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ABSTRACT
Implementing a GPU L1 data cache entirely in software to
usurp the hardware L1 cache sounds counter-intuitive. How-
ever, we show how a software L1 cache can perform signifi-
cantly better than the hardware L1 cache for data-intensive
streaming (i.e., “Big-Data”) GPGPU applications. Hard-
ware L1 data caches can perform poorly on current GPUs,
because the size of the L1 is far too small and its cache line
size is too large given the number of threads that typically
need to run in parallel.

Our paper makes two contributions. First, we experimen-
tally characterize the performance behavior of modern GPU
memory hierarchies and in doing so identify a number of
bottlenecks. Secondly, we describe the design and imple-
mentation of a software L1 cache, S-L1. On ten streaming
GPGPU applications, S-L1 performs 1.9 times faster, on av-
erage, when compared to using the default hardware L1, and
2.1 times faster, on average, when compared to using no L1
cache.

1. INTRODUCTION
We are interested in using Graphical Processing Units (GPUs)
to accelerate what in the commercial world is popularly re-
ferred to as “big data” computations. These computations
are dominated by functions that filter, transform, aggregate,
consolidate, or partition huge input data sets. They typi-
cally involve simple operations on the input data, are triv-
ially parallelizable, and the input data exhibits no (or very
low) reuse. In the GPU world these type of computations
are referred to as streaming computations.

GPUs appear to be ideal accelerators for streaming com-
putations: with their many processing cores, today’s GPUs
have 10X the compute power of modern CPUs, and they
have close to 6X the memory bandwidth of modern CPUs,1

1For example, Nvidia GTX Titan Black has 5.1 TFLOPS
of compute power and 336 GB/s of memory bandwidth,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
MEMSYS ’15 October 05-08, 2015, Washington DC, DC, USA
2015 ACM. ISBN 978-1-4503-3604-8/15/10... $15.00.
DOI: http://dx.doi.org/10.1145/2818950.2818969

yet are priced as commodity components.

However, a number of issues had until recently prevented
effective acceleration in practice. GPUs and CPUs have sep-
arate memories so that the input data must first be copied
over to the GPU, causing extra overhead [6]. The PCIe
link that connects the two memories has limited bandwidth
and transferring data over the PCIe bus at close to theo-
retically maximum bandwidth is non-trivial. Finally, the
high GPU memory bandwidth can only be exploited when
GPU threads, executing simultaneously, access memory in
a coalesced fashion, where the accessed memory locations
are adjacent to each other. Our recent research efforts have
mitigated these issues to a large extent. For example, we
were able to obtain speedups on seven realistic streaming
computations of between 0.74 and 7.3 (3.0 avg.) over the
most efficient CPU multicore implementations and between
4.0 and 35.0 (14.2 avg.) over the most efficient single CPU
core implementations [14].

These efforts have shifted the primary bottleneck preventing
higher GPU core utilization from the PCIe link to the GPU-
side memory hierarchy. In particular, three factors currently
prevent further improvements in core utilization. First, the
GPU L1 caches are inefficient [8]. For the number of cores
typical in modern GPUs, the L1 caches are too small and
their cache line sizes are disproportionally large given the
small cache size. For example, the L1 on the Nvidia GTX
Titan Black we used to run our experiments can be config-
ured to be at most 48KB per 192 cores and the cache line size
is 128B. At best, this leaves just two cache lines per core. Yet
GPGPU best practices expect many threads to run simul-
taneously per core, each having multiple memory accesses
in-flight (supported by 340 4-byte registers per core). With
the large number of executing threads, each issuing multiple
memory accesses, cache lines are evicted before there is any
reuse, causing a high degree of cache thrashing and atten-
dantly low L1 hit rate. As an example, Figure 1 depicts the
L1 hit rate as a function of the number of threads executing
when running the Unix word count utility, wc.

The hardware L1 has proven to be so ineffective that some
recent GPU chip sets (e.g. Nvidia GTX Titan Black) by de-
fault disable the L1 caching of application data. We do not
expect GPU L1 caches to become significantly more effec-
tive any time in the near future, given historical trends (see

while Intel Haswell has 500 GFLOPS of compute power and
52 GB/s of memory bandwidth.
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Figure 1: L1 hit rate when running wc on Titan Black GPU
with 192 cores. The target data is partitioned into n chunks
with each chunk assigned to a thread for processing. With
a small number of threads, caching is effective, as the first
access of each thread results in a miss, but the subsequent
127 accesses result in cache hits. With a large number of
threads, 128 accesses can result in 128 misses.

Section 2.2).

A second factor preventing further improvements in core uti-
lization is the high latency to access L2 and DRAM. On the
Nvidia GeForce GTX Titan Black, the latency of a single,
isolated access to L2 and DRAM is 240 and 350 cycles, re-
spectively. These increase substantially when the number
of threads/accesses increases. Hardware multithreading can
hide some of this latency, but far from all of it, as we show
in Section 2.3.

Thirdly, bottlenecks on the path from L2/DRAM to GPU
cores prevent scaling of memory throughput and can prevent
exploitation of the full L2 and DRAM bandwidth, as we will
also show in Section 2.3. Thus, for memory intensive appli-
cations, average memory access latencies will be significantly
higher than the latency of single, isolated accesses.

The above three factors negatively affect the workloads we
are targeting and do so in a noticeable way, because many
of the big-data computations are completely memory bound
and dominated by character accesses, requiring only a trivial
amount of computation between accesses. The end result:
extremely low GPU core utilization.

In this paper, we provide a detailed characterization of the
behavior of the GPU memory hierarchy and then propose
and evaluate an L1-level cache implemented entirely in soft-
ware to address some of its issues. The software-L1 cache
(S-L1) is located in software-managed GPU shared memory,
which is positioned at the same level as the L1, has the same
access latency as the L1 (80 cycles on the Nvidia GTX Ti-
tan Black), and is also small (max. 48KB per GTX Titan
Black multiprocessor). We use compiler to automatically in-
sert the code required to implement S-L1, so S-L1 does not
require modifications to the GPU application code.

