
Prioritized Multiprocessor Networks: Design and PerformanceGovindan Ravindran and Michael StummDepartment of Electrical and Computer EngineeringUniversity of TorontoToronto, Canada M5S 3G4Email: gravin@eecg.toronto.eduAbstractThis paper proposes and evaluates prioritized di-rect shared-memory multiprocessor networks. We usethree components to implement prioritized networks,namely, priority-based link arbitration, priority inher-itance, and dynamic virtual channels. The two ma-jor results from our study are: (i) adding prioritiesto direct shared-memory multiprocessor networks canlead to reduced average transaction latencies and in-creased system throughput when running traditionalparallel applications, and (ii) a prioritized multipro-cessor network can be used to reduce the worst-caselatencies of time-constrained tra�c when it co-existswith best-e�ort tra�c, without penalizing the averageperformance of best-e�ort tra�c.1 IntroductionAdding priorities to direct interconnection networks(of shared-memory multiprocessor systems) can leadto a number of advantages. It can reduce average la-tencies and improve system throughput. It can beused to support multiple classes of tra�c, such asmultimedia and regular, best-e�ort tra�c. It leads tomuch lower variances in latency and hence improvedsystem predictability, which is important for (soft)real-time systems.Adding priorities to direct networks is surpris-ingly simple, and involves three main components:(i) priority-based link arbitration, (ii) priority in-heritance, and (iii) dynamic virtual channels. Withpriority-based link arbitration, if two or more packetscompete for the same idle link, the link will be assignedto the higher priority packet (as opposed to assigningin a round-robin or in a FIFO manner). There aremany ways to assign priority to packets. For instance,we can assign priority to packets based on its age,transaction type, or size. Priority-based link arbitra-tion can, however, result in priority inversion, wherea lower priority packet may block a higher prioritypacket that may come behind it in a queue. With pri-

ority inheritance, a blocking lower priority packet atthe head of a queue temporarily inherits the priorityof the higher-priority packet behind it [6]. This allowsthe lower priority packet to obtain the desired linksooner, thereby reducing the queuing delays for higherpriority packets. With dynamic virtual channels, wedynamically allocate new virtual channel bu�ers forhigh priority packets that would otherwise unneces-sarily block [7].In this paper, we show how a connectionlesswormhole switched two-dimensional mesh-connectedshared-memory multiprocessor network can be ex-tended to support priorities of network packets, andwe analyze its performance. Through extensive it-level simulations, we show how such prioritized net-works can signi�cantly reduce latency, improve systemthroughput and predictability.In a related earlier work [8], Rexford et. al. proposevirtual networks for routing di�erent classes of tra�c.Our approach is di�erent in that we use demand drivendynamic virtual channels as opposed to static virtualchannels and employ priority inheritance.2 The ProblemIn this section, we illustrate one of the uses of pri-oritized network, namely to support two classes oftra�c. Multiprocessor systems are increasingly beingused for multimedia applications, while still serving asdata and computation engines. In the backplane net-works of such systems, a variety of tra�c types willco-exist, ranging from the tra�c of sequential and par-allel computations (best-e�ort tra�c), to the tra�c ofmultimedia audio and video communications (time-constrained tra�c). These two types of tra�c havequite di�erent tra�c characteristics and performancerequirements. Time-constrained tra�c often requirea bound on worst-case latency, while a good average-case behavior will su�ce for the best-e�ort tra�c aris-ing from regular computations.Bounds on worst-case latency could be provided

0

500

1000

1500

2000

2500

3000

3500

0.001 0.01 0.1

La
te

nc
y

(t
im

e-
co

ns
t t

ra
ffi

c)
, c

yc
le

s

Request Rate

Worst-case Latency - Non-prioritized Network
Worst-case Latency - Prioritized Network

