
Reducing the Harmful Effects of Last-Level Cache Polluters with an OS-Level,

Software-Only Pollute Buffer

Livio Soares David Tam Michael Stumm

Department of Electrical and Computer Engineering

University of Toronto

{livio,tamda,stumm}@eecg.toronto.edu

Abstract

It is well recognized that LRU cache-line replacement can

be ineffective for applications with large working sets or

non-localized memory access patterns. Specifically, in last-

level processor caches, LRU can cause cache pollution by

inserting non-reuseable elements into the cache while evicting

reusable ones. The work presented in this paper addresses

last-level cache pollution through a dynamic operating system

mechanism, called ROCS, requiring no change to underlying

hardware and no change to applications.

ROCS employs hardware performance counters on a com-

modity processor to characterize application cache behavior

at run-time. Using this online profiling, cache unfriendly

pages are dynamically mapped to a pollute buffer in the

cache, eliminating competition between reusable and non-

reusable cache lines. The operating system implements the

pollute buffer through a page-coloring based technique, by

dedicating a small slice of the last-level cache to store non-

reusable pages. Measurements show that ROCS, implemented

in the Linux 2.6.24 kernel and running on a 2.3GHz PowerPC

970FX, improves performance of memory-intensive SPEC

CPU 2000 and NAS benchmarks by up to 34%, and 16%

on average.

1. Introduction

Cache pollution can be defined as the displacement of a

cache element by a less useful one. In the context of processor

caches, cache pollution occurs whenever a non-reusable cache

line is installed into a cache set, displacing a reusable cache

line, where reusability is determined by the number of times

a cache line is accessed after it is initially installed into the

cache and before its eviction.

The equipment used in this work was kindly donated by IBM T.J. Watson

Research Center. This research was partially supported by the Natural

Sciences and Engineering Research Council of Canada (NSERC) and by the

Director, Office of Science, of the U.S. Department of Energy under Contract

No. DE-AC02-05CH11231.

Modern processor caches are designed with the premise

that recency ordering serves as good prediction for subsequent

cache accesses. Hence, caches typically install all cache lines

that are accessed by the application, expecting subsequent

accesses to the same lines due to temporal and spatial locality

in the application’s access pattern. Moreover, hardware data

prefetchers are widely used to populate caches by tracking se-

quential or striding access patterns to predict future accesses.

Both LRU caching and prefetching have been shown to

be effective for the performance of many applications. As

such, these techniques have been incorporated into processor

design for decades. However, it has also been noted that these

two techniques can perform poorly for some access patterns

found in real workloads. In essence, the mispredictions that

occur in LRU caching and prefetching are responsible for

cache pollution, where lines are brought into the cache with

the expectation of timely reuse, but which in fact are not

accessed in the near future, replacing potentially more useful

cache lines.

The computer architecture community has extensively stud-

ied the problem of cache pollution caused by both LRU place-

ment and prefetching. Numerous enhancements to the mem-

ory hierarchy have been proposed and shown to be effective

in mitigating the negative performance impact of cache pollu-

tion [9][10][11][16][20][21][22][27]. Unfortunately, however,

modern processors continue to be shipped with little or no

tolerance to last-level cache pollution. The goal of this work is

to address last-level (L2, in this study) cache pollution caused

by LRU placement and prefetching, providing a transparent,

software-only solution. We focus on the design of a run-time

cache filtering technique at the operating system level that

can be deployed on current processors.

The main insight this work builds upon is that coarse-

grain (page-level) cache behavior is indicative of cache line

behavior for the lines within the page, especially as it relates

to pollution behavior. We show how it is possible to monitor

and characterize cache pollution at page granularity using

commodity hardware performance counters. With a full cache

profile of an application’s address space, we can identify per-

page cache pollution effects from the observed miss rates.

We introduce the concept of a software-based pollute

buffer, implemented in the last-level cache for the purpose of

hosting application data likely to cause pollution. We exploit

the use of the pollute buffer in conjunction with online cache

profiles to improve the performance of memory intensive

applications.

We describe our implementation of a Run-time Operating

system Cache-filtering Service (ROCS), in the context of the

Linux kernel. Running on a real PowerPC 970FX processor,

we evaluate its benefits, showing performance improvements

of up to 34% on workloads from SPEC CPU 2000 and NAS,

and an average of 16% on 7 memory intensive benchmarks

from these suites. We also show that, in addition to reducing

L2 cache miss rates of application data, mitigating cache

pollution can benefit performance by reducing the L2 cache

miss rate of performance critical meta-data, such as page-

tables.

The remainder of the paper is organized as follows. Sec-

tion 2 describes background material on software-based cache

partitioning and hardware performance counters. In Section 3,

we describe the use of hardware performance counters for

monitoring application L2 behavior, and provide empirical

evidence that monitoring last-level cache behavior at page

granularity is meaningful for tracking cache pollution. We

describe our software-based cache pollute buffer and its

use, in Section 4. The run-time OS cache-filtering service

is discussed in Section 5. The evaluation is presented in

Section 6. In Section 7, we discuss related work and finally

conclude in Section 8.

2. Background

In this section we provide a brief background on the

two essential components used in this work: software cache

partitioning and hardware performance counters. We leverage

the concept of software cache partitioning to implement a

software-based pollute buffer in the last-level cache. In addi-

tion, we make unconventional use of hardware performance

counters to obtain online cache characterization of the target

application’s memory pages.

2.1. Software Cache Partitioning

Software partitioning of physically indexed processor

caches (L2/L3) is possible through operating system page-

coloring [14][17][24][29]. In physically indexed caches, phys-

ical addresses of data are used to map data into cache sets.

The hashing function used for indexing into the cache must

utilize enough bits from the address to cover the entire cache.