The design of S-L1 is guided by three key principles to deal
with the small size of the shared memory:

1. Private cache segments: S-L1 is partitioned into
thread-private cache lines, instead of having all threads

share the cache space;

2. Smaller cache lines: the cache-line size is chosen to
be 16B, which is less than the 128B that is typical in
GPUs, and is thus able to serve a larger number of
threads effectively;

3. Selective caching: S-L1 caches only the data of only
those data structures where caching is most effective.

The objective of this design is to significantly decrease av-
erage memory access times and reduce cache thrashing. It
is implemented entirely in software using a fairly straight-
forward runtime scheme where the code to manage and use
the cache is added by using simple compiler transformations.
The specific parameters of the S-L1 cache are determined at
runtime during an initial brief monitoring phase, which also
identifies the potential cache hit rate of each data structure.
After the monitoring phase, the computation is executed us-
ing the S-L1 cache for the data structures expected to have a
sufficiently high cache hit rate, given the determined amount
of cache space available to each thread.

In our experimental evaluation using ten GPU-local applica-
tions, S-L1 achieves an average speedup of 1.9 over hardware
L1 and an average speedup of 2.1 over no L1 caching. The
speedup on hardware L1 ranges from a slowdown of 0.14 to
a speedup of 4.3, and the speedup on no L1 ranges from a
slowdown of 0.05 to a speedup of 6.5. These speedups are
achieved despite the fact that each memory access requires
the additional execution of at least 4 instructions (and up
to potentially hundreds of instructions) when running S-L1.
Combining S-L1 with BigKernel, the fastest known tech-
nique accelerating GPU applications processing large data
sets initially located in CPU memory [14], leads to an av-
erage speedup of 1.19 over BigKernel alone, and an average
speedup of 3.7 over the fastest CPU multicore implemen-
tation of the same applications. The speedup on BigKernel
alone ranges from 1.04 to 1.45 and the speedups on the CPU
implementations range from 1.3 to 6.37.

This paper makes the following two specific contributions:

1. we characterize the performance behavior of the GPU
memory hierarchy and identify some of its bottlenecks
using a number of experiments, and

2. we propose S-L1, a level-1 cache implemented entirely
in software and evaluate its performance; novel fea-
tures of S-L1 include a run-time scheme to automati-
cally determine the parameters to configure the cache,
selective caching, and thread-specific cache partitions.

It should be noted that S-L1 is designed and effective only
for a specific workload we are targeting; other workloads
may well require different design parameters or not bene-
fit from a software implementation at all. S-L1 can be en-
abled/disabled on a per application basis. While a software
implementation of the L1 cache adds considerable base over-
head that has to be amortized, having the implementation
be in software allows easier customization.



Our paper is organized as follows. Section 2 describes back-
ground information about GPUs, some architectural trends
we have observed over the past few years, and the micro-
architectural behavior that motivated us to do this work.
We described the design and implementation of S-L1 in Sec-
tion 3 and present the results of our experimental perfor-
mance evaluations in Section 4. Section 5 discusses related
work, and we close with concluding remarks in Section 6.

2. BACKGROUND
We first describe the architecture of the Nvidia GTX Ti-
tan Black to provide a brief overview of typical current GPU
architectures. This subsection can be skipped by readers al-
ready familiar with GPU architectures.

We then present several GPU architectural trends to pro-
vide insight as to where future GPU architectures might
be headed, and then use these trends to motivate our S-L1
cache implementation.

Finally, we present several limitations of the GPU memory
hierarchy and offer some insights into the nature of those
limitations, further motivating our S-L1 design.

2.1 GPU Background
Figure 2 shows the high-level architecture of the Nvidia GTX
Titan Black. We describe this particular chip because it
was used in our experimental evaluation, but also because it
is representative of current GPUs. In particular, the most
recent offering by Nvidia, the GTX Titan X uses the same
basic Kepler architecture [23], although the number of cores,
memory/cache sizes, and some micro-architectural details
will differ.

The GTX Titan Black consists of fifteen streaming multi-
processors (SMX), each of which contains 192 computing
cores, 64K 4-byte registers, 16KB-48KB L1 cache and 16KB-
48KB software managed on-chip memory called shared mem-
ory, accessible to all cores of the SMX.2 A 1.5MB L2 cache
is shared by all SMXs, and the L2 cache is connected to
6GB DRAM memory called global memory. We refer to this
global memory as GPU memory in this paper to differenti-
ate it from CPU main memory. Access latency to registers,
L1, shared memory, L2 and DRAM is 10, 80, 80, 240, and
350 cycles, respectively. The theoretically maximum band-
width from L1 (per SMX), shared memory (per SMX), L2
and DRAM have been reported as 180.7GB/s, 180.7GB/s,
1003GB/s, and 336GB/s, respectively [21].

The term kernel is used to denote the function that is ex-
ecuted on the GPU by a collection of threads in parallel.
The programmer specifies the number of threads to be used,
grouped into thread blocks, with a maximum of 1,024 threads
per thread block. Each thread block is assigned to a SMX
by a hardware scheduler. Each SMX can host up to a max-
imum of 2,048 running threads (e.g. two full-sized thread
blocks) at a time.

Threads of a thread block are further divided into groups of

2Each SMX also contains a texture cache and a constant
cache, but they are not relevant for our objectives and hence
not considered in this paper.

Figure 2: Architecture of the Nvidia GTX Titan Black.

32, called warps. The threads in a warp execute in lock-step
because groups of 32 cores share the same instruction sched-
uler. This lock-step execution will lead to thread divergence
if, on a conditional branch, threads within the same warp
take different paths. Thread divergence can lead to serious
performance degradations.

