
86 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /17/ $ 3 3 . 0 0 © 2 017 I E E E

FEATURE: CONTINUOUS DEPLOYMENT

FACEBOOK HAS SEEN the number
of its developers increase by a factor
of 20 over a six-year period, while
the code base size has increased by
a factor of 50.1 However, instead of
slowing down, developer productiv-
ity has remained constant as mea-
sured in lines per developer. Facebook
attributes much of this success to its
 continuous-deployment practices.

Continuous deployment involves
automatically testing incremental
software changes and frequently de-
ploying them to production environ-
ments. With it, developers’ changes
can reach customers in days or even
hours. Such ultrafast changes have
fundamentally shifted much of the
software engineering landscape, with
a wide-ranging impact on organiza-
tions’ culture, skills, and practices.

To study this fundamental shift,
researchers facilitated a one-day Con-
tinuous Deployment Summit on the
Facebook campus in July 2015. The
summit aimed to share best prac-
tices and challenges in transitioning
to continuous deployment. It was at-
tended by one representative each
from Cisco, Facebook, Google, IBM,
LexisNexis, Microsoft, Mozilla, Net-
� ix, Red Hat, and SAS. These 10
companies represent a spectrum from
continuous-deployment pioneers with
mature implementations to compa-
nies with architectural baggage ne-
cessitating a multiyear transition to
continuous deployment. Deployments
of their products range from 1,000
times daily to once or twice yearly.
However, all the companies strive to
leverage faster deployment to deliver
higher-quality products to their cus-
tomers ever faster. To do this, they
use advanced analytics to translate
a deluge of available telemetry data
into improved products.

Here, we discuss the summit,
focusing on the top 10 adages that

The Top 10
Adages in
Continuous
Deployment
Chris Parnin, North Carolina State University

Eric Helms, Red Hat Software

Chris Atlee, Mozilla

Harley Boughton, IBM

Mark Ghattas, Cisco Systems

Andy Glover, Net� ix

James Holman, SAS

John Micco, Google

Brendan Murphy, Microsoft

Tony Savor, Facebook

Michael Stumm, University of Toronto

Shari Whitaker, LexisNexis

Laurie Williams, North Carolina State University

// On the basis of discussions at the Continuous

Deployment Summit, researchers derived

10 adages about continuous-deployment

practices. These adages represent a working

set of approaches and beliefs that guide

current practice and establish a tangible

target for empirical validation. //

Authorized licensed use limited to: The University of Toronto. Downloaded on January 28,2023 at 19:46:38 UTC from IEEE Xplore. Restrictions apply.

MAY/JUNE 2017 | IEEE SOFTWARE 87

emerged from it. These adages rep-
resent a working set of approaches
and beliefs that guide current prac-
tice and establish a tangible target
for empirical validation by the re-
search community.

Practices Used
at the Companies
Before the summit, 17 teams from nine
of the 10 companies completed a sur-
vey on continuous- deployment prac-

tices (github.com/alt-code/Research
/blob/master/Continuous/Summit
2015.md). The respondents indicated
how often their company used each of
11 common practices. (Table 1 de� nes
some of these practices and other
continuous- deployment terms.) Al-
though the respondents could in-
dicate partial use of a practice,
none did. They either used a prac-
tice all the time, didn’t use it all, or
weren’t sure.

Figure 1 summarizes the compa-
nies’ practices. The most frequent
practices were automated unit test-
ing, staging, and branching. The
companies also often used code re-
view as a manual signoff in an oth-
erwise highly automated deployment
process. We’ve observed a resur-
gence of code review, now often han-
dled through lightweight distributed
tools, because engineers are more
motivated to have others view their

TA
B

L
E

 1 A continuous-deployment glossary.

Term De� nition

Branching or branch
deployments

A practice in which deployed changes are developed, tested, deployed, and maintained on a branch separate
from the main truck of development.

Canary releasing or
gradual rollouts

A practice in which code under test is � rst released to a small batch of real users. If the metrics deviate from
nominal ranges, routing to canary release might automatically halt.

Change ownership A practice in which developers are responsible for software changes for all phases, including development,
testing, deployment, and � xing problems.

Con� guration
management

A process in which an inventory of software and production assets is provisioned and controlled through
package managers and tools such as Ansible.

Continuous deployment A process in which incremental software changes are automatically tested, vetted, and deployed to production
environments.

