
BigKernel — High Performance CPU-GPU Communication Pipelining
for Big Data-style Applications

Reza Mokhtari and Michael Stumm
Department of Electrical and Computer Engineering

University of Toronto
Toronto, Canada

{mokhtari, stumm}@eecg.toronto.edu

Abstract—GPUs offer an order of magnitude higher compute
power and memory bandwidth than CPUs. GPUs therefore
might appear to be well suited to accelerate computations that
operate on voluminous data sets in independent ways; e.g.,
for transformations, filtering, aggregation, partitioning or other
”Big Data” style processing. Yet experience indicates that it
is difficult, and often error-prone, to write GPGPU programs
which efficiently process data that does not fit in GPU memory,
partly because of the intricacies of GPU hardware architecture
and programming models, and partly because of the limited
bandwidth available between GPUs and CPUs.

In this paper, we propose BigKernel, a scheme that provides
pseudo-virtual memory to GPU applications and is implemented
using a 4-stage pipeline with automated prefetching to (i) optimize
CPU-GPU communication and (ii) optimize GPU memory
accesses. BigKernel simplifies the programming model by
allowing programmers to write kernels using arbitrarily large
data structures that can be partitioned into segments where
each segment is operated on independently; these kernels are
transformed into BigKernel using straight-forward compiler
transformations.

Our evaluation on six data-intensive benchmarks shows that
BigKernel achieves an average speedup of 1.7 over state-of-the-art
double-buffering techniques and an average speedup of 3.0 over
corresponding multi-threaded CPU implementations.

Keywords-GPU, CPU, communication, management,
optimization, stream processing

I. INTRODUCTION

An important class of computations operate on voluminous
data sets in ways similar to what is sometimes referred to
as ”Big Data” computations and other times referred to as
streaming computations. These computations perform simple,
straightforward, and independent operations on a large number
of input data records, one chunk at a time, and hence are
trivially parallelizable. This is a large class and includes
computations that filter, transform, aggregate or partition large
data sets. We are interested in using GPUs for these types of
computations.

On the surface it appears that GPUs would be ideal for this.
The many GPU cores allow for highly parallelized processing
and offer large aggregate compute power compared to CPUs;
e.g., 4.5 TFLOPS vs. 460 GFLOPS (Nvidia GTX Titan vs.
Intel Ivy Bridge). And GPU memory has significantly higher
theoretical bandwidth than CPU memory, since they were
designed for graphics processing; e.g., 288 GB/s vs. 52 GB/s.

However, a number of issues complicate the efficient use
of GPUs for these types of computations. Firstly, CPUs and

GPUs have separate memories, requiring explicit data transfers
between CPU and GPU memory, and GPU memory is limited
in size (currently up to at most 6GB). Because of the limited
size, the large quantity of data to be processed needs to
be explicitly partitioned into chucks and iteratively copied
into GPU memory for processing there. Efficient partitioning
is not always straight-forward, especially when dealing with
(non-indexed) variable-length records. To enable concurrency
between GPU processing and data transfers, double-buffering
is typically used where the GPU processes the data in one of
the buffers while data is being transferred into the other buffer.
But coding double buffering has been shown to be tedious and
error-prone [12].

Secondly, the PCIe link that connects the two memories
has limited bandwidth and, for the computations we are
considering, can often be a bottleneck, starving GPU cores
from their data. For example, PCIe Gen 3 has a theoretical
maximum throughput of 15.75 GB/s, far lower than memory
bandwidth GPU-side, and difficult to exploit in practice.
Indeed, while impressive speedups have been reported for
many GPU applications, the speedups were often calculated
without taking into account the overhead of transferring data
between CPU and GPU memory [6].

Thirdly, the high bandwidth of GPU memory can only
be exploited when GPU threads executing at the same
time access memory in a coalesced fashion, where the
threads simultaneously access adjacent memory locations;
otherwise memory accesses may become serialized, resulting
in significantly lower memory throughput. Low memory
throughput for data-intensive applications, like the ones we are
targeting, results in highly underutilized GPU cores. Because
such applications are not a priori structured to operate on
data in a coalesced fashion, the data has to be reorganized to
support coalesced accesses on the GPU, which is non-trivial.

In this paper, we describe BigKernel, a mixed compile-time,
run-time scheme that addresses the issues listed above by using
data prefetching within a 4-stage pipeline. The key idea behind
BigKernel is to have GPU threads identify online, but ahead
of time, which data they will access in their computations,
transfer this information to the CPU, and then have the CPU
assemble the data and transfer it to GPU memory prior to
when the GPU threads access the data.

This scheme has a number of potential advantages. First,
the amount of data transferred over the PCIe link from CPU

2014 IEEE 28th International Parallel & Distributed Processing Symposium

1530-2075/14 $31.00 © 2014 IEEE

DOI 10.1109/IPDPS.2014.89

819

memory to GPU memory is often reduced, because only the
data being accessed GPU-side is transferred (as opposed to
all data). Secondly, it allows the CPU to assemble the data in
a way that increases coalesced data accesses on the GPU for
more efficient GPU memory accesses. Finally, it significantly
simplifies the programming model, since the programmer need
not deal with and manage (i) buffers, (ii) the transfers of data
between CPU and GPU, and (iii) the reorganization of data so
as to enable coalesced accesses.

BigKernel allows the programmer to write a GPU program
with arbitrarily large data structures as if (pseudo-) virtual
memory were available GPU side, if they are accessed in a
streaming fashion. The program is compiler-transformed to
one that automates the management of buffers, the transfers,
and the layout of GPU-side data in a way that is transparent
to the programmer. Moreover, the fact that the transformed
program only invokes a single kernel once for the entire
computation means that the kernel context (i.e., registers
and GPU shared memory) is available throughout the entire
computation without having to manage it separately as would
be the case when kernels are invoked iteratively, further
simplifying her programming efforts.