Due to the relatively large size of current caches, these surpass

the page offset bits, as shown in Figure 1. As a consequence,

Figure 1. Cache indexing of physical addresses in the Pow-
erPC 970FX processor, with 128B cache lines, L2 cache with
512 sets, and 4KB pages.

the choice of virtual to physical mapping influences the

specific cache sets which store application data.

Conceptually, the set of pages which share the indexing

bits above the page offset form a congruence class. Each

congruence class is mapped to a fixed partition of the cache.

The number of congruence classes available is equal to 2n,

where n is the number of bits used for cache hashing above

the page offset. In the case of the processor used in this

study, the PowerPC 970FX, the L2 is organized into 512

sets, resulting in log
2
(512) = 9 bits used for indexing. The

four most significant of those bits can be used to determine

congruence classes. As a consequence, the operating system

can control 24 = 16 different cache congruence classes or

partitions.

2.2. Hardware Performance Counters

Processor manufacturers have equipped modern processors

with performance monitoring units (PMU). These are ex-

posed to system software in the form of hardware perfor-

mance counters (HPCs) and attendant control registers. The

PMU can be programmed to count a wide range of micro-

architectural events, including committed instructions, branch

mispredictions, and L1/L2 hits and misses. Depending on

the specific processor, the PMU events can number in the

hundreds. However, the number of physical HPCs is much

lower, typically less than 10, limiting the number of events

that can be monitored concurrently.

HPCs can be read either through polling or through

interrupts. For fine-grained monitoring, where performance

characterization of a small time-slice or section of code is

desired, the monitoring software can poll the content of the

HPCs at the beginning and end of the slice. Coarse-grained

monitoring, on the other hand, is done by programming the

PMU to generate an interrupt when an HPC overflows. The

operating system can then notify monitoring software, or

simply accumulate the values.

Instruction sampling, a technique used by numerous pro-

filing software such as DCPI [1], Oprofile 1, and VTune 2,

also uses hardware performance counters. For instruction

sampling, the PMU is programmed with a sampling threshold

and an interrupt is raised every time the threshold number of

events of a specified type occur in the processor. Profiling

software then attributes the event to the instruction of the

current application program-counter, resets the HPC and

continues to profile. After many samples, it is possible to

determine the contribution of each instruction in the occur-

rence of the programmed event.

The wide-spread use of aggressive out-of-order processors

has made interrupt-based instruction sampling less accurate.

Since performance monitoring interrupts are imprecise, it is

difficult to determine the exact instruction and/or address

which triggered an event. This motivated ProfileMe, which

attempts to provide accurate sampling by marking a single

instruction in the pipeline and reporting events triggered by

that instruction [8]. The PowerPC processor used in our work

supports a similar mechanism, called instruction marking.

The biggest disadvantage of instruction marking is that of

low recall: only a small subset of the instructions which cause

an event of interest are profiled. This comes from the fact that

only one instruction can be marked in the pipeline at a time.

While the marked instruction is traversing the pipeline, other

instructions of interest may be concurrently executing and

will pass undetected. Another contributor to low recall is the

fact that marking occurs early in the pipeline, typically in the

fetch unit. At that stage, it is not yet possible to determine if

the marked instruction will cause any of the events of interest.

In the case that it does not, the PMU must wait for the current

instruction to commit before a next instruction can be marked.

3. Address-Space Cache Characterization

Our dynamic cache-filtering mechanism is based on run-

time cache characterization at the page level. Our system uses

address-space cache profiles to identify memory pages that

cause last-level cache pollution. In this section, we demon-

strate how hardware performance counters can be used to

build cache behavior profiles at page granularity. In addition,

we present the characterization of 8 benchmarks from the

SPEC CPU 2000 benchmark suite, providing insights for the

creation of our software pollute buffer. We provide evidence

that these workloads exhibit cache pollution that can be

accurately identified at page granularity.

3.1. Exploiting Hardware Performance Counters

For obtaining page-level L2 cache profiles of applications,

we have built a Linux kernel module which uses the PMU of

1. http://oprofile.sf.net/

2. http://www.intel.com/cd/software/products/asmo-na/eng/vtune/

the processor. In essence, the monitoring module identifies the

data addresses of load requests that miss the L1 data cache,

as well as the level of the cache hierarchy in which the data

was found (either the L2 or main memory on our hardware).

The kernel module configures the PMU to mark load/store

instructions for monitoring, as described in Section 2.2. We

specifically target loads that miss the L1 data cache (i.e.,

L2 HITS and L2 MISSES) so that a PMU interrupt is

generated on every such event. For every PMU interrupt

received, the module determines which HPC overflowed to

determine from where the cache line is being fetched. It

also reads the address provided by the sampled-address data

register (SDAR) to obtain the virtual address of the cache

access. In the PowerPC architecture, the SDAR provides the

data address of the last marked load/store instruction, which

in the case of our PMU configuration, will contain the loaded

data address that caused the PMU interrupt.

Our module assembles page-level statistics on the ad-

dresses sampled, and creates a cache profile for each targeted

address space. Each profile contains miss rates, as well as

frequency of accesses, for every virtual page in the address

space. In essence, our profiling module performs accurate

data sampling of L2 cache events. This technique is anal-

ogous to the widely used instruction sampling.

Aggressive interrupt handling affects the accuracy of the

profiles generated in that the PMU interrupt handler itself

introduces L1 pollution. When handling an interrupt on an

L1 miss, the data items used by the interrupt handler can

cause (hot) application data to be evicted to the L2. If the

evicted line is still hot, it will immediately be fetched from

the L2, adding artificial L2 hits for some pages in the profile.

