
This paper is included in the Proceedings of the
13th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’16).
March 16–18, 2016 • Santa Clara, CA, USA

ISBN 978-1-931971-29-4

Open access to the Proceedings of the
13th USENIX Symposium on

Networked Systems Design and
Implementation (NSDI ’16)

is sponsored by USENIX.

Social Hash: An Assignment Framework for
Optimizing Distributed Systems Operations

on Social Networks
Alon Shalita, Brian Karrer, Igor Kabiljo, Arun Sharma, Alessandro Presta, and Aaron Adcock,

Facebook; Herald Kllapi, University of Athens; Michael Stumm, University of Toronto

https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/shalita

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 455

Social Hash: an Assignment Framework for Optimizing
Distributed Systems Operations on Social Networks

Alon Shalita†, Brian Karrer†, Igor Kabiljo†, Arun Sharma†, Alessandro Presta†, Aaron Adcock†,
Herald Kllapi∗, and Michael Stumm§

†Facebook {alon,briankarrer,ikabiljo,asharma,alessandro,aadcock}@fb.com
∗University of Athens herald@di.uoa.gr

§University of Toronto stumm@eecg.toronto.edu

Abstract
How objects are assigned to components in a distributed
system can have a significant impact on performance
and resource usage. Social Hash is a framework for
producing, serving, and maintaining assignments of ob-
jects to components so as to optimize the operations
of large social networks, such as Facebook’s Social
Graph. The framework uses a two-level scheme to de-
couple compute-intensive optimization from relatively
low-overhead dynamic adaptation. The optimization at
the first level occurs on a slow timescale, and in our ap-
plications is based on graph partitioning in order to lever-
age the structure of the social network. The dynamic
adaptation at the second level takes place frequently to
adapt to changes in access patterns and infrastructure,
with the goal of balancing component loads.

We demonstrate the effectiveness of Social Hash with
two real applications. The first assigns HTTP requests
to individual compute clusters with the goal of minimiz-
ing the (memory-based) cache miss rate; Social Hash de-
creased the cache miss rate of production workloads by
25%. The second application assigns data records to stor-
age subsystems with the goal of minimizing the number
of storage subsystems that need to be accessed on multi-
get fetch requests; Social Hash cut the average response
time in half on production workloads for one of the stor-
age systems at Facebook.

1 Introduction

Almost all of the user-visible data and information
served up by the Facebook app is maintained in a sin-
gle directed graph called the Social Graph [2, 34, 35].
Friends, Checkins, Tags, Posts, Likes, and Comments
are all represented as vertices and edges in the graph. As
such, the graph contains billions of vertices and trillions

of edges, and it consumes many hundreds of petabytes of
storage space.

The information presented to Facebook users is pri-
marily the result of dynamically generated queries on the
Social Graph. For instance, a user’s home profile page
contains the results of hundreds of dynamically triggered
queries. Given the popularity of Facebook, the Social
Graph must be able to service well over a billion queries
a second.

The scale of both the graph and the volume of queries
makes it necessary to use a distributed system design for
implementing the systems supporting the Social Graph.
Designing and implementing such a system so that it op-
erates efficiently is non-trivial.

A problem that repeatedly arises in distributed sys-
tems that serve large social networks is one of assign-
ing objects to components; for example, assigning user
requests to compute servers (HTTP request routing), or
assigning data records to storage subsystems (storage
sharding). How such assignments are made can have
a significant impact on performance and resource us-
age. Moreover, the assignments must satisfy a wide
range of requirements: e.g., they must (i) be amenable
to quick lookup, (ii) respect component size constraints,
and (iii) be able to adapt to changes in the graph, usage
patterns and hardware infrastructure, while keeping the
load well balanced, and (iv) limit the frequency of as-
signment changes to prevent excess overhead.

The relationship between the data of the social net-
work and the queries on the social network is m : n —
a query may require several data items and a data item
may be required by several queries. This makes finding
a good assignment of objects to components non-trivial;
finding an optimal solution for many objective functions
is NP Hard [6]. Moreover, a target optimization goal,
captured by an objective function, may conflict with the

456 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

	

Components	
(e.g.,	 compute	 clusters	 or	
storage	 subsystems)	

Groups	

Objects	 (e.g.,	 data	 records	 or	 HTTP	 requests)	

st
at
ic
	 	

as
si
gn

m
en

t	
dy

na
m
ic
	 	

as
si
gn

m
en

t	

Figure 1: Social Hash Abstract Framework

goal of keeping the loads on the components reasonably
well balanced. In the next subsection, we propose a two-
level framework that allows us to trade off these two con-
flicting objectives.

Social Hash Framework

We have developed a general framework that accommo-
dates the HTTP request routing and storage sharding ex-
amples mentioned above, as well as other variants of the
assignment problem. In our Social Hash framework, the
assignment of objects (such as users or data records) to
components (such as compute clusters or storage subsys-
tems) is done in two steps. (See Fig. 1.)

In the first step, each object is assigned to a group,
where groups are conceptual entities representing clus-
terings of objects. Importantly, there are usually many
more groups than components. This assignment is based
on optimizing a given, scenario-dependent, objective
function. For example, when assigning HTTP requests
to compute clusters, the objective function may seek to
minimize the (main memory) cache miss rate; and when
assigning data records to disk subsystems, the objective
function may seek to minimize the number of disk sub-
systems that must be contacted for multi-get queries. Be-
cause this optimization is typically computationally in-
tensive, objects are re-assigned to groups only periodi-
cally and offline (e.g., daily or weekly). Hence, we refer
to this as the static assignment step.

In the second step, each group is assigned to a com-
ponent. This second assignment is based on inputs
from system monitors and system administrators so as to
rapidly and dynamically respond to changes in the sys-
tem and workload. It is able to accommodate compo-
nents going on or offline, and it is responsible for keep-
ing the components’ loads well balanced. Because the
assignments at this level can change in real time, we re-
fer to this as the dynamic assignment step.

A key attribute of our framework is the decoupling of
optimization in the static assignment step, and dynamic

adaptation in the dynamic assignment step. Our solutions
to the assignment problem rely on being able to benefi-
cially group together relatively small, cohesive sets of
objects in the Social Graph. In the optimizations per-
formed by the static assignment step, we use graph par-
titioning to extract these sets from the Social Graph or
from prior access patterns. Optimization methods other
than graph partitioning could be used interchangeably,
but graph partitioning is expected to be particularly ef-
fective in the context of social networks, because most
requests are social in nature where users that are socially
close tend to consume similar data. The Social in So-
cial Hash reflects this essential idea of grouping socially
similar objects together.

Contributions

This paper describes the Social Hash framework for as-
signing objects to components given scenario-dependent
optimization objectives, while satisfying the require-
ments of fine-grained load balancing, assignment stabil-
ity, and fast lookup in the context of practical difficulties
presented by changes in the workload and infrastructure.