Ave Latency - Non-prioritized Network
Ave Latency - Prioritized Network

Figure 1: Worst-case and average communication la-tencies of time-constrained tra�c in a 2D 8� 8 mesh-connected multiprocessor network. Worst-case la-tency is shown both for round-robin link arbitrationand with dynamic virtual channels. The errorbarsshow the variances on these values.if the network is connection oriented and resourcescan be reserved in advance during a connection set-up phase. A connectionless network, though may notbe able to guarantee bounds on worst-case latency, al-lows for better utilization of network resources amongseveral classes of tra�c. Wormhole routed connec-tionless networks with round-robin link arbitrationare used in many of todays multiprocessor routers,and they deliver good average performance. How-ever, worst-case communication latency can be veryhigh and unpredictable as the network load increases.Figure 1 illustrates this. Assuming a workload de-scribed in a later section (containing time-constrainedand best-e�ort tra�c), the bottom curve plots the av-erage communication latency of time-constrained re-quests as a function of load rate of best-e�ort requestsfor a 2D 8� 8 mesh network. The top curve plots theworst-case latency of the time-constrained tra�c forthe same workload. We used the batch-mean analysismethod [4], where the average latency is computed asthe grand average of all batch averages and the worst-case latency is computed as the average of all batchworst-case latencies. For the worst-case latency, thetop end of the errorbars represents the global worst-case (over all batches), while the bottom end repre-sents the global best (over all batches) of the worst-cases. It is apparent that the worst-case latenciesand their variance increase signi�cantly as the loadincreases.The curve in the middle plots the worst-case la-

Bi−directional
Links

Router

Processor−Memory
Module

PMFigure 2: A 2D mesh system with 9 processors.tencies of time-constrained tra�c for the same work-load, but for a network that uses the techniques pro-posed in this paper. It is clear from this curve thatthe techniques are e�ective in reducing worst-case la-tency and its variance without the need for bandwidthreservation. While our goal is to reduce the worst-case latency of time-constrained packets, we wish to doso without unnecessarily penalizing best-e�ort tra�c.By routing time-constrained tra�c mainly throughdynamically assigned channels, we reserve a set of pri-mary virtual channels, which we refer to as virtualchannel 0 or VC-0, for best-e�ort tra�c. This pre-vents performance deterioration of best-e�ort tra�ceven when there is a moderately high level of time-constrained tra�c.3 Simulated SystemFor our study, we assume a 2-dimensional, mesh-connected, shared-memory multiprocessor. Figure 2shows the network for a system with 9 processors.Each processing module (PM) contains a processor,a local cache and a portion of the main memory.The connection between each pair of adjacent nodesis bidirectional, implemented as two 32-bit wide uni-directional channels and no end-around connections.This topology allows minimal deadlock free x-y rout-ing that does not require virtual channels [1]. Thisallows us to use virtual channels to route higher pri-ority tra�c to improve system throughput [2]. Weassume wormhole switching, where a packet is sentas a contiguous sequence of its with the header itcontaining the routing and sequencing information [3].The system provides a at, global (physical) ad-dress space, and each PM is assigned a unique con-tiguous portion of that address space, determined byits location. All processors can transparently access

all memory locations in the system. The target mem-ory is determined by the address of the memory beingaccessed. Local memory accesses do not involve thenetwork, while remote memory accesses require a re-quest packet to be sent to the target memory followedby a response packet from the target memory to therequesting processor. For time-constrained tra�c, thePM acts both as a storage node responsible for storingmultimedia data and as well a network node that initi-ates time-constrained requests [5]. The packets are ofvariable size1 and are transferred in its, bit-parallel,along a unique path in the network.In a mesh-connected system, we refer the routerthat connects a PM to the mesh as Network InterfaceController (NIC). A NIC (with virtual channel bu�ers)for a bidirectional mesh is schematically shown in Fig-ure 3a. It is modeled as a 5 � 5 crossbar switch withfour input/output links from and to its four directneighbors and one input/output link from and to thelocal PM. The input links have FIFO bu�ers to storeits that are blocked in the network.The NIC performs basic switching, routing andow control functions. It examines the header it ofa packet to determine which output link the packetshould be forwarded to. The NIC also does properarbitration if there are competing requests for an out-put link. The arbitration policy could be round-robin, priority-based or both. In our study, we assumepriority-based arbitration with two levels of priority:a high and a low priority. If a requested output linkis not available, then the requesting it is blocked andstored in the corresponding input bu�er. It is assumedthat the NIC can connect all inputs to outputs in asingle network clock cycle. Once a switch connectionbetween an input and output link is established, it isbroken only after the last it of a packet has beentransferred. We assume bu�ered wormhole switchingwith NIC bu�er size large enough to store 3 its [7].4 Static Virtual ChannelsA network with virtual channels organizes the itbu�ers associated with each physical channel into sev-eral virtual channels. Virtual channels increase physi-cal channel utilization, and thus network throughput,because any blocked packet that spans several nodesoccupies only one virtual channel, and can be bypassedusing any of the other virtual channels associated witha physical channel. The virtual channels associatedwith a physical channel arbitrate for physical channel1Six main packet types are simulated, namely read request,read response (cache-line size), write request (cache-line size),write response, time-constrained request, and time-constrainedresponse (cache-line size).

