8
f o r (i n t i = 0 ; i < 9 ; i ++) {

/ / Go : bounds check board [x] . l e n g t h > i
i n t e l e m e n t = boa rd [x] [i] ;
. . .

}

Figure 4: Code showing where Go and OpenJDK perform array
bounds checking when accessing board[x][i] in a loop.

Bytecode Insn. Cycles
per BC per BC

OpenJDK

Assembly aaload 12 7.7
Assembly iaload 11 7.1
C++ aaload 33 12.5
C++ iaload 22 11.1

Node.js LdaKeyedProperty 90 26.3
CPython BINARY_SUBSCR 138 41.8

Table 3: Statistics for array access bytecodes (BC) performed by
various interpreters for the sudoku benchmark.

We implemented an optimized version which would cre-
ate arrays without holes, known as “packed” arrays. This
optimized version was 1.48x faster (and is what is shown in
Fig. 2). Our optimized sudoku benchmark for V8/Node.js
starts with an empty array, then appends 9 Int8Arrays to cre-
ate the 2D sudoku board. This allows V8 to recognize that
there are no holes. Using the built in Int8Array, preallocation
initialized it with the default value of 0, rather than a hole.

Unfortunately, these optimizations cannot be applied uni-
versally. First, it presents a trade-off that can only be deter-
mined via profiling: while sparse arrays require hole checking,
building a large packed array requires many internal resizing
operations to grow the array. In addition, typed arrays such as
Int8Array only exist for certain integral types. For example,
it is not possible to preallocate a packed array of strings or
any user defined type.
GCC, Go, and OpenJDK. Compared to GCC, Go and Open-
JDK must also perform similar bounds checks. However, they
avoid the type checking as they are statically typed.

OpenJDK successfully lifts all loop-invariant computa-
tions to outside the loop. In the code of Figure 4, Open-
JDK determines that the maximum value of i used to ac-
cess board[x][i] is 8, and checks if the length of board[x]
is greater than 8 outside the loop. Go performs the bounds
check in each iteration. Further, 2D arrays in OpenJDK con-
tain pointers to 1D arrays, which may be null. However, Open-
JDK has an optimization which eliminates null checks, and
instead catches them using a signal handler for SIGSEGV. On
the other hand, Go does not need to perform null checks as
its 2D arrays are laid out contiguously in memory like in C.

6.2 Interpreter Overhead
CPython is slower than the other runtimes because it lacks a
JIT compiler and so programs are strictly interpreted. There-

842 2022 USENIX Annual Technical Conference USENIX Association

fore we further compare the three runtimes by running sudoku
on each of them only in interpreter mode. OpenJDK’s (assem-
bly) interpreter outperforms both V8 and CPython by 2.59x
and 5.34x respectively. This is because static typing allows
OpenJDK to avoid the type checks that V8 and CPython must
perform. OpenJDK has dedicated bytecodes for accessing dif-
ferent types of arrays (aaload for an array of arrays, iaload
for an integer array). In contrast, V8 and CPython both have
a single bytecode (LdaKeyedProperty and BINARY_SUBSCR, re-
spectively) which must accommodate for any array or dictio-
nary type. Table 3 shows the performance profiling results of
different bytecode executions, using our instrumentations.

CPython is still 2.07x slower than V8, even though both
of them do dynamic typechecking. As shown in Table 3,
CPython uses 138 instructions and 41.8 cycles to execute
each byte code instruction (BINARY_SUBSCR), whereas Node.js
only spends 90 instructions/26.3 cycles to process each byte
code instruction (LdaKeyedProperty). This is due to the opti-
mizations of V8’s interpreter: it is hand-crafted in IR, whereas
CPython is implemented in C. Similarly, we found that Open-
JDK’s assembly interpreter is 1.93x faster than the one imple-
mented in C++.

We found the hand-crafted interpreter implementation
made a few notable optimzations. First, it aggressively in-
lined functions. The CPython bytecode we inspected ended
up containing around 5-6 function calls in the common exe-
cution path. The equivalent bytecode in Node.js had no call
instructions, similar to when all functions are completely in-
lined. This further enables more aggressive optimization. For
example, error handling logic that would be functions in C
code can now be grouped together at the end. This leaves
the instructions in the non-error paths tightly together and
improves cache performance. In addition, developers have a
better understanding than the compiler on what the common
path is, so that they can manually group the basic blocks that
are commonly executed together (and move error handling
logic to the end).

Theoretically GCC could also perform the same level of
inlining, and developers can manually use goto statements to
move all error handling logic to after the common-path logic.
However, performing aggressive inlining unselectively could
hurt performance (increased function size, register pressures,
etc.), and excessive use of goto could hurt the readability,
reliability, and maintainability of the software.

Performance Sensitivity on Interpreters. We observe that
an interpreter may amplify the performance overhead caused
by small code changes that would only incur negligible over-
head in compiled execution. Under CPython, the iterative
version of graph coloring ran 1.66x slower than the recur-
sive version, in contrast to the other interpreters. The func-
tion performing the iterative algorithm contained 1.54x more
bytecodes than the recursive function, resulting in 22% more
instructions recorded by perf. In contrast, for GCC, switching
from recursive to iterative adds only 4% more instructions.

Iterative versions of recursive functions are commonly nec-
essary to avoid stack overflows. Instead of a recursive function
call, the iterative function appends the call arguments to an
array, and later pops the arguments off the array to perform
another iteration of the algorithm. In addition, the iterative
algorithm must check if the array is empty at each iteration of
the loop. These seemingly simple operations significantly in-
crease the bytecode count and execution time. JIT compilers
mitigate these extra operations through optimizations such as
reducing the number of redundant checks.

Startup Overhead for OpenJDK and V8. OpenJDK and
V8 spend 843ms and 788ms, respectively, in startup in the
Sudoku benchmark. Startup is the primary reason for Open-
JDK being slower than GCC when running Sudoku, as it is
the shortest benchmark. Specifically, 708ms is spent loading
the JVM’s large binary from disk, while the rest (135ms) is
spent in classloading and interpreter execution. In compari-
son, OpenJDK’s warm execution time is only 868ms (when
we run the Sudoku benchmark in a JVM that has already been
warmed up by running the same benchmark multiple times),
whereas GCC’s warm execution time is 611ms.

