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Abstract
Automatic device driver synthesis is a radical approach

to creating drivers faster and with fewer defects by gener-
ating them automatically based on hardware device spec-
ifications. We present the design and implementation of a
new driver synthesis toolkit, called Termite-2. Termite-2
is the first tool to combine the power of automation with
the flexibility of conventional development. It is also the
first practical synthesis tool based on abstraction refine-
ment. Finally, it is the first synthesis tool to support auto-
mated debugging of input specifications. We demonstrate
the practicality of Termite-2 by synthesizing drivers for a
number of I/O devices representative of a typical embed-
ded platform.

1 Introduction
Device driver synthesis has been proposed as a radical

alternative to traditional driver development that offers the
promise of creating drivers faster and with far fewer de-
fects [24]. The idea is to automatically generate the driver
code responsible for controlling device operations from a
behavioral model of the device and a specification of the
driver-OS interface.

The primary motivation for device driver synthesis is
the fact that device drivers are hard and tedious to write,
and they are notorious for being unreliable [8, 13]. Drivers
generally take a long time to bring to production—given
the speed at which new devices can be brought to mar-
ket today, it is not uncommon for a device release to be
delayed by driver rather than silicon issues [33].

Automatic driver synthesis was proposed in our ear-
lier work on the Termite-1 project [24], where we formu-
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lated the key principles behind the approach and demon-
strated its feasibility by synthesizing drivers for several
real-world devices. The next logical step is to develop
driver synthesis into a practical methodology, capable of
replacing the conventional driver development process.
To this end we have to address the key problems left open
by Termite-1. The most important one is the quality of
synthesized drivers. While functionally correct, Termite-
1 drivers were bloated and poorly structured. This made it
impossible for a programmer to maintain and improve the
generated code and prevented synthesized drivers from
being adopted by Linux and other major OSs. Further-
more, it was impossible to enforce non-functional proper-
ties such as CPU and power efficiency.

Another critical limitation of Termite-1 was the limited
scalability of its synthesis algorithm, which made synthe-
sis of drivers for real-world devices intractable. Termite-1
got around the problem by using carefully crafted simpli-
fied device specifications, which is acceptable in a proof-
of-concept prototype, but not in a practical tool.

In the present project we set out to address these limi-
tations. After several years of research we achieved sig-
nificant improvement to all components of the synthesis
technology: the specification language, the synthesis al-
gorithm and the code generator.

Despite these improvements, we had come to the con-
clusion that the approach taken was initially critically
flawed. The fundamental problem, in our view, was that
the synthesis was viewed as a “push-button” technology
that generated a specification-compliant implementation
without any user involvement. As a result, the user had to
rely on the synthesis tool to produce a good implementa-
tion. Unfortunately, even the most intelligent algorithm
cannot fully capture the user-perceived notion of high-
quality code. While in theory one might be able to en-
force some of the desired properties by adding appropri-
ate constraints to the input specification, in our experience
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creating such specifications is extremely hard and seldom
yields satisfactory results.

A radically different approach was needed—one that
combines the power of automation with the flexibility of
conventional development, and that involves the devel-
oper from the start, guiding the generation of the driver.
In many ways, synthesis and conventional development
are conflicting. Hence, a key challenge was to conceive of
a way that allowed the two to be combined so that the de-
veloper could do their job more efficiently and with fewer
errors without having the synthesis tool get in the way.

The primary contribution of this paper is a novel user-
guided approach to driver synthesis implemented in our
new tool called Termite-2 (further referred to as Termite).
In Termite, the user has full control over the synthesis pro-
cess, while the tool acts as an assistant that suggests, but
does not enforce, implementation options and ensures cor-
rectness of the resulting code. At any point during synthe-
sis the user can modify or extend previously synthesized
code. The tool automatically analyses user-provided code
and, on user’s request, suggests possible ways to extend it
to a complete implementation. If such an extension is not
possible due to an error in the user code, the tool generates
an explanation of the failure that helps the user to identify
and correct the error.

In an extreme scenario, Termite can be used to synthe-
size the complete implementation fully automatically. At
the other extreme, the user can build the complete imple-
mentation by hand, in which case Termite acts as a static
verifier for the driver. In practice, we found the interme-
diate approach, where most of the code is auto-generated,
but manual involvement is used when needed to improve
the implementation, to be the most practical.

From the developer’s perspective, user-guided syn-
thesis appears as an enhancement of the conventional
development process with very powerful autocomplete
functionality, rather than a completely new development
methodology. This vision is implemented in all aspects of
the design of Termite. In particular, input specifications
for driver synthesis are written as imperative programs
that model the behavior of the device and the OS. The
driver itself is modelled as a source code template where
parts to be synthesized are omitted. This approach enables
the use of familiar programming techniques in building
input specifications. In contrast, previous synthesis tools,
including Termite-1, require specifications to be written
in formal languages based on state machines and temporal
logic, which proved difficult and error-prone to use even
for formal methods experts, not to mention software de-
velopment practitioners.

Most previous research on automatic synthesis, includ-
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Figure 1: Termite synthesis workflow.

ing Termite-1, considered input specifications to be “cor-
rect by definition”. In contrast, we recognise that input
specifications produced by human developers are likely to
contain defects, which can prevent the synthesis algorithm
from finding a correct driver implementation. There-
fore Termite incorporates powerful debugging tools that
help the developer identify and fix specification defects
through well-defined steps, similar to how conventional
debuggers help troubleshoot implementation errors.

Another important contribution of this project is a new
scalable synthesis algorithm, which mitigates the compu-
tational bottleneck in driver synthesis. Following the ap-
proach proposed in Termite-1, we treat the driver synthe-
sis problem as a two-player game between the driver and
its environment, comprised of the device and the OS. In
this work, we develop this approach into the first precise
mathematical formulation of the driver synthesis problem
based on game theory. This enables us to apply theoret-
ical results and algorithmic techniques from game theory
to driver synthesis.

Our game-based synthesis algorithm relies on abstrac-
tion and symbolic reasoning to achieve orders of magni-
tude speed up compared to the current state-of-the-art syn-
thesis techniques. The main idea of the algorithm is de-
scribed in Section 4, but we refer the reader to a detailed
description in an accompanying publication [30].

We evaluate Termite by synthesizing drivers for sev-
eral I/O devices. Our experience demonstrates that our
methodology meets our design goals, and indeed makes
automatic driver synthesis practical.

Overview of Termite Figure 1 gives an overview of the
driver synthesis process, described in detail in the rest of
the paper. Termite takes three specifications as its inputs:
a device model that simulates software-visible device be-
havior, an OS model that specifies the software interface
between the driver and the OS, and a driver template that
contains driver entry point declarations and, optionally,
their partial implementation to be completed by Termite.

Given these specifications, driver synthesis proceeds in
two steps. The first step is carried out fully automati-
cally by the Termite game-based synthesis engine, which
computes the most general strategy for the driver—a data
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Figure 2: Input specifications for driver synthesis. Labels in
italics show interfaces from the running example (Figure 3).

structure that compactly represents all possible correct
driver implementations. This step encapsulates the com-
putationally expensive part of synthesis. At the second
step, the most general strategy is used by the Termite code
generator to construct one specific driver implementation
in C with the help of interactive input from the user.

