
The SEPO Model of Computation to Enable Larger-than-Memory

Hash Tables for GPU-accelerated Big Data Analytics

Reza Mokhtari and Michael Stumm

Department of Electrical and Computer Engineering

University of Toronto

Toronto, Canada

{mokhtari, stumm}@ece.toronto.edu

Abstract—The massive parallelism and high memory band-
width of GPU’s are particularly well matched with the ex-
igencies of Big Data analytics applications, for which many
independent computations and high data throughput are preva-
lent. These applications often produce (intermediary or final)
results in the form of key-value (KV) pairs, and hash tables are
particularly well-suited for storing these KV pairs in memory.
How such hash tables are implemented on GPUs, however,
has a large impact on performance. Unfortunately, all hash
table solutions designed for GPUs to date have limitations that
prevent acceleration for Big Data analytics applications.

In this paper, we present the design and implementation of
a GPU-based hash table for efficiently storing the KV pairs of
Big Data analytics applications. The hash table is able to grow
beyond the size of available GPU memory without excessive
performance penalties. Central to our hash table design is the
SEPO model of computation, where the processing of individual
tasks is selectively postponed when processing is expected to be
inefficient. A performance evaluation on seven GPU-based Big
Data analytics applications, each processing several Gigabytes
of input data, shows that our hash table allows the applications
to achieve, on average, a speedup of 3.5 over their CPU-based
multi-threaded implementations. This gain is realized despite
having hash tables that grow up to four times larger than the
size of available GPU memory.

I. INTRODUCTION

The goal of our work is to exploit GPUs to significantly

accelerate the performance of Big Data analytics applica-

tions. Such applications comprise a wide class of software

with the notable feature of consisting of relatively simple

operations performed on a large number of independent

input records. GPUs appear particularly well-suited for these

trivially parallelizable applications given the GPUs’ high

degree of parallelism and high memory bandwidth. However,

GPU memory sizes are limited and neither the “big” input

data nor the intermediate/result data will fit entirely in GPU

memory. This problem is compounded by the fact that the

PCIe bus that connects CPU and GPU memories has limited

bandwidth and high latency.

In this paper we present the design and implementation

of a hash table for GPUs that is intended to be used as a

key-value (KV) store for Big Data applications. The hash

table is designed specifically so that (i) it can grow beyond

the available size of GPU memory and when it does, its

performance degrades gracefully; (ii) it supports variable-

length keys and values; and (iii) it can perform on-the-

fly grouping of KV pairs with the same key. Despite the

added complexity introduced by these features, we show

in Section VI that our hash table still performs on-par or

faster than the existing GPU-based hash table designs that

are limited to the size of available GPU memory.

A key novel aspect of our hash table is its use of what we

call the SEPO model of computation that allows the hash

table to grow beyond the size of available GPU memory

without incurring excessive performance penalties. In the

SEPO model of computation, a service requestee (e.g.,

server) may postpone the servicing of a request by declining

the request and asking the requestor (e.g., client) to re-issue

the request at a later time. The requestee might postpone

the servicing of a request because required resources are

not available or because it would be inefficient to provide

the service at the time it is requested. This scheme is similar

to the way some OS system calls return the EAGAIN error

code, indicating that the required resources are temporarily

unavailable and that the request must be reissued.

The SEPO model of computation imposes the following

two requirements on an application. First, the application

must be able to tolerate having its computations processed

in any order. That is, if we break the computation of the

application into independent tasks (e.g. one for each input

record) then the order in which the tasks are processed

should not affect the correctness of the application. The

vast majority of Big Data analytics applications satisfy this

requirement. Second, the application must be able to track

requests that have been declined and then reissue these

postponed requests at a later time. We show in Section IV

that this is straightforward to implement for the applications

we are targeting.

An approach like SEPO is needed to be able to deal

with the non-trivial challenges of implementing a hash table

that might grow larger than the available size of GPU

memory. The hash table must be able to grow larger than

available memory, because GPU memory is limited in size

and because, for Big Data analytics applications, is not



possible to predict a priori — before runtime — whether

or not a given input dataset can be processed successfully

using a hash table that fits within the available GPU memory.

Unfortunately, hash tables, unlike other structures like ar-

rays, cannot be broken down into smaller segments than can

be operated on independently. Despite this limitation, hash

tables remain attractive for Big Data analytics applications

if they can be implemented effectively, because storing and

retrieving KV pairs is very efficient, and because KV pairs

with the same keys can be identified quickly.

Using SEPO, our hash table reorganizes the computation

so as to minimize CPU-GPU data transfers. In consequence,

the performance degradation that occurs when the hash

table grows beyond the size of available GPU memory is

“graceful”. In fact, our experiments show that SEPO allows

the hash table to grow up to more than four times larger than

the size of available GPU memory before GPU acceleration

is no longer effective. Our experimental results comparing

seven GPU-based Big Data analytics applications to their

CPU-based multi-threaded counterparts show that a speedup

of 3.5 is achieved on average, despite having the hash table

grow to more than four times larger than the available

GPU memory. The effectiveness of our approach is further

evaluated by having a MapReduce runtime we developed use

our hash table as a KV-store. When compared to a state-of-

the-art CPU-based MapReduce runtime, our runtime shows

similar performance gains.

This paper makes the following specific contributions:

1) We present the first GPU-based hash table design that

(a) can grow beyond the size of GPU memory without

excessive performance penalties, (b) supports variable-

sized KV pairs, and (c) supports on-the-fly grouping;

2) we introduce the SEPO model of computation; and

3) we introduce the first GPU-based MapReduce runtime

that is capable of processing data larger than what GPU

memory can hold.

The paper is organized as follows. Section II provides a short

motivation to further explain the challenges we tackle. Next,

an overview of the SEPO model of computation is presented

in Section III. Section IV goes deep into the design and

implementation of our hash table and how SEPO is used

for it. Section VI presents our performance evaluation. We

close with related work and concluding remarks.