The memory requests issued by threads of a warp that fall
within the same aligned 128-byte region are coalesced into
one memory request by a hardware coalescing unit before
being sent to memory, resulting in only one 128-byte mem-
ory transaction. Parallel memory accesses from a warp to
data are defined as n-way coalesced if n of the accesses fall
within the same aligned 128-byte region.

2.2 Historical Trends
Figure 3 depicts how Nvidia GPU aggregate compute power
(in GFLOPS) and memory bandwidth (in GB/s) have evolved
over chip generations, from their earliest CUDA-enabled ver-
sion to the current version. Compute power has been in-
creasing steadily at a steep slope. Memory bandwidth has
also been increasing, but not as quickly. As a result, memory
bandwidth per FLOP has decreased by a factor of 5: from
250 bytes/KFLOP for the GTX 8800 to 54 bytes/KFLOP
for the GTX Titan X.

Figure 4 depicts how aggregate compute power and total size
of fast on-chip memory (L1 cache and shared memory) have
evolved over time. The total amount of on-chip memory
varies over time and at one point even decreases substan-
tially from one generation to the next. It has clearly not
kept up with the increase in compute power.

If these trends continue then the GPU cores will become
increasingly memory starved. Strategies to optimize GPU
applications to make more efficient use of the memory hier-
archy will likely become more important going forward.

Given the fact that future GPU generations may have smaller
on-chip memory sizes, as has happened in the past, GPU
programmers cannot assume the availability of a specific
shared memory size. As a result, the programmer will need
to design GPU applications so that they configure the use of
shared memory at run-time and possibly restrict the num-
ber of threads used by the application. Or use run-time



Figure 3: Compute power and memory bandwidth over
time/GPU generation.

Figure 4: Compute power and L1 / shared memory size
over time/GPU generation.

libraries, such as the one we are presenting in this paper,
that automatically adjust program behavior to the available
hardware resources.

2.3 Behavior of GPU memory access perfor-
mance

GPU vendors do not disclose much information on the micro-
architecture of their GPUs. Hence, in order to optimize
GPGPU programs so that they can more efficiently exploit
hardware resources, it is often necessary to reverse engineer
the performance behavior of the GPUs through experimen-
tation. In this section, we present the results of some of the
experiments we ran to gain more insight into the memory
subsystem. All results we present here were obtained on an
Nvidia GTX Titan Black.

2.3.1 Memory access throughput
In our first set of experiments, we used a micro-benchmark
that has threads read disjoint (non-contiguous) subsets of

Figure 5: L2 memory throughput as a function of number
of threads in a thread block. Each curve represents the
throughput for a different number of thread blocks (1 to 15)
with each thread block running 1,024 threads.

data located in the L2 cache as quickly as possible. The
benchmark is parameterized so that the degree of coalesc-
ing can be varied. Figure 5 shows the maximum L2 memory
bandwidth obtained, measured as the number of bytes trans-
ferred over the network, when servicing 4-way coalesced ac-
cesses from the L2 cache as the number of threads running
in each thread block is increased up to 1,024.

Each curve represents a different number of thread blocks
used, and each block uses the same number of threads. The
thread blocks are assigned to SMXs in a round robin manner
by the hardware. Focusing on the bottom curve, represent-
ing an experiment that has just one thread block running on
one SMX, one can see that the memory throughput flattens
out after about 512 threads at slightly less than 32 GB/s.3

We observe similar behavior for DRAM (not shown) when
we adjusted the micro-benchmarks to only access data cer-
tain to not be in the L2 cache, except that the throughput
flattens out earlier at about 480 threads, reaching to a peak
bandwidth of 307 GB/s with 15 blocks.

It is difficult to assess what causes the stagnation in L2
and DRAM throughput. However the near-linear scalability
with the number of thread blocks indicates that the bottle-
neck is in the interconnect or in the SMX itself (e.g., coa-
lescing units) rather than L2 or DRAM. This is shown in
Figure 6 where we show the throughput as a function of
the number of thread blocks with each thread block running
1,024 threads. Each point along the L2 bandwidth curve
is equal to the end point (at 1,024 threads) of the corre-
sponding curve of Figure 5. L2 throughput increases almost
linearly, reaching close to 480 GB/s with 15 blocks. DRAM
throughput increases almost linearly up to 10 thread blocks
at which point the bandwidth limits at around 300GB/s.

The above results measured the amount of data transferred
to the SMXs by the hardware. In practice, however, much
of this data may not actually be used by the application.
For example, for non-coalesced accesses, each 4-byte integer

3Our experiments show that varying the degree of coalesc-
ing does not completely remove the flattening out behavior.
However, the smaller the coalescing degree (e.g. 1-way coa-
lesced), the earlier the curve flattens out.



Figure 6: L2 and DRAM memory bandwidth as a func-
tion of number of thread blocks where each thread block is
running 1,024 threads and the memory accesses are 4-way
coalesced.

access will result in 32 byte transfer, of which only 4 are
actual used.

The end result is that the memory access latencies actually
experienced in practice will be far larger than the theoretical
access latencies presented in Section 2.1. This implies that
an SMX-local L1 cache, whether implemented in hardware
or software, can dramatically reduce the average latency of
accesses with locality, if implemented appropriately. In par-
ticular, in contrast to L2 and DRAM throughput, shared
memory throughput within an SMX (not shown) does not
flatten out and reaches 60GB/s (for an aggregate through-
put of close to 900GB/s with 15 SMXs).