6.3 GC Write Barriers
We were surprised to see that under OpenJDK’s default GC
setting, it was 10.03x slower than GCC for the Sort bench-
mark. Sort is also the benchmark where Go performs the worst
relative to GCC: 2.14x slower. The source of the slowdown
for both OpenJDK and Go is the cost of GC write barriers.
This cost occurs despite GC hardly ever running in Sort, as
write barriers are necessary to maintain data structures needed
to perform GC. Interestingly, for OpenJDK, using the non-
default Parallel GC algorithm drops the slowdown to only
2.07x (shown in Figure 2), as it contains fewer instructions.
Go’s write barrier contains even fewer instructions, and is
slightly faster than OpenJDK with Parallel GC.

Write barriers bring a constant cost to pointer writes re-
gardless of how often GC is actually performed. For our
in-place merge sort, swapping two elements is the primary
source of write barriers. This requires two write barriers, one
for each element being written. OpenJDK’s default GC algo-
rithm, G1 [12], adds 44 instructions for these write barriers,
completely dwarfing the 6 instructions required to swap the
elements and 5 for bounds checking. On the other hand, Par-
allel GC’s write barriers only use 5 instructions, 8.8x fewer
than G1.

Both Go and G1 require a write barrier to ensure every live
object is captured when they perform marking concurrently
with application threads. Furthermore, both G1 and Parallel
GC in OpenJDK divide the heap into regions and move live
objects across regions to compact the heap. For both, write
barriers are used to maintain remembered sets, which are
used to find and update pointers to moved objects. However,

USENIX Association 2022 USENIX Annual Technical Conference 843

G1 performs more checks during its write barrier to avoid
unnecessary updates to the remembered sets. This avoids
work when using the remembered sets to update pointers, and
helps minimize pause time.

7 Scalability Limitations

We found that CPython and Node.js limit the degree of paral-
lelism achievable. We first briefly introduce the background
of the Node.js and CPython concurrency model and then de-
scribe our findings.
Background. Node.js is event driven; by default, it uses a
single Node.js thread to drive an event loop and process all
incoming events. If the processing of an event blocks (e.g., on
I/O), the underlying kernel thread will block, and Node.js’s
event loop continues with another kernel thread to process the
next event. In other words, multiple threads can be blocked at
the same time, but CPU execution is serialized. While Node.js
supports running multiple Node.js threads (known as worker
threads), each runs its own event loop. Hence worker threads
do not share the heap (to avoid data races); data sharing
requires message passing with data being serialized.

In essence, CPython’s concurrency model is the same as
that of Node.js where multiple kernel threads can block on I/O
at the same time, except that it is the programmer’s job to cre-
ate the threads; the threads share the same heap. In CPython’s
case, CPU computation is serialized by the Global Interpreter
Lock (GIL) so that only one thread can use the CPU at a
time. CPython also supports multiprocessing, forking differ-
ent processes to avoid the GIL. However, data sharing and
communication requires serialization.
Node.js and CPython’s scalability on LangBench. We can
now explain the scalability patterns of Node.js and CPython.
We ran three parallel benchmarks, namely log analysis, key-
value store, and file server, under different configurations,
including different number of threads, as well as parallelizing
them with multiple processes in CPython. In log analysis
and key-value store, the best performance is achieved using a
single CPython or Node.js thread, whereas the other runtimes
are able to improve performance by adding more threads.

These two benchmarks, namely log analysis and key-value
store, are bottlenecked by CPU or memory accesses, instead
of blocking I/O. Therefore, creating multiple threads offers
no advantage in Node.js and CPython as their executions
are serialized. In the case of Node.js, performance degrades
significantly when creating additional worker threads due to
the serialization overhead. On indexed search log analysis,
Node.js’s performance drops 4.7x when we use more than one
worker thread. In this benchmark, multiple workers communi-
cate frequently as they share the same dictionaries. Similarly,
serialization overhead slows down CPython when we switch
to multiprocess, resulting in a 4.9x slowdown on the same
benchmark. While multiple CPython threads share the heap,

they still introduce thread management overhead compared
to using a single thread.

Specifically, in key-value store, CPython can only scale to
one client thread (adding additional concurrent client threads
will worsen the completion time). In comparison, Node.js/V8
scales up to 96 client threads, even though it only uses 1
Node.js event-loop thread at server side. However, its com-
pletion time can not keep improving with more client threads,
whereas it still can under GCC, Go, and OpenJDK. Note
that the improvement plateaus when the client thread count
increases to 160. Even though GCC achieved its best com-
pletion time on 512 client threads, the improvement over 160
threads is negligible. This is why in Figure 2, the difference in
best completion times is small between GCC, Go, and Open-
JDK, even though they are achieved on 512, 256, and 160
client threads, respectively.

In comparison, Node.js and CPython scale well on the
file server benchmark. This benchmark is I/O parallel: there
is little communication between different threads, and they
are bottlenecked by disk I/O. Creating multiple threads (or
processes in CPython) thus improves the performance (when
there are concurrent client connections).

8 Runtime Advantages

We found that the high-level abstractions provided by the
runtimes can, in some cases, result in better performance and
scalability. This is counter-intuitive given the conventional
wisdom that abstractions generally come at the expense of
performance [74]. We discuss three findings: (1) object relo-
cations in OpenJDK’s moving GC can result in better cache
locality; (2) Go’s scheduler automatically maps user threads
to kernel threads, and hence abstracts away the direct usage of
kernel threads, reducing the number of context switches and
the number of kernel threads used; (3) abstracting away the
low-level I/O operations allows runtimes to use the optimal
I/O system call configurations.6

8.1 GC Improved Cache Locality
OpenJDK’s moving garbage collector can significantly im-
prove cache locality, resulting in speedups in three bench-
marks: single threaded key-value store and both iterative and
recursive implementations graph coloring. In particular, Open-
JDK was much faster than GCC at the single threaded key-
value store, with 1.46x speedup. This is the largest speedup
any runtime had over GCC.

Key-value store. We found that the source of cache locality
was from iterating over linked lists. Our key-value store im-
plements a hashtable with separate chaining, meaning hash

6There are a few more cases where runtimes demonstrated better perfor-
mance than GCC; they are related to the implementation of libraries. We
discuss them in detail in the Appendix.