II. MOTIVATION

GPUs appear to be particularly well suited to accelerate

Big Data analytics applications. A GPU, with its many cores,

offers aggregate compute power an order of magnitude larger

than what a CPU offers, and GPU memory has significantly

higher theoretical bandwidth than CPU memory, yet GPUs

are priced as commodity components.1 This computational

1E.g., Nvidia GTX 1080 GPU with 8.3 TFLOPS and 320 GB/s memory
bandwidth vs. Intel Skylake CPU with 1.5 TFLOPS and 115 GB/s memory
bandwidth. Yet, the price of GTX 1080 is about 1/8 the price of a Skylake.

power and memory bandwidth nicely matches the high

number of simple and independent operations that Big Data

analytics applications are comprised of.

High-performant KV stores on GPUs are necessary if

GPUs are to be considered as a hardware base for Big Data

analytics applications. Many of these applications store their

(intermediate or final) results in the form of KV pairs; in

part, this is because the Big Data ecosystem started off with

MapReduce, which stores data in the KV format. Today, the

high level of storage and interoperability support for the KV

format has made it a de facto standard for Big Data analytics

applications.

The hash table is an obvious data structure to consider for

efficiently storing KV pairs in memory. Despite the irregular-

ity of hash table memory accesses, which is a performance

hazard for GPUs, several previous studies have shown clear

performance advantages of hash tables over other potential

data structures for KV storage [6], [7], [9]. Hash tables are

not only able to store and lookup data efficiently, but they

also offer on-the-fly grouping of pairs (where the values of

KV pairs with the same key are “grouped” or “combined”).

On-the-fly grouping of pairs eliminates two overheads that

might otherwise occur when grouping is postponed to a later

stage of execution: the overhead of storing multiple copies

of the same key and the overhead of a separate grouping

stage, that typically requires the data to first be sorted.

The use of hash tables on GPUs has one major challenge.

Unlike simpler data structures like arrays, hash tables cannot

be broken into smaller segments that can be operated on

independently, because each key may index into any location

of the hash table. As a result, it is non-trivial to algorith-

mically support a hash table that can grow larger than the

available GPU memory yet still be efficient.

Two obvious system-level solutions to support larger-

than-GPU-memory hash tables both incur high data transfer

overheads. The first allocates the entire hash table as a

pinned region in CPU memory and has the GPU threads

directly access the structure in CPU memory remotely over

the PCIe bus. The second solution uses a hardware demand

paging mechanism for GPUs which uses CPU memory as

the secondary storage: if the part of the hash table being

accessed is not in GPU memory, then the corresponding

page(s) is paged in before the access can complete. Both

solutions incur a high number of data transfers over the

PCIe bus, resulting in poor performance, as will be shown

in Section VI-D. This overhead prevents GPU acceleration

of applications that use a hash table if the table does not

fit entirely in GPU memory. To make matters worse, due to

the dynamic memory space requirement of hash tables, there

is typically no way to predict whether a given dataset can

be processed successfully within the available GPU memory

or not. This makes GPUs an unreliable hardware base for

real-world Big Data analytics applications.



tpre-computation t inefficient-service tpost-computation

Without SEPO:

With SEPO:

tpre-computation tpostpone

tpre-computation tpostponed-servicetpost-computation

re-issue:

Figure 1: How the SEPO model of computation can improve performance.

III. SEPO OVERVIEW

We present SEPO as a general model of computation and

then describe how it is used specifically to support larger-

than-memory hash tables for GPUs.

A. SEPO as a General Model of Computation

In the SEPO2 model of computation, a service requestee

may postpone the servicing of a request by declining the

request and asking the requestor to re-issue the request at a

later time. The requestee might postpone the servicing of a

request because it is inefficient to provide the service at the

time it is requested.

Figure 1 shows how the SEPO model can improve the

performance of an application. It considers two scenarios

for processing an individual task. There is a basic trade-off

between servicing the request inefficiently and the added

overhead of some re-computation and servicing the request

more efficiently. SEPO is effective when the following

condition is true:

(tpre-computation + tpostpone) + (tpre-computation + tpostponed-service +
tpost-computation) <

(tpre-computation + tinefficient-service + tpost-computation)

where tpre-computation is the expected time between the start

of the task and the time the requestor issues the request

including all of the direct or indirect overheads that starting

a task might entail (e.g., data transfer overheads); tpostpone is

the overhead of postponing the servicing of a task includ-

ing keeping track of whether the task has been processed

or not and reverting back/disposing any result that may

have been produced during the corresponding tpre-computation;

tinefficient-service is the expected time to service the task when it

is inefficient to do so, and tpostponed-service is the expected time

to service the task more efficiently after it was postponed;

and finally, tpost-computation is the time it takes to finalize the

task after it has been successfully serviced (e.g., recording

a log).

B. Using SEPO for larger-than-memory hash tables

We use Page View Count (PVC) to describe how SEPO

might work on a hash table in practice. The application reads

2SEPO is short for Selective Postponement, which implies that the
requestee can selectively and temporarily postpone the provisioning of its
service.

..
.

K V K V

K V

K V K V

K V K V K V

Heap

B
u

c
k
e

ts

..
.

K V K V

K V

K V

K V K V K V

..
.

K V

GPU memory CPU memory

Hash Table

Pointer based on contets in GPU memory

Pointer based on contets in CPU memory

Figure 2: Snapshot of a hash table at a subsequent iteration of computation.
(Not all pointers are shown in this figure.)

in a large log, where each line consists of an input record

containing a URL. It extracts the URL and inserts the KV

pair <url,1> into the hash table. On each insert, the hash

table automatically combines KV pairs with the same key,

so that the hash table would store <url,n> if the KV pair

<url,1> had been inserted n times.

In this example, the application is the requestor and the

hash table is the requestee. For each <url,1> insert

request, if the key (i.e., the url) is already in the hash

table, then its value is combined with the currently stored

value of the key. If the key is not yet in the hash table, then

space is allocated for the new KV pair (<url,1>) before

it is inserted into the hash table. If the space allocation is

unsuccessful, then the requestee responds with POSTPONE,

and the input record is marked as not having been processed.

We keep track of whether the input records have been

successfully processed or not in a bitmap that has one bit

per input record.