Dark launching A practice in which code is incrementally deployed into production but remains invisible to users.

De� ighting or rollback A method for rolling back or decommissioning a defective change and removing it from the deployment pipeline.

Deployment pipeline or
automated deployment

A conceptual tool chain or practice for managing the testing and analysis of software and its release to
production environments.

Deployment strategy A method for updating running infrastructure with new versions of software and handling issues such as
migrating data, services, and client requests.

End-user communication A practice enabling communication with users to receive feedback and gather requirements.

Feature � ags A mechanism for dynamically enabling features during production, often controlled by a global in-memory store
and cached locally in service instances.

Microservices An architectural style in which services are created as small and often stateless instances and connected
through a central discovery service and property store.

Retrospectives A practice in which team members discuss the causes and consequences of an unexpected operation outage or
deployment failure.

Staging or baking A stage in the deployment pipeline in which developers test a new software version in a production-like
environment. For example, some companies might bake a new version for eight hours before deployment.

Telemetry A practice in which code is instrumented to compute metrics about feature use and software performance and
stability.

Authorized licensed use limited to: The University of Toronto. Downloaded on January 28,2023 at 19:46:38 UTC from IEEE Xplore. Restrictions apply.

88 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: CONTINUOUS DEPLOYMENT

code before it’s rapidly deployed and
defects become public. In addition,
the companies used change owner-
ship, in which engineers are on call
to deal with the implications of their
own defects, rather than the com-
pany having a separate � eld sup-
port group that bears the brunt of
all defects. So, engineers are more
motivated to deploy high-quality
software.2

The respondents also reported
the bene� ts they realized from
continuous-deployment practices.
The most prevalent bene� ts were
improved speed of feature delivery,
quality, and customer satisfaction.
Also, employees were happier be-
cause of quicker customer feedback
and reduced stress. Although mak-
ing defects public with rapid deploy-
ment might increase stress, the trad-
eoff is that the stress of missing a
release deadline diminishes when the
next release train soon leaves the sta-
tion. In contrast, keeping strict, in-
frequent deployment deadlines can
harm quality.3 With continuous de-
ployment, management felt decisions
were more data-driven with rapid
feedback. Teams also believed they

achieved higher productivity and
better overall collaboration.

In addition, the respondents re-
ported on continuous deployment’s
challenges. Architecture, safety, and
consistency can suffer when devel-
opment emphasizes delivery speed.4

With more frequent deployments,
the ability to test multiple software
con� gurations is often limited,
leaving some common features such
as accessibility untested.5 Teams
might resist changes to their devel-
opment process, especially when
traditional roles must be blended
into one team. Products with mono-
lithic architectures, technical debt,
and few automated tests might have
a slower increase in deployment fre-
quency, potentially taking years to
reach continuous deployment. Fi-
nally, products requiring high levels
of safety and regulation might not
be able to fully adopt continuous
deployment.

The Adages
Although none of the following ad-
ages applied to all 10 companies, all
the participants agreed with these
concepts.

1. Every Feature Is an Experiment
Jez Humble argues that a key to run-
ning a lean enterprise is to “take an
experimental approach to product
development.”6 In this view, no fea-
ture will likely persist for long with-
out data justifying its existence.

Previously, feature choices were
carefully considered and traded off.
Those chosen were designed, built,
and then delivered. Evidence rarely
supported decisions.

With continuous deployment, de-
velopers treat every planned feature
as an experiment, allowing some de-
ployed features to die. For example,
on Net� ix.com, if not enough people
hover over a new element, a new ex-
periment might move the element to
a new location on the screen. If all
experiments show a lack of interest,
the new feature is deleted.

Summit participants reported
using several supporting practices.
Generally, the companies collect sta-
tistics on every aspect of the soft-
ware. They record performance
and stability metrics, such as page-
rendering times, database column
accesses, exceptions and error codes,
response times, and API method

Staging

Use (%)

0 25 50 75 100

Change ownership

Branching

Telemetry

Feature �ags

End-user communication

Dark launching

Code review

Automated system testing

Automated unit testing

Automated deployment

All the time
Not at all
Not sure

FIGURE 1. The survey respondents’ use of 11 continuous-deployment practices (17 teams from nine companies responded). For

explanations of some of these practices, see Table 1.