However, one should note that BigKernel is not a general
framework. It targets only a subset of computations, namely
streaming computations, which are computations that operate
on input records in independent ways. However, we argue
that this is a large and important subset. Moreover, BigKernel
involves a number of tradeoffs. For example, BigKernel
uses twice as many GPU threads, potentially limiting the
degree of parallelism GPU-side, although we have found
GPU core utilization to be low for the class of computations
being considered. As another example, BigKernel uses more
CPU-side resources compared to traditional schemes, i.e.,
more CPU threads, more memory accesses, and more buffers
that are pinned so that they cannot be paged out, which may
impact other concurrently running processes on the CPU.

Our initial performance evaluation, presented in Section VI,
is encouraging. With six benchmarks, we show that
BigKernel outperforms corresponding single and double
buffering implementations across all benchmarks by up
to 4.6X and 3.1X and on average by 2.6X and 1.7X,
respectively. Compared to corresponding multi-threaded CPU
implementations, BigKernel executes up to 7.2 times faster
and on average 3.0 times faster.

As far as we know, BigKernel1 is:

1) the first scheme to improve on the performance of
state-of-the-art double-buffering schemes for GPUs;

2) the first scheme to automate CPU-GPU data transfers
for large data sets without requiring the programmer to
split the data or annotate the code;

1The name BigKernel was chosen because (i) its target applications are
those with Big Data-style processing of large datasets, (ii) the programmer
can write a single ”big” kernel that can operate on all data, even if the data
does not fit in memory, and (iii) the kernel that is generated is big compared
to a traditionally implemented kernel; e.g., a kernel that is implemented in 70
LOC is transformed into one that has over 500 LOC.

3) the first scheme to provide the continuous execution of a
single kernel on arbitrarily large input/output data sets;

Section II gives a brief background on GPUs for those less
familiar with GPUs. Sections III and IV describe BigKernel
in more detail. Sections V and VI present our performance
evaluation. We close with related work and concluding
remarks.

II. GPU BACKGROUND

GPU hardware consists of several streaming multiprocessors
(SM), each of which contains multiple computing cores,
registers, and a small (e.g. 64KB) but fast on-chip memory
called shared memory, accessible to the cores of the SM. The
cores of an SM execute in lock-step with each core executing
the same instruction at the same time; i.e., in SIMD fashion.

The GPU is connected to an off-chip DRAM memory called
global memory, with up to a few gigabytes of space to all
cores of all SMs. Accesses to global memory is an order
of magnitude slower than accesses to registers and shared
memory. We refer to this global memory as GPU memory
in this paper to differentiate it from CPU main memory.

The GPU is connected to the CPU through a bidirectional
link, such as PCIe. The GPU will have one or more DMA
engines capable of transferring data over this link between
CPU and GPU memory. However, the DMA engine can only
access CPU memory that has been pinned so that it will not
be paged out by the OS. The DMA engines also provide GPU
cores direct (but slow) access to CPU memory.

The term kernel is used to denote the function that executes
on the GPU by a collection of threads in parallel. The
programmer configures the kernel to be executed by a given
number of GPU threads. These threads are grouped into thread
blocks as configured by the programmer. Each thread block is
assigned to a SM by a hardware scheduler. Threads of a thread
block are further divided into groups of 32, called warps.
The threads in a warp execute in lock-step because the cores
share the same instruction scheduler. Thread divergence will
occur if, on a conditional branch, threads of the same warp
take different paths, which can lead to serious performance
degradations. Inter-warp divergence does not negatively impact
performance.

III. BIGKERNEL OVERVIEW

BigKernel organizes a computation into four pipeline stages:

1) Prefetch address generation (GPU-side): GPU threads
calculate the addresses of the data needed by the
computation threads later in Stage 4. The code to
generate the memory addresses is obtained from the
original GPU kernel source code by removing all
statements except (i) those that contribute to control
flow, (ii) those that contribute to memory access address
calculations, and (iii) the memory accesses themselves.
The memory access instructions are transformed so that
instead of making memory accesses, the address is
recorded in an address buffer CPU-side reserved for that
purpose (See Fig. 1).

820

������� �	

��

���
�����	

�� ���� �	

��

����������� �����������

����

���� ����

���

��

���

���

��

Fig. 1. BigKernel buffers

2) Data assembly (CPU-side): The prefetch data is
assembled into a prefetch buffer in CPU memory based
on the addresses generated in Stage 1.

3) Data transfer: the GPU DMA engine transfers the
contents of the prefetch buffer to a data buffer in GPU
memory.

4) Kernel computation (GPU-side): GPU threads execute
the actual computation using the prefetched data. The
code for the computation is obtained by transforming
the original GPU kernel to use the prefetched data in
the data buffer instead of the original memory accesses.

A. A simple example

To provide more detail using an example, consider part of
a K-means computation:

�������	��
�������������
����������������

���
�

��
��

	

��

�	 ����������������
���������
�������������� �����
 !������!�������

������������"��������������#�
������������$������������

where particles represents a numP element particle
array that does not fit in GPU memory but is accessed
in a streaming fashion, clusters represents an array
of clusters that fits entirely in GPU memory, and
findClosestCluster()returns the id of the cluster
closest to the target particle.

Because the particle array does not fit in GPU memory,
the array would traditionally be processed in chunks with
the following GPU code invoked iteratively (disregarding
findClosestCluster()’s return value for now to
simplify the example):

�������	��
�������������
����������������

���
�

��
��

	

��

�	 ��������#������������
��������������
������
�
�����	�������

��
��������������
������
������������������
�������

��
��������������������������%&��
����������%&	������������%&'������������

The corresponding CPU code (i) allocates space for the
cluster array GPU-side and copies the cluster array to GPU
memory, and then (ii) iteratively copies the next chunk of

the particles array to GPU memory before invoking the GPU
clusterKernel() on the chunk:

�����������������	���������'���
�����
���	�������	�������������������'���
����������������� ��������'���
�������
	������������'������
	����������
� �

�

��
�

��
��

	

��

�	

�����
���	������������������������	� ��������
��
��������
��
������� ���������
����
��� ������������

(pElements is equal to the number of particles that fit in
the GPU buffer pBuf.)