The Social Hash framework and the two applications
described in this paper have been in production use at
Facebook for over a year. Over 78% of Facebook’s
“stateless” Web traffic routing occurs with this frame-
work, and the storage sharding application involves tens
of thousands of storage servers. The framework has also
been used in other settings (e.g., to distribute vertices in a
graph processing system, and to reorder data to improve
compression rates). We do not describe these additional
applications in this paper.

The three most important contributions we make in
this paper are:

1. the two-step assignment hierarchy of our frame-
work that decouples (a) optimization on the Social
Graph or previous usage patterns from (b) adapta-
tion to changes in the workload and hardware in-
frastructure;

2. our use of graph partitioning to exploit the structure
of the social network to optimize HTTP routing in
very large distributed systems;

3. our use of query history to construct bipartite graphs
that are then partitioned to optimize storage shard-
ing.

With respect to (1), the use of a multi-level scheme for
allocating resources in distributed systems is not new, not
even when used with graph partitioning [33]. In par-
ticular, some multi-tenant resource allocation schemes

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 457

have used approaches that are in many respects similar
to the one being proposed here [19, 26, 27, 28]. How-
ever, the specifics of our approach, especially as they re-
late to Facebook’s operating environment and workload,
are sufficiently interesting and unique to warrant a ded-
icated discussion and analysis. Regarding (2), edge-cut
based graph partitioning techniques have been used for
numerous optimization applications, but to the best of
our knowledge not for making routing decisions to re-
duce cache miss rates. Similarly, for (3), graph partition-
ing has previously been applied to storage sharding [33],
but partitioning bipartite graphs based on prior access
patterns is, as far as we know, novel.

We show that the Social Hash framework enables sig-
nificant performance improvements as measured on the
production Social Graph system using live workloads.
Our HTTP request routing optimization cut the cache
miss rate by 25%, and our storage sharding optimization
cut the average response latency in half.

2 Two motivating example applications

In this section, we provide more details of the two exam-
ples we mentioned in the Introduction. We discuss and
analyze these applications in significantly greater detail
in later sections.

HTTP request routing optimization. The purpose of
HTTP request routing is to assign HTTP requests to com-
pute clusters. When a cluster services a request, it fetches
any required data from external storage servers, and then
caches the data in a cluster-local main memory-based
cache, such as TAO [2] or Memcache [24], for later reuse
by other requests. For example, in a social network, a
client may issue an HTTP request to generate the list of
recent posts by a user’s friends. The HTTP request will
be routed to one of several compute clusters. The server
will fetch all posts made by the user’s friends from ex-
ternal databases and cache the fetched data. How HTTP
requests are assigned to compute clusters will affect the
cache hit rate (since a cached data record may be con-
sumed by several queries). It is therefore desirable to
choose a HTTP request assignment scheme which as-
signs requests with similar data requirements to the same
compute cluster.

Storage sharding optimization. The purpose of stor-
age sharding is to distribute a set of data records across
several storage subsystems. A query which requires a
certain record must communicate with the unique host
that serves that record.1 A query may consume sev-

1To simplify our discussion, we disregard the fact that data is typi-
cally replicated across multiple storage servers.

eral records, and a record may be consumed by several
queries. For example, if the dataset consists of recent
posts produced by all the users, a typical query might
fetch the recent posts produced by a user’s friends.

The assignment of data records to storage subsystems
determines the number of hosts a query needs to commu-
nicate with to obtain the required data. A common opti-
mization is to group requests destined to the same storage
subsystem and issue a single request for all of them. Ad-
ditionally, since requests to different storage subsystems
are processed independently, they can be sent in paral-
lel. As a result, the latency of the slowest request will
determine the latency of a multi-get query, and the more
hosts a query needs to communicate with, the higher the
expected latency (as we show in Section 6.1). It is thus
desirable to choose a data record assignment scheme that
collocates the data required by similar queries within a
small number of storage subsystems.

3 The assignment problem

Assigning objects to system components is a challeng-
ing part of scaling an online distributed system. In this
section, we abstract the essential features of our two mo-
tivating examples to formulate the problem we solve in
this paper.

3.1 Requirements

We have the following requirements:
• Minimal average query response time: User satis-

faction can improve with low query response times.
• Load balanced components: The better load-

balanced the components, the higher the efficiency of the
system; a poorly load-balanced system will reach its ca-
pacity earlier and in some cases may lead to increased
latencies.
• Assignment stability: Assignments of objects to

components should not change too frequently in order
to avoid excessive overhead. For example, reassigning a
query from one cluster to another may lead to extra (cold)
cache misses at the new cluster.
• Fast lookup: Low latency lookup of the object-

component assignment is important, given the online na-
ture of our target distributed system.

3.2 Practical challenges

Meeting the requirements listed above is challenging for
a variety of reasons:

458 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

• Scale: The assignment problem typically requires
assigning a large number of objects to a substantially
smaller number of components. The combinatorial ex-
plosion in the number of possible assignments prevents
simple optimization methods from being effective.
• Effects of similarity on load balance: Colocating

similar objects usually results in higher load imbalances
than when colocating dissimilar objects. For example,
similar users likely have similar hours of activity, brows-
ing devices, and favorite product features, leading to load
imbalance when assigning similar users to the same com-
pute clusters.
• Heterogenous and dynamic set of components:

Components are often heterogeneous and thus support
different loads. Further, the desired load on each compo-
nent can change over time; e.g., due to hardware failure.
Finally the set of components will change over time as
new hardware is introduced and old hardware removed.
• Dynamic workload: The relationship between data

and queries can change over time. A previously rarely
accessed data record could become popular, or new types
of queries could start requesting data records that were
previously not accessed. This can happen, for example, if
friendship ties in the network are introduced or removed,
or if product features change their data consumption pat-
tern.
• Addition and removal of objects: Social networks

change and grow constantly, so the set of objects that
must be assigned changes over time. For example, users
may join or leave the service.

The magnitude and relative importance of these prac-
tical challenges will differ depending on the distributed
system being targeted. For Facebook, the scale is enor-
mous; similar users do have similar patterns; and het-
erogeneous hardware is prevalent. On the other hand,
changes to the graph occur at a (relatively) modest rate
(in part because we often only consider subgraphs of the
Social Graph); and rate of hardware failures is reason-
ably constant and predictable.

4 Social Hash Framework

In this section, we propose a framework called the Social
Hash Framework which comprises a solution to the as-
signment problem and, moreover, addresses the practical
challenges listed above.

In Section 1 we introduced the abstract framework
with objects at the bottom, (abstract) groups in the mid-
dle, and components at the top. Recall that objects are
queries, users, or data records, etc., and components are
computer clusters, or storage subsystems, etc..