Authorized licensed use limited to: The University of Toronto. Downloaded on January 28,2023 at 19:46:38 UTC from IEEE Xplore. Restrictions apply.

 MAY/JUNE 2017 | IEEE SOFTWARE 89

call rates. For companies to collect
this information, the software’s ar-
chitecture must be designed with a
telemetry- first mind-set. Instead of
keeping localized copies of perfor-
mance and error logs on a server, the
companies stream metrics to a cen-
tralized in-memory data store. Fi-
nally, to support data analytics, sev-
eral companies employ a large staff of
data scientists, reaching as much as a
third of the engineering staff. These
companies create and use a rich set of
data exploration tools, including cus-
tom data query languages.

However, several challenges ex-
ist. For example, some companies
quickly outgrew the infrastructure
for storing metric-related data. Net-
flix initially collected 1.2 million
metrics related to its streaming ser-
vices, but that soon ballooned to 1
billion metrics. Not only could the
in-memory data store no longer
keep up, but the company also had
to more carefully consider what data
was essential for experimentation.

Additionally, engineering queries
to extract relevant information for a
feature is complex. One participant
remarked, “You need a PhD to write
a data analysis query.” Significant
investment in both telemetry and an-
alytics is needed. Investing in these
efforts separately can be costly. The
participants discussed situations in
which they had collected enormous
amounts of data but had to redo the
experiment because one essential
data point was missing.

Nevertheless, not every feature
warrants full experimentation, es-
pecially non-user-facing features
such as those related to storage. Ad-
ditionally, developers must carefully
consider the privacy implications of
data collection.

As companies move forward,
they’ll face the challenge of how to

establish a culture of feature exper-
imentation. How can they enable
teams to consistently collect targeted
information throughout a feature’s
life cycle without introducing too
much overhead or process?

2. The Cost of Change Is Dead
The cost to change code during pro-
duction can be surprisingly cheap.
This contrasts starkly with the pre-
dictions that fixes in deployed soft-
ware would become exponentially
more expensive. In 1981, Barry
Boehm showed that the cost of
change increases tenfold with each
development phase.7 For example, if
fixing a change during coding costs
$100, fixing it during testing will
cost $1,000, and fixing it during
production will cost $10,000.

With continuous deployment, the
time between development and de-
fect discovery during production is
typically short, on the order of hours
or days. For example, a developer
pushes a new feature into produc-
tion after two days’ work. The next
day, a user reports a defect. The fix
should be efficient because the devel-
oper just finished and can remember
what he or she just did. With con-
tinuous deployment, all develop-
ment phases happen the “same day”
by the same person or persons, and
the exponential cost increase doesn’t
happen. So, the cost-of-change curve
flattens. Thus, a change that costs
$100 to fix during development will
also cost $100 during production.

Google has found that the scope
of changes to review during trouble-
shooting is small, which makes pin-
pointing culprits easier and quicker.
Also, when changes are deployed
into the production environment,
the development team becomes
aware of release process challenges
more quickly through feedback. At

Facebook, developers must confirm
through their in-house chat system
that they’re on standby or that their
change won’t go live during one of
two daily production rollouts. So,
all developers with outgoing changes
can react to any bugs found min-
utes after going live. Hardly any of
the summit participants discussed
the cost of changes, indicating that
the effects are minimal compared to
other cost concerns.

With more traditional release and
deployment models, code undergoes
rounds of quality assurance to flush
out defects. If the release cycle is
three to six months, newly found de-
fects might not be addressed for us-
ers for another three to six months.
Even shorter maintenance cycles are
still orders of magnitude longer than
daily deployments. Continuous de-
ployment lets developers speedily de-
ploy new features and defect fixes.

Continuous deployment doesn’t
guarantee that a defect will be found
immediately. If it’s found later, the
cost of change is the same as before.
However, if a defect isn’t found for a
long time, it’s likely to be in a low-
use feature.

3. Be Fast to Deploy but
Slow (or Slower) to Release
Deploying code into production
doesn’t necessarily mean user-facing
features are available to customers
right away. Sometimes, a new fea-
ture might be deployed and evaluated
during production for several months
before being publicly released.

For example, at Instagram (a
Facebook company), an engineer
might want to build a new feature
for threading messages on picture
comments. By deploying code into
production, the engineer can evalu-
ate and test the feature in a live en-
vironment by running the code but

Authorized licensed use limited to: The University of Toronto. Downloaded on January 28,2023 at 19:46:38 UTC from IEEE Xplore. Restrictions apply.