Using BigKernel, the programmer no longer needs
to partition the large particle array into chunks and
manage the transfers. Instead, she would provide the
following CPU-side code that assumes the existence of an
arbitrarily large d_particles array in GPU memory that
is (virtually) allocated with streamingMalloc() and
mapped to the CPU-side particles array particles with
streamingMap():

!"#$%$������&!'"()������'*++$,��'���
!"#$%-���	��&!'"()������������(. !'*��	��'���
�������	
�������������������������������
�������	
��
����������	����������������������	�����������������

�
��

��
	

��
�	

The corresponding GPU-side kernel code written by the
programmer remains unchanged but gets invoked only once.

Note that the K-means kernel accesses two types of data
structures: the cluster array which is explicitly copied to GPU
memory and does not involve BigKernel, and the particle array
that does not fit in GPU memory and is mapped. BigKernel
manages the accesses to the latter.

We now describe each of the four stages of the BigKernel
pipeline in more detail, using the same running example.

Prefetch address generation: The prefetch address generation
code is obtained from the original GPU kernel by transforming
the read accesses to the d_particles array in the for-loop
to instead store the addresses in an addrBuf array CPU-side:

��	��������
���	�
���������
��������
������

���
�

��
��

	

��

�	

���������������������������������
�����
� !�
���������������������������������
�����
� "�
���������������������������������
�����
� #�

Currently, our transformations are relatively simplistic in that
they cannot deal with indirections or flow control based on
application data that may be modified, in which case, then the
transformation simply defaults to fetching all data, making the
resulting code similar to the double-buffering scheme.

This technique has three potential downsides. First, if the
same data item is accessed multiple times in the code then
it will be be transferred multiple times, leading to extra
overhead. However, we have not found this to be the case
with the applications we examined, and believe that it is

821

rare in Big Data-style, streaming applications. Second, when
characters (which are typically 1-byte) are accessed then the
communication overhead of transferring the addresses (which
are typically 4 or 8-bytes) is far greater than the overhead of
transferring the characters. We address this issue in the next
section. Finally, the CPU-side address buffer must be pinned
(i.e., non-pageable) so that it can be accessed by the GPU
DMA engine. While this consumes physical CPU memory that
cannot be made available to other processes, this should rarely
become an issue given today’s CPU memory sizes.

Data assembly: A dedicated CPU thread is responsible for
fetching the corresponding data element from the particles
array for each address in the address buffer and placing it
in the prefetch buffer, which also must be a pinned buffer.

Note that the layout in the prefetch buffer enables coalesced
accesses after it has been transferred to GPU memory. This
is because the addresses were stored into the address buffer
in the order they were accessed by the GPU threads, so data
accessed at the same time will be adjacent to each other.

This data assembly process has one potential disadvantage.
Because data assembly occurs CPU-side, it involves twice
as many memory accesses CPU-side compared to traditional
GPGPU applications. In traditional GPGPU applications, data
for the GPU is first copied to a pinned buffer, resulting in a
CPU-side read and a write for each data element. However
with BigKernel, the address is first DMAed to memory by
the GPU, the CPU then reads the address before copying the
target data to the pinned prefetch buffer, resulting in two reads
and two writes for each prefetched data element.

Data transfer: The data transfer stage is executed by the GPU
DMA engine, allowing CPU and GPU cores to concurrently
do other work.

Kernel computation: The computation code is (compiler-)
generated from the GPU kernel by transforming the accesses
to the particles array in the kernel for-loop to instead
access the data previously transferred from the CPU in
dataBuf:

��	��������
���	�
�������
��������
�����

��
�

��
��

	

��

�	 ��
 !������!��������
��������������������������
�����	
��	������������������
�����	
��	������������������
��	�����
��

Four-stage pipeline: Fig. 3 shows the implementation of the
4-stage pipeline depicted in Fig. 2, assuming a single thread
block. Unlike what is shown in Fig. 2, the time it takes for
each stage to complete in practice will vary, depending on the
application. However, prefetch address generation takes the
least amount of time across all applications we experimented
with.

The CPU launches twice as many GPU threads as specified
in the original program. Half are responsible for generating

�

�����

����

�����

����

�����

����

�����

����

�����

����

�����

���	�

�����

���	�

�����

���	�

�����

���	�

�����

���	�

�����

����

�����

����

�����

����

�����

����

�����

����

����

����

����

����

�����

�
�
�
�
�
��

Fig. 2. Four-stage pipeline

the prefetch addresses and the other half are responsible for
the computation. The GPU threads must be launched in a way
such that each warp contains only address generation threads
or only computation threads, but not both — otherwise the
kernel will suffer from thread divergence.

The outermost for-loop of the kernel (lines 10-38)
processes one chunk of data at a time. The address generation
stage (lines 13-20) ends when addrBuf is full, at which
time all the address generating threads first barrier (line 22)
and one of the threads in thread block signals the CPU that
the addresses are ready. The CPU waits until the addresses
are ready (line 55) and then assembles the data (lines 56-57),
copies the data to the GPU (line 59) and then signals the GPU
computation threads that the data is ready (line 60), at which
time the computation stage (lines 26-37) can commence.

Some details were omitted from the code in Fig. 3 for
simplicity. For example, multiple instances of each buffer are
required to allow for concurrency (although the code only
shows one). At minimum, two of each are required so that
one can be produced while the other is still being consumed.

Writes to mapped data: Writes to steaming data are handled
similar to the way reads are handled: each write results in the
writing of the target address to an address buffer CPU side and
the data value is written to a write buffer GPU side, which is
then transferred to CPU memory by the DMA engine. This
requires two extra set of buffers: one GPU side to collect the
writes, and one CPU side to which the data is transferred. This
also adds two stages to the pipeline: one for the data transfer
back to CPU memory and one for a CPU thread to process
the transferred data and update the target data structure.