844 2022 USENIX Annual Technical Conference USENIX Association

(a) Before GC (b) After GC

B1 B2

N2

N3

N6

N1

N4

N5

B2:N1

B2:N5

B2:N4

B1:N2

B1:N3

B1:N6

B1 B2

N2

N3

N6

N1

N4

N5

B2:N1

B2:N5
B2:N4

B1:N2
B1:N3
B1:N6

Figure 5: The key-value store before and after a GC pause. White
boxes logically represent Java objects, and the shaded boxes repre-
sent the objects’ location in the JVM heap. A ‘B’ denotes a bucket
mapped to by the hash function, and an ‘N’ denotes a node in the
bucket’s linked list. The number of the node represents the order
they are inserted into the hashtable. The memory for the nodes of
the bucket begins scattered, but after GC relocation is ordered by the
traversal of the bucket’s linked lists.

128 MB

256 MB

512 MB

1 GB
2 GB

4 GB
8 GB

16 GB
32 GB

64 GB
128 GB

Heap Size

160

200

240

280

320

360

400

C
o
m

p
le

ti
o
n

 T
im

e
 (

s
)

Figure 6: The OpenJDK single threaded key-value store benchmark
run with increasing heap sizes, corresponding to fewer GC cycles.

collisions are added to a bucket by appending the key-value
(KV) pair to a list. This is shown as the white boxes in Fig-
ure 5. For example, N2, N3, and N6 are different KV pairs
hashed to the same bucket B1.

OpenJDK uses bump pointer allocation. Therefore, nodes
in the hashtable are laid out sequentially in memory based on
their insertion order. Figure 5 (a) shows how the nodes of a
bucket would be initially laid out in memory. There is little
locality, as adjacent nodes of the same linked list are scattered.
Therefore, whenever there is a lookup, insertion, or a deletion
of a key in the linked list, the traversal of the linked list is
expensive due to poor locality.

However, OpenJDK’s moving GC reorders the objects in
memory. It scans for all live objects that are reachable from
the GC roots (e.g., objects on the stack) by following the
pointers, copying them to a different memory region, before
freeing the old region. For the linked list, this means that the
objects will be allocated adjacently, in the same order as in
the linked list, as shown in Figure 5 (b).

In comparison, GCC uses a size segregated allocator
(malloc). Since nodes have the same size, they will be placed
in the same region, resulting in a similar pattern as with bump
pointer allocation, with nodes laid out in insertion order. When
profiling the iteration, we found that GCC actually executed
fewer instructions than OpenJDK, but was still slower. In the
tight loop iteration, the bucket GCC took only 5 assembly
instructions compared to OpenJDK’s 11.

This behavior presents the unintuitive case where the more

frequently GC is performed, the better the performance. Fig-
ure 6 shows that with more frequent GC cycles, objects are
re-ordered in memory more often, leading to improved per-
formance. We control the frequency of GC by using different
heap sizes. The larger the heap, the fewer GC cycles. When
it is 128 GB, performance is the worst because GC is never
triggered; objects are never moved, so there is no locality.

To verify that cache locality was the source of the perfor-
mance gap, we modified OpenJDK to expose a method to
print the virtual address a reference points to. We do this as
GC obfuscates perf cache hit rates, making them impractical
to compare. In one run where no GC was performed, over
99% of the distances between nodes of the linked lists were
different, with a median distance of 724 KB. A run with GC
was 1.86x faster; 57% of nodes were 88 bytes apart, and 41%
were 192 bytes apart. Although the size of a cache line on our
processors is 64 bytes, so two nodes would not be in the same
cache line, it is likely that they are in adjacent cache lines,
opening the opportunity for prefetching.

Graph coloring. We found OpenJDK outperformed GCC
(by 1.37x) on graph coloring, when the C++ program uses
the standard library. Our investigation showed that GC had a
similar effect as for the key-value benchmark given that graph
coloring also uses a hash table. Both hash table implementa-
tions on OpenJDK (HashMap and HashSet) and C++’s standard
libraries (std::unordered_set and std::unordered_map) use
an open hashing design; i.e., it uses separate chaining to con-
nect the elements in a linked list upon collision. As a result,
both GCC and OpenJDK suffer from poor locality initially.
However, OpenJDK quickly gains locality through GC, as
with the key-value store benchmark.7

8.2 Scalability in Go

In the multithreaded key-value store implementation, Go has a
1.02x speedup compared to GCC, despite being 1.16x slower
than GCC in the single threaded version. Go outperforms
GCC by avoiding 2.2 million context switches through the
use of asynchronous networking I/O and significantly fewer
kernel threads. With GCC, network I/O is performed using
synchronous system calls, blocking the kernel thread, result-
ing in a context switch. When goroutines perform I/O, the
work is offloaded to an internal goroutine which uses asyn-
chronous system calls. A goroutine performing I/O is blocked
by Go’s scheduler, but the underlying kernel thread is not
blocked; instead, Go schedules another goroutine on the same
kernel thread. As a result, Go only uses at most 42 kernel
threads, regardless of the number of concurrent client threads.
(The number of kernel threads is automatically chosen by the
Go runtime depending on the workload’s characteristic.)

7We optimized our C++ benchmark by switching to hashtable imple-
mentations from Google’s Abseil library [2], which uses a closed hashing
implementation that achieves better locality.

USENIX Association 2022 USENIX Annual Technical Conference 845

We verified that context switching causes the majority of
the 600 ms gap between the fastest multithreaded Go and
GCC execution times. Using LEBench [72], we measured
the average cost of a context switch on our machine to be
5.84 µs. With 32 cores, perf reports approximately 70K con-
text switches per core, which adds up to 409ms of overhead,
making up the majority of the 600ms performance gap.

8.3 I/O System Calls in the File Server
To read a file in the file server benchmark in C++, we initially
used the more general, idiomatic approach which uses iter-
ators. This results in repeated fixed size read system calls.
Unlike C++, all the managed runtimes abstract away the low-
level system call interfaces when performing I/O, so that they
can transparently issue system calls in an optimal way, by
first calling fstat to get the file size, followed by a single
read for its entire contents. All runtimes use this approach
when reading a file. So any developer using the runtimes will
benefit from the optimizations without any burden of knowl-
edge. In comparison, we have to manually optimize our C++
implementation to switch to fstat and read, leading to a 2x
speedup.