90 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: CONTINUOUS DEPLOYMENT

keeping the results invisible to users
by not enabling the new feature in
the user interface. This dark launch
lets the engineer slowly deploy and
stabilize small chunks directly dur-
ing production without impacting
the user experience. After stabiliza-
tion, the engineer can turn on the
feature and release it.

Summit participants described
several techniques and reasons for
slowing down releases. Instagram
often uses dark launches to deploy
and stabilize features for up to six
months before officially releas-
ing them. Microsoft often deploys
large architectural changes, using a
combination of dark launches and
feature flags. With a feature flag,
a feature is deployed but disabled
until it’s ready for release; the de-
veloper turns the feature off and
on through a configuration server.
This practice lets Microsoft avoid
dealing with integration issues or
maintaining long-running feature
branches. Deploying changes early,
often, and frequently during pro-
duction reduces the overall deploy-
ment friction.

However, this approach poses
many challenges. Dynamic configu-
ration lets developers quickly react
to problems by disabling features,
but developers can just as easily
cause outages by inadvertently en-
tering invalid configuration states.
Many summit participants reported
that although code changes went
through rigorous testing and analy-
sis, sufficient tooling wasn’t neces-
sarily available to test and evaluate
configuration changes with the same
rigor. Cleaning up and removing un-
needed feature flags is a highly vari-
able practice that often contributed
to technical debt. For some sum-
mit companies, creating a duplicate
production environment, or shadow

infrastructure, is too expensive or
complicated. They’re forced to do
testing during production, even if
that’s not strictly desired.

Many techniques can control the
speed at which customers see new
changes. A company can release
software slowly while still deploying
every day. Companies must spend
extra engineering effort to ensure
that delayed-release strategies and
testing during production don’t neg-
atively affect the user experience.

4. Invest for Survival
Survival in today’s market means in-
vesting in tooling and automation.
Practices once seen as best practices
or measures of maturity are now the
backbone of a process that relies on
rapid deployment. Automated sys-
tem testing used to be a way to run
large test suites to verify that enter-
prise applications hadn’t regressed
between releases. Now, these tests
are necessary so that developers can
get quick feedback and so that re-
leases can be automated to accept or
fail a patch. This tooling lets small
teams manage large infrastructures.

Companies at the top of the
continuous-deployment spectrum,
such as Instagram and Netflix, say
that tooling pays massive dividends.
Facebook found that a small team
that’s focused on tooling and release
automation can empower a much
larger team of feature-focused de-
velopers. Instagram uses automa-
tion to enforce process. Tooling in-
vestment allows capturing common
workflows and tasks into repeatable,
runnable operations that developers
or automated systems can perform.
Capturing process in tools allows
processes to be tested, versioned,
and vetted like production code.

Instagram faced challenges with
partial automation of a process,

which has the risk of developers be-
ing unaware of implicit steps needed
during deployment. For example, a
developer might forget to manually
obtain an operation lock on a service
(through another tool) before run-
ning a deployment command.

Practitioners are seeing that for
them to stay competitive and survive,
best practices such as automated
unit testing are a must. Providing a
superior product is now coupled to
the speed at which enhancements are
deployed. This change requires com-
panies to invest strategically in auto-
mation as the scope and scale change
over time.

5. You Are the Support Person
Developers have the power and free-
dom to deploy changes at their own
behest. With great power comes
great responsibility. If code breaks
during production, whose responsi-
bility is it—the developer’s or opera-
tions team’s?

Traditional software methods en-
courage responsibility silos. Devel-
opers “throw code over the wall” to
quality assurance (QA) teams, who
then throw it over another wall to
operations teams. Several summit
participants discussed developers
who code but don’t stop to under-
stand requirements, user stories, or
production environments. By own-
ing a feature or code change from
cradle to grave (from inception to
deployment), the burden is on the
developer. This burden means that
when things break, the developer
is the one who gets the support call
and must fix the issue, no matter
what time of day.

Because developers own changes
from cradle to grave, traditional team
structures must change. Netflix has
no dedicated operations teams. Al-
though functional roles still exist,

Authorized licensed use limited to: The University of Toronto. Downloaded on January 28,2023 at 19:46:38 UTC from IEEE Xplore. Restrictions apply.