Multiple GPU thread blocks: The examples and code
above assumed all threads were running within one GPU
thread block. Supporting multiple thread blocks adds a few
complications which, however, are handled through compiler
transformations in a straightforward way. A separate set of
buffers is needed for each thread block both CPU- and
GPU-side. A separate CPU thread for each GPU thread block
is responsible for data assembly CPU-side. Threads within
a thread block need to be organized so that half of them
are responsible for prefetch address generation and the other
half are responsible for computation so that each computation

822

GPU Side:
0 clusterKernel(particle, numP, clusters,
1 addrBuf, addrBufSize
2 dataBuf, dataBufSize)
3 {
4 tid = getVirtualThreadId(threadId);
5 // 1 addrGen and 1 comp thread assigned same tid
6 start = myParticleStartIndex(tid, numP);
7 end = myParticleEndIndex(tid, numP);
8
9 i = start;
10 for(; i < end;) //each iteration: processing one chunk
11 {
12 if(isAddrGenThread(threadId))
13 {
14 counter = 0;
15 for(; (i < end) && (counter < addrBufSize); i ++)
16 {
17 addrBuf[counter ++][tid] = &particle[i].x;
18 addrBuf[counter ++][tid] = &particle[i].y;
19 addrBuf[counter ++][tid] = &particle[i].z;
20 }
21
22 barrier_addrGenThreads() ;
23 signal_addrReady() ;
24 }
25 else // computation thread
26 {
27 counter = 0 ;
28 wait_dataReady() ;
29
30 for(; (i < end) && (counter < dataBufSize); i ++)
31 {
32 findClosestCluster(dataBuf[counter ++][tid],
33 dataBuf[counter ++][tid],
34 dataBuf[counter ++][tid]
35);
36 }
37 }
38 }
39 }

CPU Side:
40 cudaMalloc(d_clusters, clArraySize);
41 cudaMemcpy(d_clusters, clusters, clArraySize);
42
43 cudaMalloc(d_dataBuf, dataBufSize);
44 pinnedMalloc(h_addrBuf, addrBufSize);
45 pinnedMalloc(h_pBuf, pBufSize);
46
47 clusterKernel<<<>>>(d_particle, numP,
48 d_clusters, numCl,
49 h_addrBuf, addrBufSize,
50 d_dataBuf, dataBufSize
51);
52
53 while(GPUKernelisRunning())
54 {
55 wait_addrReady();
56 for(i = 0; i < numAddr; i++)
57 h_pBuf[i] = *(particles + addrBuf[i]);
58
59 cudaMemcpyAsync(d_dataBuf, h_pBuf);
60 signal_dataReady() ;
61 }

Fig. 3. Implementation of the 4-stage pipeline.

thread can run in the execution context of the corresponding
address generation thread.

IV. OPTIMIZATIONS

A. Pattern recognition

The address generation stage makes use of a pattern
recognition component that attempts to extract patterns from
the memory addresses it generates. The goal of this component
is to reduce the amount of address information that needs to
be sent to the CPU by replacing the generated addresses with

a pattern that can be used to reproduce the addresses. Such
pattern recognition, if successful, is particularly impactful
performance-wise when dealing with text-based input data,
since an address (4 or 8-bytes) would otherwise be required
for each accessed character (1-byte).

Each address generation thread starts by generating a few
addresses, storing them in a private temporary address buffer.2

The number of addresses generated is dictated by the size
of the buffer, which is typically a few tens of bytes. It
then invokes a pattern recognition function to identify a
potential pattern from the stored addresses. A pattern, if found,
consists of a base address and a number of strides between
subsequent addresses. For instance, if stored addresses are
0x00100, 0x00105, 0x00110, 0x00115, then the pattern would
be [base address: 0x00100, stride(s): 5]. If no pattern is
found, then the addresses collected in the temporary buffer are
copied to the CPU-side address buffer, and address generation
continues as described earlier in Section III.

If a pattern is identified, then the address generation thread
continues generating data access addresses, but now verifies
that each subsequently generated address follows the identified
pattern. If it does not, then address generation is started again,
this time without attempting to identify a pattern and writing
the addresses to the CPU-side address buffer.

If all subsequently generated addresses adhere to the pattern,
then the pattern (instead of the addresses) is written to CPU
memory, and a signal is sent to the CPU indicating that a
pattern was found.

The pattern recognition scheme described above is rather
simplistic, but we have found it to be effective with our
benchmarks — see Section VI. One can easily conceive of
ways to extend it and make it more versatile (e.g., allow
patterns to change midstream).

B. Data locality in assembling data

Compared to traditional double-buffering implementations,
BigKernel incurs extra memory accesses during the data
assembly stage CPU-side. If access patterns are provided by
the prefetch address generation stage then the overhead of the
data assembly can be reduced by improving memory access
locality and the attendant cache hit rate.

We focus on improving memory access locality when
reading data from the source of the mapped data, as opposed
to when writing data to the prefetch data buffer, because we
found that the cost of these reads is far higher than the cost
of the writes.

To read the prefetch data specified by the pattern, instead
of reading the data items in the order they are needed by
the GPU computation threads, we read all of the prefetch
data for one GPU thread at a time. This results in increased
data locality in CPU reads, because each GPU thread tends
to access consecutive data. The fetched data is, however, still
stored in the prefetch data buffer in the order they will be

2Preferably these temporary buffers are allocated in GPU shared memory,
but if there is not enough space there because it is needed by the computation,
the buffer is allocated in GPU memory.

823

accessed GPU-side. If multiple data structures are mapped and
accessed by the GPU, then we additionally read the data from
each structure separately.

C. Synchronization

Synchronization in GPGPU applications is complicated by
the intricacies of the GPU hardware. In particular, there is no
signaling mechanism between CPU and GPU beyond using
flags located in memory and busy waiting for a specific
flag value. For this reason, it is important to implement
synchronization so as to minimize the number of memory
accesses required, especially on the GPU because of the large
number of threads that execute there.

The first three stages of the BigKernel pipeline are
producers for their following stages: the address generation
stage produces addresses for the data assembly stage, which
produces data for data transfer stage, which produces data
for computation stage. For each buffer used in the pipeline,
proper synchronization is required to ensure that consumption
of the buffer data does not commence before the data has been
produced, and that data for a buffer is not produced until the
buffer has previously been consumed.

The GPU signals the CPU at the end of the address
generation stage by setting a flag in CPU memory. The CPU
busy waits on that flag before it starts the data assembly
stage. The GPU cannot signal the CPU until all of the address
generating threads have completed their stage. Hence, the
address generation threads first barrier at the end of their
stage before one of the threads signals the CPU. We use
the bar.red GPU instruction for barriering, because it is
efficient and can barrier a given number of threads.

No synchronization is needed between the data assembly
stage and the data transfer stage, because the latter is initiated
by the CPU thread after it completes the data assembly.