3. S-L1 DESIGN AND IMPLEMENTATION
3.1 Overview
S-L1 is a level 1 cache implemented entirely in software.
It uses the space available in each SMX’s shared memory,
which has the same access latency as the hardware L1. We
also considered using SMX’s texture cache, but it is a hardware-
managed, read-only cache and thus, does not suit S-L1 needs.4

The design of S-L1 is based on three key design elements.
First, the cache space is partitioned into thread-private cache
segments, each containing one or more cache lines. The
number of cache lines in each segment is determined dynam-
ically at runtime based on the amount of available shared
memory, the number of threads running in the SMX, and
the size of the cache line. The decision to use thread-private
cache segments is based on the fact that inter-thread data
sharing is rare in the streaming applications we are target-
ing. Therefore, the threads mostly process data indepen-
dently in disjoint locations of memory. Allowing all threads
to share the entire cache space would likely result in unnec-
essary collisions.

Secondly, we use relatively small cache lines. The optimal

4In a separate set of experiments, we also evaluated the ef-
fectiveness of texture cache for streaming applications. The
results show that, like hardware L1 cache, texture cache hit
rate drops significantly when the number of online threads
increase, creating a graph similar to Figure 1 (not shown).

cache line size depends to a large extent on the applications’
memory access patterns. Larger cache lines perform bet-
ter for applications exhibiting high spacial locality, but they
perform poorer for applications with low spacial locality due
to (i) the extra overhead of loading the cache lines requiring
multiple memory transactions and (ii) the increased cache
thrashing because fewer cache lines are available. We de-
cided on using 16-byte cache lines after experimenting with
different cache line sizes — see Section 4.5. This size works
well because 16B is the widest load/store size available on
modern GPUs, allowing the load/store of an entire line with
one memory access.

Thirdly, we only cache some of the application’s data struc-
tures.5 The number of cache lines allocated to each thread
(CLN) determines how many data structures we cache. CLN
is calculated at runtime as

[(shMemSizePerSM/numThreadsPerSM)/cacheLineSize]

where shMemSizePerSM is the amount of shared memory
available per SMX, numThreadsPerSM is the total number
of threads allocated on each SMX, and cacheLineSize is the
size of the cache line; i.e., 16 bytes in our current design.

The amount of shared memory available for the S-L1 cache
depends on how much shared memory has previously been
allocated by the application. The application can allocate
shared memory statically or dynamically at run time. Hence,
a mixed compile-time/runtime approach is required to iden-
tify how much shared memory remains available for S-L1.
NumThreadsPerSM is calculated at runtime, in part by
using the configuration the programmer specifies at kernel
invocation and in part by calculating the maximum number
of threads that can be allocated on each SMX which in turn
depends on the resource usage of GPU threads (e.g. register
usage) and available resources of SMX, which is extracted
at compile-time and runtime, respectively.

Once the number of cache lines per thread – CLN – has been
determined, up to that many data structures are marked as
S-L1 cacheable and a separate cache line is assigned to each.
In principle, multiple cache lines could be assigned to a data
structure, but we found this does not benefit the streaming
applications we are targeting. Data structures marked non-
cacheable will not be cached and are accessed directly from
memory. If the available size of shared memory per thread
is less than cacheLineSize (i.e., too much shared memory
has already been allocated by the application) then S-L1 is
effectively disabled by assigning no cache lines to threads
(i.e., CLN = 0).

To determine which data structures to cache, we evaluate
the benefit of caching the data of each data structure using a
short monitoring phase at runtime. In the monitoring phase,
the core computation of the application is executed for a

5In this context, each argument to the GPU kernel that
points to data is referred to as a data structure. For ex-
ample, matrix multiply might have three arguments a, b
and c referring to three matrices; each is considered a data
structure.



short period of time, during which a software cache for each
data structure and thread is simulated to count the number
of cache hits. When the monitoring phase terminates, the
CLN data structures with the highest cache hit counts will
be marked so they are cached. The code required for the
monitoring phase is injected into existing applications using
straightforward compiler transformations.

3.2 Code Transformations
The compiler transforms the main loop(s) of the GPU ker-
nel into two loop slices. The first loop slice is used for the
monitoring phase, where the computation is executed for a
short period of time using the cache simulator. After the
first loop slice terminates, the data structures are ranked
based on their corresponding cache hit counts, and the top
CLN data structures are selected to be cached in S-L1. The
second loop slice then executes the remainder of the compu-
tation using S-L1 for the top CLN data structures.

As an example, the following code:

//Some initialization
for(int i = start; i < end; i ++) {

char a = charInput[i];
int b = intInput[i];

int e = doComputation(a, b);
intOutput[i] = e;

}
//Some final computation

is transformed into:

//Some initialization
cacheConfig_t cacheConfig;
int i = start;

//slice 1: monitoring phase
for(; (i < end) && (counter<THRESHOLD); i ++, counter ++) {

char a = charInput[i];
simulateCache(&charInput[i], 0, &cacheConfig);
int b = intInput[i];
simulateCache(&intInput[i], 1, &cacheConfig);

int e = doComputation(a, b);
intOutput[i] = e;
simulateCache(&intOutput[i], 2, &cacheConfig);

}
calculateWhatToCache(&cacheConfig, availNumCacheLines);
//slice 2: rest of the computation
for(; i < end; i ++)
{

char a = *((char*) accessThroughCache(&charInput[i], 0,
&cacheConfig));

int b = *((int*) accessThroughCache(&intInput[i], 1,
&cacheConfig));

int e = doComputation(a, b);

*((int*) accessThroughCache(&intOutput[i], 2,
&cacheConfig)) = e;

}
flush(&cacheConfig);
//Some final computation

3.2.1 Monitoring phase
In the monitoring loop, a call to simulateCache() is inserted
after each memory access. This function takes as argument
the address of the memory being accessed, a data struc-
ture identifier, and a reference to the cacheConfig object,

which stores all information collected during the monitoring
phase. The data structure identifier is the identifier of the
data structure accessed in the corresponding memory access,
and is assigned to each data structure statically at compile
time.