The synthesis engine may establish that, due to a de-
fect in one of the input specifications, there does not exist
a specification-compliant driver implementation. In this
case, it produces an explanation of the failure, which can
be analysed with the help of the Termite debugger tool in
order identify and correct the defect.
Limitations of Termite The device driver synthesis
technology is still in its early days and, as such, has sev-
eral important limitations. Most notably, Termite does
not currently support synthesis or verification of code for
managing direct memory access (DMA) queues. This
code must be written manually and is treated by Termite
as an external API invoked by the driver. As another ex-
ample, in certain situations, explained in Section 3, Ter-
mite is unable to produce correct code without user as-
sistance; however it is able to verify the correctness of
user-provided code. We discuss limitations of Termite in
more detail in Section 6.

2 Developing specifications
Input to Termite consists of the three specifications,

which model the complete system consisting of the driver,
the device, and the OS, shown in Figure 2. The OS and
device models simulate the execution environment of the
driver and specify constraints on correct driver behavior.
The device model simulates software-visible device be-
havior. The OS model serves as a workload generator that
issues I/O requests to the driver and accepts request com-
pletions in a way consistent with real OS behavior.

The virtual interface between the device and the OS,
shown with the dashed arrow in Figure 2, is used by the
device model to notify the OS model about important
hardware events, such as completion of I/O transactions
and error conditions. Methods of the virtual interface do
not represent real runtime interactions between the device

and the OS, but are used by the OS model to specify cor-
rectness constraints for the driver (see Section 2.3).

Finally, the driver template contains a partial driver im-
plementation to be completed by Termite. A minimal tem-
plate consists of a list of driver entrypoints without imple-
mentation. At the other extreme, it can provide a complete
implementation, in which case Termite acts as a static ver-
ifier for the driver.

All specifications are written using the Termite Speci-
fication Language (TSL). In line with our goal of making
synthesis as close to the conventional driver development
workflow as possible, TSL is designed as a dialect of C
with additional constructs for use in synthesis. We intro-
duce relevant features of TSL throughout this section.

We minimize the amount of work needed to develop
specifications for every synthesized driver by maximiz-
ing the reuse of specifications. In particular, Termite al-
lows the use of existing device specifications developed
by hardware designers in driver synthesis. Furthermore,
the OS specification for the driver can be derived from a
generic specification for a class of similar devices (e.g.,
network or storage). Thus we expect that additional per-
driver effort will consist of: (1) inserting device-class call-
backs in appropriate locations of the device model and (2)
extending the OS specification to support device-specific
features missing in the generic OS specification.

2.1 Device model
The device model simulates the device operation at a level
of detail sufficient to synthesize a correct driver for it. To
this end, it must accurately model external device behav-
ior visible to software. At the same time, it is not required
to precisely capture internal device operation and timing,
as these aspects are opaque to the driver.

Such device models are routinely developed by hard-
ware designers for the purposes of design exploration,
simulation, and testing. They are widely used by hard-
ware manufacturers in-house [14] and are available com-
mercially from major silicon IP vendors [28]. These mod-
els are known as transaction-level models (TLMs) (in
contrast to the detailed register-transfer-level models used
in gate-level synthesis) [4]. A TLM focuses on software-
visible events, or transactions, such as a write to a device
register or a network packet transmission.

Existing TLMs created by hardware designers can be
used with minor modifications (explained in Section 2.3)
for driver synthesis. Model reuse dramatically reduces the
effort involved in synthesizing a driver and is therefore
crucial to practical success of driver synthesis. By reusing
an existing model, we also reuse the effort invested by
hardware designers into testing and debugging the model
throughout the hardware design cycle, thus making driver
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1template dev /* Device model */
2 uint8 reg_dat, reg_cmd, reg_status = 0;
3 /* device commands */
4 controllable void write_dat(uint8 v)
5 { reg_dat = v; };
6 controllable void write_cmd(uint8 v)
7 { reg_cmd = v; };
8 controllable uint8 read_cmd()
9 { return reg_cmd; };

10 controllable uint8 read_status()
11 { return reg_status; };
12 /* internal behavior */
13 process ptx {
14 forever {
15 wait (reg_cmd == 1);
16 choice {
17 { os.evt_send(reg_dat);
18 reg_status=0; };
19 { os.evt_send_fail(reg_dat);
20 reg_status=1; };
21 };
22 reg_cmd = 0;
23 /*drv.irq(); (see Section 4*/
24 };
25 };
26endtemplate
27

28template os /* OS model */
29 uint8 dat;
30 bool inprogress, acked, success;
31 /* driver workload generator */
32 process psend {
33 forever {
34 dat = *; /*randomise dat*/
35 inprogress = true;
36 acked = false;
37 drv.send(dat);
38 wait(acked);
39 };
40 };
41 /* I/O completions */
42 controllable void send_ack(bool status) {
43 assert (!inprogress && !acked &&
44 status == success);
45 acked = true;
46 };
47 /* virtual callbacks */
48 void evt_send(uint8 v) {
49 assert (inprogress && v==dat);
50 inprogress = false;
51 success = true;
52 };
53 void evt_send_fail(uint8 v) {
54 assert (inprogress && v==dat);
55 inprogress = false;
56 success = false;
57 };
58 goal idle_goal = acked;
59endtemplate
60

61template drv /* Driver template */
62 void send(uint8 v){...;};
63 /*void irq(){...;}; (see Section 4)*/
64endtemplate

Figure 3: Trivial serial controller driver specifications.

synthesis less susceptible to specification bugs. Finally,
since TLMs are created early in the hardware design cy-
cle, TLM-based driver synthesis can be carried out early
as well, thus removing driver development from the criti-
cal path to product delivery.

TLMs are written in high-level hardware description
languages like SystemC and DML. In order to use these
models in driver synthesis, we need to convert them to
TSL. This translation can be performed automatically, and
we are currently working on a DML-to-TSL compiler.
Since this work is not yet complete, device models used in
the experimental section of this paper are either manually
translated from existing TLMs or written from scratch us-
ing TLM modeling style guidelines [31].

The top part of Figure 3 shows a fragment of a model
of a trivial serial controller device used as a running ex-
ample. The fragment specifies the send logic of the con-
troller, which allows software to send data characters over
the serial line. The model is implemented as a TSL tem-
plate. The template encapsulates data and code that ma-
nipulates the data, similar to a class in OOP.

The software interface of the device consists of
data, command, and status registers declared in line 2.
The registers can be accessed from software via the
write dat, write cmd, read cmd, and read status

methods (lines 4–11). The controllable qualifier de-
notes a method that is available to the driver and can be
invoked from synthesized code.

The transmitter logic is modelled in lines 13–25. It is
implemented as a TSL process. A TSL specification can
contain multiple processes. The choice of the process to
run is made non-deterministically by the scheduler. The
process executes atomically until reaching a wait state-
ment or a controllable placeholder (see below).