The DMA engine knows when the data transfer stage has
completed, but there is no mechanism for the DMA engine to
signal the kernel computation threads that this occurred. We
rely on the fact that the DMA engine performs data transfers
in order. After the CPU instructs the GPU DMA engine to
transfer the data buffer (using cudaMemcpyAsync), it instructs
the DMA engine to copy a flag to a specific location in GPU
memory that indicates the data transfer has completed. The
flag will not be transferred until the data buffer has been
transferred.

Instead of having each GPU computation thread busy wait
on that flag, only one computation thread is assigned that
task. All the other computation threads barrier (again using
bar.red) to ensure they do not start the computation phase
until the flag has been set.

To prevent subsequent address generation stages from
overwriting an address buffer that has not yet been consumed,
we barrier all threads in a thread block once for each
chunk iteration.3 Each address generation thread in iteration n

3An alternative is to use full/empty flags for each buffer, but this increases
the number of data transfers and the amount of busy waiting.

synchronizes with the computation threads in iteration n− 3.
This relies on the fact that when a computation stage starts,
all three stages prior to it have completed and the buffers of
the previous stages can safely be overwritten.

Synchronization between threads across different
thread-blocks is not needed because both computation
threads and their corresponding address generation threads
are packed into the same thread-block and they interact with
a separate CPU thread responsible for their data prefetching.

D. Buffer allocation: active vs. inactive thread-blocks

To ensure efficient use of memory resources both CPU-
and GPU-side, BigKernel allocates data and address buffers
only for active thread-blocks, reusing them when inactive
thread-blocks become active4 (which only occurs when a
resident active thread-block retires). The benefit of allocating
buffers only for active thread-blocks is that buffers can be
made larger, potentially improving performance by reducing
the number of synchronization points.

We use a hybrid compile-time, runtime method to identify
the number of active thread-blocks. First, the resource usage
required by a thread block, Rtb, is determined at compile-time
and provided as a constant value in the application’s code.
The resources provided by the GPU hardware, RGPU , is
then probed at runtime (using provided API functions).
The number of active thread-blocks is then calculated as:
min(numSetBlocks, (Rtb/RGPU)) where numSetBlocks
is the number of thread-blocks set by the programmer as the
argument of the kernel invocation.

V. EXPERIMENTAL SETUP

Our baseline hardware infrastructure consists of a 3.8GHz
Intel Xeon Quad Core E5 with 8 hardware threads and 10MB
of combined L2/L3 cache, connected to 16GB of quad-channel
memory clocked at 1800MHz. All GPU kernels were executed
on an NVIDIA GeForce GTX 680 GPU with 1,536 computing
cores each running at 1020MHz connected to 2GB of GPU
memory. The GPU video card is connected to the system with
a PCIe Gen3 x16 link interconnect.

All GPU-based applications were implemented in CUDA,
using CUDA and GPU driver release 5.0.35 installed on
a 64-bit Ubuntu 12.04 Linux with kernel 3.5.0-23. All
applications are compiled with the corresponding version of
the nvcc compiler using optimization level three.

For our experiments, we ran six applications with a range
of different data access patterns:5

K-means: partitions n particles into k clusters so that
particles are assigned to the cluster with the nearest mean.
Each particle consists of the particle’s coordinates, their
clusterIds, and a few other data values. The kernel reads
particle coordinates and sets its clusterId; the clusterIds
therefore have to be transferred back to CPU memory.

4The number of thread-blocks that become active depends on the resources
(i.e. registers and shared memory) that each thread-block requires and the
total resources provided by the GPU.

5The source code for these applications as well as their input data is
available at http://www.eecg.toronto.edu/∼mokhtari/bigkernel.

824

Application Data Size Record Type Mapped Data Access Proportion
Read Modified

K-means 6.0GB Fixed-length 50% 12%
Word Count 4.5GB Variable-length 100% 0%
Netflix 6.6GB Fixed-length 30% 0%
Opinion Finder 6.2GB Fixed-length 73% 0%
DNA Assembly 4.5GB Fixed-length 36% 0%
MasterCard Affinity 6.4GB Variable-length 100% 0%
MasterCard Affinity (indexed) 6.4GB Variable-length (indexed) 25% 0%

TABLE I
APPLICATION MAPPED DATA DATA. (AN APPLICATION MAY ALSO

ALLOCATE AND ACCESS OTHER NON-MAPPED DATA STRUCTURES.)

Word Count: counts the number of occurrences of each
word in a large, mapped document.

Netflix: predicts user preferences of movies [3]. An array
of records consisting of movie user ratings and a few other
data values is mapped. The user ratings of each pair of users
to a movie is read from a record and the correlation between
the two ratings is stored in a GPU-side pre-allocated table.

Opinion Finder: analyzes the sentiments of tweets
associated with a given subject (i.e. a set of given
keywords) [17]. The mapped data consists of a set of records
that each include a tweet, a time-stamp, and a few other
data values. Words from each tweet that mention the given
subject are looked up in three dictionaries of positive, negative,
and adverb words. Based on the identified words and their
precedence, an overall sentiment score is calculated. The
dictionaries are not mapped. The output is an aggregated value
that represents the sentiment score of the tweets.

DNA Assembly: merges fragments of a DNA sequence to
reconstruct a larger sequence [2]. An array of records, each
consisting of a fixed-length DNA fragment, a string value,
and a few other data values, is mapped. For each fragment,
the application hashes a portion of the fragment and stores
it in a hash table to count the number of identical fragments
and to remove the noisy ones. The hash table is later used to
incrementally extend each fragment by finding partial overlaps
between different fragments.

MasterCard Affinity: finds all merchants that are
frequently visited by customers of a target merchant X. A
collection of purchase transactions is mapped, where each
transaction includes credit card number, the payment terminal
ID, and several other values. The application first extracts a list
of customers that visited merchant X and then, with another
pass over the purchase transactions, identifies the merchants
visited by the customers from the list. The output is a table of
merchants visited by all customers of merchant X, along with
frequency information.

MasterCard Affinity (indexed): as above, except that
an extra index file is provided that contains offsets to the
data-fields within the input.