To eliminate the effects of interrupt handling interference,

we throttle the rate of interrupts so that hot cache lines evicted

from the L1 by the interrupt handler have time to be brought

back into the L1 by subsequent application accesses. We have

empirically verified that for memory intensive SPEC CPU

2000 benchmarks, interrupt rates lower than 1 interrupt per

5K to 10K cycles cause minimal impact to the cache profile.

3.2. Page-Level Cache Behavior

Page-level profiling is oblivious to potential miss-rate3

variances of cache-lines within a page. Nonetheless, we

demonstrate that it provides insightful information on the

application cache behavior at run-time. We show, in the next

section, how page-level profiling can help identify pages that

cause cache pollution. In addition, we analyze the cache

profile of the art benchmark, as a case study, showing how

the profile relates to art’s source code.

3. In this work, L2 miss rate is defined as the number of L2 misses divided
by all L2 requests.

 0

 200

 400

 600

 800

 1000

 1200

 1400

10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

p
a

g
e

s

Miss rate (%)

ammp

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

p
a

g
e

s

Miss rate (%)

apsi

 0

 50

 100

 150

 200

 250

10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

p
a

g
e

s

Miss rate (%)

art

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

p
a

g
e

s

Miss rate (%)

mcf

 0

 1000

 2000

 3000

 4000

 5000

 6000

10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

p
a

g
e

s

Miss rate (%)

mgrid

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

p
a

g
e

s

Miss rate (%)

swim

 0

 50

 100

 150

 200

 250

 300

10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

p
a

g
e

s

Miss rate (%)

twolf

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

p
a

g
e

s

Miss rate (%)

vpr

Figure 2. Page-level L2 cache miss rate characterization. The histograms show per-page distribution of miss rates.

3.2.1. Classifying Pollution. An essential function of our

cache filtering system is to classify pages with respect to

pollution, such that it is possible to determine which pages

should have restricted cache access. Previous work has at-

tempted to classify cache pollution, at cache line granularity,

based on single-use or zero reuse of cache lines [20][22].

Given the lack of fine-grained monitoring in commodity

hardware, we make the simplifying assumption that the L2

miss rate of a page directly correlates with the degree of its

cache pollution. The empirical justification is that pages with

high miss rates experience little benefit from being cached,

since each miss results in an eviction of a potentially useful

cache-line. That is, pages with high miss rates cause high

rates of cache-line evictions.

The per-page miss rate can be viewed as an inverse measure

of the probability of reusing a cache block of the page after

its insertion in the cache. We show in the results section

that pages with low probability of reuse (1) have limited

benefit from caching and (2) negatively impact pages with

high probability of reuse. Our approach uses this assumption

to constrict the caching of pages with low reuse probability,

consequently increasing the effective cache space for pages

with higher probability of reuse.

Figure 2 shows the distribution of per-page miss-rates for

8 memory intensive workloads from the SPEC CPU 2000

benchmark suite over the entire execution of the application.

The graphs show that it is possible to identify a significant

number of pages that exhibit high miss rates, and therefore,

are likely to cause pollution in the cache. From the graphs

shown, the only benchmark which does not show a large

proportion of pages with high miss rates is mcf.

3.2.2. Case Study: art. We show that for some workloads

cache miss behavior can be characterized at an even coarser

granularity than pages, using the art benchmark. Figure 3

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 100 200 300 400 500 600 700 800

N
u

m
b

e
r

o
f

A
c
c
e
s
s
e
s

(h
it

s
 &

 m
is

s
e
s
)

Virtual page index

Misses
Hits

Figure 3. Page-level L2 cache miss rate characterization for
art. The histogram shows a compact view of the address space,
each bar representing accesses (hits and misses) to a page.

shows an example of the collected cache profile for the entire

execution of art, depicting a compact view of its address

space. In the profile, both the total number of accesses and

the miss rates are shown for each page.

Art implements a neural network for image recognition.

The significant data structures of art are comprised of three

2-dimensional arrays: f1 layer, an array of neurons, and; tds

and bus, arrays of weights. In the profile shown, there are

two large memory regions with distinct L2 cache behavior.

The contiguous memory region to the left (pages 100 to 600)

contains the two arrays bus and tds. Accesses to these two

arrays correspond to 39% of all accesses to L2 and their pages

obtain an 81% miss rate in the L2. The rightmost memory

region (pages 620 to 780) contains the f1 layer array. This

regions corresponds to 56% of all L2 accesses and has an

average miss rate of 42%.

This profile shows that the leftmost memory region (bus

and tds) does not benefit significantly from the L2 cache.

On the other hand, the benefit from caching the rightmost

memory region is visibly higher. As we will show in our

evaluation, limiting the L2 cache space of bus and tds arrays

improves the cache hit rate of f1 layer by preventing L2

pollution and consequently improving the overall L2 hit rate

and application performance.

This example provides an important insight: applications

contain distinct memory regions, each with its own uniform

cache behavior. These regions are sufficiently coarse-grain

so that page-level cache management is applicable. Coarse-

grain tracking and management of memory has been observed

before in the literature for improving snoop-coherence and

data prefetching [7][32]. This work confirms that the same

observation applies to caching behavior.

3.2.3. Prefetching Interference. Modern high performance

processors employ data prefetchers in order to minimize

access latency. Due to their significant performance benefits,

data prefetchers have been implemented in multiple levels of

the memory hierarchy. The L1 data prefetcher implemented

in the PowerPC processor, although quite simple, is able to

significantly improve performance of programs with sequen-

tial memory references.

For characterizing cache behavior, and specifically for

classifying cache pollution of pages based on cache miss

rates, the prefetcher poses two problems. The first problem is

the existence of invisible lines. Cache lines from pages that

are prefetched into L1, although occupying entries of the L2,

are not fully counted in the profile, because the profile is

based on the source resolution of demand loads that miss L1,

leading to a perceived lower occupancy in the L2.