In line 15, the transmitter waits for a command, issued
by the driver by writing value 1 to the command register.
Upon receiving the command, it sends the value in the
data register over the serial line. The transmission may
fail, e.g., due to a serial link problem. The device signals
transmission status to software by setting the status regis-
ter to 0 or 1. Finally, it clears the command register, thus
notifying the driver the request has completed.

Internally, the transmitter circuit consists of a shift reg-
ister and a baud rate generator used to output data on
the serial line. These details are not visible to soft-
ware and are abstracted away in the model. We use
the non-deterministic choice construct to choose be-
tween successful transmission and failure, without mod-
elling the details of serial link operation. Successful and
failed transmissions are modelled using evt send and
evt send fail events, explained in Section 2.2.
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2.2 OS model
The OS model specifies the API mandated by the OS for
all drivers of the given type. For example, any Ether-
net driver must implement the interface for sending and
receiving Ethernet packets. A separate specification is
needed for each supported OS, as different OSs define dif-
ferent interfaces for device drivers.

Additionally, each particular device can support non-
standard features, e.g., device-specific configuration op-
tions or transfer modes. These features must be added as
extensions to the generic OS specification in order to syn-
thesize support for them in the driver. TSL supports such
extensions in a systematic way via the template inheri-
tance mechanism. We do not describe this in detail due to
limited space.

The OS model is written in the form of a test harness
that simulates all possible sequences of driver invocations
issued by the OS. The os template in Figure 3 shows the
OS model for our running example. The main part of the
model is the psend process. At every iteration of the loop,
it non-deterministically chooses an 8-bit value (line 34)
and calls the send method of the driver, passing this value
as an argument. It then waits for the driver to acknowl-
edge the transmission of the byte (line 38) before issuing
another request. The driver acknowledges the transmis-
sion via the send ack callback (line 42). The callback
sets the acked flag, which unblocks the psend process.

We keep the specification concise by modeling the state
of the driver-OS interface, as opposed to the internal OS
state and behavior. For example, the acked variable
(line 30) serves to model the flow of data between the OS
and the driver and is not necessarily present in the OS im-
plementation.

2.3 Connecting device and OS models
In addition to simulating I/O requests to the driver, the
OS model also specifies the semantics of each request in
terms of device-internal events that must occur in order to
complete the requested I/O operation. In our running ex-
ample, after the OS invokes the send method of the driver
and before the driver acknowledges completion of the re-
quest, the device must attempt to send the requested data
over the serial line. This requirement establishes a con-
nection between the device and OS models and must be
specified explicitly in order to enable Termite to generate
a driver implementation that correctly handles the OS re-
quest. Note that we only need to specify which hardware
events must occur, but not how the driver generates them.

In order to develop such specifications, we need a way
to refer to relevant state and behavior of the device from
the OS model. At the same time, in order to maximize

specification reuse, we would like to keep the OS specifi-
cation device-independent. To reconcile these conflicting
requirements, we introduce a virtual interface between the
device and OS model. This interface consists of callbacks
used by the device model to notify the OS model about
important hardware events. The virtual interface does not
represent real runtime interactions between the device and
the OS, but serves as part of the correctness specification.

We define a virtual interface for each class of devices.
Such device-class interfaces are both device and OS-
independent. The device-class interface can be extended
with additional device-specific callbacks as required to
specify a driver for a particular device.

In our example, we define a device-class interface
consisting of two virtual callbacks: evt send and
ev send failed, invoked respectively when the device
successfully transmits and fails to transmit a byte. These
callbacks are invoked in lines 17 and 19 of the device
model. The evt send handler is shown in line 48 of
the OS model. The assertion in line 49 specifies that the
send event is only allowed to occur if there is an outstand-
ing send request in progress and the value being sent is
the same as the one requested by the OS. We reset the
inprogress flag to false in line 50, thus marking the cur-
rent request as completed; line 51 sets the success flag
to true, thus indicating that the transfer completed with-
out an error. The evt send fail handler is identical,
except that it sets the success flag to false. The flags
are checked by the send ack method, which asserts that
the driver is only allowed to acknowledge a completed
request (!inprogress) that has not been acknowledged
yet (!acked) and that the completion status reported by
the driver must match the one recorded in the success

flag.

In this example we use C-style assertions to rule out
invalid system behaviors. Assertions alone do not fully
capture requirements for a correct driver behavior. For
example, a driver that remains idle does not violate any as-
sertions. Hence, we need to specify requirements for the
driver to make forward progress. We introduce such re-
quirements into the model in the form of goal conditions,
that must hold infinitely often in any run of the system. For
example, a goal may require that the driver is infinitely of-
ten in an idle state with no outstanding requests from the
OS. The OS can force the driver out of the goal by issu-
ing a new I/O request. To satisfy the goal condition, the
driver must return to the goal state by completing the re-
quest. Line 58 in Figure 3 defines such a goal condition
that holds whenever the acked flag is set, i.e., the driver
has no unacknowledged send requests.
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2.4 Driver template
The bottom part of Figure 3 shows the driver template
for the running example consisting of a single send entry
point invoked by the OS. The ellipsis in line 62 represent
a location for inserting synthesized code and are part of
TSL syntax. We refer to such locations as controllable
placeholders.

3 User-guided code generation
The set of input TSL specifications is fed into the Ter-

mite synthesis engine, which then automatically computes
the most general strategy for the driver. Given a state of
the system, the most general strategy determines the set
of all valid driver actions in this state. The most general
strategy is used by the Termite code generator to produce
a driver implementation in C in a user-guide fashion.

The Termite code generator GUI is similar to a tradi-
tional integrated development environment with two ad-
ditional built-in tools: the generator and the verifier. The
generator works as advanced auto-complete that helps the
user to fill the controllable placeholders inside the driver
template with code. At any point, the user can invoke
the generator to synthesize a single statement or a com-
plete block of code inside a controllable placeholder via a
mouse click on the target code location. The user can ar-
bitrarily modify and amend the generated code. However,
the generator never modifies user code. Instead it tries to
extend it to a complete implementation, which is always
possible provided that the existing code is consistent with
the most general strategy. The generator currently only al-
lows synthesizing statements after the last control location
within a branch. However this restriction is not a concep-
tual one and will be lifted by ongoing development.

The verifier automatically and on the fly checks that
the driver implementation, comprised of a mix of gen-
erated and manually written code, is consistent with the
most general strategy, thus maintaining strong correctness
guarantees that one would expect in automatically synthe-
sized code. The verifier symbolically simulates execution
of the system, following the partial driver implementation
created so far, and signals the user whenever it encounters
a transition that violates the most general strategy.

In the first approximation, the generator algorithm is
quite simple: given a source code location, it determines
the set of possible system states in this location, picks an
action for each state from the most general strategy and
translates this action into a code statement. In practice the
algorithm uses a number of heuristics to produce compact
and human-readable code. In particular, whenever there
exists a common action in all possible states in the given
location, the algorithm produces straight-line code with-

out branching. For example, when running the generator
on the specification in Figure 3, it automatically generates
the following code for the send function (line 62):
void send(uint8 v){

dev.write_dat(v);
dev.write_cmd(1);
wait(dev.reg_cmd==0);
if (os.success) {

os.send_ack(true);
} else {

os.send_ack(false);
};}

This implementation correctly starts the data transfer by
writing the value to be sent to the data register and setting
the command register to 1. It then waits for the transfer
to complete, which is signalled by the device by resetting
the command register to 0. Finally, it acknowledges the
completion of the transfer to the OS.