Table I provides more details on the application data sets
and how they are accessed. Applications that do not modify
mapped data, write results to GPU memory that is transferred
to CPU memory after all computations have completed.

VI. EXPERIMENTAL RESULTS

To evaluate BigKernel, we implemented five different
variations of our applications: (i) a CPU-based serial
implementation, (ii) a CPU-based multi-threaded
implementation, (iii) a GPU-based implementation that
uses a single buffer for data transfers, thus serializing
computation and data communication, (iv) a GPU-based
implementation that uses double-buffering for data transfers
in order to overlap computation with data communication,
and (v) BigKernel.

All GPU-based implementations use the same kernel. Each
implementation is configured to run with the number of
GPU computation threads that results in the best execution
time, as determined through experimentation. Moreover, each
implementation uses buffer sizes that result in the best
execution time, given memory constraints.

The performance results presented here represent the
average over ten consecutive runs.

A. Overall results

Fig. 4(a) depicts the speedup of all implementations relative
to the CPU-based serial implementation. To help interpret the
speedups for the GPU-based implementations, Fig. 4(b) shows
the computation / communication ratio of the single-buffer
implementation.

BigKernel outperforms both the single and double-buffering
implementations across all applications. The performance
gains can primarily be attributed to (i) overlapped computation
and data communications, (ii) reducing the volume of
CPU-GPU data communications and, (iii) enabling coalesced
accesses to GPU memory by placing the input data of
consecutive threads in interleaved data segments.

Word Count and Opinion Finder have a relatively low
speedup and do not appear to benefit from optimized
CPU-GPU data communications, primarily because they have
a dominant computation stage, as we show further below,
which prevents improvements from overlapping computation
with communication or from data transfer reductions. Word
Count uses a centralized hash table to store word counts,
requiring synchronization with attendant overheads. Opinion
Finder’s computation is dominant because of the fairly heavy
lexical analysis it conducts on input tweets.

The speedup of MasterCard Affinity is also limited due
to the fact that entire input dataset has to be transferred to
GPU memory, because the variable-length records force the
computation to go over all of the data to identify the individual
records (which are delimiter-character separated). The small
performance advantage of BigKernel over the double-buffering
version is due to the effect of memory coalescing. The indexed
version of MasterCard Affinity, however, achieves significant
speedup, because it reduces the amount of data transferred, and
because the benefits of coalesced memory accesses become
more exposed with the more efficient data transfer stage.

825

��
��
��

�	
�

�
�

�
�

�
�

�
��

	

�
�

�����������������

�	
�

�	
�

�	
�

��	
�

��	
�

��	
�

�
��
��
��
��
�

 �
�!�
��

"
#�
��
��
�$
��
��
�

%
&�
&�
��
�
'�
(

)��*��+���,�!!��

	-�

)��%��'���,�!!��

)��,�+������

���	
�

�
��
��
��
��
�

&!
!��
��(
�.�
��
��
��
/

�
��
��
��
��
�

&!
!��
��(

(a) Application speedup over serial CPU implementation.

�
�
�
�
��
�
�
�

��
�
	

�

���

���

���

���

���

	��

��

���

���

����

����������

������������

��
��
��

�
��
��
�
��
�

��
���
��

"
��
��
��
�
��
��
�

!�
"�
"�
��
�
#�
$

%
��
��
�
��
�

"�
���
��$
�&�
��
��
��
'

%
��
��
�
��
�

"�
���
��$

(b) Comp/comm ratio in single-buffer implementation.

Fig. 4. Overall performance results.

B. Performance breakdown

To gain more insight into which features of BigKernel lead
to performance improvements, we ran BigKernel with certain
features disabled and measured the speedup obtained over the
single-buffered implementation:

1) BigKernel overlap only: this variant transfers all data
in its original layout; i.e., no optimizations to reduce
the data transferred and no optimization for increased
coalesced accesses. Hence, this variant thus only
provides pipelined execution, where communication and
computation is overlapped.

2) BigKernel transfer volume reduction: this variant
transfers only the data required by the computation but
leaves the transferred data in its original layout (with the
optimizations for coalesced accesses disabled).

3) BigKernel: the complete BigKernel implementation.

Fig. 5 depicts the incremental speedup obtained from
running one variant over the other. The figure thus gives an
indication of the contribution of reduced data transfers and
data layout optimized for coalesced accesses.6

As expected, the data transferred for MasterCard Affinity
and Word Count cannot be reduced and therefore they only
benefit from communication/computation overlap and memory
coalescing. Opinion Finder also does not exhibit performance
improvements from reducing the CPU-GPU data transfers due
to its dominant computation stage.

The effect of the memory coalescing optimization varies
from application to application based on a number of factors:
1) the ratio of accesses to mapped data over all data accesses
in the kernel – the higher the ratio, the greater the performance
benefit; 2) whether the data transfer stage dominates or not – if
it does, there is no benefit from optimizing memory accesses;
and 3) whether or not the original layout already leads to

6It should be noted that the graph would look substantially different if
the disabling of features had been done in a different order, because the
contributions of each feature overlap in the pipeline.

�	
�

�
�

�
�

�
�

�

�����$�����������

�	-�

�	
�

�	-�

�	
�

�	-�

�	
�

���#	������������	

��

�	�	���	��������������������������

����

��
�	
��

�
��
��
��
��
�

��
����
�

�

���
��
�$
���
��

��
��
��
��
�
 �!

"
	�
��
��
	�
�

��
���
��!
�#�
��
��
��
$

"
	�
��
��
	�
�

��
���
��!

Fig. 5. The incremental benefit of (i) overlapping computation and
communication, (ii) reducing the volume of data transferred due to
prefetching, and (iii) laying out the data to increased coalesced accesses.

highly coalesced accesses – if so, there is not much room for
improvement.

Note that many of our target applications are inherently
incapable of exhibiting coalesced memory accesses in their
original form. The records being processed are often large
and therefore, only a few of them can be accessed in
each memory transaction, causing the memory accesses of
consecutive threads to be non-coalesced. This is the case, for
instance, in our DNA assembly application where each DNA
fragment record is typically so large that data from different
records cannot be accessed within a coalesced memory
transaction. Moreover, in applications with variable-length
records, consecutive threads cannot be easily assigned to
process consecutive records in an interleaved fashion because
it is difficult for consecutive threads to identify the starting
memory location of consecutive records without accessing the
previous records.