 MAY/JUNE 2017 | IEEE SOFTWARE 91

such as QA or operations, they’re em-
bedded in development teams, creat-
ing hundreds of loosely coupled but
highly aligned teams. Instead of hav-
ing a dedicated function (for exam-
ple, QA, operations, or development),
teams have a representative cross
section of the necessary roles. Insta-
gram has found value in teams with
members who focus on areas but
are, as part of the team, ultimately
responsible for the life of a feature.
Both Instagram and Red Hat have
employed support rotations in which
each team member spends time han-
dling customer support, which results
in shared pain.

Giving teams autonomy comes
with challenges—for example, how
do autonomous teams integrate
with each other reliably? Netflix
achieves this integration through
a microservices architecture that
requires teams to build APIs that
they maintain and ensure are stable
from change to change. Google en-
forces team service communication
through a common API type and a
defined data type that all services
must use. With defined communi-
cation standards, teams are free to
build what they need to accomplish
their tasks, in whatever way is the
most efficient for them.

From an organizational stand-
point, how do teams migrate to this
new view of the world? LexisNexis
has seen that with traditional orga-
nization structures, different teams
report to different parts of the or-
ganization with different goals,
which makes integrating those
teams that much harder. Further-
more, other areas requiring change
make tackling team and ownership
aspects (such as manual tests and
resource constraints) difficult. The
developer’s role is becoming less hor-
izontal and more vertical, increasing

responsibility but also empower-
ing developers to understand their
changes’ impact.

6. Configuration Is Code
Continuous-deployment practitioners
are finding that, at scale, not treat-
ing configuration like code leads to
a significant number of production
issues. Traditionally, configuration
has been considered a runtime mat-
ter managed by an operations team
or system administrators.

Changes are made to servers live,
often in a one-off fashion that can

lead to server drift. For example,
an engineer is experimenting with
optimizing query speeds for a da-
tabase and changes the configura-
tion on one of the database boxes.
This change must be replicated to
four database servers. When multi-
ple servers are intended to represent
the same application, having even
one undergo configuration drift can
lead to unknown or difficult-to-
debug breakages.

Modern configuration manage-
ment tools, such as Ansible, Puppet,
Chef, and Salt, allow configuration
management to be scripted and or-
chestrated across all server assets.

The new normal is that organi-
zations should treat managing con-
figuration the same as managing
features and code. For example, at
Netflix, for every commit, the build
process creates a Debian package
completely specifying the needed de-
pendencies and then installs them in

a new Amazon Web Services virtual-
machine image.

The summit participants from
Facebook and Netflix noted that de-
spite tooling, configuration changes
can still cause difficult-to-debug er-
rors. Netflix does 60,000 of such
changes daily and has no system for
tracking or reviewing them. This
leads to, as the Netflix participant
put it, the company often shooting
itself in the foot. Red Hat teams have
found that, just as with large code
bases, large configuration suites can
become unruly.

The lesson from the companies
at the bottom of the continuous-
deployment spectrum is to consider
configuration management right
from the start of a new project or
when transitioning projects with ar-
chitectural baggage to a continuous-
deployment model. In other words,
configuration management should
be a core competency that’s treated
like code. Treating configuration
like code implies using all the best
practices related to coupling, cohe-
sion, continuous integration, and
scale.

7. Comfort the Customer
with Discomfort
As companies transition to continu-
ous deployment, they’re experiment-
ing with ways to comfort customers
regarding the new pace of delivery.
In today’s consumer world, as prod-
ucts and devices receive a constant
stream of updates, customers often

Organizations should treat managing
configuration the same as managing

features and code.

Authorized licensed use limited to: The University of Toronto. Downloaded on January 28,2023 at 19:46:38 UTC from IEEE Xplore. Restrictions apply.

92 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: CONTINUOUS DEPLOYMENT

have no choice but to accept them.
New generations of customers
might, in fact, expect them. If mo-
bile devices are training all of us to
accept constant change, and if even
cars and televisions are automati-
cally updating themselves, why not
business software? The number of
customers willing to wait a year or
two for updates will rapidly dwin-
dle. Still, not all customers and com-
panies are ready for this change.