The application iterates over the entire set of input records

multiple times in sequence until all input records have been

successfully processed. In each iteration, it only considers in-

put records that have not yet been processed, and it attempts

to insert the KV pair <url,1> for the url extracted from

those records in sequence. If the key being inserted has

previously been inserted (from an earlier record), then an

existing KV record with that key is guaranteed to be in GPU

memory, and the value of the new KV pair (i.e., 1) can be

combined with the currently stored value. Otherwise, space

for the new KV pair will have to be allocated (which, may

or may not be successful).

Each time the application reaches the end of the set of

input records, the hash table is signalled that it will no longer

actively need any of the KV pairs currently located in GPU

memory. The hash table then copies all of the pairs to CPU

memory and frees up the heap in GPU memory to make it

ready for the next iteration. Note that it will no longer need

any of the KV pairs being copied back to CPU memory

because all pairs (generated from the input) with the same

keys will have already been successfully inserted/combined.

Figure 2 shows a snapshot of a hash table during a second



iteration of computation. Note that new KV pairs are always

inserted at the head of the bucket linked list (i.e. the linked

list of KV entries that have been mapped to the same bucket)

so that there is no need to traverse the linked list elements

that might no longer be in GPU memory. Moreover, our

implementation stores a set of two pointers in the hash table

where ordinarily one would be used: one is based on the

location of contents in GPU memory and another is based

on the eventual location of contents in CPU memory – when

copied back to CPU memory. This allows the hash table to

be eventually accessible from both CPU and GPU sides.

IV. HASH TABLE DESIGN AND IMPLEMENTATION

Out hash table employs the closed addressing method and

thus uses separate chaining with linked lists. Inserted KV

pairs that map to the same bucket will be stored in a linked-

list of entries rooted in the table. The entries are dynamically

allocated using a custom dynamic memory allocator we

designed for this purpose.

Using separate chaining with dynamic allocation of entries

has a number of advantages. First, it allows the hash table

to approach and surpass a load factor of 1 while having

its performance degrade gracefully. This is an important

attribute for our target applications considering that the

number of KV generated by a Big Data analytics is often

difficult to predict.3 With a hash table that uses open-

addressing (e.g., one that uses Cuckoo hashing [1]), insert

operations are more costly, and even more expensive hash

table re-organizations may be needed when the hash table

approaches a load factor of 1.

Second, dynamically allocating bucket entries allows the

hash table to start with nothing but a simple array of null

pointers, requiring little space. This allows the array to be

allocated with a large number of elements – i.e. buckets

– without allocating too much memory. Having a large

number of array elements reduces lock contention among

GPU threads when performing hash table operations.

Third, dynamic memory allocation allows bucket entries

to be allocated exactly as large as they need to be. This

not only preserves GPU memory, but also adds support

for variable-sized KV pairs. A hash table that pre-allocates

bucket entries has a difficult time supporting variable-sized

KV pairs and often pre-allocates the entries conservatively

large so that they can hold a wide range of KV pairs, hence

consuming an unnecessary large amount of memory.4

A. Dynamic Memory Allocator

The dynamic memory allocator we designed for our hash

table uses a heap that is pre-allocated in GPU memory.

3Sometimes even different input datasets result in significantly different
number of KV pairs being generated by a single Big Data analytic
application.

4For example, Inverted Index deals with URLs that are between 5 and
thousands of characters and thus, requires the hash table to conservatively
pre-allocate buckets of thousands of bytes.

The heap is partitioned into pages, from which allocation

requests are serviced. To determine the largest size the

heap can be allocated as, we wait until all other data

structures have been allocated, then query GPU memory for

its remaining free space, and then allocate the heap with that

size.

The primary objective of our dynamic memory allocator

is to achieve high performance when used by 1,000’s of

concurrent threads. This is essential because the dynamic

memory allocator is used in the critical path of GPU threads

that populate the hash table. To make the allocator’s service

scalable, we distribute the allocation load onto multiple

pages, instead of having all allocations serviced from one

page. This way, instead of accessing one free-list pointer, the

accesses are distributed over multiple free-list pointers (one

per accessed page), reducing memory access contention.

To do this, we partition the hash table buckets into bucket

groups, each containing n contiguous buckets, and we allo-

cate memory for each bucket group from a different page.

While having several pages to allocate memory from

improves the performance of the memory allocator, it in-

creases the potential for memory fragmentation, as some

pages might not be fully used when the allocator fails to

allocate memory for some allocation requests. This is a

trade-off in which the right balance might be different for

each application. Our hash table library, therefore, allows

each application to balance this trade-off by adjusting the

size of the bucket groups, which in turn changes the number

of pages from which allocations are actively serviced from

(e.g. a larger bucket group will have the hash table to be

partitioned into fewer bucket groups and thus, distributes

the allocation load onto fewer number of pages).

B. Bucket Organizations

Key-value pairs that are generated by Big Data analytics

applications often have duplicate keys. However, different

Big Data analytics applications handle such pairs differently.

In our hash table design, we offer three different bucket

organizations to cater to different kinds of KV pair handling:

basic method, multi-valued method, and combining method:

Basic method:

Two KV pairs with the same key are stored as two separate

entries in the linked list of bucket entries. This approach is

appropriate for applications that do not require grouping.

Multi-valued bucket entries:

A separate list of values is associated with each key, resulting

in a two dimensional linked structure with keys linked along

one dimension and values linked to the their keys along a

second dimension.

An example application that uses this method is Inverted

Index which takes HTML pages as input and outputs a 1:N

mapping from the hyperlinks seen in the pages (keys) to the

pages that have those hyperlinks in them (values). To do this,



http://google.comhttp://google.com

a.html c.html d.html

(key)

(values)

Figure 3: The final structure of an example bucket entry under the multi-valued

method.

..
.

..
.

Bucket http://google.com 1

..
.

..
.

Bucket 1 1 1

..
.

..
.