bandwidth on a it-by-it basis. With static virtualchannels, the number of virtual channels per physicalchannel remains constant. Figure 3a shows a meshNIC with two virtual channels per physical channel,which remains constant.At the receiving side of a node, the routing algo-rithm �rst assigns an incoming packet to an outputphysical channel and then to a virtual channel. If vir-tual channels are being used for deadlock free routing,then the choice of virtual channel is dictated by therouting protocol; otherwise, another allocation schemeis used or any free virtual channel associated with thephysical channel is chosen. Once a packet is assigneda virtual channel, it-level ow control is used to ad-vance the packet across the switch and the physicalchannel.Hardware support for static virtual channel owcontrol requires status registers at the transmittingand the receiving side of a node [2]. The transmittingnode contains a status register for each virtual channelon the corresponding receiving node. The status reg-ister normally includes a bit to indicate whether thevirtual channel is active or idle and a count of the num-ber of free virtual channel bu�ers. The active/idle bitis used to prevent interleaving of the its of di�erentpackets. The receiving node contains a status regis-ter for each virtual channel that contains informationsuch as the state of the channel and optionally, in-put and output virtual channel pointers. The statusregister storage requirement per physical channel is:Spc = N (log(Bvc) + 1) + N (1)where the �rst and second term represent the storagerequirement at the transmitting and receiving side ofa node, respectively. Bvc is the number of it bu�ersper virtual channel, and N is the number of virtualchannels per physical channel. For N = 4, and Bvc =4 its, the status bu�er storage requirement is 16 bits.Adding virtual channels requires a few additionalwires in the physical channel to identify the virtualchannel for each transmitted packet in the forward di-rection and to indicate the availability of bu�ers tothe transmitting node in the reverse direction. Thevirtual channel bu�er counter at the transmitting sideis incremented each time a it is transmitted to theneighboring node and decremented when the neigh-boring node signals that it has forwarded a it andthus freed up bu�er storage by back propagating afreed bit along with the virtual channel identi�cation.The extra channel width overhead for supporting vir-tual channels in a network with 32-bit phits with 4static virtual channels per physical channel is: 2 bits

Processing Module

Network
Input
Buffers

Static
Virtual
Channels

Network
Physical
Input
Channels

Network
Physical
Output
Channels

Processor
Output
Channel

Processor
Input
Channel

Processor
Input
Buffers

Processor
Ouput
Buffers

Switch

(a)

Processing Module

Network
Input
Buffers

Network
Physical
Input
Channels

Network
Physical
Output
Channels

Processor
Output
Channel

Processor
Input
Channel

Dynamic
Virtual
Channels

Processor
Input
Buffers

Processor
Output
Buffers

Switch

(b)Figure 3: Mesh Network Interface Controller with (a) static and (b) dynamic virtual channels.
Physical channel 0

Allocation bit

Status registers
associated with
physical channel 0

Transmitting Node

Allocation bit

Receiving Node

To switch
00

0

0

0

Idle/Active bit

Buffer count

Output physical channel
allocated to this VC in
the receiving node

1

1

xxx

1

11

001

010

xx

xx xxxx

x

0 00 0001vc0

vc1

vc2

vc3

vc4

vc1

vc3

vc0

0

0

000000

Dynamic VCs

1

1

1

xxxxxx

xxxxxx

vc0

vc1

vc2

vc3

vc4

001 010

011 001

	

0

1

x

0

x

Idle/Active bit

Output VC pointer (optional)