9 Related Work

Ours is the first performance study to analyze and compare
the implementations of multiple widely used runtimes, and
provide the necessary instrumentations to do so. There are
existing benchmarks to evaluate software performance, but
they focus on novel benchmark methodologies. Marr et al.
designed a benchmark suite with the goal of having a method-
ology for evenly comparing a common subset of language
abstractions [64]. They limit their applications to a minimal
set of primitive operations and exclude built-in data structures
such as hashtables to ensure that no language has an advan-
tage. Rather than strictly stressing the compiler on specific
primitive operations, we evaluated all aspects of a runtime on
how they affect performance under different scenarios using
idiomatic code. Both DaCapo [50] and Renaissance [70] cre-
ated benchmark suites consisting only of Java applications
for various workloads. TailBench created a statistically sound
methodology for measuring latency-critical applications in
C++ and Java [58]. SPEC [31] and the Computer Language
Benchmarks Game [3] provide a variety of benchmarks, cov-
ering many languages, but present no analysis. In contrast,
our work focuses on understanding and providing an expla-
nation for the technical details of language implementations
that cause performance differences.

Other studies of languages have had different scopes, focus-
ing tightly on a specific language or aspect. By utilizing the
Rosetta Code [29] repository, Nanz et al. present statistical
findings, such as the fact that scripting languages are more
concise than procedural languages [67]. Nanz et al. further

studied the usability and performance of Chapel, Cilk, and
Go in multicore workloads [66]. Prokopski et al. study inter-
preter code-copying optimizations in the SableVM, OCaml,
and Yarv interpreters [71]. Wade et al. quantify the impact of
profile data on JIT compiled code quality in the HotSpot VM.

Lion et al. instrumented the JVM to measure startup times
(i.e., the total time spent in class loading and interpreter) [62].
However, they did not provide fine-grained instrumentation
to profile the execution of each bytecode instruction.

10 Concluding Remarks

We presented an in-depth performance analysis of runtimes
under a variety of scenarios. We implemented LangBench,
a benchmark suite that enables an objective comparison of
language implementation performance. Our runtime instru-
mentations facilitate understanding why a runtime performs
well or poorly. We demonstrated that our instrumentations pro-
vide valuable profiling information that enables optimizations.
We have open-sourced our instrumentations and LangBench
so that practitioners can use and enhance them to analyze and
optimize their applications.

Acknowledgements

We thank the anonymous reviewers and the shepherd for their
insightful comments. This research was supported by the
Canada Research Chair fund, an NSERC Discovery grant,
and a VMware gift.

References

[1] 10 Myths of Enterprise Python. https:
//medium.com/paypal-engineering/10-myths-
of-enterprise-python-8302b8f21f82.

[2] Abseil. https://abseil.io/.

[3] The Computer Language Benchmarks Game.
https://benchmarksgame-team.pages.debian.
net/benchmarksgame/.

[4] etcd - A distributed, reliable key-value store for the most
critical data of a distributed system. https://etcd.
io/.

[5] Go memory ballast: How I learnt to stop worry-
ing and love the heap. https://blog.twitch.
tv/en/2019/04/10/go-memory-ballast-how-i-
learnt-to-stop-worrying-and-love-the-heap-
26c2462549a2/.

[6] The Go Programming Language. https://golang.
org/.

846 2022 USENIX Annual Technical Conference USENIX Association

https://medium.com/paypal-engineering/10-myths-of-enterprise-python-8302b8f21f82
https://medium.com/paypal-engineering/10-myths-of-enterprise-python-8302b8f21f82
https://medium.com/paypal-engineering/10-myths-of-enterprise-python-8302b8f21f82
https://abseil.io/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://etcd.io/
https://etcd.io/
https://blog.twitch.tv/en/2019/04/10/go-memory-ballast-how-i-learnt-to-stop-worrying-and-love-the-heap-26c2462549a2/
https://blog.twitch.tv/en/2019/04/10/go-memory-ballast-how-i-learnt-to-stop-worrying-and-love-the-heap-26c2462549a2/
https://blog.twitch.tv/en/2019/04/10/go-memory-ballast-how-i-learnt-to-stop-worrying-and-love-the-heap-26c2462549a2/
https://blog.twitch.tv/en/2019/04/10/go-memory-ballast-how-i-learnt-to-stop-worrying-and-love-the-heap-26c2462549a2/
https://golang.org/
https://golang.org/

[7] Go Programming Language Documentation. https:
//go.dev/doc/.

[8] Go Programming Language Specification. https://
golang.org/ref/spec.

[9] Introduction to Intel Advanced Vector Extensions.
https://software.intel.com/content/www/us/
en/develop/articles/introduction-to-intel-
advanced-vector-extensions.html.

[10] Java EE: DayTrader Benchmark. https://github.
com/OpenLiberty/sample.daytrader8.

[11] JavaScript is slow. https://kariera.future-
processing.pl/blog/javascript-is-slow/.

[12] JEP 248: Make G1 the Default Garbage Collector. http:
//openjdk.java.net/jeps/248.

[13] Linux source tsc_sync.c: Check tsc synchronization.
https://github.com/torvalds/linux/blob/
df0cc57e057f18e44dac8e6c18aba47ab53202f9/
arch/x86/kernel/tsc_sync.c.

[14] M3: Uber’s Open Source, Large-scale Metrics Platform
for Prometheus. https://eng.uber.com/m3/.

[15] Most popular languages on GitHub. https://github.
com/oprogramador/github-languages.

[16] Node.js. https://nodejs.org/en/.

[17] OpenJDK 13. https://openjdk.java.net/
projects/jdk/13/.

[18] OpenStack Overview. https://www.openstack.org/
software/.

[19] Optimizing a Golang service to reduce over 40%
CPU. https://coralogix.com/log-analytics-
blog/optimizing-a-golang-service-to-
reduce-over-40-cpu/.

[20] Our journey to type checking 4 million lines of Python.
https://blogs.dropbox.com/tech/2019/09/our-
journey-to-type-checking-4-million-lines-
of-python/.

[21] Production-Grade Container Orchestration - Kubernetes.
https://kubernetes.io/.

[22] Profiling CPython at Instagram. https://instagram-
engineering.com/profiling-cpython-at-
instagram-89d4cbeeb898.

[23] Project Tungsten: Bringing Apache Spark Closer
to Bare Metal. https://databricks.com/blog/
2015/04/28/project-tungsten-bringing-spark-
closer-to-bare-metal.html.

[24] PYPL PopularitY of Programming Language. http:
//pypl.github.io/PYPL.html.