Bucket

(a)

(b)

(c)

http://google.com 1 http://google.com 1

http://google.com

http://google.com 3

Figure 4: A snapshot of the hash table when filled by PVC data under three
bucket organizations: (a) basic, (b) multi-valued, and (c) combining.

each time a hyperlink is found in a page, a pair in the form

of <hyperlink, pagePath> is inserted into the hash table.

At the end of the execution, each bucket entry will have

one or more URLs (i.e. keys) and each will have a list of

pagePaths associated with each URL. For example, if the

hyperlink http://google.com is found in documents

a.html, c.html, and d.html, the final bucket entry will

look like the structure in Figure 3.

We store keys and values in separate pages when the

multi-valued method is used. This allows the set of values

grow independently of the set of keys and thus, offers

more flexibility in handling the keys and values, which is

essential for the SEPO model (see Section IV-C). However,

separating keys from values when storing them in the hash

table increases the chances for memory fragmentation.

Combining method:

A combiner is typically used to aggregate (i.e., reduce

in MapReduce terminology) multiple values into a single

value [12]. When inserting a KV pair with a key that already

exists in the hash table, then it is only necessary to update

the value of the existing bucket entry with the corresponding

key. Memory space needs to be allocated only the first time

a KV pair with a given key is inserted.

In our implementation, a callback is used to have the

application handle the combining; it is called every time

a new pair with a duplicate key is inserted.

Figure 4 shows a snapshot of the hash table when using

each of the three different bucket organizations for PVC.

As can be seen, providing the additional bucket organiza-

tion methods can potentially save a substantial amount of

memory, which is important when designing applications

for GPUs. Moreover, on-the-fly grouping of entries with

duplicate keys saves runtime by not requiring a separate

grouping phase that is otherwise required to run after the

hash table is fully produced.

C. Applying the SEPO model of computation

Here we describe how the Big Data analytics applications

that use our hash table operate with the SEPO model

of computation. We only focus on how the SEPO model

handles hash table inserts while the hash table is being

populated, because it is typically the only operation used

when Big Data analytics applications process the input data

during the first phase of the application, and because the

first phase is typically the one with the highest computational

demand (which is why we propose to use GPUs to accelerate

it). The SEPO model can also be used for lookup operations

on larger-than-memory hash tables when subsequent phases

use/analyze the results but we leave that to the reader as a

mental exercise.

The application starts by processing input data records,

inserting the generated KV pairs into the hash table. Initially,

all inserts will be successful, since all GPU-side pages have

free space to store the inserted pairs. Every time a memory

allocation request is made to a GPU-side page that is full,

our dynamic memory allocator allocates a new page from

the memory pool to satisfy the allocation request. After some

time, however, the memory pool runs out of free pages, and

then if more pages run out of free space, the hash table will

be unable to store some of the pairs the application is trying

to insert. The hash table insert method returns a boolean

value to the requestor indicating whether it has successfully

stored the pair or not (i.e., SUCCESS or POSTPONE). In

our implementation of PVC, we use a bitmap array to record

which tasks have been successfully processed. A SUCCESS

return value causes the appropriate bit to be set.

With the SEPO model of computation, there may come

a time when the computation will need to be halted so that

the data and computation can be rearranged. For example,

when no more KV pairs can be inserted into the hash table

due to a full heap, the computation may need to be halted

so that the heap can be copied to CPU memory and freed

up in GPU memory before the computation can continue.

Both decisions, when to halt the computation and how to

rearrange the data and computation depends to a large extent

on whether the basic, the multi-valued, or the combining

bucket organization method is used. For this reason we

describe them separately.

Basic method: for applications that use the basic method,

Figure 5 (a) shows the points where the computation stop-

s/restarts. The computation is allowed to continue until the

requests from 50% of the bucket groups, a configurable

parameter, are being postponed – i.e., when 50% of the

bucket groups fail to allocate more memory for the inserted

KV pairs.5 Once the 50% threshold is reached, (i) the

computation is halted, (ii) the entire heap on GPU memory

is copied back to CPU memory, (iii) the heap on GPU is

5We observed acceptable performance with setting the threshold to
50%.



Computation iteration #1

Processed with servicedall requests

Processed with postponedsome requests

First postponed
request

50%
pages full

Computation iteration #2

Computation iteration #3

Processed with postponedall requests

First postponed
request

all
pages full

First postponed
request

all
pages full

(a)

Input data

Computation iteration #1

Computation iteration #2

Computation iteration #3

(b)

Computation iteration #1

Computation iteration #2

Computation iteration #3

(c)

Figure 5: How input data is processed using each of the three bucket
organization methods: (a) basic, (b) multi-valued, and (c) combining. Note
that in (c), even after all pages get full, pairs with duplicate keys are still
stored in the hash table.

freed up, adding the pages back to the memory pool and,

(iv) the computation restarts to process input data records

from the point where a request was postponed for the first

time in the previous iteration.

An alternative approach is to not halt the entire compu-

tation, but only halt the threads that are unsuccessful in

allocating more memory until a page is freed up in GPU

memory. However, this approach is expected to be inefficient

because efficient GPU hardware interrupt support does not

exists and because the cost of extra synchronization that this

method needs is high.6

Multi-valued method: for applications that use the multi-

valued method, Figure 5 (b) shows the points where the

computation stops/restarts. In each iteration, the computation

processes all input records that have not successfully been

inserted until the end of the input data has been reached

(regardless of the percentage of the requests that are post-

poned). We need to do this to identify keys that have values

that have not yet been inserted. At the end of each iteration

(i) instead of copying the entire heap to CPU memory, only

those pages are transferred that either are value-pages or are

key-pages that do not contain any key that has values that

have not yet been inserted, (ii) the GPU-side pages that

were copied to CPU memory are freed up and added back

to the memory pool, and (iii) the computation restarts to

6Note that, if we halt a GPU thread in software, it will have to
spin-wait, which also causes all of its 31 neighbor threads in its warp
to wait. Given the high latency of CPU-GPU communication, these threads
will have to wait a long time before a page is freed up, which wastes a
significant aggregate computing power. Even if a hardware interrupt support
is provided, this alternative approach might still not work well because, as
Zheng et al. envisioned, such hardware support might still halt a large
number of GPU threads upon an interrupt [16].

process input data records from the point where a request

was postponed for the first time in the previous iteration.