Note that the generated code refers to the dev.reg cmd

and os.success variables. These variables model in-
ternal device and OS state respectively and cannot be di-
rectly accessed by the driver. This example illustrates an
important limitation of Termite—it assumes a white-box
model of the system, where every state variable is visi-
ble to the driver. Ideally, we would like to synthesize an
implementation that automatically infers the values of im-
portant unobservable variables. In this case, the value of
the command register can be obtained by the driver by ex-
ecuting the read cmd action. Furthermore, the value of
the os.success variable is correlated with the comple-
tion status of the last transfer, which can be obtained by
reading the device status register.

While Termite currently cannot produce such an imple-
mentation automatically, it implements a pragmatic trade-
off that helps the user build and validate a correct im-
plementation with modest manual effort. The code gen-
erator warns the user that the auto-generated code ac-
cesses private variables of the device and OS templates.
This prompts the user to provide a functionally equiva-
lent valid implementation, replacing the wait statement
with a polling loop and using the read status method
to check transfer status:
void send(uint8 v){

dev.write_dat(v);
dev.write_cmd(1);
while(dev.read cmd()==1);
if (dev.read status()) {

os.send_ack(true);
} else {

os.send_ack(false);
};}

The verifier automatically checks the resulting implemen-
tation and confirms that it satisfies the input specification.

Note that in this example we have synthesized code
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that correctly handles device errors. This was possible,
as our input device specification correctly captures device
failure modes (namely, transmission failure) and our OS
specification describes how the driver must report errors
to the OS (via the status argument of the completion
callback).

In principle, it is also possible to synthesize a driver im-
plementation that handles device and OS failures not cap-
tured in the specifications: since the synthesis tool knows
all possible valid environment behaviors, it can easily de-
tect invalid behaviors and handle them gracefully. Au-
tomatic synthesis of such hardened device drivers is a
promising direction of future research.

The final step of the code generation process translates
the synthesized driver implementation to C. This is a triv-
ial line-by-line translation. We expect this translation to
become unnecessary in the future as our ongoing work on
the TSL syntax aims to make the synthesized subset of
TSL a strict subset of C.

Maintaining synthesized code Device driver develop-
ment is not a one-off task: following the initial implemen-
tation, drivers are routinely modified to implement addi-
tional functionality, adapt to the changing OS interface or
support new device features.

The user-guided code generation method naturally sup-
ports such incremental maintenance. A typical main-
tenance task proceeds in three steps. First, the devel-
oper amends device and OS models to reflect the new
or changed functionality. Second, they add new methods
to the previously synthesized driver, if necessary, and re-
place existing driver code that is expected to change with a
controllable placeholder. Finally, the user runs Termite to
synthesize code for all controllable placeholders. Termite
treats all existing driver code as part of the uncontrollable
environment. Hence, if some of the old code is incorrect
in the context of the new specifications, this will lead to a
synthesis failure, and counterexample-based debugging is
used to identify the faulty code, as described in Section 5.

As an example, we synthesize a new version of the
driver for our running example assuming a more advanced
version of the serial controller device that uses interrupts
to notify the driver on completion of a data transfer. The
new device model is obtained by uncommenting line 23
of the device model in Figure 3, which invokes the inter-
rupt handler method of the driver after each transfer. The
driver template is extended with the irq method (line 63).
We use the previously synthesized implementation of the
send method, but manually remove the last two lines,
which implement polling, as we want the new implemen-
tation to use interrupts instead:
void send(uint8 v){

dev.write_dat(v);
dev.write_cmd(1);}

Finally, we run Termite on the resulting specifications and
use the generator to automatically produce the following
implementation of the new irq method:

void irq(){
if (os.success) {

os.send_ack(true);
} else {

os.send_ack(false);
};}

As before, we manually replace the if-condition in the first
line with

if (dev.read_status())

This example illustrates how Termite supports incre-
mental changes to the driver by reusing previously syn-
thesized code, while maintaining strong correctness guar-
antees.

Instrumenting synthesized code Termite does not auto-
matically instrument synthesized code for debugging, log-
ging, accounting, etc. However, the user can add such in-
strumentation manually. Termite interprets such code as
no-ops and, as with any manual code, never makes any
modifications to it.

4 Synthesis
In this section we give a high-level overview of the Ter-

mite synthesis algorithm. We refer the reader to the ac-
companying publication [30] for a detailed description.

4.1 Driver synthesis as a game
We formalize the driver synthesis problem as a two-player
game [29] between the driver and its environment. The
game is played over a finite automaton that represents all
possible states and behaviors of the system. Transitions
of the automaton are classified into controllable transi-
tions triggered by the driver and uncontrollable transitions
triggered by the device or OS. A winning strategy for the
driver in the game corresponds to a correct driver imple-
mentation. If, on the other hand, a winning strategy does
not exist, this means that there exists no specification-
conforming driver implementation.

Two-player games naturally capture the essence of the
driver synthesis problem: the driver must enforce a cer-
tain subset of system behaviors while having only partial
control over the system.

Figure 4 illustrates the concept using a trivial game au-
tomaton that models the core of our running example.
Controllable and uncontrollable transitions of the automa-
ton are shown with solid and dashed arrows respectively.
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Figure 4: A simple two-player game.

The goal of the driver in the game is to infinitely often visit
the initial state, labelled G, which represents the situation
when the driver does not have any outstanding requests.
After getting a send request from the OS, the driver must
write data and command registers to start the data transfer.
Writing the command register first may trigger a hardware
send event before the driver has a chance to write the data
register. As a result, wrong data value gets sent, taking
the game into an error state E. Hence, state s4 is losing
for the driver. To avoid this state, the correct strategy for
the driver is to play write data in state s2, followed by
write cmd. In s5 the driver must remain idle until the
environment executes the evt send transition.

Games and strategies Formally, a two-player game
G = 〈S, I, Lc, Lu, δc, δu,Φ〉 consists of a set of states
S, a subset of initial states I ⊆ S, sets of controllable and
uncontrollable actions Lc and Lu, controllable transition
relation δc ⊆ S×Lc×S, uncontrollable transition relation
δu ⊆ S × Lu × S, and a game objective Φ ⊆ Sω (where
Sω represents the set of infinite sequences of states in S).

The game proceeds in rounds, starting from an ini-
tial state. In each round, in state s, both players select
actions lc and lu available to them in s, and the game
transitions non-deterministically to one of the states in
δc(s, lc) ∪ δu(s, lu). Intuitively, the system scheduler
chooses the player to make a move at each round. The
scheduler can be thought of as part of the uncontrollable
environment. Note that this is different from turn-based
games like chess, where players strictly alternate in mak-
ing moves. In the example in Figure 4, the driver can
avoid the error state by choosing the write dat action in
state s4; however the environment can override this choice
by playing evt send.