Input VC pointer (optional)Figure 4: Hardware support for dynamic virtual chan-nel ow control is illustrated for one physical channelbetween a transmitting and a receiving node.to transmit the virtual channel id in the forward path,2 bits to transmit the virtual channel channel id in thereverse path, and a freed line.5 Dynamic Virtual ChannelsDynamic virtual channels are similar to static vir-tual channels in that they are multiplexed over a singlephysical channel and each of these dynamic channelshave independent FIFO bu�ers of the same size. How-ever, unlike static virtual channels, virtual channelsin this case are allocated dynamically from a com-mon pool. Thus, the number of virtual channels perphysical channel varies over time, with the minimumnumber per physical channel being 1. Figure 3b showsa NIC with dynamic virtual channels.In our case, a new virtual channel is allocated dy-

namically, if possible, for a high priority packet thatwould otherwise unnecessarily block. The number ofdynamic channels allocated per physical channel thusvaries depending on the contention for the physicalchannel. Routers using dynamic virtual channel allo-cation prevent head-of-line blocking e�ectively, wherea packet waiting for a blocked link is itself blockinganother packet behind it whose target output link isfree.We assume that the total number of virtual chan-nels that can be allocated in a NIC is constant. Ini-tially there is one virtual channel per physical chan-nel, which we refer to as VC-0. A virtual channel isallocated for a packet by the ow-control logic at thetransmitting side of a link, which transmits the dy-namic virtual channel number along with the packet(similar to the static virtual channel allocation case).At the receiving side of a node, when a packet arrives,it is bu�ered in the speci�ed virtual channel bu�er (ifthe virtual channel has been already allocated to thephysical channel). When the speci�ed virtual chan-nel does not exist, it will be allocated from a commonbu�er pool. A dynamic channel, once allocated, is re-leased only when it contains no more data. In the rarecase when there are no free common pool bu�ers2 foran incoming packet, then it cannot be assigned thespeci�ed virtual channel and the packet (header it)is dropped and a drop signal is asserted. The trans-mitting node then retransmits the header it whenthe drop signal is deasserted. This requires the trans-mitting node to keep a copy of the header it whena dynamic virtual channel is requested so that it can2This can happen when two or more arriving packets atdi�erent physical channels require new virtual channels at thesame time and only some of the requests could be granted.

later be retransmitted if necessary. This has no per-formance impact on the system, as it is equivalent toblocking a it for an extra cycle.Dynamic virtual channels can be implemented witha simple extension to the hardware used to supportstatic virtual channels. Figure 4 presents the hard-ware required for implementing dynamic virtual chan-nel ow control for one physical channel between atransmitting and a receiving node. Similar to thestatic virtual channel case, the transmitting node con-tains a status register for each virtual channel on thereceiving side. The number of such status registersis equal to the maximum number of possible dynamicvirtual channels. The status register contains an allo-cation bit to identify whether the virtual channel hasbeen allocated to a physical channel and, if allocated,a bit to indicate whether it is idle or active, and acount of the number of free virtual channel bu�ers. Inaddition to the above, to avoid head-of-line blocking, 3bits are required to store the output physical channelnumber assigned to the packet at the head of virtualchannel bu�er in the receiving node.The receiving side contains a status register for eachvirtual channel; the register contains an allocation bitand/or an idle/active bit. The status register storagerequirement per physical channel is therefore:Spc = Nmax(log(Bvc) + 2 + 3) + 2 �Nmax (2)where the �rst and second term represents the storagerequirement at the transmitting and receiving side of anode, respectively, Bvc is the number of it bu�ers perdynamic virtual channel, and Nmax is the number ofmaximum virtual channels that can be assigned. ForNmax = 4, and Bvc = 4 its, the status bu�er storagerequirement becomes 36 bits.With respect to channel width overhead, similar tothe static virtual channel case, we need to identify thevirtual channel number both in the forward directionthat is transmitted along with the packet and in thereverse direction that is transmitted along with thefreed signal. In addition, an extra wire is required forthe drop signal that is asserted when a header it isdropped.6 SimulatorThe simulator we use reects the behavior of thesystem we simulate at the register-transfer level ona cycle-by-cycle basis. It was implemented using thesmpl simulation library [4]. The batch means methodof output analysis was used, with the �rst batch dis-carded to account for initialization bias. A base ver-sion of the simulator was validated against measure-ments taken from the Hector prototype, a hierarchical