826

%�

�
�

��
��

�
�

	�

�
�

�
��

�

	�
��

�
	�

�
�

��

��

��

��

	�

�

�

��

��

%��

���������&

'�������&����

'��������� �$
����������	����

��
�	
��

�
��
��
��
��
�

��
����
�

�

���
��
�$
���
��

��
��
��
��
�
 �!

"
	�
��
��
	�
�

��
���
��!
�#�
��
��
��
$

"
	�
��
��
	�
�

��
���
��!

Fig. 6. Relative completion time of each BigKernel stage.

C. Stage completion time breakdown

For optimal execution, each stage in the BigKernel pipeline
would ideally take the same amount of time to complete. This
is obviously not the case, and the amount of time each stage
requires to complete varies from application to application. For
each application, we experimentally measured the time each
stage required on average to complete.7

Fig. 6 shows, for each application, the time each stage took
to complete on average relative to the stage that took the
longest. The address generation stage requires only a small
fraction of the total execution time (usually less than 20%) as
it only executes those instructions that contribute to memory
address calculations.

The time taken by the data assembly stage varies for the
different applications based on (i) the amount of data that has
to be assembled and (ii) the data locality of the data items
being accessed by CPU memory and hence the cache hit rate.

The time taken for the data transfer solely depends on the
size of data to be transferred because the data to be transferred
is put in a contiguous pinned-buffer and therefore is efficiently
transferred to GPU memory by the GPU DMA engine.

Finally, the computation itself is responsible for a
considerable portion of the execution time. Clearly,
this is expected for those applications that originally
had a dominant computation stage. However, it is
interesting to note that BigKernel significantly increased
the computation / communication ratios relative to the
original single-kernel implementations (Fig. 4(b)). The fact
that the computation stage is the slowest stage for many of
these applications indicates that GPU memory may be the
bottleneck.

D. Pattern recognition

Recognition of access patterns during the prefetch address
generation stage is a key optimization in BigKernel. This is

7To measure execution breakdown, we inserted time measurements at the
beginning and end of each stage. The data transfer stage, in particular, is
measured by having the CPU continuously ping the status of data transfers
to stop the timer when the transfer has completed.

Application Performance difference
K-means 31%
Word Count 66%
Netflix 3%
Opinion Finder 6%
DNA Assembly 7%
MasterCard Affinity 57%
MasterCard Affinity Indexed NA

TABLE II
PERFORMANCE IMPROVEMENT DUE TO THE USE OF ACCESS PATTERNS.

shown in Table II that lists the performance improvements
when only having to transfer patterns to CPU memory over
having to send the actual addresses.

The extent to which performance is improved for each
application depends on the number of addresses sent during
the address generation stage which in turn depends on the
granularity of the data being accessed. For instance, in
K-means, one address is sent for each double variable (i.e.
8-byte) while in Word Count, one address has to be sent
for each required character (i.e. 1-byte). Having to send a
large number of addresses relative to the amount of data to
be transferred adds significant overhead to PCIe transfers (for
addresses) and on CPU memory (to read addresses during the
data assembly stage). Replacing the addresses with a pattern
can thus have a significant performance impact.

VII. RELATED WORK

Managing CPU-GPU data communications is a well-known
challenge both from a programmability and a performance
point of view. The majority of existing work addresses this
challenge only from a programmability point of view [5], [8],
[13], [18]. Some prior work also considers performance, which
is more closely related to our work.

Komoda et al. propose a library for OpenCL that
automatically overlaps computation with data communication
given the memory usage pattern of a kernel [12]. The
performance of the resulting applications is close to that of
the double-buffering scheme. However, the programmer is still
required to provide various details on the data usage pattern
of the kernel.

CGCM and DyManD are two systems that automate
CPU-GPU data communications through a hybrid
compile-time and run-time scheme [10], [11]. However,
the data transfers are not overlapped with computation. And
the programmer is still responsible for splitting the data into
smaller chunks and invoking the kernel multiple times.

Pai et al. propose a system that automates CPU-GPU
memory management based on a coherence scheme in order
to reduce superfluous communication [14]. To do this, when
a data item is accessed on one side (CPU or GPU side), it is
transferred (from the other side) if it is not locally available
or if its local version is stale. This system does not overlap
computation and communication.

There is interesting prior work to automatically manage
and optimize data transfers, but they target transfers between
GPU global memory and GPU shared memory. [1], [7], [9].
Interestingly, they also target streaming computations, but

827

they assume the data is already in GPU global memory.
CUDA-lite translates an annotated kernel so that it prefetches
the data from GPU memory in a coalesced fashion and stores
it in GPU shared memory, to where future data accesses
are redirected [16]. In a similar work, Yang et al. proposes
various compiler optimizations, including one that converts
non-coalesced accesses into coalesced ones through the use
of shared memory [19]. None of this prior work considers
CPU-GPU data communications.

Our prefetching scheme is related to a method of dealing
with irregular problems in distributed systems known as
inspector-executor [4], [15].

Finally, Zhang et al. optimize the layout of irregularly
accessed data to achieve more efficient GPU memory accesses
by having the CPU place elements of an irregularly accessed
array that will be accessed by GPU threads at the same time
next to each other, resulting in a higher degree of coalesced
accesses [20].

VIII. CONCLUDING REMARKS

We introduced BigKernel, a scheme that provides
pseudo-virtual memory to Big Data-style GPGPU applications
that operate on streaming data. BigKernel uses a 4-stage
pipeline with automated prefetching to (i) optimize CPU-GPU
communication and (ii) optimize GPU memory accesses. It
simplifies the programming model by allowing programmers
to write kernels using arbitrarily large data structures where
the data records can be operated on independently, thus
relieving the programmer from having to partition the data
into segments, manage buffers, transfer data between CPU
and GPU, and having to invoke GPU kernels multiple
times. Straight-forward compiler transformations are used to
transform traditional GPU kernels into BigKernel.