Objects are first assigned to groups in a optimization-
based static assignment that is updated on a slow
timescale of a day to a week. Groups are then assigned
to components using an adaptation-based dynamic as-
signment that is updated on a much faster timescale.
Dynamic assignment is used to keep the system load-
balanced despite changes in the workload or changes in
the underlying infrastructure. This two-level design is
intended to accommodate the disparate requirements and
challenges of efficiently operating a huge social network,
as described in Section 3.

Below, we give more concrete details on the abstract
framework, how it is implemented, and how it is used.
In Sections 5 and 6 we will become even more concrete
and present specific implementation issues for our two
examples. We begin by presenting our rationale for using
a two-level design.

4.1 Rationale

Our two-level approach for assigning objects to compo-
nents is motivated by the observation that there is a con-
flict between the objectives of optimization and adapta-
tion. In theory, one could assign objects to components
directly, resulting in only one assignment step. However,
this would not work well in practice because of diffi-
culties adapting to changes: as mentioned, component
loads often change unpredictably; components are added
or removed from the system dynamically; and the sim-
ilarity of objects that are naturally grouped together for
optimization leads to unbalanced utilization of resources.
Waiting to rerun the assignment algorithm would leave
the system in a suboptimal state for too long, and chang-
ing assignments on individual objects without re-running
the assignment algorithm would also be suboptimal.

An assignment framework must therefore address both
the optimization and adaptation objectives, and it must
offer enough flexibility to be able to shift emphasis be-
tween these competing objectives at will. With a two-
level approach, the static level optimizes the assignment
to groups where, from the point of view of optimization,
the group is treated as a virtual component. The dynamic
level adapts to changes by assigning groups to compo-
nents. Multiple groups may be assigned to the same
component; however, all objects in the same group are
guaranteed to be assigned to the same component. (See
Figure 1.) As such, what is particularly propitious about
our architecture is that dynamic reassignment of groups
to components does not negate the optimization step be-
cause objects in a group remain collocated to the same
component, even after reassignment.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 459

We are able to seamlessly shift emphasis between
static optimization and dynamic adaptation by means of
the parameter n, the ratio of number of groups to number
of components; that is n := |G|

/
|C|. When n = 1, the

emphasis is entirely on the static optimization. There is
a 1 : 1 correspondence between groups and components.
As noted above, this may not work well for some applica-
tions because it may not be sufficiently adaptive. When
n � 1, we trade off optimization for increased adapta-
tion. When n is too large, the optimization quality may
be severely degraded, and the overhead of dynamic as-
signment may be prohibitive. Clearly, the choice of n,
and thus the tradeoff between optimization and adapta-
tion, is best selected on a per-application basis; as we
show in later sections, some applications require less ag-
gressive adaptation than others, allowing more emphasis
to be placed on optimization.

4.2 Framework Overview
In this subsection, we describe the main elements of
the Social Hash framework, as depicted in Fig. 2: the
static assignment algorithm, the dynamic assignment al-
gorithm, the lookup method, and the missing key assign-
ment. In the discussion that follows it is useful to note
that objects are uniquely identified by a key.

The static assignment algorithm generates a static
mapping from objects to groups using the following in-
put: (i) a context dependent graph, which in our work
can be either a unipartite graph (e.g., friendship graph)
or a bipartite graph based on access logs (e.g., relating
queries and accessed data records); (ii) type of object that
is to be assigned to groups (e.g. data records, users, etc);
(iii) an objective function; (iv) number of groups; and
(v) permissible imbalance between groups. The output
of the static partitioning algorithm is a hash table of (key,
group) pairs, indexed by key. We refer to this hash table
as the Social Hash Table.2

The dynamic assignment uses the following input:
(i) current component loads, (ii) the desired maximum
load per component, and possibly (iii) the historical loads
per group. The desired load for each component is pro-
vided by system operators and monitoring systems, and
the historical loads induced by each group can be de-
rived from system logs. As the observed and desired
loads change over time, the dynamic assignment shifts
groups among components to balance the load. The out-
put of the dynamic assignment is a hash table of (group,
component) pairs, called the Assignment Table.2

2In practice, any key-value store that supports fast lookups can be
used. We describe it as a hash table for ease of comprehension.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	 	

Social	 Hash	 Tbl	 Assignment	 Tbl	

group	
g	

Lo
ok

up
	

Re
qu

es
t	

Missing	 key	 	
assignment	

key	

fai
led

	

gr
ou

p	

c	

Graph	
Partitioning	

graph	

specifications	 Dynamic	 	
Assignment	

monitoring	
info	

operator	
console	

key	

Figure 2: Social Hash Architecture

When a client wishes to look up which component an
object has been assigned to, it will do so in two steps:
first the object key is used to index into the Social Hash
Table to obtain the target group, g; second, g is used to
index into the Assignment Table to obtain the component
id c. This is shown in Figure 2.

Because the Social Hash Table is constructed only pe-
riodically, it is possible that a target key is missing in
the Social Hash table; for example, the key could re-
fer to a new user or a user that has not had any activity
in the recent past (and hence is not in the access log).
When an object key is not found in the Social Hash Ta-
ble, then the Missing Key Assignment rule does the ex-
ception handling and assigns the object to a group on the
fly. The primary requirement is that these exceptional as-
signments are generated in a consistent way so that sub-
sequent lookups of the same key return the same group.
Eventually these new keys will be incorporated into the
Social Hash Table by the static partitioning algorithm.

4.3 Static assignment algorithm

We use graph partitioning algorithms to partition objects
into groups in the static assignment step. Graph par-
titioning algorithms have been well-studied [3], and a
number of graph partitioning frameworks exist [5, 18].
However, social network graphs, like Facebook’s Social
Graph, can be huge compared to what much of the ex-
isting literature contemplates. As a result, an approach
is needed that is amenable to distributed computation on
distributed memory systems. We built our custom graph
partitioning solution on top of the Apache Giraph graph
processing system [1], in part because of its ability to par-
tition graphs in parallel; other graph processing systems
could have also potentially been used [10, 11, 20].

The basic strategy in obtaining good static assign-
ments is the following graph partitioning heuristic. We

460 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

assume the algorithm begins with an initial (weight-)
balanced assignment of objects to groups represented as
pairs (v,gv), where v denotes an object and gv denotes the
group to which v is initially assigned. Next, for each v,
we record the group g∗v that gives the optimal assignment
for v to minimize the objective function, assuming all
other assignments remain the same. This step is repeated
for each object to obtain a list of pairs (v,g∗v). Each ob-
ject can be processed in parallel. Finally, via a swap-
ping algorithm, as many reassignments of v to g∗v are car-
ried out under the constraint that group sizes remain un-
changed within each iteration; the swapping can again be
done in parallel as long as it is properly coordinated (in
our implementation with a centralized coordinator). This
overall process is then repeated with the new assignments
taken as the initial condition for the next iteration. The
above process is iterated on until it converges or reaches
a limit on the number of iterations.