The pseudo code of simulateCache() is listed below. This
function keeps track of which data is currently being cached
in the cache line, assuming a single cache line is allocated for
each thread and data structure, and it counts the number of
cache hits and misses that occurred. To do this, cacheCon-
fig contains, for each data structure and thread, an address
variable identifying the memory address of the data that
would currently be in the cache, and two counters that are
incremented whenever a cache hit or miss occurs, respec-
tively. On a cache miss, the address variable is updated
with the memory address of the data that would be loaded
into the cache line.

simulateCache(addr, accessId, cacheConfig) {
addr /= CACHELINESIZE;

if(addr == cacheConfig.cacheLine[accessId].addr)
cacheConfig.cacheLine[accessId].hit ++;

else {
cacheConfig.cacheLine[accessId].miss ++;
cacheConfig.cacheLine[accessId].addr = addr;

}
}

The monitoring phase is run until sufficiently many mem-
ory accesses have been simulated so that the behavior of
the cache can be reliably inferred. To do this, we simply
count the number of times simulateCache() is called by
each thread; once it reaches a predefined threshold for each
thread, the monitoring phase is exited. This pre-defined
threshold is set to 300 in our current implementation.6

3.2.2 Determining what to cache
In the general case, we mark the CLN data structures with
the highest cache hit counts to be cached in S-L1. How-
ever, there are two exceptions. First, we distinguish be-
tween read-only and read-write data structures. Read-write
data structures incur more overhead, since dirty bits need
to be maintained and dirty lines need to be written back to
memory. Hence, we give higher priority to read-only data
structures when selecting which structures to cache. Cur-
rently, we select a read-write data structure over a read-only
data structure only if its cache count rate is twice that of
the read-only data structure, because accesses to read-write
cache lines involve the execution of twice as many instruc-
tions on average.

Secondly, in our current implementation, we only cache data
structures if it has a cache hit rate above 50%. A hit rate
of more than 50% means that, on average, the cache lines
are reused at least once after loading the data due to a miss.

6This method of statically setting the duration of monitoring
phase works well for regular GPU applications such as the
ones we are targeting, but more sophisticated methods may
be required for more complex, irregular GPU applications.
Moreover, while we only run the monitoring phase once, it
may be beneficial to enter into a monitoring phase multiple
times during a long running kernel to adapt to potential
changes in the caching behavior.



We do this because otherwise the overhead of the software
implementation will not be amortized by faster memory ac-
cesses.

3.2.3 Computation phase
In the second loop slice, the compiler replaces all memory
accesses with calls to accessThroughCache(). This function
returns an address, which will either be the address of the
data in the cache, or the address of the data in memory,
depending on whether the accessed data structure is cached
or not. A simplified version of the function is as follows:

void* accessThroughCache(void* addr, int accessId,
cacheConfig_t* cacheConfig)

{
if(cacheConfig.isCached[accessId] == NOT_CACHED) {

return addr;
}
else {

//If already cached, then simply return the
//address within the cache line
if(alreadyCached(addr, cacheCon-

fig.cacheLine[accessId])) {
return &(cacheConfig.cachelines[accessId].

data[addr % 16]);
}
//requested data is not in the cache, so,
//before caching it we need to evict current data.
else {

//If not dirty, simply overwrite. If dirty,
//first dump the dirty data to memory

if(cacheConfig.cachelines[accessId].dirty) {
dumpToMemory(cacheConfig.cachelines[accessId]);

}
loadNewData(addr, cacheCon-

fig.cachelines[accessId]);
return &(cacheConfig.cachelines[accessId].

data[addr % 16]);
}

}
}

S-L1 cache misses on cacheable data cause the eviction of an
existing cache line to make space for the new target cache
line. Modified portions of the current cache line are first
written back if necessary; a bitmap (kept in registers) is
used to identify which portions of the cache line are modified.
This approach also guarantees that two different threads will
not overwrite each others data if they cache the same line
(in different S-L1 lines) and modify different potions of it.

A call to flush() is inserted after the second loop slice to
flush the modified cache lines to memory and invalidate all
cache lines before the application terminates.

Extra overhead can be avoided if the pointers to the data
structures provided as arguments to the GPU kernel are
not aliased. Programmers can indicate this is the case by
including the restrict keyword with each kernel argument.
If this keyword is not included then the caching layer will
still work properly, albeit with extra overhead because it has
to assume the pointers may be aliased, in which case the
caching layer will need to perform data lookups in all cache
lines assigned to the same thread for each memory access —
even for memory accesses to uncached data structures.

3.3 S-L1 overheads
Our implementation of S-L1 introduces overheads for the
monitoring phase, when determining what data structures

to cache and for each memory access, and when executing
accessThroughCache() for each memory access.

Our experiments show that the performance overhead of the
monitoring phase is relatively low — an average of less than
1% was observed in the 10 applications we experimented
with (see Section 4.4). The overhead is low because the
monitoring phase only runs for a short period of time and
because the code of simulateCache() is straightforward and
typically does not incur additional memory accesses since
all variables used in simulateCache() are located in stat-
ically allocated registers. In terms of register usage, the
monitoring phase requires three registers per data struc-
ture/simulated cache line: one for the mapped address of
the cache line in memory and two to keep the cache hit and
miss counters. These registers are only required during the
monitoring phase and will be reused after the phase termi-
nates.

The performance overhead of calculateWhatToCache() is
negligible since it only needs to identify which CLN data
structures have the highest hit counts, and typically, appli-
cations only access a few data structures.

Most of the overhead of the caching layer occurs in the func-
tion accessThroughCache(). For accesses to non-cached
data structures, the performance overhead entails the exe-
cution of four extra machine instructions. However, accesses
to cached data structures incur significantly more overhead
in some cases; e.g., when evicting a cache line. Our experi-
ments indicate that the caching layer increases the number
of instructions issued by 25% on average over the course
of the entire application (see Section 4.4). This overhead
can indeed negatively impact the overall performance of an
application if it is not amortized by the lower access times
offered by S-L1, and the overhead is exacerbated if the ap-
plication’s throughput is already limited by instruction-issue
bandwidth.