The second problem is that of artificial hits. An artificial

cache hit occurs when prefetching from memory is not timely

enough to bring the line to L1, but timely enough for L2

insertion. As a consequence, an L1 miss occurs, which is

satisfied from the L2. This causes L2 cache hits to be

incorporated into the profile even though these hits are not

a result of cache line reuse, but a result of prefetching.

Effectively, artificial hits make pages appear to be more

reusable than they are and, therefore, they appear to benefit

from caching.

Ironically, the opposite conclusion should be drawn from

highly prefetchable pages. For pages that exhibit hits from

prefetching, caching becomes less important for hiding mem-

ory access latency. For overall performance, it would be better

to give pages that are not prefetchable higher priority in

the cache. In addition, prefetching can bring useless lines

into the cache when prefetch predictions are too aggressive,

thus causing pollution. The possibility of pollution is another

reason why prefetchable pages should have restricted cache

access.

To overcome these issues, we disable the hardware data

prefetcher while generating cache profiles, but enable it for

the remainder of the application. To illustrate both problems

mentioned above, Figure 4 shows the memory profile of

the wupwise benchmark with and without prefetching. The

eight rightmost memory regions starting at virtual page index

20000 have significantly different characteristics depending

on whether prefetching is enabled or not; prefetching reduces

the perceived occupancy in L2 (invisible lines), and increases

perceived reuse probability (artificial hits).

4. Software-Based Cache Pollute Buffer

The insights from the previous section motivate cache

management at memory page granularity. For this purpose,

we have designed a software-based cache pollute buffer.

The pollute buffer provides a mechanism to restrict specific

memory pages, deemed to pollute the cache, to a small

partition of the cache. It is meant to serve as a staging space

for cache lines that exhibit bursty or no reuse before eviction.

By restricting cache unfriendly pages to the pollute buffer, we

eliminate competition between pages that pollute the cache

and pages that benefit from caching.

In our system, the pollute buffer is implemented with

software-based cache partitioning. We do so by dedicating a

single partition of the L2 to act as the pollute buffer. Figure 5

illustrates the design of the pollute buffer using page-coloring.

As described in Section 2.1, this is possible by allocating

physical pages that map to a specific section of the cache,

whose cache indexing bits are in the same congruence class.

An inherent property of the pollute buffer is that, since it

uses a partition of the last-level cache, it is amenable to (1)

errors in the classification of pages with respect to pollution,

and (2) variances in the miss rate of individual cache lines

of a pollute page. The pollute buffer, although small in size,

continues to allow hits on frequently accessed cache lines

since the LRU replacement policy remains unchanged. After

all, the pollute buffer is part of the last-level cache.

In order to manage cache pollution at run-time, our system

requires moving application pages from one cache partition to

another (from the non-pollute part of the cache to the pollute

buffer, or vice versa). To perform this task, we must copy the

content of the old page to a newly allocated page that maps to

the target partition of the cache. This involves (1) allocating

a new empty page that maps to the desired partition, (2)

removing the appropriate page-table entry in the application

page-table, potentially flushing a TLB entry, (3) performing

a physical page copy, and (4) reinserting the page-table entry,

with the physical address of the new page.

4.1. Kernel Page Allocator

We have modified the Linux kernel page allocator to

efficiently allocate physical pages so that they map to specific

partitions of the cache. Default Linux relies on two struc-

tures to manage free pages for allocation. Each processor

contains a local list of recently freed (hot) pages for fast

allocation. A global structure, which employs the buddy

allocator algorithm, contains the majority of free pages. The

buddy structure is organized as a binary tree that clusters

 0

 500

 1000

 1500

 2000

0 10000 20000 30000 40000

N
u

m
b

e
r

o
f

A
c

c
e

s
s

e
s

(h
it

s
 &

 m
is

s
e

s
)

Virtual page index

Misses
Hits

 0

 500

 1000

 1500

 2000

0 10000 20000 30000 40000

N
u

m
b

e
r

o
f

A
c

c
e

s
s

e
s

(h
it

s
 &

 m
is

s
e

s
)

Virtual page index

Misses
Hits

a) Profile with prefetching enabled b) Profile with no prefetching

Figure 4. Page-level cache miss rate characterization for wupwise, with and without prefetching.

Figure 5. The software pollute buffer is implemented by
dedicating a partition of the last-level cache to host lines from
pages that cause cache pollution.

contiguous physical pages hierarchically. The leaf nodes (0-

order) contain single pages, the next level (1-order) contains

clusters of 2 physically contiguous pages, and so on. This

organization allows for fast allocation of physically contigu-

ous pages, which are needed by devices that do not support

virtual memory.

Our modified Linux splits both the CPU and buddy allo-

cator lists into 16 lists; one list for each partition of the L2.

When populating the list with a new free page, the physical

address of the page is used to determine the correct list to use.

To satisfy new page allocation requests that map to a specific

cache partition, the allocation can be quickly serviced by

removing a page from the appropriate free-list. In cases where

the allocation specifies multiple allowed partitions, round-

robin is used between the lists, emulating bin-hopping [12].

5. Run-Time OS Cache-Filtering Service

In the previous two sections, we have presented page gran-

ularity cache characterization and the concept of a software-

based cache pollute buffer. With these two constructs, we now

describe ROCS, our implementation of a run-time operating

system cache-filtering service. We show how online memory

page cache profiles can be collected and used to determine

which application pages should be mapped to the pollute

 0

 10

 20

 30

 40

 50

 60

 70

Unrestricted 5K
cycles

10K
cycles

20K
cycles

40K
cycles

80K
cycles

E
x

e
c

u
ti

o
n

 S
lo

w
d

o
w

n
(l

o
w

e
r

is
 b

e
tt

e
r)

Interrupt Threshold

254% 177%
No prefetching
Prefetching enabled

Figure 6. Overhead sensitivity of monitoring art.

buffer.