The initial balanced assignment required by the static
assignment algorithm is either obtained via a random as-
signment (e.g., when the algorithm is run for the very
first time) or is obtained from the output of the previous
iteration of the static assignment algorithm modulo the
newly added objects that are assigned randomly.

The above procedure manages to produce high quality
results for the graphs underlying Facebook operations in
a fast and scalable manner. Within a day, a small cluster
of a few hundred machines is able to partition the friend-
ship graph of over 1.5B+ Facebook users into 21,000 bal-
anced groups such that each user shares her group with at
least 50% of her friends. And the same cluster is able to
update the assignment starting from the previous assign-
ment within a few hours, easily allowing a weekly (or
even daily) update schedule. Finally, it is worth point-
ing out that the procedure is able to partition the graph
into tens of thousands of groups, and it is amenable to
maintaining stability, since each iteration begins with the
previous assignment and it is easy to limit the movement
of objects across groups.

We have successfully used the above heuristic on both
unipartite and bipartite graphs, as we describe in more
detail in Sections 5 and 6.

4.4 Dynamic assignment

The primary objective of dynamic assignment is to keep
component loads well balanced despite changes in access
patterns and infrastructure. Load balancing has been well
researched in many domains. However, the specific load
balancing strategy used for our Social Hash framework
may vary from application to application so as to provide

the best results. Factors that may affect the the choice of
load balancing strategy include:
• Accuracy in predicting future loads: Low pre-

diction accuracy favors a strategy with a high group-to-
component ratio (e.g., � 1,000) and groups being as-
signed to components randomly. This is the strategy that
is used for HTTP routing. On the other hand, the amount
of storage used by data records is easier to predict (in
our case), and hence warrants a low group-to-component
ratio and non-random component assignment.
• Dimensionality of loads: A system requiring bal-

ancing across multiple different load dimensions (CPU,
storage, queries per second, etc.) favors using a high
group-to-component ratio and random assignment.
• Group transfer overhead: The higher the overhead

of moving a group from one component to another, the
more one would want to limit the rate of moves between
components by increasing the load imbalance threshold
that triggers a move.
• Assignment memory: It can be more efficient to

assign a group back to an underloaded component it was
previously assigned to in order to potentially benefit from
the residual state that may still be present. This favors re-
membering recent assignments, or using techniques sim-
ilar to consistent hashing.

Finally, we note that load balancing strategies used in
other domains will need to be adapted to the Social Hash
framework; e.g., load is transferred from one component
to another in increments of a group; and the load each
group incurs is not homogeneous, in part because of the
similarity of objects within groups.

5 Social Hash for Facebook’s Web Traffic
Routing

In this section, we describe how we applied the Social
Hash framework to Facebook’s global web traffic routing
to improve the efficiency of large cache services. This is
Facebook’s largest application using the framework and
has been in production for over a year.

Facebook operates several worldwide data centers,
each divided into front-end clusters containing web and
cache tiers, and back-end clusters containing database
and service tiers. To fulfill an HTTP request, a front-end
web server may need to access databases or services in
(possibly remote) back-end clusters. The returned data is
cached within front-end cache services, such as TAO [2]
or Memcache [24]. Clearly, the lower the cache miss
rate, the higher the efficiency of hardware usage, and the
lower the response times.

In addition, to reduce latencies for users, Facebook

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 461

has “Point-of-Presence” (PoP) units around the world:
small-scale computational centers which reside close to
users. PoPs are used for multiple purposes, includ-
ing peering with other network operators and media
caching [12]. When an HTTP request to one of Face-
book’s services is issued, the request will first go to a
nearby PoP. A load balancer in the PoP then routes the
request to one of the front-end clusters over fast commu-
nication channels.

5.1 Prior strategy

Prior to using Social Hash, routing decisions were
based on user identifiers, using a consistent hashing
scheme [15]. To make a routing decision, the user identi-
fier was extracted from the request, where it was encoded
within the request persistent attributes (i.e., cookie), and
then used to index into a consistent hash ring to obtain
the cluster id. The segments of the consistent hash ring
corresponded in number and weight to the front-end clus-
ters. The ring’s weights were dynamic and could be
changed at any time, allowing dynamic changes to the
cluster’s traffic load. The large number of users in com-
parison to the small number of clusters, along with the
random nature of the hash ring, ensured that each clus-
ter received a homogeneous traffic pattern. With fixed
cluster weights, a user would repeatedly be routed to the
same cluster, guaranteeing high hit rates for user-specific
data. The consistent nature of the ring also ensured
that changes to cluster weights resulted in relatively mi-
nor changes to the user-to-cluster mapping, reducing the
number of cache misses after such changes.

5.2 Social Hash implementation

For the Social Hash static assignment, we used a uni-
partite graph with vertices representing Facebook’s users
and edges representing the friendship ties between them.
We partition the graph using the edge-cut optimization
criterion, knowing that friends and socially similar users
tend to consume the same data, and that they are there-
fore likely to reuse each other’s cached data records.

We use a relatively large number of groups for two rea-
sons. First, the global routing scheme needs to be able to
shift traffic across clusters in small quantities. Second,
changes in HTTP request routing will affect many sub-
systems at Facebook, not just the cache tiers; and it is
very difficult to predict how much load each group will
incur on each subsystem. Hence, we have found the best
strategy to balance the load overall is to use many groups
and assign the groups to clusters randomly.

For the dynamic assignment step, we kept the existing
consistent hash scheme, which is oblivious to the type of
identifier it receives as input (either user- or group-id).

To be able to make an HTTP request routing decision
at run time, it is necessary to access both the Social Hash
Table and the Assignment Table. The latter is computed
on-the-fly using the consistent hash mechanism, which
requires a fairly small map between clusters and their
weights; it is therefore easy to hold the map in the POP
memories. The former, however, is large, consuming
several gigabytes of storage space when uncompressed.
We considered storing the Social Hash Table close to the
PoP (in its own memory or in a nearby storage service),
but decided not to do so due to added PoP complexity,
fault tolerance considerations, and limited PoP resources
that could be put to better use by other services. We also
considered sending a lookup request to a data center, but
rejected this idea due to latency concerns.

Instead, we encode the user assigned group within the
request persistent attributes (i.e., as a cookie) and de-
code it to make a routing decision when a request arrives.
Requests that do not have the group-id encoded in the
header are routed to a random front-end cluster, where
the session creation mechanism accesses a local copy of
the Social Hash Table to fetch the group assigned to the
user. Because the Social Hash Table is updated once a
week, group-ids in the headers may become stale. For
this reason, a user request will periodically (at least once
an hour) trigger an update process where the group-id is
updated with its latest value from the Social Hash Ta-
ble. This allows long lasting connections to receive fresh
routing information.

Our design eliminates the complexities and overhead
of a Social Hash Table lookup at the PoPs, requiring just
a single header read instead. The design is also more re-
silient to failure, because even if the data store providing
the Social Hash Table is down, group-id’s will mostly be
available in the request headers.