[25] Python Implementations - Python Wiki. https://
wiki.python.org/moin/PythonImplementations.

[26] Quora: In what cases is Java faster than C.
https://www.quora.com/In-what-cases-is-
Java-faster-if-at-all-than-C.

[27] Quora: In what cases is Java slower than C by a big
margin. https://www.quora.com/In-what-cases-
is-Java-slower-than-C-by-a-big-margin.

[28] Redis. https://redis.io.

[29] Rosetta Code. https://rosettacode.org/wiki/
Rosetta_Code.

[30] SPEC CPU 2017 Documentation. https://www.spec.
org/cpu2017/Docs/#benchmarks.

[31] SPEC: Standard Performance Evaluation Corporation.
https://www.spec.org.

[32] SPECjbb 2015 Benchmark. https://www.spec.org/
jbb2015/.

[33] Stack Overflow: C++11 regex slower than python.
https://stackoverflow.com/questions/
14205096/c11-regex-slower-than-python.

[34] Stack Overflow: Why do std::string operations
perform poorly? https://stackoverflow.
com/questions/8310039/why-do-stdstring-
operations-perform-poorly.

[35] Stack Overflow: Why is python faster than c++ in this
case? https://stackoverflow.com/questions/
24895881/why-is-python-faster-than-c-in-
this-case.

[36] The State of Developer Ecosystem 2019. https://www.
jetbrains.com/lp/devecosystem-2019/.

[37] The State of Serverless. https://www.datadoghq.
com/state-of-serverless/.

[38] The State of the Octoverse. https://octoverse.
github.com.

[39] Transducers Speed Up JavaScript Arrays.
https://itnext.io/using-transducers-to-
speed-up-javascript-arrays-92677d000096.

[40] Twitter Shifting More Code to JVM, Citing Performance
and Encapsulation As Primary Drivers. https://www.
infoq.com/articles/twitter-java-use/.

[41] V8 JavaScript engine. https://v8.dev/.

USENIX Association 2022 USENIX Annual Technical Conference 847

https://go.dev/doc/
https://go.dev/doc/
https://golang.org/ref/spec
https://golang.org/ref/spec
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-advanced-vector-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-advanced-vector-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-advanced-vector-extensions.html
https://github.com/OpenLiberty/sample.daytrader8
https://github.com/OpenLiberty/sample.daytrader8
https://kariera.future-processing.pl/blog/javascript-is-slow/
https://kariera.future-processing.pl/blog/javascript-is-slow/
http://openjdk.java.net/jeps/248
http://openjdk.java.net/jeps/248
https://github.com/torvalds/linux/blob/df0cc57e057f18e44dac8e6c18aba47ab53202f9/arch/x86/kernel/tsc_sync.c
https://github.com/torvalds/linux/blob/df0cc57e057f18e44dac8e6c18aba47ab53202f9/arch/x86/kernel/tsc_sync.c
https://github.com/torvalds/linux/blob/df0cc57e057f18e44dac8e6c18aba47ab53202f9/arch/x86/kernel/tsc_sync.c
https://eng.uber.com/m3/
https://github.com/oprogramador/github-languages
https://github.com/oprogramador/github-languages
https://nodejs.org/en/
https://openjdk.java.net/projects/jdk/13/
https://openjdk.java.net/projects/jdk/13/
https://www.openstack.org/software/
https://www.openstack.org/software/
https://coralogix.com/log-analytics-blog/optimizing-a-golang-service-to-reduce-over-40-cpu/
https://coralogix.com/log-analytics-blog/optimizing-a-golang-service-to-reduce-over-40-cpu/
https://coralogix.com/log-analytics-blog/optimizing-a-golang-service-to-reduce-over-40-cpu/
https://blogs.dropbox.com/tech/2019/09/our-journey-to-type-checking-4-million-lines-of-python/
https://blogs.dropbox.com/tech/2019/09/our-journey-to-type-checking-4-million-lines-of-python/
https://blogs.dropbox.com/tech/2019/09/our-journey-to-type-checking-4-million-lines-of-python/
https://kubernetes.io/
https://instagram-engineering.com/profiling-cpython-at-instagram-89d4cbeeb898
https://instagram-engineering.com/profiling-cpython-at-instagram-89d4cbeeb898
https://instagram-engineering.com/profiling-cpython-at-instagram-89d4cbeeb898
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
http://pypl.github.io/PYPL.html
http://pypl.github.io/PYPL.html
https://wiki.python.org/moin/PythonImplementations
https://wiki.python.org/moin/PythonImplementations
https://www.quora.com/In-what-cases-is-Java-faster-if-at-all-than-C
https://www.quora.com/In-what-cases-is-Java-faster-if-at-all-than-C
https://www.quora.com/In-what-cases-is-Java-slower-than-C-by-a-big-margin
https://www.quora.com/In-what-cases-is-Java-slower-than-C-by-a-big-margin
https://redis.io
https://rosettacode.org/wiki/Rosetta_Code
https://rosettacode.org/wiki/Rosetta_Code
https://www.spec.org/cpu2017/Docs/#benchmarks
https://www.spec.org/cpu2017/Docs/#benchmarks
https://www.spec.org
https://www.spec.org/jbb2015/
https://www.spec.org/jbb2015/
https://stackoverflow.com/questions/14205096/c11-regex-slower-than-python
https://stackoverflow.com/questions/14205096/c11-regex-slower-than-python
https://stackoverflow.com/questions/8310039/why-do-stdstring-operations-perform-poorly
https://stackoverflow.com/questions/8310039/why-do-stdstring-operations-perform-poorly
https://stackoverflow.com/questions/8310039/why-do-stdstring-operations-perform-poorly
https://stackoverflow.com/questions/24895881/why-is-python-faster-than-c-in-this-case
https://stackoverflow.com/questions/24895881/why-is-python-faster-than-c-in-this-case
https://stackoverflow.com/questions/24895881/why-is-python-faster-than-c-in-this-case
https://www.jetbrains.com/lp/devecosystem-2019/
https://www.jetbrains.com/lp/devecosystem-2019/
https://www.datadoghq.com/state-of-serverless/
https://www.datadoghq.com/state-of-serverless/
https://octoverse.github.com
https://octoverse.github.com
https://itnext.io/using-transducers-to-speed-up-javascript-arrays-92677d000096
https://itnext.io/using-transducers-to-speed-up-javascript-arrays-92677d000096
https://www.infoq.com/articles/twitter-java-use/
https://www.infoq.com/articles/twitter-java-use/
https://v8.dev/

[42] Why did Twitter switch from Ruby on Rails? https:
//medium.com/@mittalyashu/why-did-twitter-
switch-from-ruby-on-rails-dac66150044d.