The infinite sequence of states (s0, s1, ...) ∈ Sω vis-
ited by the game is called a run. A strategy for the driver
player is a function π : S → 2Lc that maps each state of
the game into a set of actions to play in this state. The
strategy determines a set Outcomes(I, π) ⊆ Sω of all
possible runs generated by the driver choosing one of the
actions in π(s) in every state s in the run.

Given a state s and a strategy π such that
Outcomes({s}, π) ⊆ Φ, we say that s is a winning state
for the driver, π is a winning strategy in s, and actions in

π(s) are winning moves in s. The game G is winning for
the driver if all states in I are winning. The most general
winning strategy maps every winning state s to a set of all
winning moves in s, and all other states to an empty set.

In Termite we use game objectives of a particular form,
called generalised reactivity-1 (GR-1) objectives [22].
Such an objective consists of a finite set {B1, ...Bn},
Bi ⊆ S of goal sets and a finite set {F1, ...Fk}, Fi ⊆ S of
fair sets. A winning strategy for the driver must make sure
that the game infinitely often visits each of the goal sets,
provided that the environment guarantees that the game
does not get stuck in a fair set forever.

Intuitively, a goal set represents a constraint on the
driver behavior, requiring the driver to force the game into
the goal infinitely often, while a fair set represents a con-
straint on the environment, preventing it from staying in
certain states forever. The game in Figure 4 has a single
goal setB1 = {g} and a single fair set F1 = {s4, s5}, i.e.,
the driver must acknowledge each send request from the
OS, provided that the environment eventually performs
the evt send action after it has been enabled.

4.2 TSL compiler
In order to compute the most general driver strategy as a
solution of a two-player game, we must first convert input
TSL specifications into a game automaton. This conver-
sion is performed by the TSL compiler.

Real driver specifications have large state spaces, which
cannot be feasibly represented by explicitly enumerating
states, as in Figure 2. Therefore, in Termite we repre-
sent games symbolically. The state space of the game is
defined in terms of a finite set of state variables X , with
each state s ∈ S representing a valuation of variables in
X . The TSL compiler introduces a state variable for each
TSL variable declared in one of the input templates. In
addition, auxiliary state variables are introduced to model
the current control location of each TSL process.

We model controllable and uncontrollable actions as
valuations of action variables Yc and Yu. Transition rela-
tions δc and δu are represented symbolically as formulas
over state variables X , action variables Yc and Yu, and
next-state variables X ′.

The TSL compiler splits the input specification
into controllable and uncontrollable parts and trans-
lates them into controllable and uncontrollable transi-
tion relations respectively. The controllable part is
comprised of controllable methods that can be in-
voked by the driver. The controllable transition re-
lation δc is computed by rewriting controllable meth-
ods in the variable update form. Consider, for ex-
ample, variable reg dat declared in line 2 in Fig-
ure 3. This variable is only modified by the write dat
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method in line 4. The corresponding fragment of the
controllable transition relation in the variable update
form is reg dat′ := (tag = write dat) ? v : reg dat,
where reg dat′ is the next-state variable representing
the value of reg dat after the transition, and tag and
v are controllable action variables, where tag models
the method being invoked, and v is the argument of the
method.

The uncontrollable part of the specification is com-
prised of TSL processes, which model device and OS
behavior. We syntactically decompose each process
into atomic transitions. Recall that a process executes
atomically until reaching a wait statement or a con-
trollable placeholder. Consider the ptx process in
line 13 in Figure 3. The process is initially paused in
the wait statement. It is scheduled to run when the wait
condition holds. It executes the statements in lines 16–22
atomically and stops again in line 15. As part of this
atomic transition, the process sets the reg cmd variable
to 0 (line 22). This is the only uncontrollable transition
that modifies this variable, hence the uncontrollable
update function for this variable is defined as follows:
reg cmd′ := (reg cmd = 1 ∧ pid = ptx) ? 0 : reg cmd,
where pid is an uncontrollable action variable that mod-
els the scheduler’s choice of a process to run, and the
reg cmd = 1 conjunct corresponds to the wait condition
in line 15.

Finally, we need to generate the game objective Φ. In a
symbolic representation of the game, goal and fair sets are
specified as conditions over state variables that hold for
each state in the set. The TSL compiler outputs a goal set
Bi for each goal declared in the input specification and a
fair set Fi for each wait statement. The latter guarantees
that every runnable process gets scheduled eventually.

In addition to goal conditions, a TSL specification also
contains assertions, which must never be violated. We
model assertions using an auxiliary boolean state variable
ε, which is set to true whenever an assertion is violated
and remains true forever after. We add an extra constraint
ε = false to each accepting set Bi. An assertion viola-
tion permanently takes the game out of Bi, and therefore
can not occur in any winning run of the game.

4.3 Solving the game
The Termite game solver takes a game automaton pro-
duced by the TSL compiler, determines whether all initial
states of the system are winning and, if so, computes the
most general winning strategy for the game. A successful
approach to solving two-player games with GR-1 objec-
tives was proposed by Piterman et al. [22]. We give an
overview of their algorithm and briefly explain how we
extend it to address the scalability bottleneck.

Algorithm 1 Computing the set of winning states
function REACH(B)

Y ← ∅
loop

Y ′ ← CPre(Y ∪B)
if Y ′ = Y return Y
Y ← Y ′

function WINNINGSET({B1, ..., Bn})
Z ← S
loop

Z′ ←
⋂

i=1..n REACH(Z ∩Bi)
if Z′ = Z return Z
Z ← Z′

The algorithm is based on exhaustive exploration of the
state space of the game. Given a goal set B, we first de-
termine the set of states from which the driver can force
the game into B in one step, called the controllable pre-
decessor of B. The controllable predecessor consists of
all states s that satisfy both of the following conditions:

1. All uncontrollable transitions available in s lead to
some state in B. Hence, if the scheduler chooses to
execute an uncontrollable transition, it is guaranteed
to take the game to B.

2. There exists at least one winning controllable tran-
sition from s to B or s belongs to a fair region. In
the former case, the driver must perform the winning
transition; in the latter case it must remain idle wait-
ing for an uncontrollable transition, which is guaran-
teed to occur due to fairness.

Having computed the controllable predecessor ofB, we
apply the controllable predecessor operator again to the
resulting set, thus obtaining the set of states from which
the driver can force the game into the goal within two
steps. We repeat until no new states can be discovered,
at which point we have found all states from which the
driver can force the game into the goal in a finite number
of rounds. This computation is performed by the REACH
function shown in Algorithm 1.

Recall that a GR-1 game can have multiple goal re-
gions, and in order to win the game the driver must visit
each goal region Bi infinitely often. Using the REACH
function, we compute the set Z =

⋂
i REACH(Bi), from

which any of the goals can be reached at least once. Next,
we compute Z ′ =

⋂
i REACH(Z ∩ Bi). It is easy to see

that Z ′ contains all states from which any of the goals can
be reached twice. Furthermore, by construction, Z ′ ⊆ Z.
By continuing the last computation until a fixed point is
reached, we obtain all winning states of the game, as
shown in function WINNINGSET (Algorithm 1).