slotted ring architecture [9]. The base simulator wasthen extended to model meshes and switching tech-niques such as wormhole switching.3Our measures of performance are system through-put (in requests completed per processor cycle), andworst-case and average round-trip memory access la-tency (in processor clock cycles). We assume that thenetwork clock cycle is twice the processor clock cy-cle. The average round-trip latency is computed as thegrand average of all batch averages, while the worst-case round-trip latency is computed as the average ofmaximum round-trip latency of all batches.A processor is allowed to have four outstanding re-quests, before it is required to block for a reply. Thisparameter is used to model processors with prefetch-ing and/or multi-threading. For best-e�ort tra�c, weassume the probability of a request being a read is0.7 (the remaining being write requests). The batchtermination condition is that all processors have tocomplete a minimum number of requests.7 Prioritized Direct NetworksIn our implementation of a prioritized direct net-work, one virtual channel, VC-0, is initially staticallyassigned to each physical channel. In addition, vir-tual channels are allocated dynamically (from a pool)to a physical channel. Low-priority packets may onlyuse VC-0s, while high priority packets use dynamicallyassigned channel(s).We use a three step process to allocate output links.Output links are �rst allocated to high priority packetsbu�ered in dynamic virtual channels. Among compet-ing high priority packets, we allocate the output linkto the oldest one. Second, we assign output links tohigh priority packets, if any, at the head of the pro-cessor input queue. Finally, lower priority packets inthe VC-0s and at the processor input queues are as-signed output links in that order. Since we have inde-pendent virtual channels for time-constrained tra�cin the network, we need to apply priority inheritanceonly at processor input queues, as that is the onlyplace where priority inversion can occur.In this section, we show how e�ective priority net-works are in reducing latency and in improving sys-tem throughput and predictability. We do this bysimulating a 2-dimensional mesh-connected network,extended with priority-based link arbitration, priorityinheritance, and dynamic virtual channels. Althoughour evaluations are for two priority levels, a high and3For the mesh simulator, the processor and memorymodulesare essentially the same as in the ring simulator with new NICmodules that incorporate switching, routing and ow-control.

50

100

150

200

250

300

350

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

La
te

nc
y

(c
yc

le
s)

Throughput (requests/cycle)

Base
High Priority Write Trans
High Priority Short Pkts
High Priority Long Pkts

High Priority Read Trans

Figure 5: Throughput versus latency for a 64 proces-sor 8� 8 wormhole switched prioritized network. Thebase case is for a non-prioritized network with no dy-namic channels. For the other curves higher priorityis given to packets based on its size (longer or shorter)or its transaction type (read or write).a low priority level, it could be extended to multi-ple priority levels. We also show that dynamic vir-tual channels can be used to support multiple classesof tra�c. For this purpose, we consider two tra�cclasses, namely best-e�ort tra�c and time-constrainedtra�c. We show that the priority network is e�ec-tive in reducing the worst-case communication latencyof time-constrained tra�c, while not penalizing best-e�ort tra�c.7.1 Priority Tra�c for Traditional Appli-cationsEven with no time-constrained tra�c, it can makesense to assign priorities to di�erent classes of pack-ets if it bene�ts that class or the tra�c overall. Forexample, in a shared-memory multiprocessor, one canconsider giving a higher priority to large packets con-taining data or to shorter packets containing requestsor acknowledgments. Large packets consume morenetwork resources (e.g., links and bu�ers) than shortpackets, and when a large packet is blocked in the net-work, it will unnecessarily block other packets, therebyreducing system throughput. By giving priority tolarge packets, they will be removed from the networksooner, thereby reducing the number of packets theycan block. On the other hand, by giving priority toshort packets, we prevent them from being unneces-sarily blocked by large packets.It is also possible to prioritize packets according totransaction type i.e., read and write transactions. Fig-ure 5 presents the throughput-latency curves for �ve

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.001 0.01 0.1

La
te

nc
y

(c
yc

le
s)