5.1. Online Profiling

In Section 3 we presented a collection of address space

cache profiles. The profiles shown were gathered from com-

plete execution runs. Unfortunately, this is impractical to do

for run-time software cache management, as the overhead

is prohibitively high: profiling involves recording L1 misses

through an operating system interrupt handler where each

interrupt entails a complete pipeline flush, interrupt delivery,

fetch of interrupt handling code and execution of the handler

itself.

Figure 6 shows the overhead, in terms of execution time

slowdown, of art with varying interrupt frequencies. As

discussed in Section 3.1, unrestricted monitoring of L1 misses

distorts profiling as the interrupt handler evicts applica-

tion data from L1. Fortunately, interrupting every 5 to 10

thousand cycles has a two-fold benefit: more precise L2

characterization (as explained in Section 3.1) and significantly

lower overhead. Unfortunately, overheads of 15-65% are still

prohibitive for online cache reconfiguration.

To reduce overhead, ROCS uses phase-based sampling.

Application cache profiles are gathered for a short period of

application execution. During each period, we profile with

the smallest threshold that yields acceptable accuracy (5K

cycles). We use this sample profile as a representation of the

current application phase. Further samples are taken when a

coarse-grain phase change is detected. Phase changes can be

cheaply monitored with hardware performance counters, by

measuring, for example, IPC or the L2 misses per kilo instruc-

tions (MPKI) of the application [23]. Since only coarse-grain

phases are tracked, the IPC may be computed every 1 billion

cycles, which incurs negligible overhead (one interrupt per

billion cycles).

It is important to note that ROCS, as an operating system

component, is able to solely target processes or threads

that exhibit high L2 miss rate. When non-targeted threads

are scheduled, profiling can be disabled or restricted to

monitoring L2 miss rate. In this way, no overhead is observed

for application threads exhibiting low L2 miss rates.

5.2. Dynamic Page-Level Cache Filtering

Given a page-level cache profile, a fundamental challenge

is to identify which pages should be restricted to the pollute

buffer in order to improve application performance. Address-

ing this challenge requires predicting the effects of restricting

pages to the pollute buffer. This is analogous to predicting

the effect of partitioning shared caches between different

applications, with the difference being that we are potentially

partitioning the cache between different memory pages of the

same application.

Previous work on online prediction of the performance

impact of shared cache partitioning between different ap-

plications have required information on per-application

miss-rates as a function of cache size (e.g., miss-rate

curves) [19][22][25]. In our context, this would require

obtaining per memory-region utility information, which is

too expensive to compute in software at run-time – Berg

et al. report a 40% average run-time overhead with sparse

sampling [3], but their technique is oblivious to memory

regions.

Given the high overhead and complexity of analytically

predicting interference in the cache, we instead employ an

empirical search algorithm. From the cache profile described,

we construct a miss-rate stack, containing all pages in the

monitored address space, ordered by miss rate (highest miss-

rate at the top). We then proceed to monitor the improvement

of mapping different number of pages from the stack to the

pollute partition.

The pseudo-code of the search algorithm is listed in

Algorithm 1. Starting at the top of the miss rate stack,

where the pages are most likely to be cache polluters, a

number of pages are remapped from their original cache

partition to the dedicated pollute buffer slice. We use the

hardware performance counters to evaluate the performance

(IPC) of this mapping. Next, a subsequent number of pages

are remapped to the pollute buffer, adding to the pages

already mapped to the pollute buffer. This iterative algorithm

continues until a minimal set of pages is reached. The best

configuration is recorded, and the stack is traversed upwards,

Algorithm 1 FindPollutePages: returns the number of pages from
mrateStack mapped to the pollute buffer.

procedure FINDPOLLUTEPAGES(mrateStack, stepSize)
index← mrateStack.size();
while index > minPages do

MAPTOPOLLUTEBUFFER(mrateStack,index,stepSize);
performance←MONITORPERFORMANCE();
if performance > best then

best← performance;
pollute index← index;

end if
index← index− stepSize;

end while
UNMAPFROMPOLLUTEBUFFER(mrateStack,index,

pollute index− index);
return mrateStack.size() − pollute index;

end procedure

restoring the excess pages of the pollute buffer to the non-

pollute slices of the cache, if necessary.

Despite the simplicity of the algorithm, we found that the

algorithm takes 3 billion cycles, on average, and 7 billion, in

the worst case, for SPEC CPU 2000 benchmarks. On our eval-

uation platform, with a 2.3GHz processor, this is equivalent to

average of 1.4 seconds, and a worst case of 3.1 seconds. This

search is significantly faster than published approaches for

deriving L2 cache miss-rate curves in software. In addition,

we show in the next section, that the overhead of searching for

a good pollute mapping incurs, in most cases, less overhead

then profiling the application address space.

6. Evaluation

Table 1 lists the relevant architectural parameters of our

evaluation platform. The system under test is a PowerMac G5,

with 2 PowerPC 970FX processor chips, clocked at 2.3GHz,

built on a 90nm process. For all cases in our evaluation, we

have restricted application, monitoring and remapping to a

single processor, disabling the second CPU in the operating

system. Baseline results were obtained using the Linux kernel

version 2.6.24. ROCS was developed using the same Linux

kernel version.

We evaluated ROCS using SPEC CPU 2000 and NAS-

serial [2] (serial version of NAS 3.3) benchmark suites.