The algorithm presented above is polynomial in the size
of the game automaton. We have developed a highly opti-
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mized implementation of the algorithm, which uses sym-
bolic data structures [3] to compactly represent large sets
of states and transitions. Nevertheless, when applying it to
games arising in driver synthesis, we hit a computational
bottleneck due to a state explosion.

We overcome this bottleneck by using abstraction to
reduce the dimensionality of the problem. The partic-
ular form of abstraction used by Termite is predicate
abstraction [12], where concrete state variables of the
game are replaced with boolean predicates over the orig-
inal variables. Abstraction is adaptively refined by in-
troducing new predicates that capture important rela-
tions among concrete variables. The predicate-based
abstraction-refinement algorithm for games is one of the
key technical contributions of Termite. It is described in
detail in an accompanying paper [30].

4.4 Verification as a special case of synthesis
Consider the situation where not only the OS and the de-
vice, but also the driver behavior is fully specified, so that
the synthesizer does not have any freedom to pick driver
actions. If the resulting game is winning for the driver,
i.e., every possible run of the game satisfies the objective,
then the provided driver implementation is correct. Thus,
verification can be seen as a special case of the synthesis
problem where all transitions in the system are uncontrol-
lable. Hence, our game solving algorithm doubles as a
driver verification algorithm. Termite also supports hy-
brid scenarios: given a partially implemented driver with
placeholders for synthesized code, it determines whether
the given partial implementation can be extended to a
complete one and, if so, fills out the placeholders in the
user-guided fashion.

5 Debugging with counterexamples
An important practical issue in game-based synthesis is

the complexity of diagnosing synthesis failures due to de-
fects in the input specifications. In the event that Termite
fails to solve the game, the user needs to trace the failure
back to the specification defect. However, the failure does
not carry any information about the defect, which makes
the problem harder to resolve.

In Termite we propose a new approach to troubleshoot-
ing synthesis failures based on the use of counterexample
strategies. A counterexample strategy is a strategy on be-
half of the environment that prevents the driver from win-
ning the game. It is obtained by solving the dual game,
where, in order to win, the environment must permanently
force the game out of one of the goal regions. A winning
strategy in the dual game is guaranteed to exist whenever
solving of the primary game fails.

In order to detect and fix the defect in an input specifi-
cation, the driver developer relies on their understanding
of the OS and device logic. The role of the counterexam-
ple strategy is to guide the developer towards the defect.
To automate this process, we developed a powerful visual
debugging tool that allows the user to interactively sim-
ulate intended driver behavior and observe environment
responses to it. The user plays the game on behalf of the
driver, while the tool responds on behalf of the environ-
ment, according to the counterexample strategy.

In a typical debugging session, the debugger, following
the counterexample strategy, generates a sequence of re-
quests that are guaranteed to win against the driver. The
user plays against these requests by specifying device
commands that, they believe, represent a correct way to
handle the request. Since this sequence of requests can-
not be handled correctly given the current input specifi-
cation, at some point in the game the user runs into an
unexpected behavior of one of the players, e.g., one of
user-provided commands does not change the state of the
device as expected or the environment performs an uncon-
trollable transition that violates an assertion. Based on this
information, the user can revise the faulty specification.

At every step of the interactive debugging session, the
debugger either chooses a spoiling uncontrollable action
based on the counterexample strategy or, if the system
is inside a controllable placeholder, allows the user to
choose a controllable action to execute on behalf of the
driver. In the former case the spoiling uncontrollable ac-
tion corresponds to a transition in one of the TSL pro-
cesses. The user can explore this transition by stepping
through it, exactly as they would in a conventional debug-
ger. In the latter case, the user provides the action that
they would like to perform by typing and executing corre-
sponding code statements.

The tool supports a number of features aimed to make
the debugging process as simple as possible for the user.
We mention two of them here. First, the debugger interac-
tively prompts actions available to the driver at each step.
Second, the debugger keeps the entire history of the game
and allows the user to go back to one of previously ex-
plored states and try a different behavior from there.

6 Limitations of Termite
In Section 3, we described one limitation of Termite,

namely the lack of support for grey-box synthesis. In this
section we discuss other limitations, which, we hope, will
help define the agenda for continuing research in driver
synthesis.

Most importantly, Termite does not currently support
automatic synthesis of direct memory access (DMA)
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management code. Many modern devices transfer data
directly to and from main memory, where it is buffered
in data structures such as circular buffers and linked lists.
These data structures can have very large or infinite state
spaces and cannot be easily modeled within the finite state
machine-based framework of Termite. Efficient synthesis
for DMA requires enhancing the synthesis algorithm to
use more compact representation of DMA data structures,
which is the focus of our ongoing research. At this time,
code for manipulating DMA data structures must be writ-
ten manually. This code is not interpreted or verified by
Termite. For example, we use this approach to synthesize
a DMA-capable IDE disk driver (Section 7).

Device drivers in modern OSs contain a significant
amount of boilerplate code that is not directly related to
the task of controlling the device. This includes binding
the driver to I/O resources (memory mapped regions, in-
terrupts, timers), registering the driver with various OS
subsystems, allocating DMA memory regions, creating
sysfs entries, etc. While much of this functionality could
be synthesized within the game-based framework, we do
not believe that this is the correct approach. Previous re-
search has demonstrated that this boilerplate code can be
generated in a principled way from declarative specifica-
tions of the driver’s requirements and capabilities [26].
This technique has lower computational complexity than
game solving and better captures the essence of the task.
A practical driver synthesis tool can combine game-based
synthesis of the core driver logic responsible for control-
ling the device with declarative synthesis of boilerplate
code. As a result, the current version of Termite assumes
this boilerplate code is written manually as a wrapper
around the synthesized driver.

Drivers execute in a concurrent OS environment and
must handle invocations from multiple threads, as well as
asynchronous hardware interrupts. We separate synthesis
for concurrency into a separate step. Drivers synthesized
by Termite are correct assuming a sequential environment,
where driver entry points are invoked atomically. The re-
sulting sequential driver is then processed by a separate
tool that performs a sequence of transformations of the
driver source code, which preserve the driver’s sequential
behavior, while making the driver thread-safe. Such trans-
formations include adding locks around critical code sec-
tions, inserting memory barriers, and reordering instruc-
tions to avoid race conditions. Concurrency synthesis is
still work in progress and is beyond the scope of this pa-
per. Our preliminary results are published in [5, 6].

Termite does not explicitly support specification and
synthesis of timed behaviors. Instead, it uses a pragmatic
approach that allows it to synthesize time-sensitive be-

havior without having to explicitly reason about time. To
this end, Termite conservatively approximates timed oper-
ations by fairness constraints: it ignores the exact duration
of each device operation, but keeps the knowledge that
the operation will complete eventually, and synthesizes a
driver that waits for the completion. Termite is also able
to handle time-out conditions, modeled as external events.
However, at this time it is not capable of generating device
drivers for hard real-time systems, where the driver must
guarantee completion of I/O operations by a certain dead-
line.