For technical reasons, some requests cannot be tagged
properly with either the user or the group identifier (be-
cause the requests may have been issued by crawlers,
bots or legacy clients). These requests are routed ran-
domly, yet in a consistent manner, to one of the front-
end clusters while respecting load constraints. In the past
three months, 78% of the requests had a valid group-id
that could be used for routing (and those that did not were
not tagged with a user-id, a group-id, or any other identi-
fier.).

Some may argue that the decreased miss rates
achieved with Social Hash leads to a fault tolerance issue,
because the data records are less likely to be present in

462 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

�

�
�

�
�

�
�

�
�

�
�

�

�

�

�

�

�

0.00

0.25

0.50

0.75

1.00

10 100 1,000 10,000 100,000
Number of groups

Ed
ge

 lo
ca

lit
y

Figure 3: Edge locality (fraction of edges within groups) vs. the
number of groups for Facebook’s friendship graph.

multiple caches simultaneously. This could be a concern
as the recovery of a cache failure would overwhelm the
backing storage systems with excessive traffic and thus
lead to severely degraded overall performance. How-
ever, our experience indicates that a failure of the main-
memory caches within a cluster only causes a temporary
load increase on the backend storage servers that stays
within the normal operational load thresholds.

5.3 Operational observations

To get a sense of how access patterns of friends relate,
we sampled well over 100 million accesses to TAO data
records from access logs. We found that when two users
access the same data record, there is a 15% chance they
are friends. This is millions of times larger than the prob-
ability of two random users being friends. We conclude
that co-locating the processing of friends’ HTTP requests
as much as possible is an effective strategy.

Figure 3 depicts edge locality vs. the number of groups
used to partition the 1.5B+ Facebook users. Edge lo-
cality measures the fraction of “friend” edges connect-
ing two users that are both assigned to the same group
(thus, the goal of static assignment would be to maxi-
mize edge locality). It is not a surprise that edge locality
decreases with the number of groups. Perhaps a bit more
unexpected is the observation that edge locality remains
reasonably large even when the number of groups in-
creases significantly (e.g., >20% with 1 million groups);
intuitively, this is because the friendship graph contains
many small relatively dense communities. We chose the
smallest number of groups that would satisfy our main
requirement for dynamic assignment, namely to be able
to balance the load by shifting only small amounts of

traffic between front-end clusters. Repeating the process
of assigning different numbers of groups into compo-
nents offline and examining the resulting imbalance on
known loads led us to use 21,000 groups on a few 10’s of
clusters; our group-to-component ratio is thus quite high.

The combination of new users being added to the sys-
tem and changes to the friendship graph causes edge lo-
cality to degrade over time. We measured the decrease of
edge locality from an initial, random assignment of users
to one of 21,000 groups over the course of four weeks.
We observed a nearly linear 0.1% decrease in edge lo-
cality per week. While small, we decided to update the
routing assignment once a week so as to minimize a no-
ticeable decrease in quality. At the same time, we did
not observed a decrease in cache hit rate between up-
dates, implying that 0.1% is a negligible amount. The
decrease in edge locality implies that a longer update
schedule would also be satisfactory, and that Social Hash
can tolerate a long maintenance breakdown without alter-
ing Facebook’s web traffic routing quality.

For the past three months, the Social Hash Table used
for Facebook’s routing has maintained an edge locality of
over 50%, meaning half the friendships are within each
of the 21,000 groups. This edge locality is slightly higher
than the exploratory values shown in Figure 3, because
we iterated longer in the graph partitioning algorithm on
the production system than we did in the experiments
from which we obtained the figure. The static assign-
ment is well-balanced, with the largest group containing
at most 0.8% more users than the average group. Each
weekly update by the static assignment step resulted in
around 1.5% of users switching groups from the previ-
ous assignment. All of these updates were suitably small
to avoid noticeable increases in the cache miss rate when
the updates were introduced into production.

5.4 Live traffic experiment

To measure the effectiveness of Social Hash-based HTTP
routing optimization, we performed a live traffic experi-
ment on two identical clusters with the same hardware,
number of hosts and capacity constraints. These clusters
are typical of what Facebook uses in production. Each
cluster had many hundred TAO servers, which served the
local web tier with cached social data.

For our experiment, we selected a set of groups ran-
domly from the Social Hash Table. We then routed all
HTTP requests from users assigned to these groups to
one “test” cluster, while HTTP requests from a same
number of other users were routed to the second, “con-
trol” cluster. Hence, the control cluster saw traffic with

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 463

−30

−20

−10

0

10

Su
n

M
on Tu
e

W
ed Th
u Fr
i

Sa
t

Su
n

M
on Tu
e

W
ed Th
u Fr
i

Sa
t

Day

Pe
rc

en
ta

ge
 c

ha
ng

e
in

 T
AO

 m
is

s
ra

te
 (%

)

−5.0

−2.5

0.0

2.5

5.0

Su
n

M
on Tu
e

W
ed Th
u Fr
i

Sa
t

Su
n

M
on Tu
e

W
ed Th
u Fr
i

Sa
t

Day

Pe
rc

en
ta

ge
 c

ha
ng

e
in

 id
le

 C
PU

 (%
)

Figure 4: Percentage change in TAO miss rate (left, where lower is better) and CPU idle rate (right, where higher is better) on
the Social Hash cluster relative to the cluster with random assignment. Area between red dashed lines: period of the test. Orange
dashed lines: traffic shifts. Green dot-dash line: Social Hash Table is updated. The values on the days traffic was shifted (Tuesday
and Wednesday, respectively) are not representative

attributes very similar to the traffic it received with the
prior strategy: the traffic with the prior strategy was sam-
pled from all users, while the traffic for the control clus-
ter was sampled from all users except those associated
with the test cluster. We ran the experiment for 10 days.
During this time, operational changes that would affect
hit rates on the two clusters were prevented.

The left hand side of Figure 4 shows the change in
cache miss rate between the test and control clusters. It
is evident that the miss rate drops by over 25% when
assigning groups to a cluster as opposed to just users.

The right hand side of Figure 4 shows the change in
average CPU idle rate between the test and the control
cluster. The test cluster had up to 3% more idle time
compared to the control cluster.

During the experiment, we updated the Social Hash
Table by applying an updated static assignment. The
time at which this occurred is shown with a vertical green
dot-dash line. We note that the cache miss rate and the
CPU idle time are not affected by the update, demon-
strating that the transition process is smooth.

Figure 5 compares the daily working set size for TAO
objects at both clusters. The daily working set of a clus-
ter is the total size of all objects that were accessed by
the TAO instance on that front-end cluster at least once
during that day. The figure shows that the working set
size dropped by as much as 8.3%.

We conclude from this experiment that Social Hash
is effective at improving the efficiency of the cache for
HTTP requests: fewer requests are sent to backend sys-
tems, and the hardware is utilized in a more efficient way.