Request Rate

Worst-case Latency - Base
Worst-case Latency - Pri Read Trans

Average Latency - Base
Average Latency - Pri Read Trans

Figure 6: Worst-case latency versus request rate fora 64 processor 8 � 8 wormhole switched prioritizednetwork. Curves are drawn for a base case of a non-prioritized network with no dynamic channels and fora network with dynamic channels where read transac-tion is given higher priority.di�erent cases: a base case of a non-prioritized net-work with no dynamic or static channels, and a priori-tized network with high priority given to large packets,short packets, read transactions, and write transac-tions. This is for a 64 processor 8�8, mesh-connectedsystem with 32 byte cache lines and a workload witha uniformly distributed memory access pattern. Forthe prioritized network, we assume a virtual channelbu�er size of 3 its and that the maximumnumber ofdynamic virtual channels is 4. For the base case, thenetwork input bu�er size of 6 its is twice as large asthat of the prioritized network, under the assumptionof equal memory resources.As can be seen from Figure 5, the highest through-put is achieved when read transactions (i.e., read re-quest and read response packets) are given high pri-ority. Also, giving priority to large packets results inbetter performance than giving priority to short pack-ets, but giving priority to write transactions results ina poor performance. A possible explanation for thisis that since the number of read transactions is farhigher than the number of write transactions, givingpriority to read transactions will result in a higherdynamic channel bu�er utilization when compared tohigh-priority write transactions.To measure the impact of prioritized networks onthe predictability of the system, we plot worst-caselatencies in Figure 6 for both the non-prioritized net-work and for the prioritized network with high priorityread transactions. For comparison purposes, we also

0

500

1000

1500

2000

2500

3000

0.001 0.01 0.1

W
C

 la
te

nc
y,

 ti
m

e-
co

ns
tr

ai
ne

d
tr

af
fic

 (
cy

cl
es

)

Request Rate

Base
Prioritized Network

(a)

80

100

120

140

160

180

200

220

240

0.001 0.01 0.1

A
ve

 L
at

en
cy

, b
es

t-
ef

fo
rt

 tr
af

fic
(c

yc
le

s)

Request Rate

Base
Prioritized Network

(b)Figure 7: (a) Worst-case latency of time-constrained requests and (b) average latency of best-e�ort requests,both as a function of best-e�ort request rate for an 8 � 8 64 processor wormhole switched prioritized network.Curves are for a base case of a non-prioritized network with no dynamic channels and for a network with dynamicchannels, with priority given to time-constrained packets.present the average latency curves. It is clear thatthough the average latencies are small, the worst-caselatency for the non-prioritized network can be as highas a factor 50 higher than for the priority network.The unpredictability of the worst-case latency valuesis shown by the length of the errorbars. The priori-tized network substantially reduces the average worst-case latency, and it reduces the variance by more thana factor of 2, thereby improving the predictability ofthe system.7.2 Time-constrained Tra�cIn this section, we consider a mix of two classesof tra�c: (i) best-e�ort tra�c with uniformly dis-tributed destinations and an exponentially distributedinter-arrival time between requests, and (ii) time-constrained tra�c with destinations uniformly dis-tributed, but with a �xed inter-arrival time betweenrequests, as seen in multiprocessor video servers [5]. Inour simulations, a processor is allowed to have 2 out-standing best-e�ort requests and 2 outstanding time-constrained requests for a total of 4 outstanding re-quests, before it is required to block for a reply.4 Forbest-e�ort tra�c, we assume that 32 byte cache linesare being transferred. The batch termination crite-rion is that all processors have to complete both aminimum number of best-e�ort requests and a min-imum number of time-constrained requests. In all4In this model, the time-constrained and best-e�ort requestsare interleaved and can be assumed to be equivalent to having amain processor and a co-processorwith the former issuing best-e�ort requests while the latter issuing time-constrained requestsindependent of each other.

our experiments we vary the request rate of best-e�ort tra�c, and we measure the worst-case latencyof time-constrained requests and the average latencyof best-e�ort requests. The inter-arrival time of time-constrained requests is �xed at 1 in 1000 processorcycles.Figure 7a presents the average worst-case commu-nication latency (over all batches) of time-constrainedrequests. Errorbars indicate the absolute maximumand minimum values over all batches. There are twocurves: the top curve represents a non-prioritized net-work with no dynamic channels, whereas the bottomcurve is for a prioritized network with four dynamicchannels per node, giving priority to time-constrainedtra�c. It is clear that a prioritized network is e�ec-tive in reducing the worst latency of time-constrainedrequests more than 50%. In particular, the priori-tized network is e�ective in reducing the absolute max-imumworst-case latency of time-constrained requests,thereby improving the predictability of the network.Figure 7b presents the average latency of the best-e�ort requests as a function of best-e�ort requestrate. The graph shows that giving priority to time-constrained requests does not signi�cantly worsen theaverage latency of best-e�ort requests.We now consider a non-uniform bit-complementbest-e�ort tra�c pattern. The bit-complement tra�ccongests the center of a 2D mesh network and signi�-cantly a�ects the worst-case latency as shown in Fig-ure 8a. A prioritized network can again be e�ective inreducing by an order of magnitude the worst-case la-tency of time-constrained requests. Another bene�t of