Combining method: for applications that use the combining

method, Figure 5 (c) shows the points where the computation

stops/restarts. The combining method uses only one type of

page to store both keys and values. Similar to the multi-

valued method, in each iteration the computation continues

to process input records until the end of the input data has

been reached, because, even if the heap runs out of memory,

pairs with duplicate keys can still be stored since they do not

need additional memory space – they would only update the

existing values. At the end of each iteration (i) the entire

GPU heap is copied to CPU memory, (ii) the GPU heap

is freed up, adding the freed pages back to the memory

pool and, (iii) the computation restarts to process input data

records from the point where a request was postponed for

the first time in the previous iteration.

V. USE CASE: A SIMPLE MAPREDUCE RUNTIME

To test our hash table infrastructure, we developed a

MapReduce runtime that uses BigKernel as the input mem-

ory manager [10], our hash table as the KV store, and

a few more lines of code to schedule map and reduce

phases. The runtime leaves the core logic of the application

to be implemented by the application programmer inside

the map and reduce/combine functions. Some MapReduce

applications do not need a reduce phase, in which case

the reduce/combine function is left empty. Finally, the ap-

plication programmer is asked to provide an input data

partitioner function which partitions the input data into

smaller chunks, ready to be processed by the map functions.

Our MapReduce runtime can be configured by the pro-

grammer to work in the MAP_REDUCE or MAP_GROUP

modes [6], [9], [12]. The MAP_REDUCE mode is used for

MapReduce applications with a reduce phase that generate

final <key, value> pairs and, the MAP_GROUP mode is used

for application with no reduce phase that generate <key,

values> pairs.

The flow of execution in our runtime is as follows.

First, the input data partitioner, which runs on the CPU, is

called; it splits the raw input data into smaller chunks. Next,

BigKernel pipelines the chunks to the GPU cores where they

are processed by a number of map function instances – one

per input chunk created by the input data partitioner. Each

instance is expected to generate zero or more KV pairs. The

generated KV pairs are inserted into our hash table by the

map function.

When the MAP_REDCUE mode is used, the hash table

uses the combining method and the provided reduce/combine

function as its callback function to aggregate/update the

values associated with each distinct key. This means that the

reduce phase is embedded into the map phase (as opposed to

being run only after the map phase ends). This saves memory

and improves performance [12]. When the MAP_GROUP



Application Dataset #1 Dataset #2 Dataset #3 Dataset #4

Inverted Index 2 GB 3 GB 4 GB 5 GB

Page View Count 0.6 GB 2.2 GB 3.8 GB 5.8 GB

DNA Assembly 2 GB 4 GB 6 GB 8 GB

Netflix 1.6 GB 3.2 GB 4.8 GB 6.4 GB

Word Count (MapReduce) 0.2 GB 2 GB 3 GB 4 GB

Patent Citation (MapReduce) 0.2 GB 2.0 GB 3.4 GB 4.8 GB

Geo Location (MapReduce) 0.2 GB 1.8 GB 3.2GB 5 GB

Table I: Input dataset sizes used in our experiments.

mode is used, the hash table uses the multi-valued method

to group (without reducing) all values associated to a key.

The SEPO model of computation is used so that the

MapReduce runtime can handle large amounts of input

and result data. In fact, we believe the SEPO model of

computation makes our MapReduce runtime the first GPU-

based MapReduce runtime that is capable of processing data

for larger than what GPU memory can hold.

VI. EXPERIMENTAL RESULTS

In this section, we present the results of our performance

evaluation.

A. Experimental Setup

We performed our experiments on a PC with a 3.8GHz In-

tel Xeon Quad Core E5 with 8 hardware threads and 10MB

of combined L2/L3 cache, connected to 16GB of quad-

channel memory clocked at 1800MHz. All GPU kernels

were executed on an Nvidia Geforce GTX 780ti GPU with

2,880 cores each running at 875MHz and 3GB of DRAM

with a maximum bandwidth of 336 GB/s. The GPU is

connected to the rest of the system via a PCIe Gen3 x16 bus

interconnect. All GPU-based applications were implemented

in CUDA, using CUDA toolkit and GPU driver release 6.0.1

installed on a 64-bit Ubuntu 12.04 Linux with kernel 3.5.

For our experiments, we implemented seven applications

consisting of four stand-alone Big Data analytics appli-

cations (Netflix, DNA Assembly, Page View Count, and

Inverted Index), and three MapReduce applications (Word

Count, Geo Location, and Patent Citation). These applica-

tions were chosen primarily due to the amount of data they

need to insert into the hash table. Each application is run

with a variety of input dataset sizes, which in turn results in

a variable number of KV pairs that have to be inserted into

the hash table. Table I provides details on the application

data sets used in our experiments. We briefly describe each

application.

Netflix: calculates a similarity score between each pair of

users based on their movie preferences [3]. Each KV pair

inserted into the hash table is of the form <userA&userB,

similarity score between two users for a movie>. The

application uses the combining method.

DNA Assembly: merges fragments of a DNA sequence to

reconstruct a larger sequence [2]. Each KV pair inserted into

the hash table is of the form <part of the DNA fragment,

edges of the fragment>. The application uses the combining

method.

Page View Count: counts the number of occurrences of

each URL in a web log. Each KV pair inserted into the

hash table is of the form <URL, 1>. The application uses

the combining method.

Inverted Index: builds a reverse index from a series of

HTML files. Each KV pair inserted into the hash table is

of the form <link URL, HTML file path>. The application

uses the multi-valued method.

Word Count (MapReduce): counts the number of occur-

rences of each word in a document. Each KV pair inserted

into the hash table is of the form <word, 1>. The application

uses the MAP_REDUCE mode.

Geo Location (MapReduce): groups Wikipedia articles

based on the geographic location from which they have

been created. Each KV pair inserted into the hash table is

of the form <geographic location string, article ID>. The

applications uses the MAP_GROUP mode.