For SPEC CPU 2000, the reference inputs were used, and

“Class B” inputs were used for NAS-serial. Table 2 lists

the benchmarks from these suites that exhibit L2 miss rates

greater than 25% on our platform, along with the most

relevant characteristics collected using hardware performance

counters. All other benchmarks from the suites with less than

25% miss rate displayed far lower misses per kilo instructions

(MPKI). We did not consider applications with low L2 miss

rates, since our technique is targeted at workloads that exhibit

L2 cache pollution. Recall that ROCS is able to identify

Table 1. Characteristics of the 2.3GHz PowerPC 970FX.

Component Specification

Issue width 8 units (2 FXU, 2 FPU,
2 LSU, 1 BRU, 1 CRU)

Reorder Buffer 100 entries
(20 groups of 5 instructions)

Cache line 128 B for all caches

L1 i-cache 64 KB, direct-mapped,
1 cycle latency

L1 d-cache 32 KB, 2-way, 2 cycle FXU
latency, 4 cycle FPU latency

L2 cache 512 KB, 8-way,
12 cycle latency

Memory 2GB, 4KB pages,
300 cycle latency (avg.)

Table 2. Benchmark characteristics.

Bench- Exec. Instrs. IPC L2 L2 Miss

mark time MPKI Rate

ammp 9m00s 365B 0.30 7.5 52%

apsi 5m29s 334B 0.45 6.5 61%

art 3m10s 44B 0.10 69.0 75%

mcf 8m23s 51B 0.05 68.3 54%

mgrid 2m43s 255B 0.70 3.0 25%

swim 18m33s 262B 0.10 22.7 75%

twolf 9m11s 261B 0.22 9.7 35%

vpr 2m10s 96B 0.33 5.9 25%

CG 22m42s 137B 0.16 42.1 59%

applications with low L2 miss rates while incurring negligible

overhead (see Section 5.1).

The size of the pollute buffer used in all experiments was

1/16th of the L2 cache; in our case, 32KB. All benchmarks

were compiled for a 64-bit environment. We always present

the average results obtained from three consecutive complete

runs. An initial (discarded) run was used to ensure that all

necessary files and binaries were resident in memory.

We have excluded the ammp and mcf benchmarks from

further performance analysis, as these benchmarks showed

only around 1% improvement with ROCS. As shown in

Figure 2, mcf does not contain a significant proportion of

pages with high L2 miss rate. Ammp, on the other hand,

has multiple short phases (some with 1 billion instructions),

which limits the potential benefits of our cache-filtering

technique.

6.1. Overhead

Figure 7 depicts the run-time overhead of ROCS, split

into two components: monitoring and page remapping. The

large variance in overheads between different applications is

primarily due to the different execution lengths of the bench-

marks (listed in Table 2). Since most of these benchmarks

exhibit stable IPC after initialization (when monitoring IPC

at 1 billion cycle granularity), ROCS initiates only 1 or 2

0%

1%

2%

3%

4%

apsi art mgrid swim twolf vpr CG

O
v
e
rh

e
a
d

 B
re

a
k
d

o
w

n
(l

o
w

e
r

is
 b

e
tt

e
r)

Monitoring
Page Remapping

Figure 7. Run-time overhead breakdown of ROCS.

monitoring phases. Furthermore, it is interesting to note that

the overhead caused by monitoring overshadows the overhead

due to remapping when application address spaces become

large, despite the increase in pages remapped (see Table 3).

Fortunately, applications that consume many pages typically

also run for longer periods of time in stable phases in order

to consume their entire data set. Consequently, we see an

overall average overhead of 1.6%, with 3.8% being the worst

case. As we show in the next section, this overhead is more

than recovered by the performance improvements obtained

through our technique.

6.2. Performance Results

Figure 8 shows the run-time speedup of three different

cache filtering schemes. In all three schemes, the page miss

rate stack was collected at run-time, after the first 4 billion

cycles, in order to avoid application initialization. Best Of-

fline consists of a static exhaustive search for optimal stack

values (number of pollute pages). This involves running the

application multiple times, varying the number of pages to

remap to the pollute buffer. The ROCS system incorporates

the dynamic search algorithm. In ROCS, the hardware data

prefetcher is disabled while monitoring the application for

its miss rate stack, but is enabled otherwise. Finally, we

also show the performance of ROCS given a miss-rate stack

generated with the hardware prefetcher enabled.

The average improvement of ROCS over Linux for the 7

benchmarks is 16.6%. The largest performance win of 34.2%,

comes from swim. In all cases, we see that ROCS is able

to approach the performance of optimal offline search. The

worst case occurs with apsi where ROCS achieves 2.1% less

speedup than the offline search.

The MPKI reductions of the benchmarks running under

ROCS are shown in Figure 9, and average of 12.2%. For

the most part, the MPKI improvements correlate with the

performance improvements. The glaring exception is swim,

which we analyze separately in Section 6.4.

The number of pages chosen as polluters by ROCS, and

remapped to the pollute buffer is shown in Table 3. It is

5%

10%

15%

20%

25%

30%

35%

apsi art mgrid swim twolf vpr CG

E
x
e
c
u

ti
o

n
 t

im
e
 s

p
e
e
d

-u
p

(h
ig

h
e
r

is
 b

e
tt

e
r)

ROCS (monitoring w/ prefetch)
Best Offline
ROCS

Figure 8. Performance improvement of ROCS over default Linux.

2%

6%

10%

14%

18%

22%

26%

apsi art mgrid swim twolf vpr CG

L
2
 M

P
K

I
R

e
d

u
c
ti

o
n

(h
ig

h
e
r

is
 b

e
tt

e
r)

ROCS

Figure 9. MPKI reduction with ROCS over a default Linux.