In terms of register usage, accessThroughCache() requires
three additional registers per data structure and thread: one
for the memory address of the data currently being cached,
one for the write bitmap (which also serves as the dirty bit),
and one for the data structure identifier. (If the data struc-
ture is not cached, the value of the last register will be -1).
As an optimization, we do not allocate bitmap registers for
read-only data structures. Additionally, since data struc-
tures that are not cached do not access the bitmap and
address registers, the compiler might spill them to mem-
ory, without accessing them later, thus reducing the register
usage of uncached data structures to 1. The recent GPU
architectures (e.g. Kepler) have 65,535 registers per SMX
and can support at most 2,048 threads, in which case the
S-L1 caching layer would, in the worst case, use up to 6%
and 9% of the total number of available registers for cached
read-only and read-write data structures, respectively.

3.4 Coherence considerations
Since each thread has its own private cache lines, cached
data will not be coherent across cache lines of different threads.
Thus, if two threads write to the same data item cached
separately, the correctness of the program might be com-
promised. Fortunately, the loose memory consistency model



offered by GPUs makes it easy to maintain the same level
of consistency for S-L1 accesses. We follow two simple rules
to maintain the correctness of the program: (a) we flush
the threads’ cache lines on memory fence instructions and
(b) we do not cache the data of data structures that are
accessed through atomic instructions.

Executing a memory fence instruction enforces all memory
writes that were performed before the instruction to be vis-
ible to all other GPU threads before the execution of the
next instruction. GPGPU programmers are required to ex-
plicitly use these instructions if the application logic relies
on a specific ordering of memory reads/writes. We imple-
ment this by inserting a call to flush() immediately before
each memory fence instruction, which flushes the contents
of the modified cache lines to memory and invalidates the
cache lines.

By executing an atomic instruction, a thread can read, mod-
ify, and write back a data in GPU memory atomically. We
extract the data structures that might be accessed by atomic
instructions at compile time and mark them as not cacheable.

4. EXPERIMENTAL EVALUATION
4.1 Experimental Setup
All GPU kernels used to evaluate S-L1 were executed on
an Nvidia GeForce GTX Titan Black GPU connected to
6GB of GPU memory with a total of 2,880 computing cores
running at 980MHz. As described in Section 2.1, the GTX
Titan Black is from the Kepler family and has 15 stream-
ing multiprocessors (SMXs), each with 192 computing cores,
and 64KB of on-chip memory (of which 48KB is assigned to
shared memory).

All GPU-based applications were implemented in CUDA,
using CUDA toolkit and GPU driver release 7.0.28 installed
on a 64-bit Ubuntu 14.04 Linux with kernel 3.16.0-33. All
applications are compiled with the corresponding version of
the nvcc compiler using optimization level three.

For each experiment, we ran the target application using
different thread configurations, and only considered the con-
figuration with the best execution time for reporting and
comparison purposes.7 Specifically, we tested each applica-
tion using 512 different thread configurations, starting with
15 blocks of 128 threads (for a total of 1,920 threads) and
increased the number of threads in 128 increments, up to
480 blocks of 1,024 threads (for a total of 480K threads).

4.2 S-L1 performance evaluation for GPU-local
applications

We applied S-L1 to the ten streaming applications listed in
Table 1. There is no standard benchmark suite for GPU
streaming applications, so we selected 6 representative ap-
plications, 2 simple scientific applications (MatrixMultiply
and Kmeans), and 2 extreme applications to stress test S-
L1: wc, which has minimal computation (only counter incre-
ments) for each character access, and upper, which is similar

7GPGPU programmers typically experimentally run their
applications with different thread configurations to deter-
mine the optimal number of threads and from then on run
that configuration.
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Figure 7: Speedup when using S-L1 relative to no L1
caching.
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Figure 8: S-L1 hit rate.

to wc but may modify the characters. For each experiment,
the data accessed by the applications is already located in
GPU memory.

Figure 7 shows the performance of our 10 benchmark stream-
ing applications when run with S-L1 and hardware L1 rel-
ative to the performance of the same applications run with
no L1 caching (L2 cache is enabled in all cases). On average,
the applications using S-L1 run 1.9 times faster than when
they use the hardware L1 and 2.1 times faster than when
run with no L1 caching.

With hardware L1, performance improves to at most 35%
and in some cases degrades significantly. In particular, wc,
PageViewCount, and Matrix Multiply exhibit slowdown. We
attribute the poor performance to the extra DRAM trans-
actions due to the constant thrashing of L1 cache lines: each
cache miss results in four DRAM transactions (four 32-byte
transactions to fill the 128-byte cache line), three transac-
tions more than what is actually required to fulfill the re-
questing memory access instruction, a phenomenon origi-
nally observed by by Jia et al. [8].



Application Description Used number of data
structures

Upper Converts all text in an input document from lowercase to uppercase. 2
WC Counts the number of words and lines in an input document. 1
DNA Assembly merges fragments of a DNA sequence to reconstruct a larger sequence [3]. 3
Opinion Finder analyzes the sentiments of tweets associated with a given subject (i.e. a set of given keywords) [24] 4
Inverted Index Builds reverse index from a series of HTML files. 3
Page View Count Counts the number of hits of each URL in a web log. 3
MasterCard Affin-
ity

finds all merchants that are frequently visited by customers of a target merchant X [14] 3

Matrix Multiply Calculates the multiplication of two input matrices. This is a naive version and does not use shared
memory.

3

Grep Finds the string matching a given pattern and outputs the line containing that string. 2 (1 in shared memory)
Kmeans Partitions n particles into k clusters so that particles are assigned to the cluster with the nearest mean. 2 (1 in shared memory)

Table 1: Ten streaming applications used in our experimental performance evaluation and the number of data structures
they use in their main loop. S-L1 determines the number of data structures to cache at runtime, which could vary from run
to run depending on the available size of shared memory per thread (see Section 3.1).