Patent Citation (MapReduce): produces a reverse patent

citation directory – similar to what Google Scholar offers

by the “cited by” functionality. Each KV pair inserted into

the hash table is of the form <the cited patent, the citing

patent>. The application uses the MAP_GROUP mode.

We modified our Big Data analytics applications to use

BigKernel so as to minimize the overhead of transferring

input data from CPU to GPU memory. Having more efficient

input data transfer between CPU and GPU is especially

important with the SEPO model of computation, because

input data may be transferred to GPU memory multiple

times.

B. Overall results

All of the execution times presented in this section include

the input data transfer from CPU to GPU and transfer of the

hash table from GPU to CPU. We believe this is the only

fair way of comparing GPU implementations to CPU ones.

Moreover, all CPU implementations that require dynamic

memory allocation use TCMalloc [4] which is substantially

faster than glibc’s malloc in multi-threaded applications.

Finally, all GPU-based implementations are configured to

run with the number of GPU threads that result in the best

execution time, as determined through experimentation.

We compared each of the four non-MapReduce GPU ac-

celerated applications using our hash table with a CPU-based

multi-threaded implementation. The CPU-based versions use

a hash table design similar to our GPU-based hash table

design except that they do not use the SEPO model of

computation given that the entire hash table fits in CPU

memory for all of our input datasets. The three MapRe-

duce applications built with our MapReduce runtime are

compared against the corresponding CPU-based applications

developed using Phoenix++, a state-of-the-art MapReduce

runtime for multi-core CPUs [12].

Figure 6 depicts the achieved speedups of the GPU-based

applications over their CPU-based multi-threaded counter-



In
ve

rte
d

In
de

x

1.0x

S
p
e
e
d
u
p

1.5x

2.0x

2.5x

3.0x

3.5x

4.0x
P
ag

e 
V
ie

w
C
ou

nt D
N
A

A
ss

em
bl

y

N
et

fli
x

W
or

d 
C
ou

nt

(M
ap

R
ed

uc
e)

4.5x

G
eo

 L
oc

at
io

n

(M
ap

R
ed

uc
e)

P
at

en
t C

ita
tio

n

(M
ap

R
ed

uc
e)

1
1

2 2

1

2

3
4

1
2

3

1

2

2
3

1
1 1 1

1

2

2

3

1

2

3

4

Input dataset #1

Input dataset #2

Input dataset #3

Input dataset #4

5.0x

5.5x

6.0x

6.5x

1

Average

Figure 6: Application speedup over CPU multi-threaded implementation.
For the last three, the baseline is Phoenix++.

parts for different dataset sizes. The numbers shown on

top of the bars indicate the number of iterations that were

necessary to successfully store all KV pairs into the hash

table when using the SEPO model of computation. Focusing

only on the datasets that are processed in a single iteration

of computation – bars with 1 shown on their top – the

applications exhibit a range of performance gains when

accelerated with GPUs. All applications except Inverted

Index and Word Count exhibit reasonable speedups.

Inverted Index and Word Count do not perform as well

on GPUs for different reasons. Inverted Index has a long

switch-case block in its core logic, which causes a high

degree of thread divergence in GPUs, negatively affecting

performance. Word Count suffers from lock contention

when accessing buckets because of the small number of

distinct keys and large number of duplicate keys.7 A CPU

implementation also suffers from lock contention, but not

as much, given the significantly lower number of threads

that run on the CPU. In fact, when we artificially increased

the number of distinct keys in the input dataset of Word

Count (by adding random, meaningless words to the input

documents), performance quickly improved (not shown).

The number of iterations an application/dataset needs

depends on how much memory is needed to store the KV

pairs, which in turn depends on the number, size, and

uniqueness of KV pairs and also on the bucket organization

method used. For example, Word Count will rarely need

multiple iterations even for large input datasets because

(i) Word Count uses the combining method which saves

memory by not allocating memory space for KV pairs with

duplicate keys and (ii) the input dataset of Word Count

typically consists of text documents which contain a limited

number of distinct words no matter how large the documents

is.

7For instance, the number of occurrences of the word ‘that’ in a
document is high.

Application Speedup

Word Count (MapReduce) 1.05X

Patent Citation (MapReduce) 2.42X

Geo Location (MapReduce) 2.55X

Table II: Speedups over MapCG.

C. Comparing with MapCG

We took MapCG as a state-of-the-art GPU MapReduce

system and implemented our three MapReduce applications

on it to compare it with the MapReduce system we built

using our hash table [7]. MapCG also uses a hash table

to store KV pairs generated by the map function instances.

Similar to all existing GPU-based MapReduce runtimes that

use a hash table, however, MapCG is unable to support

a larger-than-memory hash table, and thus the execution

fails when there is no more free memory to store newly

inserted KV pairs. In fact, we were able to compare the

performance of MapCG with our own MapReduce runtime

only for the smallest input datasets (input datasets between

200MB-600MB despite having a GPU with 3GB of internal

memory8).

Not being able to process large input datasets in these

experiments means that our hash table was, effectively, not

using the SEPO model of computation (i.e., no KV pair

insertions were postponed). Consequently, the comparison

with MapCG only evaluates the efficiency of the basic design

of our hash table, including dynamic memory allocation and

synchronization.

Table II lists the speedups of the three applications when

run using our MapReduce runtime over MapCG on the

same testbed. Our MapReduce runtime performs on par with

MapCG for Word Count, primarily because the performance

of both runtimes are limited by the heavy contention for

locks during the KV pair insertions. For the other two ap-

plications, however, our MapReduce outperformed MapCG

by over a factor of 2.

D. Comparing with alternative approaches

In this section, we compare the performance of our

hash table to the two alternative system-level solutions we

described in Section II that potentially could be used to allow

a larger-than-memory hash table for GPUs, namely (i) pin

the hash table in CPU memory, and (ii) using a hardware

demand paging mechanism.

Hash table pinned to CPU memory

When a memory region is pinned in CPU memory, the

operating system will not page it out to disk and it can

be accessed directly by GPU threads over the PCIe bus.