[43] Why Discord is switching from Go to Rust.
https://blog.discord.com/why-discord-is-
switching-from-go-to-rust-a190bbca2b1f.

[44] Why is Dynamic Type Checking Expensive? https:
//stackoverflow.com/questions/41622341/why-
is-type-checking-expensive.

[45] Why the Hell Would You Use Node.js. https://
medium.com/the-node-js-collection/why-the-
hell-would-you-use-node-js-4b053b94ab8e.

[46] Why we switched from Python to Go.
https://getstream.io/blog/switched-python-
go/#reason-performance.

[47] Yes, Python is Slow, and I Don’t Care.
https://medium.com/pyslackers/yes-python-
is-slow-and-i-dont-care-13763980b5a1.

[48] Intel® 64 and IA-32 architectures software developer’s
manual, Volume 3B: System programming guide, part 2,
Section 17.15. https://www.intel.com/content/
dam/www/public/us/en/documents/manuals/64-
ia-32-architectures-software-developer-
vol-3b-part-2-manual.pdf, 2016.

[49] Jeffrey Barber, Ximing Yu, Laney Kuenzel Zamore,
Jerry Lin, Vahid Jazayeri, Shie Erlich, Tony Savor, and
Michael Stumm. Bladerunner: Stream processing at
scale for a live view of backend data mutations at the
edge. In Proc. 28th ACM Symp. on Operating Principles
(SOSP’21), page 708–723. Association for Computing
Machinery, October 2021.

[50] Stephen M. Blackburn, Robin Garner, Chris Hoff-
mann, Asjad M. Khang, Kathryn S. McKinley, Rotem
Bentzur, Amer Diwan, Daniel Feinberg, Daniel Framp-
ton, Samuel Z. Guyer, Martin Hirzel, Antony Hosk-
ing, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish
Phansalkar, Darko Stefanović, Thomas VanDrunen,
Daniel von Dincklage, and Ben Wiedermann. The da-
capo benchmarks: Java benchmarking development and
analysis. In Proc. 21st Conf. on Object-oriented Pro-
gramming Systems, Languages, and Applications (OOP-
SLA’06), pages 169–190. ACM, 2006.

[51] Rodrigo Bruno, Paulo Ferreira, Ruslan Synytsky, Tetiana
Fydorenchyk, Jia Rao, Hang Huang, and Song Wu. Dy-
namic vertical memory scalability for OpenJDK cloud
applications. In Proc. Intl. Symp. on Memory Manage-
ment (ISMM’18), pages 59–70. ACM, 2018.

[52] Cody Cutler, M. Frans Kaashoek, and Robert T. Morris.
The benefits and costs of writing a POSIX kernel in a
high-level language. In Proc. 13th Symp. on Operating
Systems Design and Implementation (OSDI’18), pages
89–105. USENIX Association, October 2018.

[53] Andy Georges, Dries Buytaert, and Lieven Eeckhout.
Statistically rigorous Java performance evaluation. In
Proc. 22nd Annual ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages and
Applications (OOPSLA’07), page 57–76. Association
for Computing Machinery, 2007.

[54] Hadoop. https://hadoop.apache.org.

[55] Handra. Comparing Hotspot and OpenJ9.
https://www.linkedin.com/pulse/comparing-
hotspot-openj9-handra-/.

[56] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie,
and Bo Huang. The HiBench benchmark suite: Char-
acterization of the MapReduce-based data analysis. In
New Frontiers in Information and Software as Services,
pages 209–228. Springer, 2011.

[57] Shengsheng Huang, Jie Huang, Yan Liu, Lan Yi, and
Jinquan Dai. HiBench: A representative and compre-
hensive Hadoop benchmark suite. In Proc. ICDE Work-
shops, ICDEW ’16. IEEE Press, 2010.

[58] H. Kasture and D. Sanchez. Tailbench: a benchmark
suite and evaluation methodology for latency-critical
applications. In Proc. IEEE Intl. Symp. on Workload
Characterization (IISWC’16), pages 1–10. IEEE Press,
Sep. 2016.

[59] Jyrki Katajainen, Tomi Pasanen, and Jukka Teuhola.
Practical in-place mergesort. Nordic J. of Computing,
3(1):27–40, March 1996.

[60] Jure Leskovec and Andrej Krevl. SNAP Datasets:
Stanford Large Network Dataset Collection. http:
//snap.stanford.edu/data, June 2014.

[61] Tim Lindholm, Frank Yellin, Gilad Bracha, Alex Buck-
ley, and Daniel Smith. The Java®Virtual Machine Spec-
ification - Java SE 13 Edition. https://docs.oracle.
com/javase/specs/jvms/se13/html/.

[62] David Lion, Adrian Chiu, Hailong Sun, Xin Zhuang,
Nikola Grcevski, and Ding Yuan. Don’t get caught in
the cold, warm-up your JVM: Understand and eliminate
JVM warm-up overhead in data-parallel systems. In
Proc. 12th Symp. on Operating Systems Design and
Implementation (OSDI’16), pages 383–400. USENIX
Association, November 2016.

848 2022 USENIX Annual Technical Conference USENIX Association

https://medium.com/@mittalyashu/why-did-twitter-switch-from-ruby-on-rails-dac66150044d
https://medium.com/@mittalyashu/why-did-twitter-switch-from-ruby-on-rails-dac66150044d
https://medium.com/@mittalyashu/why-did-twitter-switch-from-ruby-on-rails-dac66150044d
https://blog.discord.com/why-discord-is-switching-from-go-to-rust-a190bbca2b1f
https://blog.discord.com/why-discord-is-switching-from-go-to-rust-a190bbca2b1f
https://stackoverflow.com/questions/41622341/why-is-type-checking-expensive
https://stackoverflow.com/questions/41622341/why-is-type-checking-expensive
https://stackoverflow.com/questions/41622341/why-is-type-checking-expensive
https://medium.com/the-node-js-collection/why-the-hell-would-you-use-node-js-4b053b94ab8e
https://medium.com/the-node-js-collection/why-the-hell-would-you-use-node-js-4b053b94ab8e
https://medium.com/the-node-js-collection/why-the-hell-would-you-use-node-js-4b053b94ab8e
https://getstream.io/blog/switched-python-go/#reason-performance
https://getstream.io/blog/switched-python-go/#reason-performance
https://medium.com/pyslackers/yes-python-is-slow-and-i-dont-care-13763980b5a1
https://medium.com/pyslackers/yes-python-is-slow-and-i-dont-care-13763980b5a1
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://hadoop.apache.org
https://www.linkedin.com/pulse/comparing-hotspot-openj9-handra-/
https://www.linkedin.com/pulse/comparing-hotspot-openj9-handra-/
http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://docs.oracle.com/javase/specs/jvms/se13/html/
https://docs.oracle.com/javase/specs/jvms/se13/html/