With S-L1, some applications (e.g., upper and wc) run mul-
tiple times faster than with hardware L1, while other appli-
cations (e.g., grep and Kmeans) experience slight slowdowns.
The benefits obtained from S-L1 depends on a number of fac-
tors. First, the attained cache hit rate obviously has a large
effect. Figure 8 depicts the S-L1 hit rate for all benchmarks.
Overall, the hit rate is quite high, in part because most of
the applications have high spatial locality (which is to be
expected for streaming applications). As an extreme exam-
ple, consider wc, where each thread accesses a sequence of
adjacent characters, so each S-L1 miss is typically followed
by 15 hits, given a 16 byte cache line. Kmeans is an excep-
tion: because the application allocates much of the shared
memory for its own purposes, there is insufficient space for
S-L1 cache lines, and hence the effective S-L1 hit rate is zero
for this application.8

A second factor is the memory intensity of the applications;
i.e., the ratio of memory access instructions to the total num-
ber of instructions executed. Some applications (e.g., upper
and wc) are memory bound and hence benefit from S-L1.
At the other extreme, grep doesn’t perform as well despite
having a high cache hit rate, mainly because it becomes
instruction throughput bound after applying S-L1 due to
the application’s recursive algorithm. The benefits of the
caching layer is negated by the extra instructions that need
to be executed because of the software implementation of
S-L1.

A third factor is the degree to which S-L1 enables extra
productive thread parallelism, thus improving GPU core uti-
lization. Figure 9 shows the number of online threads9 that
result in the best performance for each application with S-L1
and with hardware L1. Overall, applications perform best
with a larger number of threads when using S-L1 compared
to hardware L1, because hardware L1 leads to increased L1
and L2 cache thrashing.

8Because Kmeans allocates space in shared memory dynam-
ically at run time, the compiler cannot know that there is
not enough space for S-L1 cache lines — otherwise it poten-
tially could have avoided adding the code required for S-L1.
In practice, Kmeans would be run without S-L1, so it would
not have to incur the S-L1 overheads.
9I.e., threads that run at the same time on all multipro-
cessors, the maximum of which can be 30K threads on our
GPU.
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Figure 9: The optimal number of online threads (that leads
to the best execution times) with and without S-L1.

4.3 Evaluation of S-L1 for data residing in CPU
memory

For big data-style applications, the data will not fit in GPU
memory because of the limited memory size. Hence, in this
subsection, we consider the performance of four applications
with data sets large enough to not fit in GPU memory. We
ran these applications under five different scenarios:

1. CPU multithreaded when run on a 3.7GHz Intel Core
i7-4820K with 24GB of dual-channel memory clocked
at 1.8 GHz;

2. GPU using a single buffer to transfer data between
CPU and GPU;

3. GPU using state-of-the-art double buffering to transfer
data between CPU and GPU;

4. GPU using BigKernel [14]; and

5. GPU using BigKernel combined with S-L1.

We selected to combine S-L1 with BigKernel in particular,
because BigKernel is, to the best of our knowledge, the
currently best performing system for data intensive GPU
streaming applications [14].
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Figure 11: Extra instructions executed and issued (in %)
due to S-L1.

Figure 10 shows the results. For all four applications, us-
ing BigKernel with S-L1 performs the best, and for all but
one application the performance is an order of magnitude
better than the multithreaded CPU version. Compared to
BigKernel alone, BigKernel with S-L1 is 1.19X faster. Lim-
its in thread parallelism is the primary reason BigKernel is
prevented from performing better when combined with S-
L1, because BigKernel requires the use of many registers.10

As shown in Figure 9, one of the ways S-L1 improves perfor-
mance is by allowing applications to efficiently exploit higher
degrees of parallelism.

4.4 S-L1 overheads
S-L1 has significant overhead because it is implemented in
software. However, based on our experiments, the monitor-
ing phase accounts for less than 1% of this overhead. Af-
ter the monitoring phase, a minimum of 4 and potentially
well over 100 extra instructions are executed for each mem-
ory access. Figure 11 depicts the increase in the number

10When a kernel uses high number of registers, an SMX will
schedule fewer online threads to be able to provide them
with the required number of registers.
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Figure 12: Overhead of S-L1 when it is enabled but not
used to cache data.

of instructions, both executed and issued, when using S-L1
compared to when using hardware L1. Executed instruc-
tions are the total number of instructions completed, while
issued instructions also count the times an instruction is “re-
played” because it encountered a long latency event such as
a memory load.

The increase in the number of executed instructions is sig-
nificant: 220% on average. The reason is obvious: each
memory access instruction is transformed to additionally
call a function that needs to be executed. On the other
hand, the increase in the number of issued instructions is
more reasonable: 25% on average. (For wc and MatrixMul-

tiply the number of issued instructions actually decreases.)
The reason issued instructions increase less than executed
instructions is that S-L1 provides for improved memory per-
formance, which reduces the number of required instruction
replays.

To evaluate S-L1 overheads when accessing non-cached data
structures, we ran our benchmarks with S-L1 enabled but all
data structures marked as non-cacheable. Figure 12 shows
that the overhead is 8% on average. The primary source of
the overhead is attributed to executing the memory access
function that is called for each memory access. As suggested
in Section 4.2, one potential way to avoid this overhead is
have the compiler not transform memory accesses to data
structures that are found not worthy of caching – e.g. a
data structure that is statically known to not exhibit any
caching benefit.