Given that typical CPU memories are much larger than GPU

memories, a much larger hash table can be allocated and

8Even though our testbed GPU has 3GB of memory space, its memory
is shared among different data structures and thus each data structure is
given a smaller space.



In
ve

rte
d

In
de

x

1.0xS
p
e
e
d
u
p
/S
lo
w
d
o
w
n

1.5x

2.0x

2.5x

3.0x

3.5x

Pag
e 

Vie
w

C
ou

nt D
N
A

Ass
em

bl
y

N
et

fli
x

W
or

d 
C
ou

nt

(M
ap

R
ed

uc
e)

0.66x

G
eo

 L
oc

at
io
n

(M
ap

R
ed

uc
e)

Pat
en

t C
ita

tio
n

(M
ap

R
ed

uc
e)

2

4

3

3

1

3

4

CPU Pinned memory
access (One iteration)

GPUmemory access
(multiple iterations)

0.5x

0.33x

0.4x

4.0x

4.5x

5.0x

Figure 7: Speedups compared to the pinned version.

fully populated (by the GPU) without needing the SEPO

model of computation.

As an experiment we modified our dynamic memory

allocator to pre-allocate its heap as a pinned CPU memory

region (thus storing the content of the hash table in CPU

memory). Everything else is kept in GPU memory for higher

memory performance (e.g. locks). The heap is allocated

sufficiently large so that the hash table’s entire content can

fit in it. We ran all applications with the largest dataset (i.e.

input dataset #4) on this new version of the hash table and

compared it with our GPU-based hash table using SEPO.

Figure 7 shows the result of this experiment in which

we show the speedups of our applications when using

this modified version of the hash table as well as when

using our version of the hash table. Speedup is measured

relative to the CPU-based multi-threaded implementation

of the applications. Even though the original hash table

needs multiple iterations of computation to process all of

the input data, it still significantly outperforms the version

that allocates the heap in CPU pinned memory. Worse, in

four out of seven applications, the CPU pinned memory

version of the hash table performs worse than the CPU-

based multi-threaded implementations. The reason for this

poor performance is not only the high volume of data that

has to be transferred over the PCIe bus, but the fact that

the data is transferred over many small PCIe transactions,

which is much costlier than a few bulky PCIe transactions.

CPU-side hash table with demand paging

Another system-level solution that supports larger-than-

GPU-memory hash tables is to use a GPU hardware that

has built-in demand-paging support [11]. Such GPU would

allow the application to allocate more GPU memory than is

physically available. It will copy pages between CPU and

GPU memories as needed to ensure the accessed data is

available in GPU memory prior to completing the access.

Due to the irregularity of accesses to a hash table, a larger-

than-memory hash table with demand paging is expected to

exhibit frequent paging activity which degrades performance

substantially.

Currently, GPU hardware demand paging support is still

Assumed

physical

GPU

memory

Data

transfer

time

(1MB

page size)

Data

transfer

time

(128KB

page size)

Data

transfer

time

(4KB

page size)

Total

execution

time with

our hash

table

1200 0.00s 0.00s 0.00s 1.22s

1100 14.8s 2.04s 0.07s 1.29s

1000 101.6s 11.4s 0.60s 1.37s

900 261.5s 32.5s 1.21s 1.45s

800 496.5s 62.1s 2.14s 1.56s

700 801.4s 104.4s 4.47s 1.65s

600 1178.3s 157.7s 6.12s 1.76s

500 1626.5s 128.7s 7.87s 1.89s

400 2148.3s 292.2s 10.33s 2.02s

Table III: Calculated lower bound data transfer time if PVC was run on a demand

paging-equipped hardware compared to the total execution time when PVC is run

using our hash table.

very immature and inefficient [16]. We expect it to get more

efficient in the near future. In the absence of an efficient

demand paging hardware, we could have simulated the cor-

responding hardware with the demand paging support using

a GPU simulator to measure the efficiency of this alternative

solution, but instead we came up with a simple experiment

that provides us with a lower bound on the overhead for

this solution. In this experiment, we instrumented the code

of PVC to record the access pattern to the hash table. We use

this access pattern to simulate and then count the number of

page replacements that demand paging hardware would have

imposed during the runtime of the application. Multiplying

this number by the page size yields the total amount of data

that has to be transferred over the PCIe bus, which in turn

gives us the lower bound runtime that PVC would have spent

transferring data under a demand paging-equipped GPU.

Table III shows the results of this experiment. The input

dataset we used for this experiment ends up populating a

hash table that reaches 1.2 GB in size. In our simulations

we initially set GPU memory to have 1.2 GB of free space

(so that the entire hash table fits in GPU memory and no

paging is required, considering that all pages are initially

GPU resident). We then ran the experiment multiple times,

each time reducing the available free space so as to increase

the frequency of paging. For each run, we calculated the

amount of the data that had to be transferred between CPU

and GPU and, based on that, calculated the time it takes to

transfer the data over the PCIe bus, and reported that number

in the table as the data transfer time. Even though this data

transfer time is only one of the overheads associated with

demand paging (others including overhead to initiate PCIe

transactions and overhead of page fault interrupt handling)

it still, in many cases – including all cases where the hash

table is about 1.5 times or more larger than the available

GPU memory – exceeds the total execution time of running

the application using our hash table.

VII. RELATED WORK

Despite the challenges involved in using hash tables for

GPUs (including thread and memory divergence and need

for costly synchronization when accessing them), hash tables

have been used extensively because they offer very fast insert

and lookup operations [1], [5], [13], [15].

MapCG that we compared against in our performance

evaluation also uses a hash table to store key-value pairs [7].



Despite the fact that a MapReduce application can generate

many key-value pairs with duplicate keys and thus some con-

tention in accessing the hash table, MapCG shows 1.6-2.5X

performance speedup compared to earlier implementations

that used arrays to store the key-value pairs.

Stadium hashing proposes a hash table design where the

hash table itself is located in a pinned portion of CPU

memory, where it is directly accessed by GPU threads [8]. To

reduce the number of accesses to CPU memory, a compact

indexing data structure located in GPU memory is used to

store a fingerprint hash token for each item stored in the

hash table; every operation on the hash table first consults

this index before accessing the hash table. For instance, on

an insert, the GPU thread first uses the index data structure

to find an empty bucket, and only then will it access CPU

memory to store the data item. Stadium hashing reports 2-3

times faster operations over earlier GPU-based hash table

implementations.