0

1000

2000

3000

4000

5000

6000

7000

0.001 0.002 0.003 0.004 0.005 0.006 0.007

W
C

 la
te

nc
y,

 ti
m

e-
co

ns
tr

ai
ne

d
tr

af
fic

 (
cy

cl
es

)

Request Rate

Base
Prioritized Network

(a)

100

150

200

250

300

350

400

450

500

550

600

0.001 0.01 0.1

A
ve

 L
at

en
cy

, b
es

t-
ef

fo
rt

 tr
af

fic
(c

yc
le

s)

Request Rate

Base
Prioritized Network

(b)Figure 8: (a) Worst-case latency of time-constrained requests and (b) average latency of best-e�ort requests,both as a function of best-e�ort request rate for an 8 � 8 64 processor wormhole switched prioritized network.A non-uniform bit complement memory access pattern is used for best-e�ort requests. Curves are drawn for abase case of a non-prioritized network with no dynamic channels and for a network with dynamic channels, wheretime-constrained packets are given priority.the prioritized network with a non-uniform best-e�ortmemory access pattern, is a signi�cant reduction inthe average latency of best-e�ort requests at high re-quest rates when compared to the non-prioritized net-work (see Figure 8b).8 ConclusionIn this study we proposed and evaluated prior-itized connectionless shared-memory multiprocessornetworks. In our implementation of prioritized net-works, we used three main components; priority-basedlink arbitration, priority inheritance, and dynamic vir-tual channels. It was shown that a prioritized networkcan signi�cantly reduce average transaction latenciesand improve system throughput when running tradi-tional parallel applications. It was also shown how aprioritized network could be used to reduce the worst-case latencies of time-constrained tra�c when it co-exists with best-e�ort tra�c. One of the key aspectsof the prioritized network is that it do not increase theaverage latency of best-e�ort tra�c while improvingthe average latency of time-constrained tra�c, inde-pendent of the best-e�ort tra�c pattern.References[1] W. J. Dally and C. L. Seitz, \Deadlock-free mes-sage routing in multiprocessor interconnection net-works," IEEE Trans. on Computers, vol. C-36, No.5, pp. 547-553, May 1987.[2] W. J. Dally, \Virtual-channel ow control," IEEETrans. on Parallel and Distributed Systems, vol. 3,no. 2, pp. 194-205, March 1992.

[3] W.J. Dally and C. L. Seitz, \The Torus routingchip," Journal of Distributed Computing, vol. 1,no. 3, pp 187-196, March 1986.[4] M. H. MacDougall, Simulating Computer Systems:Techniques and Tools, MIT Press, 1987.[5] A. L. Narasimha Reddy, \Scheduling and data dis-tribution in a multiprocessor video server," Proc.Intl. Conf. on Multimedia Computing and Sys-tems, pp. 256-263, May 1995.[6] R. Rajkumar, \Synchronization in real-time sys-tems: A priority inheritance approach," KluwerAcademic Publishers, ISBN 0-7923-9211-6 pp. 15-58, 1991.[7] G. Ravindran, Performance Issues in the Design ofHierarchical-ring and Direct Networks for Shared-memory Multiprocessors, Ph.D. Dissertation, De-partment of Electrical and Computer Engineering,University of Toronto, January 1998.http://www.eecg.toronto.edu/gravin[8] J. Rexford, J. Dolter and K. Shin, \Hardware sup-port for controlled interaction of guaranteed andbest-e�ort communication," Proc. Second Work-shop on Parallel and Distributed Real-time sys-tems, pp. 188-193, April 1994.[9] Z. G. Vranesic, M. Stumm, D. Lewis, andR. White, \Hector: A hierarchically structuredshared-memory multiprocessor," IEEE Computer,vol. 24, no. 1, pp. 72-78, January 1991.

	Text15: Appeared in Proceedings 6th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS), Montreal, QC, Canada, October 1998, pp. 153-160.