One prominent example of this
challenge involves Microsoft’s expe-

rience with Windows 10. Microsoft
has shifted from large, infrequent
updates of its OS to regular incre-
mental improvements. The effort to
migrate users to Windows 10 has
also been notably more proactive—
for example, prefetching installation
files, frequently prompting users to
upgrade, and restricting their ability
to opt out of updates. These changes
might appeal to savvier customers
but burden enterprise customers who
might be unwilling or unable to ac-
cept frequent changes owing to those
customers’ internal integration test-
ing and regulatory concerns.

IBM and Mozilla include impor-
tant stakeholders in unit and inte-
gration tests during development.
This reduces the risk of failed de-
ployments on the stakeholders’
premises and helps them feel more
comfortable accepting new releases.
Cisco has been exploring using more
rapid deployments as a model for co-
invention with customers.

Often, the biggest source of cus-
tomer discomfort is the disrupted
productivity when a customer up-
grades versions. For example, IBM
used to take a month to migrate
a system to a new version at a cus-
tomer’s site. The primary challenge
was coordinating code and database
changes with on-premises instances.
Eventually, IBM shortened the pro-
cess to one hour. Similarly, at SAS,
the biggest deployment barrier was
that each deployment imposed long
periods of downtime for customers

and had to support many versions of
datasets and deployed systems.

When moving speedily, compa-
nies must consider whether they’re
moving faster than users desire. Still,
the best comfort a company can pro-
vide is the ability to deliver a change
at a moment’s notice, whenever the
customer is ready.

8. Looking Back to Move Forward
Continuous deployment requires
continuous reflection on the delivery
process.

Almost every summit participant
had a story about bringing down en-
tire operations with accidental mis-
takes in configuration changes. For
example, a malformed JSON (Java-
Script Object Notation) setting once
brought down the entire discovery
component of Netflix’s architecture.

To support reflection on produc-
tion failures, all the companies em-
ploy retrospectives (or postmortems).
In retrospectives, team members

discuss the causes and consequences
of an unexpected operation outage or
deployment failure. They also discuss
potential process changes.

Several participants described
their experiences with retrospec-
tives. At Netflix, developers report
outages as issues in an issue tracker
and rate their severity. By tracking
outages, developers can perform a
meta-analysis of them to uncover
trends and systematic issues with
deployment processes. More severe
outages are discussed at weekly ret-
rospectives, which are attended by
multiple stakeholders across teams.

Some participants mentioned
that despite retrospectives’ useful-
ness, they can be dreadful. Develop-
ers find it hard to hear about a cod-
ing mistake’s impact on users and
have trouble factoring out emotions.
Mentioning victories can help main-
tain team morale and ease raw emo-
tions. In certain circumstances, it
makes sense to leave the responsible
party outside the room, if possible.
Still, despite the potential unease
during postmortems, several compa-
nies observed a considerable drop in
errors after starting them.

Retrospectives can also shift cul-
tural views. At Facebook’s inception,
the company instilled its developers
with a culture of “Move fast, break
things.” However at a certain point,
that message was taken too far, and
a new moderating creed emerged:
“Slow down and fix your s***.”

Some of the other companies have
reflected on the benefits of particu-
lar practices and have sought data
verifying the benefits. For example,
after extensively studying code re-
views, Microsoft has so far found no
significant defect reduction. Instead,
the primary benefits involve knowl-
edge sharing and improved on-
boarding (the process by which new

When moving speedily, companies must
consider whether they’re moving faster

than users desire.

Authorized licensed use limited to: The University of Toronto. Downloaded on January 28,2023 at 19:46:38 UTC from IEEE Xplore. Restrictions apply.

 MAY/JUNE 2017 | IEEE SOFTWARE 93

employees learn the necessary skills
and behaviors).

As companies continue to adopt
continuous deployment, the need ex-
ists not only to calibrate how a prac-
tice is exercised and how a culture is
defined but also to constantly ques-
tion the benefits and effectiveness of
having those practices and cultures
in the first place. An important as-
pect of retrospectives is to maintain
a “blameless culture,” but this can
be difficult when developers are also
expected to be fully responsible for
their deployed changes from cradle
to grave.