6 Storage sharding

In this section, we describe in detail how we applied
the Social Hash framework to sharded storage systems
at Facebook. The assignment problem is to decide how
to assign data records (the objects) to storage subsystems
(the components).

6.1 Fanout vs. Latency
The objective function we optimize is fanout, the number
of storage subsystems that must be contacted for multi-
get queries. We argue and experimentally demonstrate
that fanout is a suitable objective function, since lower
fanout is closely correlated with lower latencies [7].

Multiget queries are typically forced to issue requests
to multiple storage subsystems, and they do so in paral-
lel. As such, the latency of a multi-get query is deter-
mined by the slowest request. By reducing fanout, the
probability of encountering a request that is unexpect-
edly slower than the others is reduced, thus reducing the
latency of the query. This is the fundamental argument
for using fanout as the objective function for the assign-
ment problem in the context of storage sharding. An-
other argument is that lower fanout reduces the connec-
tion overhead per data record.

To further elaborate the relevance of choosing fanout
as the objective function, consider this abstract scenario.
Suppose 1% of individual requests to storage servers
incur a significant delay due to unanticipated system-
specific issues (CPU thread scheduling delays, system

464 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

�

�

�

�
� �

�

� �

�

�

�
�

−8

−4

0
Su

n
Mon Tu

e
Wed Th

u Fri Sa
t

Su
n

Mon Tu
e

Wed Th
u Fri

Day

Pe
rce

nta
ge

 ch
an

ge
 in

 w
ork

ing
 se

t (%
)

Figure 5: Percentage change in daily TAO working set size on
the Social Hash cluster relative to the cluster with random as-
signment. The red dashed lines indicate the first and last days
of the test where the test was running only during part of the
day (so the values for these two days may not be representa-
tive).

interrupts, etc.). If a query must contact 10 storage
servers, then one can calculate that the multi-get request
has a 9.6% chance an individual sub-request will expe-
rience a significant delay. If the fanout can be reduced,
one can reduce the probability of incurring the delay.

We ran a simple experiment to confirm our under-
standing of the relationship between fanout and latency.
We issued trivial remote requests and measured the la-
tency of a single request (fanout=1) and the latency of
two requests sent in parallel (fanout=2). Figure 6 shows
the cumulative latency distribution for both cases. A
fanout of 1 results in lower latencies than a fanout of 2.
If we calculate the expected distribution computed from
two independent samples from the single request distri-
bution, then the observed overall latency for two parallel
requests matches the expected distribution quite nicely.

One possible caveat to our analysis of the relationship
between fanout and latency is that reducing fanout gener-
ally increases the size of the largest request, which could
increase latency. Fortunately, storage subsystems today
have processors with many cores that can be exploited
by the software to increase the parallelism in servicing a
single, large request.

6.2 Implementation

For the static assignment we apply bipartite graph parti-
tioning to minimize fanout. We create the bipartite graph
from logs of queries from the dynamic operations of the

0.00

0.25

0.50

0.75

1.00

0.0 0.5 t 1.0 t 1.5 t 2.0 t
Latency

CD
F Single call

Two calls
Expected

Figure 6: Cumulative distribution of latency for a single re-
quest, two requests in parallel, and the expected distribution
from two independent samples from the single request distribu-
tion, where t is the average latency of a single call
.

social network.3 The queries and data records accessed
by the queries are represented by two types of vertices.
A query vertex is edge-connected to a data vertex iff the
query accesses the data record. The graph partitioning
algorithm is then used to partition the data vertices into
groups so as to minimize the average number of groups
each query is connected to.

Clearly, most data needs to be replicated for fault tol-
erance (and other) reasons. Many systems at Facebook
do this by organizing machines storing data into non-
overlapping sets, each containing each data record ex-
actly once. We refer to such a set as a replica. Since
assignment is independent between replicas, we will re-
strict our analysis to scenarios with just one replica.

6.3 Simplified sharding experiment

We consider the following simple experiment. We use
40 stripped down storage servers, where data is stored in
a memory-based, key-value store. We assume that there
is one data record per user. We run this setup in two
configurations. In the first, “random” configuration, data
records are distributed across the 40 storage servers us-
ing a hash function, which is a common practice. In the
second, “social” configuration, we use our Social Hash
framework to minimize fanout.

We then sampled a live traffic pattern, and issued the
same set of queries to both configurations, and we mea-
sured fanout and latency. With the random configuration,

3In some cases, prior knowledge of which records each query must
retrieve is sufficient to create the graph.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 465

0.00

0.25

0.50

0.75

1.00

0 3 t 6 t 9 t 12 t
Latency

CD
F random parallel

social parallel
social serial

Figure 7: Cumulative latency distribution for fetching data of
friends, where t is the average latency of a single call.

the queries needed to issue requests to 38.8 storage sub-
systems on average. With the social configuration, the
queries needed to issue requests to only 9.9 storage sub-
systems on average. This decrease in fanout resulted in a
2.1X lower average latency for the queries.

The cumulative distribution of latencies for the ran-
dom and social configurations are shown in Figure 7,
where we also include the social configuration’s latency
distribution after disabling parallelism within each ma-
chine. Without parallelism, the average latency is still
lower then with the random configuration, but only by
23%. Furthermore, the slowest 25% queries on the social
configuration without parallelism exhibited substantially
higher latencies than the 25% slowest queries on the ran-
dom configuration. This figure confirms the importance
of using parallelism within each system.

6.4 Operational observations
After we deployed storage sharding optimized with So-
cial Hash to one of the graph databases at Facebook, con-
taining thousands of storage servers, we found that mea-
sured latencies of queries decreased by over 50% on av-
erage, and CPU utilization also decreased by over 50%.

We attribute much of this improvement in perfor-
mance to our method of assigning data records to groups,
using graph partitioning on bi-partite graphs generated
from prior queries. The solid line in Figure 8 shows the
average fanout as a function of the number of groups
when using our method. The dotted line shows the av-
erage fanout when using standard edge-cut optimization
criteria on the (unipartite) friendship graph.

After analyzing expected load balance, we decided on
a group-to-component ratio of 8; the dynamic assign-
ment algorithm then selects which 8 groups to assign to
the same storage subsystem, based on the historical load
patterns. This allowed us to keep fanout small, while still

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

10

20

30

40

50

3 10 30 100 300 1,000 3,000 10,000
Number of groups

Av
er

ag
e

fa
no

ut

Figure 8: The average fanout versus number of groups on Face-
book’s friendship graph when using edge locality optimization
(dotted curve) and our fanout optimization (solid curve), re-
spectively.

being able to maintain good load balance.
In practice, fanout degrades over time. For the 40

group solution we used in the simplified application, we
observed a fanout increase of about 2% on average over
the course of a week. A single static assignment update
sufficed to bring the fanout back to what it was previ-
ously, requiring only 1.85% of the data records to have
to be moved. With such low impact, we decided static as-
signment updates were only necessary every few months,
relying on dynamic assignment to move groups when
necessary in between. Even then, we found that dynamic
assignment updates were not necessary more than once
a week on average. We used the same static assignment
for all replicas, but made dynamic assignment decisions
independently for each replica.