Table 3. Classification of pollute pages.

Benchmark Number of Number of Pollute
Pages Pages (% of all)

apsi 44159 2676 (6%)

art 865 607 (70%)

mgrid 14433 3157 (21.8%)

swim 45490 14335 (31.5%)

twolf 1530 181 (11.8%)

vpr 812 183 (22%)

CG 40818 7026 (17.2%)

interesting to note that, with the exception of swim, there is

a correlation between the fraction of pollute pages chosen

by ROCS, and the profile information shown in Figure 2.

Applications that were shown to contain a higher fraction of

pages with high miss rate, obtained their best improvement

by classifying higher fractions of pages as cache polluters.

This correlation corroborates our initial assumption that the

degree of cache pollution, at the page-level, is directly related

to its observed miss rate.

To further analyze our results, we discuss two specific cases

in greater detail: art and swim.

6.3. Case study: art

Figure 10 shows two cache profiles of art’s address space:

on the left (a) we replicate the image from Section 3.2.2

containing the characterization of art on default Linux, and

on the right (b) we show the profile of art on ROCS. As

discussed, the leftmost memory region, with visibly high miss

rates, contains two 2-dimensional arrays, bus and tds arrays.

The rightmost region contains a single 2-dimensional array,

f1 layer.

ROCS chooses to predominantly classify pages from the

leftmost memory region as polluters, mapping them to the

pollute buffer. The effects on the L2 access pattern can be

seen on the graph to the right (b). With less competition from

polluting pages, the f1 layer array sees a 16% reduction in

its L2 miss rate (from 42% to 35%). In addition, a decrease of

6.7% in the total number of accesses to this region is visible

in the graph. This decrease comes mainly from the L1 data

prefetcher; with the reduced L2 miss rate, data prefetching

becomes more effective, since prefetched data is found in L2

instead of main memory. Consequently, L1 is able to capture

more accesses to this region of memory. In fact, we verify

that the L1 MPKI receives on overall reduction of 7.7% for

all of art.

It is also important to observe the impact of restricting the

leftmost memory region to the pollute buffer. In this particular

case, the memory region did not suffer an increase in L2 miss

rate, as may have been expected. In fact, a reduction of 1%

was measured, as ROCS kept some pages from the leftmost

region in the non-pollute partition of the cache. In essence, the

hits seen in the leftmost memory region are primarily due to

the short-term reuse of lines from the bus and tds arrays. The

pollute buffer, while quite small, is still able to cache these

lines for a short period of time, enough to allow reuse of

lines with bursty accesses. This fact illustrates a fundamental

difference between the pollute buffer and cache bypassing

based approaches for addressing cache pollution at the last-

level cache [9][20]. Further discussion on cache bypassing is

presented in the related work section.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 100 200 300 400 500 600 700 800

N
u

m
b

e
r

o
f

A
c

c
e

s
s

e
s

(h
it

s
 &

 m
is

s
e

s
)

Virtual page index

Misses
Hits

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 100 200 300 400 500 600 700 800

N
u

m
b

e
r

o
f

A
c

c
e

s
s

e
s

(h
it

s
 &

 m
is

s
e

s
)

Virtual page index

Misses
Hits

a) Default Linux (no cache filtering) b) ROCS (with cache filtering)

Figure 10. Page-level cache miss rate characterization for art. The histogram on the left shows the execution with no filtering, and
on the right, the effects of filtering are shown.

6.4. Case study: swim

Out of all benchmarks evaluated, swim observed the highest

performance improvement (34% speedup on execution run-

time). Perhaps surprisingly, the performance improvement

was not a result of L2 MPKI reduction of swim’s data; in

fact, a breakdown of stall cycles shows that the performance

difference comes from handling TLB misses. For swim, TLB

miss handling contributes to 55% of the stalls when run under

Linux. With ROCS, the stalls due to TLB misses decrease to

29% of the total stall cycles.

The main reason for the reduction of TLB miss-handling

stalls is that the reduced L2 cache pollution with ROCS

allows the hardware page-table walker to find more page-table

entries in the L2, incurring fewer full main memory stalls.

The PMU in the PowerPC 970FX processor does not contain

support for counting the source (in the memory hierarchy) of

page-table entries. However, the PMU does provide an event

to count the number of cycles used by the hardware page-

table walker. Our experiments show that TLB miss handling

under ROCS is 69% faster than on Linux without ROCS (an

average of 136 cycles per page-table walk on ROCS versus

443 cycles without it).

This illustrates another source of performance benefits from

reducing last-level cache pollution. This case study shows that

ROCS also reduces cache pollution effects on meta-data in

the L2, mitigating the interference with infrequently accessed,

but performance critical, data such as page-table entries.

7. Related Work

7.1. Cache Bypassing

Previous research most similar to ours is the study of cache

bypassing to reduce cache pollution. With cache bypassing,

selected cache lines are refrained from being installed into

the cache (or, to at least one of the levels of the cache). If

cache lines are chosen correctly, bypassing the cache reduces

the displacement of reusable lines.

The majority of work exploring cache bypassing have

focused on reducing cache pollution in the first (L1) level

cache [6][11][27][31]. More recently, cache bypassing for

last-level caches has also been explored [9][13][20]. All

of the studied dynamic schemes require hardware support

and propose non-trivial changes to the processor and cache

architecture, typically in the form of non-trivial enhancements

to the cache tag-array, along with constant updates of meta-

data. The work we propose has the advantage of being

implemented on existing commodity hardware.