Mega-KV is a CPU-based in-memory key-value store for

distributed systems that uses a hash table to store key-value

pairs locally on a node [14]. The hash table is accelerated by

a GPU-based index table. Similar to the Stadium hashing’s

approach, Mega-KV uses the GPU only for the heavy-lifting

part of the operations (e.g., scanning the hash table for an

empty bucket during an insert, or finding a bucket item

during a lookup). However, the actual data is kept on and

accessed in CPU memory.

Unlike our solution, neither Stadium hashing nor Mega-

KV handle key-value pairs with duplicate keys even though

they are common in Big Data analytics applications. They

both store pairs with duplicate keys as if they are pairs with

different keys that happen to map to the same buckets.

VIII. CONCLUDING REMARKS

GPUs have, so far, rarely been used to accelerate real-

world Big Data analytics applications despite their enormous

computing power and high memory bandwidth. A main rea-

son, we believe, has been the lack of an efficient key-value

store that can efficiently store keys and values produced by

Big Data analytics applications and not fail when the data

grows beyond what GPU memory can hold.

The GPU-based hash table we developed for storing key-

value pairs of Big Data analytics applications is capable

of retaining reasonable efficiency even when its data grows

beyond the size of GPU memory. This is made possible with

the help of SEPO, a model of computation we developed

to reduce the overhead of CPU-GPU data transfers when

the hash table does not fully fit in GPU memory. Under

our SEPO model of computation, a larger-than-memory

hash table will postpone certain operations (i.e., insert or

lookup) if they attempt to access non-resident portions of

the hash table. Such operations are postponed until the

requested portions become resident. Our experimental results

comparing GPU-based Big Data analytics applications to

their CPU-based multi-threaded counterparts, showed that

an average speedup of 3.5 is achieved, despite having the

hash table grow up to four times larger than the available

GPU memory. REFERENCES

[1] D. Alcantara, V. Volkov, S. Sengupta, M. Mitzenmacher,
J. Owens, and N. Amenta. Building an efficient hash table
on the GPU. GPU Computing Gems, 2:39–53, 2011.

[2] J.A. Chapman, I. Ho, S. Sunkara, S. Luo, G.P. Schroth, and
D.S. Rokhsar. Meraculous: De Novo Genome Assembly with
Short Paired-End Reads. PLoS ONE, 6(8):1–13, 2011.

[3] S. Chen and S.W. Schlosser. Map-Reduce meets wider
varieties of applications. Intel Research Pittsburgh, Tech. Rep.
IRP-TR-08-05, 2008.

[4] Sanjay Ghemawat and Paul Menage. Tcmalloc: Thread-
caching malloc, 2007. Retrieved from: http://goog-
perftools.sourceforge.net/doc/tcmalloc.html.

[5] S. Han, K. Jang, K. Park, and S. Moon. PacketShader: a GPU-
accelerated software router. In Proc. of the ACM SIGCOMM
Conf., pages 195–206, 2010.

[6] B. He, W. Fang, Q. Luo, N.K. Govindaraju, and T. Wang.
Mars: a MapReduce framework on graphics processors. In
Proc. of the 17th Intl. Confl. on Parallel Architectures and
Compilation Techniques, pages 260–269, 2008.

[7] C. Hong, D. Chen, W. Chen, W. Zheng, and H. Lin. MapCG:
writing parallel program portable between CPU and GPU. In
Proc. of the 19th Intl. Conf. on Parallel Architectures and
Compilation Techniques, pages 217–226, 2010.

[8] F. Khorasani, M. Belviranli, R. Gupta, and L. Bhuyan. Sta-
dium Hashing: scalable and flexible hashing on GPUs. In
Proc. of the 2015 Intl. Conf. on Parallel Architecture and
Compilation (PACT), pages 63–74, 2015.

[9] R. Mokhtari, A. Abbasi, F. Khunjush, and R. Azimi. Soren:
Adaptive MapReduce for Programmable GPUs. In Proc. of
the 4th Workshop on Programmability Issues for Multi-Core
Computers (MULTIPROG), pages 118–134, 2011.

[10] R. Mokhtari and M. Stumm. BigKernel – High Performance
CPU-GPU Communication Pipelining for Big Data-Style
Applications. In Proc. of the IEEE 28th Intl. Parallel and
Distributed Processing Symp. (IPDPS), pages 819–828, 2014.

[11] Nvidia. GP100 Pascal Whitepaper. Retrieved from: https :

//images.nvidia.com/content/pdf/tesla/whitepaper/pascal−
architecture− whitepaper.pdf , 2016.

[12] J. Talbot, R.M. Yoo, and C. Kozyrakis. Phoenix++: modular
MapReduce for shared-memory systems. In Proc. of the 2nd
Intl. workshop on MapReduce and its Applications, pages 9–
16, 2011.

[13] S. Tzeng and L. Wei. Parallel white noise generation on a
GPU via cryptographic hash. In Proc. of the 2008 Symp. on
Interactive 3D Graphics and Games, pages 79–87, 2008.

[14] K. Zhang, K. Wang, Y. Yuan, L. Guo, R. Lee, and X. Zhang.
Mega-KV: a case for GPUs to maximize the throughput of in-
memory key-value stores. In Proc. of the VLDB Endowment,
pages 1226–1237, 2015.

[15] Y. Zhang, F. Mueller, X. Cui, and T. Potok. GPU-accelerated
text mining. In Proc. of the Workshop on Exploiting Paral-
lelism Using GPUs and Other Hardware-assisted Methods,
pages 1–6, 2009.

[16] T. Zheng, D. Nellans, A. Zulfiqar, M. Stephenson, and
S. Keckler. Towards high performance paged memory for
GPUs. In Proc. of the 2016 Intl. Symp. on High Performance
Computer Architecture (HPCA), pages 345–357, 2016.