9. Invite Privacy and Security In
Most summit participants indicated
that privacy and software security
were silos—the responsibility of a
specific group and not the responsi-
bility of all the developers involved
in implementing deployable soft-
ware. Continuous deployment might
increase risk because privacy and
security experts can’t review every
rapidly deployed change and be-
cause sprints often don’t plan for se-
curity concerns.8

As we mentioned before, in wa-
terfall and spiral development, de-
velopers throw the code over the
wall to testers to deal with defects.
With agile methodologies, testers
are “invited to the table” and par-
ticipate as partners from the begin-
ning of an iteration. Together, then,
the developers and testers throw
their tested products over the wall
to the operations team to deploy
the product.

With continuous deployment, the
operations team is also invited to the
table, participating throughout an it-
eration and dealing with the opera-
tions implications of feature devel-
opment. However, the people in the
security and privacy silos often aren’t

invited to the table. Since 2012, re-
searchers have been discussing how
to establish collaboration between
security teams and development and
IT teams.9 This collaboration is usu-
ally called DevSecOps. We propose
going further and explicitly inviting
both privacy and security (PrivSec)
folk to be involved throughout devel-
opment (DevPrivSecOps). The aim is
to increase the security knowledge of
developers, testers, and operations
staff and increase the partnership of
privacy and security experts.

Companies can have a separate
process or oversight for changes that
have a higher security risk or pri-
vacy implications. At Facebook, a
code change considered to have pri-
vacy implications might go through
a push process that’s longer than a
daily one.10 Additionally, a small
team creates an access layer for all
data and controls that forces adher-
ence to privacy and regulatory con-
cerns. Google has instituted controls
for secure deployment, such as au-
thorizing users who check in code
for deployment, strict access con-
trol, and checksumming binaries.
Google also has a strict division be-
tween its production network and
company network. The production
network consists of servers only;
having no workstations reduces the
possibility of tampering with de-
ployed code.

10. Ready or Not, Here It Comes
Your competitor continuously adds
value to its products. Do you? All
the summit participants indicated
the urgency of rapidly delivering new
functionality to remain competitive.

A 2015 global survey by CA
Technologies indicated that of 1,425
IT executives, 88 percent had ad-
opted DevOps or planned to adopt
it in the next five years.11 DevOps

and continuous deployment have
similar practices; some people in-
formally equate the two approaches.
According to a 2015 Puppet Labs
survey involving 4,976 respondents,
IT organizations that adopted De-
vOps experienced 60 times fewer
failures and deployed 30 times more
frequently than organizations that
hadn’t adopted Dev Ops.12 The re-
spondents indicated widespread
adoption of DevOps worldwide and
in organizations of all sizes. The top
five domains using DevOps were
technology, web software, banking
and finance, education, and tele-
communications. The prevalence
and growth of DevOps is possible
only if performance indicators sup-
port business benefits such as more
customers, collaboration across de-
partments, improved software qual-
ity and performance, and faster
maintenance.11,12

Software engineering educators
must also take notice. In the words
of Brian Stevens, former executive
vice president and chief technol-
ogy officer at Red Hat, “The legacy
model of software engineering just
isn’t going to survive this transi-
tion.”13 Software engineering edu-
cation often lags behind the new re-
ality of continuous deployment and
focuses on the legacy model. Core
undergraduate software engineering
courses must also teach fundamental
skills such as

• continuous integration and
build,

• automated integration and sys-
tem testing, and

• the need to follow good valida-
tion-and-verification practices
if developers don’t want to be
awakened in the middle of the
night to fix the code they de-
ployed that day.

Authorized licensed use limited to: The University of Toronto. Downloaded on January 28,2023 at 19:46:38 UTC from IEEE Xplore. Restrictions apply.

94 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: CONTINUOUS DEPLOYMENT

Additionally, educators must make
undergraduates aware of the realities
of deploying into a live, larger-scale
environment, and the related con-
cerns such as data migration, deploy-
ment strategies, deployment pipe-
lines, and telemetry coding patterns.

R eady or not, here comes con-
tinuous deployment. Will
you be ready to deliver?

References
1. T. Savor et al., “Continuous Deploy-

ment at Facebook and OANDA,”

Proc. 38th Int’l Conf. Software Eng.

Companion, 2016, pp. 21–30.

2. M. Marschall, “Transforming a Six

Month Release Cycle to Continuous

Flow,” Proc. 2007 Agile Conf. (Agile

07), 2007, pp. 395–400.

3. R. Torkar, P. Minoves, and J. Gar-

rigós, “Adopting Free/Libre/Open

Source Software Practices, Tech-

niques and Methods for Industrial

Use,” J. Assoc. for Information Sys-

tems, vol. 12, no. 1, 2011, article 1.