4.5 Effect of S-L1 cache line size
Figure 13 compares the overall performance of applications
when using different variations of S-L1 using different cache
line sizes. Specifically, we show the performance improve-
ment/loss for 8-byte and 24-byte cache lines over 16-byte
cache lines.11

In most cases, 16-byte cache lines seems to be best choice. As
we described in Section 3.1, we believe this is mainly because

11We did not consider 32 as a potential cache line size since
this size would not be able to support 2,048 threads given
the maximum size of shared memory (i.e. 48KB).
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Figure 13: Slowdown/speedup when using 8B and 24B
cache lines over using 16B cache lines.

16-bytes is the widest available load/store size on GPU ISA
and hence, the entire cache line can be read/written with
one memory access.

Decreasing the cache line size to 8-bytes impacts perfor-
mance negatively in every case, since the cache then typ-
ically needs to execute the inserted memory access function
twice as often for a fixed amount of streaming data to be
processed by the application. Note that our benchmarks
primarily consist of streaming applications that have high
spatial locality and that consume most of the data in a cache
lines.

Increasing the cache line size to 24-bytes also reduces per-
formance in all but two cases, mainly because 24 bytes do
not provide much additional benefit over 16 bytes, yet re-
quire two memory accesses to fill a cache line instead of one.
For example to process 48 characters accessed sequentially,
a 16B cache line results in 3 misses and thus 3 L2/DRAM
accesses, whereas a 24B cache line results in 2 misses and
thus 4 L2/DRAM accesses.

5. RELATED WORK
A large body of work focuses on using shared memory to
increase the performance of applications in an application
centeric way [4, 10, 12, 17, 18, 22]. For instance, Nukada et
al. propose an efficient 3D FFT that uses shared memory
to exchange data efficiently between threads [15].

Other work studies more general approaches to harness the
benefits of shared memory, typically by providing libraries or
compile time systems that use shared memory as a scratch-
pad to optimize the memory performance of applications [1,
7, 9, 13, 20, 26]. For instance CudaDMA provides a library
targeting scientific applications that allows the program-
mer to stage data in shared memory and use the data from
there [2]. A producer consumer approach is proposed where
some warps only load the data in shared memory (producer)
and others only compute (consumer). What we achieve with
S-L1 can also be achieved with CudaDMA; however with
CudaDMA the programmer must use the API manually, set
the number of producer and consumer threads, and assign
the proper size of shared memory to different threads.

Yang et al. propose a series of compiler optimizations, in-
cluding vectorization and data prefetching, to improve the

bandwidth of GPU memory [26]. In particular, they provide
a technique in which uncoalesced memory accesses are trans-
formed to coalesced ones using shared memory for staging.

Other researchers have also studied the characteristics of
GPU memory and GPU caches [5, 25]. Jia et al. char-
acterize L1 cache locality in Nvidia GPUs and provide a
taxonomy for reasoning about different types of access pat-
terns and how they might benefit from L1 caches [8]. Tore
et al. provide insights into how to tune the configuration
of GPU threads to achieve higher cache hit rates and also
offers an observation on how the L1 impacts a handful of
simple kernels [19].

Li et al. suggested that register files are a better storage
for thread-private data than shared memory [11]. As an
experiment, we modified S-L1 to use register files for data
storage instead of shared memory, but this led to poorer
performance. The reason, we found, is that GPU registers
are small (e.g. 4-bytes) and therefore, a cache-line spans
multiple registers, which will cause the entire cache line (e.g.
four registers) to be copied to local memory before a location
of it is accessed, if the accesses are dynamic (i.e. not know
at compile time) – which is the case in S-L1.

Finally, a number of potential architectural changes that
could improve the GPU caching behavior have been pro-
posed, including a recent study that analyzes potential co-
herent models for GPU L1 caches [16].

6. CONCLUDING REMARKS
By reverse-engineering the Nvidia GTX Titan Black through
a series of experiments, we characterized the behavior of the
memory hierarchy of modern GPUs. We showed that the
bandwidth between off-chip memory and GPU SMXs is lim-
ited so that the latency of L2/DRAM accesses increases sub-
stantially the more memory intensive the application. We
also showed that raw GPU compute power has been grow-
ing faster than the size of on-chip L1 caches, resulting in
substantially increased L2/DRAM access latencies once the
memory intensity of the application reached a threshold.

To address these issues, we proposed S-L1, a GPU level 1
cache which is implemented entirely in software using SMX
shared memory. S-L1 determines, at run time, the proper
size of cache, samples the effectiveness of caching the data
of different data structures, and based on that information,
decides what data to cache. Although the software imple-
mentation adds 8% overhead to the applications we tested
on average, our experimental results show that this over-
head is amortized by faster average memory access latencies
for most of these applications. Specifically, S-L1 achieves
speedups of between 0.86 and 4.30 (1.90 avg) over hardware
L1 and between 0.95 and 6.50 (2.10 avg) over no L1 caching
on ten GPU-local streaming applications. Combining S-L1
with BigKernel, the fastest known technique accelerating
GPU applications processing large data sets located in CPU
memory, we achieved speedups of between 1.07 and 1.45
(1.19 avg.) over BigKernel alone, and speedups of between
1.07 and 6.37 (3.7 avg.) over the fastest CPU multicore
implementations.

While it is understandable that GPU designers need to pri-



oritize optimizations for graphical processing and maintain
commodity pricing, we believe that our work provides some
indications of how GPU designers could enhance current de-
signs to make GPU designs more effective for data intensive
GPGPU applications. The most straightforward enhance-
ment is to significantly increase the size of the L1 — its cur-
rent size only supports 0.18 cache lines per thread when ap-
plications run with the maximum number of online threads
allowed. Another enhancement would be to allow on-chip
cache geometry to be more configurable, particularly allow-
ing the cache lines to be smaller.

In future work, we intend to reduce the overhead of S-L1 by
relying more on the compile-time technology. Using com-
piler technology, we can avoid transforming memory accesses
to data structures that are statically known to exhibit poor
caching behavior. Moreover, if accesses to all data structures
can be statically analyzed, the monitoring phase might also
become unnecessary.
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