7 Implementation and evaluation
The version of Termite presented here consists of

30,000 lines of Haskell code. The estimated overall
project effort is 10 person years. Termite is available in
source and binary form from the project webpage1.

We evaluate Termite by synthesizing drivers for eight
I/O devices. Specifically, we synthesized drivers for a
UVC-compliant USB webcam, the 16550 UART serial
controller, the DS12887 real-time clock, and the IDE disk
controller for Linux, as well as seL4 [16] drivers for I2C,
SPI, and UART controllers on the Samsung exynos 5
chipset2 and SPI controller on the STM32F10 chipset.
With the exception of the IDE disk, these devices are
representative of peripherals found in a typical embed-
ded platform, such as a smartphone. Our synthesized
drivers implement data transfer, configuration and error
handling. The main barrier to synthesizing drivers for
more advanced devices, e.g., high-performance network
controllers, is the current lack of support for synthesis of
DMA code in the current version of Termite.

Modelling complexity Models of UART and DS12887
devices were developed based on existing publicly avail-
able device models [32, 20]. Models of other devices were
derived from their vendor-provided documentation, fol-
lowing standard TLM modeling guidelines [31]. OS mod-
els for the relevant device classes were created based on
Linux kernel documentation and source code.

Table 1 summarises the size, in lines of code, of device
and OS models in our case studies. Developing a com-
plete set of specifications for each driver took approxi-
mately one week, of which only one to three days were
spent building the models and the rest of the time was
spent studying device and OS documentation. This effi-
ciency can be attributed to the choice of the right level of

1http://termite2.org
2At the time of writing, the exynos drivers have not yet been tested

due to hardware availability issues; however we confirmed via manual
inspection that they implement the same device control sequences as
existing manually developed drivers.
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input spec driver
OS device synthesized native

webcam 102 385 113 307
16450 UART 122 167 74 261
exynos UART 128 252 37 166
STM SPI 73 244 24 64
exynos SPI 88 239 40 183
exynos I2C 146 180 79 211
RT clock 118 252 84 183
IDE 188 480 94a 474

aExcluding 36 lines of manually written code that manipulates the
DMA descriptor table.

Table 1: Size (in lines of code) of input specifications and of
synthesized and equivalent manually written drivers.

abstraction and modeling language. In particular, the use
of transaction-level device modeling abstracts away com-
plicated internal device machinery by focusing on high-
level events relevant to driver synthesis, while the TSL
language allows modeling the driver environment using
standard programming techniques, as illustrated by our
running example.

Interestingly, we found the most error-prone step in de-
veloping specifications for driver synthesis to be defin-
ing correct relative ordering of OS-level and device-level
events with the help of the virtual interface (Section 2.3).
Naı̈ve specifications tend to be either too restrictive, lead-
ing to synthesis failures, or too liberal, leading to incorrect
synthesized drivers. As we gained more experience syn-
thesizing different types of drivers, we identified common
modeling patterns that help avoid errors in virtual inter-
face specifications.

As a common example, most virtual interfaces contain
callbacks that signal a change to one of device configura-
tion parameters, e.g., transfer speed, parity, etc. A naı̈ve
OS model may only allow such a callback to be triggered
when the OS has requested a change to the corresponding
device setting. However, many devices only allow setting
multiple configuration parameters simultaneously, so that
setting any individual parameter triggers multiple call-
backs, thus making the specification non-synthesizable.
The problem can be rectified by changing the device spec-
ification to only trigger callbacks if the new value of the
parameter is different from the old one; however this
bloats the device model due to the extra checks. A better
solution, used in all our models, is to design the OS speci-
fication to allow configuration callbacks to be triggered at
any time, provided that the new value of the parameter is
equal to the last value requested by the OS.

Synthesis time Table 2 summarises the performance of
the Termite game solver in our case studies. The second
column of the table characterises the complexity of the
two-player game constructed by the TSL compiler from

vars(bits) refine- predi- synt. verif.
ments cates time (s) time (s)

webcam 128 (125565) 47 192 215 794
16450 UART 81 (407) 65 128 210 464
exynos UART 80 (1185) 54 111 645 82
STM SPI 68 (389) 29 63 67 31
exynos SPI 83 (933) 31 72 25 44
exynos I2C 65 (303) 21 56 45 96
RT clock 92 (810) 25 74 56 127
IDE 114 (1333) 42 105 285 778

Table 2: Performance of the Termite game solver.

the input specifications in terms of the number of states
variables and the total number of bits in these variables.
The third column shows the number of iterations of the
abstraction refinement loop required to solve the game.
The next column shows the size of the abstract game at
the final iteration, in terms of the number of predicates
in the abstract state space of the game. These results
demonstrate the dramatic reduction of the problem dimen-
sion achieved by our abstraction refinement method. The
second-last column shows that the Termite game solver
was able to find the most general winning strategy within
a few minutes in all case studies.

We compared the performance of the Termite game
solver against a state-of-the-art abstraction refinement al-
gorithm for games [10] as well as against the standard
symbolic algorithm for solving games without abstrac-
tion [22]. In all case studies, the Termite solver was the
only one to find a winning strategy within a two-hour
limit. We refer the reader to [30] for a more detailed per-
formance analysis of the Termite synthesis algorithm.

The final column of Table 2 shows the time that it took
Termite to verify a complete driver. Recall that the Ter-
mite synthesis algorithm doubles as a verification algo-
rithm and can be used to verify drivers written in TSL.
We used complete synthesized drivers, containing a com-
bination of manual and automatically generated code, as
inputs to Termite. We have been able to successfully ver-
ify all of our drivers. We also experimented with intro-
ducing faults to synthesized drivers. Termite was able
to detect these faults and produce correct counterexample
strategies. In most cases verification took longer than syn-
thesis. The reason for this is that Termite has not yet been
optimized for verification workloads. This is one area for
future improvement.

User-guided code generation and debugging We eval-
uate the key contribution of this paper, namely the user-
guided debugging and code generation technique. Each
line of code in a Termite-generated driver originates from
one of three sources: it can be (1) synthesized automati-
cally by the tool, (2) developed offline and given to Ter-
mite as part of the driver template, or (3) added or modi-
fied by the user during an interactive code generation ses-
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sion. A perfect synthesis tool, capable of generating a
complete driver fully automatically while producing code
that meets all non-functional requirements, would elimi-
nate the need for manual code altogether. We do not be-
lieve that such a tool is feasible in the near future. We
therefore explore the tradeoffs that arise when using our
current, imperfect, tool. In particular, we would like to
empirically characterize situations when the user can rely
on the synthesizer to automatically produce near-optimal
code, and when they are better off completely or par-
tially implementing certain functionality manually. These
tradeoffs are likely to change as the tool improves.

Based on our experience so far, automatic synthesis is
most helpful in generating code that performs device con-
figuration or starts a data transfer. This code may involve
a long sequence of commands to the device, which must
be issued in the right order and with correct arguments.
The synthesis algorithm of Termite proved more effective
at doing this than human developers, producing correct
code that only requires minimal cosmetic changes in most
cases. For example, Figure 5 shows a screenshot of Ter-
mite with a synthesized implementation of the IDE driver
write() function, which starts a data transfer to the de-
vice. The function writes request parameters into appro-
priate device data registers and sets bit fields in command
registers to prepare the device for data transfer. One de-
ficiency in this auto-generated implementation is that it
uses absolute values instead of symbolic constants for bit
fields.