4. Z. Codabux and B. Williams, “Man-

aging Technical Debt: An Industrial

Case Study,” Proc. 4th Int’l Work-

shop Managing Technical Debt,

2013, pp. 8–15.

5. M. Mäntylä et al., “On Rapid

Releases and Software Testing: A

Case Study and a Semi-systematic

Literature Review,” Empirical Soft-

ware Eng., vol. 20, no. 5, 2014, pp.

1384–1425.

6. J. Humble, Lean Enterprise: How

High Performance Organizations In-

novate at Scale, O’Reilly Media, 2015.

7. B.W. Boehm, Software Engineering

Economics, Prentice-Hall, 1981.

8. Z. Azham, I. Ghani, and N. Ithnin,

“Security Backlog in Scrum Security

Practices,” Proc. 5th Malaysian

Conf. Software Eng. (MySEC 11),

2011, pp. 414–417.

9. J. Turnbull, “DevOps & Security,”

presentation at DevOpsDays Austin

2012, 2012; www.slideshare.net

/jamtur01/security-loves-devops

-devopsdays-austin-2012.

10. D.G. Feitelson, E. Frachtenberg,

and K.L. Beck, “Development and

Deployment at Facebook,” IEEE

Internet Computing, vol. 17, no. 4,

2013, pp. 8–17.

11. DevOps: The Worst-Kept Secret to

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

CHRIS PARNIN is an assistant profes-

sor in North Carolina State University’s

Department of Computer Science. Contact

him at cjparnin@ncsu.edu.

HARLEY BOUGHTON is a PhD student

in computer science at York University. He

previously was a software developer and

the program manager for DB2 and dashDB

at IBM. Contact him at boughton@yorku.ca.

ERIC HELMS is a developer at Red Hat

Software and a PhD student in North

Carolina State University’s Department

of Computer Science. Contact him at

edhelms@ncsu.edu.

MARK GHATTAS is a senior solutions

architect at Cisco Systems. Contact him at

mghattas@cisco.com.

CHRIS ATLEE is a senior manager of

release engineering at Mozilla. Contact

him at chris@atlee.ca.

ANDY GLOVER is a manager of delivery

engineering at Net� ix. Contact him at

aglover@net� ix.com.

Authorized licensed use limited to: The University of Toronto. Downloaded on January 28,2023 at 19:46:38 UTC from IEEE Xplore. Restrictions apply.

MAY/JUNE 2017 | IEEE SOFTWARE 95

Winning in the Application Economy,

CA Technologies, Oct. 2014; www

.ca.com/us/~/media/Files/whitepapers

/devops-the-worst-kept-secret-to-win

ning-in-the-application-economy.pdf.

12. 2015 State of DevOps Report, white

paper, Puppet Labs, 2015; puppetlabs

.com/2015-devops-report.

13. B. Stevens, “2014 Red Hat Summit:

Brian Stevens, Red Hat Keynote,”

2014; www.youtube.com/watch

?v=8B56mdobgZE.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

JAMES HOLMAN is a senior director at

SAS and the division head for deployment

of SAS software. Contact him at james

.holman@sas.com.

MICHAEL STUMM is a professor in the

University of Toronto’s Department of Elec-

trical and Computer Engineering. Contact

him at stumm@eecg.toronto.edu.

JOHN MICCO is an engineering-produc-

tivity manager at Google. Contact him at

jmicco@google.com.

SHARI WHITAKER is the manager of

development operations at LexisNexis. Con-

tact her at shari.whitaker@lexisnexis .com.

BRENDAN MURPHY is a principal

researcher at Microsoft. Contact him at

bmurphy@microsoft.com.

LAURIE WILLIAMS is a professor and

the associate department head in North

Carolina State University’s Department of

Computer Science. Contact her at lawilli3@

ncsu.edu.

TONY SAVOR is an engineering director

at Facebook and an adjunct professor in

the University of Toronto’s Departments

of Computer Science and Electrical and

Computer Engineering. Contact him at

tsavor@fb.com.

www.computer.org/itpro

Technology Solutions for the Enterprise

Authorized licensed use limited to: The University of Toronto. Downloaded on January 28,2023 at 19:46:38 UTC from IEEE Xplore. Restrictions apply.