On six applications, we experimentally showed that
BigKernel achieves an average speedup of 1.7X over
implementations that use double buffering, and an average
speedup of 3X over multi-core CPU implementations. We also
showed that BigKernel largely removed PCIe from being a
bottleneck for these applications, with the bottleneck migrating
to the GPU cores.

As future work, we intend to gain more experience with
additional applications with more complex data structures; in
particular, we plan on applying BigKernel to MapReduce.
Since GPU processing is now often the bottleneck for the
applications we studied, we also intend to focus on improving
GPU processing efficiency.

IX. ACKNOWLEDGMENTS

The authors are grateful to the anonymous reviewers, Leonid
Ryzhyk, and Ding Yuan for their constructive and helpful
comments. This work is supported by NSERC research grants.

REFERENCES

[1] M. Bauer, H. Cook, and B. Khailany. cudaDMA: Optimizing GPU
Memory Bandwidth via Warp Specialization. In Proc. 2011 Intl. Conf.
for High Performance Computing, Networking, Storage and Analysis
(SC), pages 12:1–12:11, 2011.

[2] J. Chapman, I. Ho, S. Sunkara, S. Luo, G. Schroth, and D. Rokhsar.
Meraculous: De Novo Genome Assembly with Short Paired-End Reads.
PLoS ONE, (8):e23501, 2011.

[3] S. Chen and S. Schlosser. Map-reduce Meets Wider Varieties of
Applications. Intel Research Pittsburgh, Tech. Rep. IRP-TR-08-05, 2008.

[4] R. Das, M. Uysal, J. Saltz, and Y. Hwang. Communication
Optimizations for Irregular Scientific Computations on Distributed
Memory Architectures. Journal of Parallel and Distributed Computing,
pages 462–478, 1994.

[5] I. Gelado, J. Stone, J. Cabezas, S. Patel, N. Navarro, and W. Hwu.
An Asymmetric Distributed Shared Memory Model for Heterogeneous
Parallel Systems. In Proc. 15th Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages
347–358, 2010.

[6] C. Gregg and K. Hazelwood. Where is the Data? Why You Cannot
Debate CPU vs. GPU Performance Without the Answer. In Proc. IEEE
Intl. Symp. on Performance Analysis of Systems and Software (ISPASS),
pages 134–144, 2011.

[7] A. Hagiescu, H. Huynh, W. Wong, and R. Goh. Automated
Architecture-Aware Mapping of Streaming Applications onto GPUs. In
Proc. 25th IEEE Intl. Parallel Distributed Processing Symp. (IPDPS),
pages 467–478, 2011.

[8] T. Han and T. Abdelrahman. hiCUDA: a High-level Directive-based
Language for GPU Programming. In Proc. 2nd Workshop on General
Purpose Processing on Graphics Processing Units (GPGPU), pages
52–61, 2009.

[9] H. Huynh, A. Hagiescu, W. Wong, and R. Goh. Scalable Framework
for Mapping Streaming Applications onto Multi-GPU Systems. In
Proc. 17th Symp. on Principles and Practice of Parallel Programming
(PPoPP), pages 1–10, 2012.

[10] T. Jablin, J. Jablin, P. Prabhu, F. Liu, and D. August. Dynamically
managed data for CPU-GPU architectures. In Proc. 10th Intl. Symp. on
Code Generation and Optimization (CGO), pages 165–174, 2012.

[11] T. Jablin, P. Prabhu, J. Jablin, N. Johnson, S. Beard, and D. August.
Automatic CPU-GPU Communication Management and Optimization.
In Proc. 32nd Conf. on Programming Language Design and
Implementation (PLDI), pages 142–151, 2011.

[12] T. Komoda, S. Miwa, and H. Nakamura. Communication Library to
Overlap Computation and Communication for OpenCL Application.
In Proc. 26th IEEE Intl. Parallel and Distributed Processing Symp.
Workshops PhD Forum (IPDPSW), pages 567–573, 2012.

[13] S. Lee, S. Min, and R. Eigenmann. OpenMP to GPGPU: a Compiler
Framework for Automatic Translation and Optimization. In Proc. 14th
Symp. on Principles and Practice of Parallel Programming (PPoPP),
pages 101–110, 2009.

[14] S. Pai, R. Govindarajan, and M. Thazhuthaveetil. Fast and Efficient
Automatic Memory Management for GPUs Using Compiler-assisted
Runtime Coherence Scheme. In Proc. 21st Intl. Conf. on Parallel
Architectures and Compilation Techniques (PACT), pages 33–42, 2012.

[15] S. Sharma, R. Ponnusamy, B. Moon, Y. Hwang, R. Das, and J. Saltz.
Run-time and Compile-time Support for Adaptive Irregular Problems.
In Proc. of the 1994 Conf. on Supercomputing, pages 97–106, 1994.

[16] S. Ueng, M. Lathara, S. Baghsorkhi, and W. Hwu. CUDA-Lite:
Reducing GPU Programming Complexity. In Languages and Compilers
for Parallel Computing, volume 5335, pages 1–15. 2008.

[17] T. Wilson, P. Hoffmann, S. Somasundaran, J. Kessler, J. Wiebe,
Y. Choi, C. Cardie, E. Riloff, and S. Patwardhan. OpinionFinder: a
System for Subjectivity Analysis. In Proc. HLT/EMNLP on Interactive
Demonstrations, HLT-Demo ’05, pages 34–35, 2005.

[18] Y. Yan, M. Grossman, and V. Sarkar. JCUDA: A Programmer-Friendly
Interface for Accelerating Java Programs with CUDA. In Euro-Par 2009
Parallel Processing, volume 5704 of Lecture Notes in Computer Science,
pages 887–899. 2009.

[19] Y. Yang, P. Xiang, J. Kong, and H. Zhou. A GPGPU Compiler for
Cemory Cptimization and Carallelism Canagement. In Proc. 2010 Conf.
on Programming Language Design and Implementation (PLDI), pages
86–97, 2010.

[20] E. Zhang, Y. Jiang, Z. Guo, K. Tian, and X. Shen. On-the-fly Elimination
of Dynamic Irregularities for GPU Computing. In Proc. 16th Intl. Conf.
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 369–380, 2011.

828