As another example of suboptimal synthesized code,
consider the following synthesized fragment
void packet_received() {

if (((packet_data[9:9] == 1) &&
(packet_data[14:14] == 1))) {

os.ack_packet(1,1,packet_data[16:32]);
} else if ((dev.packet_data[9:9] == 1)) {
os.ack_packet(1,0,packet_data);

} else if ((dev.packet_data[14:14] == 1)) {
os.ack_packet(0,1,packet_data[16:32]);

} else {
os.ack_packet(0,0,packet_data[16:32]);

};
};

which can be replaced by an equivalent one-liner
os.ack_packet(packet_data[9:9],

packet_data[14:14],packet_data[16:32]);

While both issues can, and will, be addressed by an im-
proved code generation algorithm, our experience shows
that unaccounted corner cases will arise occasionally.
Therefore, the ability to manually modify synthesized
code without sacrificing correctness is crucial for a prac-
tical synthesis tool.

Limitations of Termite are most noticeable in synthesiz-

Figure 5: Screenshot of Termite with a synthesized im-
plementation of the IDE driver. Automatically generated
code is highlighted.

ing interrupt handler code responsible for processing I/O
completions. This involves querying device state to deter-
mine which operations completed and with what status,
reporting results to the OS, and clearing interrupt status
registers. Since Termite does not support grey-box syn-
thesis, it can not generate this code automatically and in-
stead produces code that directly accesses device-internal
state (see Section 3). Termite correctly reports such situ-
ations and allows the user to mitigate them by manually
editing synthesized code. In practice, however, we found
it easier to develop most of the interrupt handler logic of-
fline, as part of the driver template, and rely on Termite to
(a) establish correctness of this code and (b) extend it to a
complete implementation.

In our case studies, 60% to 90% of the code was gen-
erated fully automatically, with the rest of the code pro-
duced in a user-guided fashion. Once an initial version of
device and OS specifications was ready, it took us several
hours to generate the driver implementation for each of
our case studies. Three quarters of this time was spent de-
bugging the input specifications, with the rest of it spent
generating driver source code with the help of the user-
guided code generation GUI.

We found counterexample-driven debugging to be cru-
cial to the productivity of synthesis-based development.
Before the debugger was available, we had to rely on code
inspection to identify defects in the input specifications,
which proved to be a frustrating and unpredictably long
process. The Termite debugger streamlines this process,
giving us the confidence that any failure can be localised
by following well-defined steps. A typical debugging ses-
sion takes a few minutes and involves entering only a few
commands manually before the defect is localised.
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Size of synthesized code The last two columns of Ta-
ble 1 compare the size of synthesized drivers to existing
manually developed drivers. Synthesised drivers are sig-
nificantly more compact than conventional drivers for two
main reasons. First, as explained in Section 6, we only
synthesize the driver logic directly responsible for con-
trolling the device. Conventional drivers typically contain
a large amount of boilerplate code managing various OS
resources. We believe that this code can and should be
synthesized using complementary techniques. At the mo-
ment we implement this functionality manually as a wrap-
per around the synthesized driver.

Second, conventional device drivers are often designed
to support multiple similar devices with slightly different
interfaces and capabilities. This leads to code bloat, as
the driver must implement multiple versions of various
operations, as well as logic to dynamically discover de-
vice capabilities and choose the right implementation to
use. In contrast, every Termite driver supports one spe-
cific device model with a fixed set of features. Drivers
for similar devices can share common specification code,
but are synthesized as separate source code modules. This
approach leads to simpler code and is preferable for plat-
forms with a fixed set of peripheral devices, such as smart-
phones, where shipping drivers that support only the re-
quired devices enables smaller system image.

Specification reuse Our specification methodology en-
sures mutual independence of device and OS specifica-
tions, and thus facilitates their reuse. We have not yet car-
ried out a substantial evaluation of such reuse; however
we report our limited experience based on synthesizing
two SPI drivers for the seL4 OS. The corresponding OS
specification was initially developed during the work on
the SPI driver for the exynos chipset. It was later used to
synthesize a driver for the STM32F10 chipset. We were
able to reuse most of the original specification. Minor
changes (8 lines of code) were required in the part of the
specification describing configuration functionality of the
driver, since the STM SPI controller supports a number
of ad hoc transfer modes. We expect to observe similar
pattern for other devices and operating systems: generic
OS specifications can be reused with localized, device-
specific changes required to support non-standard device
features.

Performance of synthesized drivers Our synthesized
drivers implement effectively identical device control
logic to their conventional counterparts and therefore have
similar performance. We benchmarked the USB web-
cam driver, which is the most performance-critical one
among our case studies. We measured CPU load and data
throughput generated by the conventional and synthesized

drivers for varying bitrates. We obtained identical results,
modulo measurement errors, for both drivers in all cases.

8 Related work
Device driver reliability has been an active area of re-

search for a number of years. Some of the techniques for
dealing with buggy drivers include runtime isolation [27,
17], virtualisation [18], static verification [2, 9, 21], sym-
bolic execution [7], language-based protection [34, 23],
domain-specific languages [11, 19], hardware-software
co-verification [25], etc.

This research has demonstrated the effectiveness of for-
mal techniques in improving driver reliability. Interest-
ingly, formal approaches to driver correctness fall into
methods that verify existing drivers and methods that
combine verification with an improved driver architecture.
The latter rely on language and architectural support to
eliminate entire families of driver bugs by design. Re-
cent examples include the P programming language [11]
and the active driver framework [1], which facilitate the
development and automatic verification of asynchronous
event-driven code. Our work can be seen as taking this
correctness-by-construction approach to the extreme by
generating drivers in an automated fashion.

9 Conclusion and future work
We presented the design and implementation of the Ter-

mite driver synthesis tool. Termite is the first tool to marry
automatic game-based synthesis with conventional man-
ual development. It is also the first practical synthesis tool
based on abstraction refinement. Finally, it is the first syn-
thesis tool to support automated debugging of input spec-
ifications.

Based on our experimental results, we consider Ter-
mite to be an important step towards truly practical de-
vice driver synthesis. In particular, our synthesis algo-
rithm is able to efficiently handle real-world device speci-
fications, while the user-guided approach reliably leads to
high-quality code.

Our ongoing research focuses on solving the key re-
maining problems described in Section 6, primarily the
DMA problem, which poses the main obstacle to syn-
thesis of more complex drivers, and the grey-box syn-
thesis problem, which limits the degree of automation
achieved by Termite. Next, we will explore ways to im-
prove the quality of automatically generated code and thus
further reduce the need for user involvement. This in-
cludes performance- and power-aware synthesis. Finally,
we plan to investigate automatic synthesis of hardened de-
vice drivers, i.e., drivers that gracefully handle misbehav-
ing devices [15].
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