[63] David Lion, Adrian Chiu, and Ding Yuan. M3: End-
to-end memory management in elastic system software
stacks. In Proc. 16th European Conf. on Computer
Systems (EUROSYS’21), page 507–522. Association for
Computing Machinery, 2021.

[64] Stefan Marr, Benoit Daloze, and Hanspeter Mössen-
böck. Cross-language compiler benchmarking: Are we
fast yet? In Proc. 12th Symp. on Dynamic Languages
(DLS’16), pages 120–131. Association for Computing
Machinery, 2016.

[65] Colt McAnlis. Improving cloud function cold
ctart time, Google Cloud Performance Atlas.
https://medium.com/@duhroach/improving-
cloud-function-cold-start-time-2eb6f5700f6.

[66] S. Nanz, S. West, K. S. d. Silveira, and B. Meyer. Bench-
marking usability and performance of multicore lan-
guages. In Proc. Intl. Symp. on Empirical Software
Engineering and Measurement, pages 183–192. IEEE
Press, 2013.

[67] Sebastian Nanz and Carlo A. Furia. A comparative study
of programming languages in Rosetta code. In Proc.
37th Intl. Conf. on Software Engineering (ICSE’15),
page 778–788. IEEE Press, 2015.

[68] Gabriele Paoloni. How to benchmark code execution
times on Intel IA-32 and IA-64 instruction set architec-
tures. Intel Coporation, 2010.

[69] Marius Pirvu. Optimize JVM start-up with Eclipse
OpenJ9. https://developer.ibm.com/articles/
optimize-jvm-startup-with-eclipse-openjj9/.

[70] Aleksandar Prokopec, Andrea Rosà, David
Leopoldseder, Gilles Duboscq, Petr Tůma, Mar-
tin Studener, Lubomír Bulej, Yudi Zheng, Alex
Villazón, Doug Simon, Thomas Würthinger, and Walter
Binder. Renaissance: Benchmarking suite for parallel
applications on the JVM. In Proc. 40th Conf. on
Programming Language Design and Implementation
(PLDI’19), pages 31–47. Association for Computing
Machinery, 2019.

[71] Gregory B. Prokopski and Clark Verbrugge. Analyzing
the performance of code-copying virtual machines. In
Proc. 23rd Conf. on Object-Oriented Programming Sys-
tems Languages and Applications (OOPSLA’08), page
403–422. Association for Computing Machinery, 2008.

[72] Xiang (Jenny) Ren, Kirk Rodrigues, Luyuan Chen,
Camilo Vega, Michael Stumm, and Ding Yuan. An
analysis of performance evolution of Linux’s core oper-
ations. In Proc. 27th ACM Symp. on Operating Systems
Principles (SOSP’19), page 554–569. Association for
Computing Machinery, 2019.

[73] Kirk Rodrigues, Yu Luo, and Ding Yuan. CLP: Effi-
cient and scalable search on compressed text logs. In
Proc. 15th Symp. on Operating Systems Design and
Implementation (OSDI’21), pages 183–198. USENIX
Association, July 2021.

[74] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end
Arguments in System Design. ACM Trans. Comput.
Syst., 2(4):277–288, November 1984.

[75] Hang Shao, Marius Pirvu, Tobi Ajila, and Vijay Sundare-
san. Innovations for Java running in containers. https:
//blog.openj9.org/2021/06/15/innovations-
for-java-running-in-containers/.

[76] Spark. http://spark.apache.org.

[77] Kai-Ting Amy Wang, Rayson Ho, and Peng Wu. Re-
playable execution optimized for page sharing for a man-
aged runtime environment. In Proc. 14th European Conf.
on Computer Systems (EUROSYS’19). Association for
Computing Machinery, 2019.

[78] Avi Wigderson. Improving the performance guarantee
for approximate graph coloring. J. ACM, 30(4):729–735,
October 1983.

[79] Ting Yang, Emery D. Berger, Scott F. Kaplan, and
J. Eliot B. Moss. CRAMM: Virtual memory sup-
port for garbage-collected applications. In Proc. 7th
Symp. on Operating Systems Design and Implementa-
tion (OSDI’06), pages 103–116. USENIX Association,
2006.

[80] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu
Zang, Ziqian Lu, Pingchao Yang, Chenggang Qin, and
Haibo Chen. Characterizing serverless platforms with
Serverlessbench. In Proc. 11th ACM Symp. on Cloud
Computing (SOCC’20), page 30–44. Association for
Computing Machinery, 2020.

Appendix

We discuss two additional results in the Appendix: (1) mem-
ory usage analysis of different runtimes on LangBench, and
(2) other speedups from the runtimes over GCC.

Resource Usage: Memory
Figure 7 shows the peak memory usage of the different run-
times. Compared to Figure 2, it also shows the completion
time under the minimum memory usage configuration (e.g.,
the heap size setting in OpenJDK) of each benchmark. Recall
that, for OpenJDK and V8, the minimum amount of memory
was set by determining the first heap configuration that did
not cause a crash; for Go, GOGC was set to 5%. We then

USENIX Association 2022 USENIX Annual Technical Conference 849

https://medium.com/@duhroach/improving-cloud-function-cold-start-time-2eb6f5700f6
https://medium.com/@duhroach/improving-cloud-function-cold-start-time-2eb6f5700f6
https://developer.ibm.com/articles/optimize-jvm-startup-with-eclipse-openjj9/
https://developer.ibm.com/articles/optimize-jvm-startup-with-eclipse-openjj9/
https://blog.openj9.org/2021/06/15/innovations-for-java-running-in-containers/
https://blog.openj9.org/2021/06/15/innovations-for-java-running-in-containers/
https://blog.openj9.org/2021/06/15/innovations-for-java-running-in-containers/
http://spark.apache.org