7 Related work

As discussed in Section 4.3, graph partitioning has an ex-
tensive literature, and our optimization objectives, edge
locality and fanout, correspond to edge cut and hyper-
graph edge cut. A recent review of graph partitioning
methods can be found online [3]. Many graph partition-
ing systems have been built and are available. For exam-
ple, Metis [16, 18] is one that is frequently used.

A Giraph-based approach to graph partitioning called
“Spinner” was recently announced [21]. Our work is dis-
tinct in that their application was optimizing batch pro-
cessing systems, such as Giraph itself, via increased edge
locality, and our graph partitioning system is embedded
in the Social Hash framework.

Average fanout in a bipartite graph, when presented as
a hypergraph, with vertices being one side of the bipartite
graph, and hyper-edges representing the vertices from

466 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

the other side, directly translates into the hypergraph par-
titioning problem. Hypergraph partitioning also has an
extensive literature [4, 17], and one of the publicly avail-
able parallel solutions is PHG [9], which can be found in
the Zoltan toolkit [8].

Partitioning online social networks has previously
been used to improve performance of distributed sys-
tems. Ugander and Backstrom discuss partitioning large
graphs to optimize Facebook infrastructure [33]. Stein
considered a theoretical application of partitioning to
Facebook infrastructure [29]. Tran and Zhang consid-
ered a multi-objective optimization problem based on
edge cut motivated by read and write behaviors in online
social networks [31, 32].

Other research has considered data replication in com-
bination with partitioning for sharding data for online so-
cial networks. Pujol et al. studied low fanout configura-
tions via replication of data between hosts [25] and Wang
et al. suggested minimizing fan-out by random replica-
tion and query optimization [36]. Nguyen et al. con-
sidered how to place additional replicas of users given
a fixed initial assignment of users to servers [22, 30].

Dean and Barroso [7] investigated the effect of latency
variability on fanout queries in distributed systems, and
suggested several means to reduce its influence. Jeon et
al. [14] argued for the necessity of parallelizing execu-
tion of large requests, in order to tame latencies.

Our contribution differs from these lines of research
by presenting a realized framework integrated into pro-
duction systems at Facebook. A production application
to online social networks is provided by Huang et al. who
describe improving infrastructure performance for Ren-
ren through a combination of graph partitioning and data
replication methods [13]. Sharding has been considered
for distributed social network databases by Nicoara, et
al. who propose Hermes [23].

8 Concluding Remarks

We introduced the Social Hash framework for produc-
ing, serving, and maintaining assignments of objects to
components in distributed systems. The framework was
designed for optimizing operations on large social net-
works, such as Facebook’s Social Graph. A key aspect of
the framework is how optimization is decoupled from dy-
namic adaptation, through a two-level scheme that uses
graph partitioning for optimization at the first level and
dynamic assignment at the second level. The first level
leverages the structure of the social network and its us-
age patterns, while the second level adapts to changes in
the data, its access patterns and the infrastructure.

We demonstrated the effectiveness of the Social Hash
framework with the HTTP request routing and storage
sharding applications. For the former, Social Hash was
able to decrease the cache miss rate by 25%, and for
the latter, it was able to cut the average response time in
half, as measured on the live Facebook system with live
traffic production workloads. The approaches we took
with both applications was, to the best of our knowledge,
novel; i.e., graph partitioning the Social Graph to opti-
mize HTTP request routing, and using query history to
construct bipartite graphs that are then partitioned to op-
timize storage sharding.

Our approach has some limitations. It was designed
in the context of optimizing online social networks and
hence will not be suitable for every distributed system.
To be successful, both the static and dynamic assignment
steps rely on certain characteristics, which tend to be ful-
filled by social networks. For the static step, the under-
lying graph must be conducive to partitioning, and the
graph must be reasonably sparse so that the partitioning
is computationally tractable; social graphs almost always
meet those characteristics. The social graph cannot be
changing too rapidly; otherwise the optimized static as-
signment will be obsolete too quickly and the attendant
exception handling becomes too computationally com-
plex. For the dynamic step, we assume that the workload
and the infrastructure does not change too rapidly.

While we have been able to obtain impressive effi-
ciency gains using the Social Hash framework, we be-
lieve there is much room for further improvement. We
are currently: (i) working on improving the performance
of our graph partitioning algorithms, (ii) considering us-
ing historical query patterns and bi-partite graph parti-
tioning to further improve cache miss rates, (iii) incorpo-
rating geo-locality considerations for our HTTP routing
optimizations, and (iv) incorporating alternative repli-
cation schemes for further reducing fanout in storage
sharded systems.

Acknowledgements
We would like to thank Tony Savor, Kenny Lau, Venkat
Venkataramani and Avery Ching for their support, Alex
Laslavic, Praveen Kumar, Jan Jezabek, Alexander Ramirez,
Omry Yadan, Michael Paleczny, Jianming Wu, Chunhui Zhu,
Deyang Zhao and Pavan Athivarapu for helping integrate with
Facebook systems, Sanjeev Kumar, Kaushik Veeraraghavan,
Dionysis Logothetis, Romain Thibaux and Rajesh Nishtala for
their feedback on early drafts, Badr El-Said and Laxman Dhuli-
pala for their contributions to the framework, and Dimitris
Achlioptas for discussions on graph partitioning. We would
also like to thank the reviewers for their constructive and help-
ful comments.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 467

References

[1] Apache Giraph. http://giraph.apache.org/.

[2] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Di-
mov, H. Ding, J. Ferris, A. Giardullo, S. Kulkarni, H. Li,
M. Marchukov, D. Petrov, L. Puzar, Y. J. Song, and
V. Venkataramani. TAO: Facebook’s distributed data store
for the Social Graph. In Proc. 2013 USENIX Annual Tech-
nical Conference (USENIX ATC’13), pages 49–60, 2013.

[3] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and
C. Schulz. Recent advances in graph partitioning. CoRR,
abs/1311.3144, 2013.

[4] U. V. Catalyurek and C. Aykanat. Hypergraph-
partitioning-based decomposition for parallel sparse-
matrix vector multiplication. IEEE Trans. on Parallel and
Distributed Systems, 10(7):673–693, 1999.

[5] C. Chevalier and F. Pellegrini. PT-Scotch: A tool for
efficient parallel graph ordering. CoRR, abs/0907.1375,
2009.

[6] R. Cohen, L. Katzi, and D. Raz. An efficient approxima-
tion for the generalized assignment problem. Information
Processing Letters, 100(4):162–166, 2006.