Sudoku Sort
Graph

Iterative
Graph

Recursive
Key-Value

Store 1 Thread
Key-Value
Store Best

LA Regex
1 Thread

LA Regex
Best

LA Indexed
1 Thread

LA Indexed
Best

File Server
1 Thread

File Server
Best

Average
Factor

0.1

1

10

100

0.2

0.4

0.6
0.8

2

4

6
8

20

40

60
80

C
o
m

p
le

ti
o
n

 T
im

e

5
1
2

1
6

1
6

6
4

2
5
6 6

4

9
6

6
41
6
0 1

6

6
4

6
4

9
6

1

1

6
4

1

1

1

6
4

GCC (s) 0.715 8.295 19.175 18.572 281.978 38.091 143.319 19.383 44.074 9.231 63.012 16.852

GCC Go OpenJDK Node.js/V8 CPython Min Memory Usage

0.1

1

10

0.2

0.4

0.6

0.8

2

4

6

8

P
e
a
k
 M

e
m

o
r
y
 U

s
a
g

e

Figure 7: Relative completion time and peak memory usage for various language implementations as a multiplicative factor compared to
optimized code under GCC. Each benchmark uses the most optimized version for that language implementation.

continuously increased the heap settings until performance
no longer improved. Peak memory was measured using the
reported maximum RSS from getrusage.

The figure shows that all language implementations use
at least 2x more memory than GCC. The more complex run-
times are the worst offenders with V8/Node.js and OpenJDK
using 3.70x and 3.38x more memory than GCC on average.
Go and CPython use less memory, but still use 2.12x and
2.08x more memory than GCC on average. (As an exception,
Go surprisingly manages to use 0.59x less memory than our
idiomatic C++ version of the sudoku benchmark.) It is cru-
cial for these runtimes to trade off increased memory usage
and performance. Optimal performance can require increased
memory usage, which prevents jobs from being scheduled
when datacenters allocate resources to fit peak usage. This
additional memory is also rarely returned to the OS causing
reduced memory utilization.

For both OpenJDK and V8/Node.js, the two runtimes that
require the most memory to achieve optimal performance,
their worst case was the sudoku benchmark with OpenJDK us-
ing 10.94x more memory than GCC. The sort benchmark has
the lowest memory usage with GCC only requiring 3.42MB.
However, OpenJDK and V8/Node.js also had benchmarks
that did not have any memory overhead when compared to
GCC. Both runtimes used the same amount of memory as
GCC for the key-value store benchmark, despite it being the
next smallest benchmark with GCC requiring only 33.43MB.

CPython’s peak memory usage was the closest to that of
GCC, but requiring 2.12x more memory on average. It also
had the lowest worse case, requiring 4.06x more than GCC for
the sort benchmark. Despite being more memory efficient than
the other runtimes in most of the benchmarks, CPython still
used more memory than any other runtimes in the sort bench-
mark. Go was also able to use less memory than CPython for
the sudoku and graph colouring benchmarks.

In fact, Go was the only language implementation able to
use noticeably less memory than GCC, using 0.59x less in the
sudoku benchmark. Upon inspection this stemmed from our
version of the benchmark using the C++ standard library. The
complete C++ version peaks at 3.46MB of RSS, but almost
all of this memory is allocated immediately upon running the
program. We found that using a C++ implementation that did
not use iostreams but instead used open and read reduced the
memory usage to 2.72MB. However, the largest improvement
was from not linking the C++ standard library by removing
the -lstdc++ flag when compiling. This dropped the usage to
1.33MB and well under Go’s 2.05MB.

Runtime Speedup from Library Implementa-
tions

In addition to the cases discussed in §8, there are other cases
where managed runtimes performed better than GCC. Go per-
formed better than GCC on the indexed search log analysis

850 2022 USENIX Annual Technical Conference USENIX Association

benchmarks, taking 0.90x and 0.93x less time for the single
and multithreaded versions, respectively. Further, V8 has the
same performance as GCC on the single-threaded regular
expression based log analysis. In both cases, the good per-
formance comes from the library implementation of pointer
copying (in the case of Go on indexed log analysis) and the
regular expression engine (in the case of V8 on regular ex-
pression based log search).

Surprisingly, whereas Go spends a total of 0.04 seconds
in a critical section in indexed log search, GCC takes 2.49
seconds. In the log analysis benchmarks, each worker thread
returns a list of matched log messages to the main thread by
appending a thread local list of results to the main thread’s
global list, while holding a lock. Inside this critical section,
for the append operation, Go copies more pointers per loop
iteration than GCC.

In Go, appending to a list (referred to as a slice) is done
efficiently because slices are an intrinsic type and appending
is performed by a builtin function, which uses hand written
assembly. Both GCC and Go use 128-bit wide XMM regis-
ters [9] to move two 64-bit pointers at a time with a single
mov instruction. The assembly in Go unrolls the loop as much
as possible, using all 16 XMM registers to move 32 64-bit
pointers per iteration. Furthermore, rather than checking if a
write barrier is required for each pointer, Go checks once if
write barriers are required for all pointers, as they do not need
to be performed when concurrent marking is not active 8.

For the same operation in C++ with std::vector, GCC
only moves 2 64-bit pointers in a single XMM register per
iteration. Therefore, for every 2 pointers (or single XMM
register move) GCC must also execute a compare and jump
instruction to iterate the loop. On the other hand, Go will
only execute these two loop iteration instructions every 32
pointers (16 XMM register moves). Furthermore, because we
use std::unique_ptr, GCC must set the pointers in the thread
local vector to NULL, as ownership has been transferred to the
global vector. GCC stores NULL to 2 pointers each iteration of
the loop using another XMM register.

8Write barriers are explained in more detail in Section 6.3.

USENIX Association 2022 USENIX Annual Technical Conference 851

	Introduction
	Language Runtime Instrumentation
	LangBench
	Methodology
	Overview of Results
	Runtime Overhead (Single-thread)
	Type and Bounds Checking Overhead
	Interpreter Overhead
	GC Write Barriers

	Scalability Limitations
	Runtime Advantages
	GC Improved Cache Locality
	Scalability in Go
	I/O System Calls in the File Server

	Related Work
	Concluding Remarks