[7] J. Dean and L. A. Barroso. The tail at scale. CACM,
56(2):74–80, Feb. 2013.

[8] K. Devine, E. Boman, L. Riesen, U. Catalyurek, and
C. Chevalier. Getting started with Zoltan: A short tutorial.
In Proc. 2009 Dagstuhl Seminar on Combinatorial Scien-
tific Computing, 2009. Also available as Sandia National
Labs Tech Report SAND2009-0578C.

[9] K. D. Devine, E. G. Boman, R. T. Heaphy, R. H. Bissel-
ing, and U. V. Catalyurek. Parallel hypergraph partition-
ing for scientific computing. In Proc. Intl. Parallel and
Distributed Processing Symposium (IPDPS), pages 10–
20, 2006.

[10] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. Powergraph: Distributed graph-parallel
computation on natural graphs. In Proc. 10th Symp. on
Operating Systems Design and Implementation (OSDI
12), pages 17–30, 2012.

[11] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J.
Franklin, and I. Stoica. Graphx: Graph processing in
a distributed dataflow framework. In Proc. 11th Symp.
on Operating Systems Design and Implementation (OSDI
14), pages 599–613, Broomfield, CO, Oct. 2014.

[12] Q. Huang, K. Birman, R. van Renesse, W. Lloyd, S. Ku-
mar, and H. C. Li. An analysis of facebook photo caching.
In Proc. 24th Symp. on Operating Systems Principles
(SOSP’13.

[13] Y. Huang, Q. Deng, and Y. Zhu. Differentiating your
friends for scaling online social networks. In Proc. IEEE
Intl. Conf. on Cluster Computing (CLUSTER’12), pages
411–419, Sept 2012.

[14] M. Jeon, S. Kim, S.-w. Hwang, Y. He, S. Elnikety, A. L.
Cox, and S. Rixner. Predictive parallelization: Taming
tail latencies in Web search. In Proc. 37th Intl. ACM SI-
GIR Conference on Research & Development in Informa-
tion Retrieval (SIGIR’14), pages 253–262, 2014.

[15] D. Karger, E. Lehman, T. Leighton, R. Panigrahy,
M. Levine, and D. Lewin. Consistent hashing and ran-
dom trees: Distributed caching protocols for relieving hot
spots on the World Wide Web. In Proc. 29th Annual ACM
Symp. on Theory of Computing (STOC’97), pages 654–
663, 1997.

[16] G. Karypis and V. Kumar. A fast and high quality mul-
tilevel scheme for partitioning irregular graphs. SIAM J.
Sci. Comput., 20(1):359–392, Dec. 1998.

[17] G. Karypis and V. Kumar. Multilevel k-way hypergraph
partitioning. VLSI design, 11(3):285–300, 2000.

[18] D. Lasalle and G. Karypis. Multi-threaded graph par-
titioning. In Proc. IEEE 27th Intl. Symp. on Parallel
and Distributed Processing (IPDPS’13), pages 225–236,
2013.

[19] H. Lin, K. Sun, S. Zhao, and Y. Han. Feedback-control-
based performance regulation for multi-tenant applica-
tions. In Proc. 15th Intl. Conf. on Parallel and Distributed
Systems (ICPADS’09), pages 134–141, Dec 2009.

[20] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: A system
for large-scale graph processing. In Proc. ACM SIGMOD
Intl. Conf. on Management of Data (SIGMOD’10), pages
135–146, 2010.

[21] C. Martella, D. Logothetis, and G. Siganos. Spin-
ner: Scalable graph partitioning for the cloud. CoRR,
abs/1404.3861, 2014.

[22] K. Nguyen, C. Pham, D. Tran, F. Zhang, et al. Preserv-
ing social locality in data replication for online social net-
works. In Proc. 31st Intl. Conf. on Distributed Computing
Systems Workshops (ICDCSW), pages 129–133, 2011.

[23] D. Nicoara, S. Kamali, K. Daudjee, and L. Chen. Her-
mes: Dynamic partitioning for distributed social network
graph databases. In Proc. 18th Intl. Conf. on Extend-
ing Database Technology (EDBT’15), pages 25–36, Mar.
2015.

[24] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, D. Stafford, T. Tung, and V. Venkataramani.
Scaling Memcache at Facebook. In Proc. 10th USENIX
Conf. on Networked Systems Design and Implementation
(NSDI’13), pages 385–398, 2013.

[25] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang,
N. Laoutaris, P. Chhabra, and P. Rodriguez. The lit-
tle engine(s) that could: Scaling online social networks.
SIGCOMM ComputĊommun. Rev., 40(4):375–386, Aug.
2010.

468 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[26] D. Shue, M. J. Freedman, and A. Shaikh. Performance
isolation and fairness for multi-tenant cloud storage. In
Proc. 10th USENIX Symp. on Operating Systems Design
and Implementation (OSDI 12), pages 349–362, 2012.

[27] D. D. C. Shue. Multi-tenant Resource Allocation For
Shared Cloud Storage. PhD thesis, Princeton University,
2014.

[28] Y. Song, Y. Sun, and W. Shi. A two-tiered on-demand re-
source allocation mechanism for VM-based data centers.
IEEE Trans. on Services Computing, 6(1):116–129, 2013.

[29] D. Stein. Partitioning social networks for data locality on
a memory budget. Master’s thesis, University of Illinois,
Urbana-Champaign, 2012.

[30] D. A. Tran, K. Nguyen, and C. Pham. S-CLONE:
Socially-aware data replication for social networks. Com-
puter Networks, 56(7):2001–2013, 2012.

[31] D. A. Tran and T. Zhang. Socially aware data partition-
ing for distributed storage of social data. In Proc. IFIP
Networking Conference, pages 1–9, May 2013.

[32] D. A. Tran and T. Zhang. S-PUT: An EA-based frame-
work for socially aware data partitioning. Computer Net-
works, 75:504–518, Dec. 2014.

[33] J. Ugander and L. Backstrom. Balanced label propaga-
tion for partitioning massive graphs. In Proc. 6th ACM
Intl. Conf. on Web Search and Data Mining (WSDM-13),
pages 507–516, 2013.

[34] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow.
The anatomy of the Facebook Social Graph. CoRR,
abs/1111.4503, 2011.

[35] V. Venkataramani, Z. Amsden, N. Bronson, G. Cabr-
era III, P. Chakka, P. Dimov, H. Ding, J. Ferris, A. Gi-
ardullo, J. Hoon, et al. TAO: How Facebook serves the
Social Graph. In Proc. 2012 ACM SIGMOD Intl. Conf.
on Management of Data, pages 791–792, 2012.

[36] R. Wang, C. Conrad, and S. Shah. Using set cover to opti-
mize a large-scale low latency distributed graph. In Proc
5th USENIX Workshop on Hot Topics in Cloud Comput-
ing, 2013.