Moreover, there is an important difference between tra-

ditional cache bypassing and the use of a pollute buffer

in the last-level cache. Cache bypassing is an aggressive

optimization; if a bypass decision is incorrect, a high price

is paid, since the line must be re-fetched from a slower level

cache or main memory. With the pollute buffer, however, the

possibility for reuse of cache lines is still supported. Johnson

et al. also note this and propose enhancing the L1 cache with

a bypass buffer in their L1 cache bypassing proposal [11].

7.2. Software Cache Partitioning

Page coloring, the basic mechanism for software cache

partitioning, has been used in previous studies, showing

performance improvements due to reduced mapping conflict

misses [4][12]. In this work, however, we do not focus on

mapping conflict misses, as they are greatly attenuated in

modern last-level caches due to the high associativity used.

The first application of software cache partitioning through

page coloring was presented by Wolfe [29]. In his work,

he proposed partitioning the cache to achieve predictable

performance in preemptible real-time systems. By ensuring

that the cache content of preempted real-time applications

remains intact, partitioning minimizes the interference of

preemption on the application’s performance. Software cache

partitioning for real-time systems has gained attention of the

community in subsequent work [14][18][28].

In recent years, there has been a resurgence of software

cache partitioning due to the commercial impact of chip-

multiprocessors (CMPs). Many CMPs are designed with

shared last-level caches (L2/L3), where applications can in-

terfere with each other, potentially affecting the performance

of the applications involved [5]. Software cache partitioning

has been proposed as a solution to shared cache interference

[7][15][25][26]. Although software-based cache partitioning

is less flexible and incurs higher overhead then hardware

solutions, it is attractive as it can be implemented on current,

widely available CMPs. The main difference between cache

partitioning for CMPs and our proposal is that CMP cache

partitioning focuses on isolating cache usage of different

applications. This work focuses on isolating cache usage po-

tentially from within the same application, separating reusable

cache lines from non-reusable ones.

7.3. Cache Replacement Policies

Several studies have proposed enhancing the LRU cache

replacement policy to avoid pollution [10][16][21][30]. These

studies attempt to augment LRU replacement decisions with

information about locality, reuse and/or liveness. In contrast,

we do not propose changing the replacement algorithm, but

propose managing the competition of cache space so that the

already existing LRU implementation performs better.

The dynamic insertion policy, proposed by Qureshi et

al. [22], focuses on adapting the initial placement of caches

lines in the LRU stack of each cache set, depending on the

application access pattern. Similar to our work, the proposed

dynamic insertion policy (DIP) reduces competition between

caches lines by reducing the time to eviction of cache lines

with thrashing access patterns. The main differences between

DIP and our work are (1) DIP is applied at the way granularity

of a set, while we study coarser-grain partitioning, allocating

entire sets to the pollute buffer, (2) we manage cache compe-

tition per memory region of the application, while DIP adapts

the entire cache based on application behavior, and (3) DIP

can adapt to application phases in significantly less time than

a software-based approach.

8. Conclusion

The memory wall problem has been studied intensively in

the computer architecture and software communities and has

resulted in a wide range of proposals for reducing the effects

of memory latency on performance. Chip makers, for exam-

ple, are dedicating increasing number of transistors for larger

on and off-chip caches. However, not all workloads have

responded to this increase with corresponding performance

or hit ratio improvements.

We argue that proper management of the memory hierarchy

is becoming more critical to achieve good performance and

that software can play a significant and fruitful role in man-

aging this hierarchy. We believe there are new opportunities

to be explored with tighter cooperation between run-time

software systems and the underlying hardware. This work

presents a concrete example of this type of cooperation.

In this paper, we focused on attacking the specific problem

of cache pollution in last-level caches. We observed that cache

behavior, and pollution in particular, is uniform within a

memory region, typically spanning multiple memory pages of

application address space. We described the use of hardware

performance counters, present on current hardware, to classify

memory pages with respect to pollution.

We introduced the concept of a pollute buffer to host

cache lines of pages with little or no reuse before eviction.

We demonstrated how the last-level cache can be partitioned

with operating system page coloring, to provide a pollute

buffer within the cache. This technique requires no additional

hardware support and no modifications to application code or

binary.

Using these concepts, we described a complete implemen-

tation of a run-time operating system cache-filtering service

(ROCS). We evaluated the performance of our system on 7

memory intensive SPEC CPU 2000 and NAS benchmarks,

showing performance improvements of up to 34% on run-

time execution, with 16% on average.

The system we implemented makes extensive use of pro-

cessor performance monitoring units (PMU). Unfortunately,

the architecture and interfaces of PMUs are substantially

different for each processor family and in fact different across

different processors within the same family. Standardizing the

key PMU components and interfaces would, in our opinion,

greatly accelerate the development and ubiquity of additional

software optimizations, similar to the one we described in this

paper. The impact of the IEEE 754 floating-point standardiza-

tion efforts of 30 years ago should provide good motivation.

In conclusion, this work explored the use of rudimen-

tary processor interfaces for monitoring and managing last-

level caches. We believe that with better mechanisms for

cooperation between hardware and software layers, further

opportunities for improving performance would arise. We

hope that this work serves as encouragement to hardware

designers to include and expose more flexibility in processor

components to the software layer.

Acknowledgments

Special thanks to Ioana Burcea for invaluable discussion,

feedback and support throughout this work. We also thank

Allan Kielstra for his enthusiastic response to our initial

results and Reza Azimi for getting us interested in hardware

performance counters.

References

[1] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R.
Henzinger, S.-T. A. Leung, R. L. Sites, M. T. Vandevoorde,
C. A. Waldspurger, and W. E. Weihl, “Continuous profiling:
where have all the cycles gone?” ACM Transactions on Com-
puter Systems, vol. 15, no. 4, pp. 357–390, 1997.

[2] D. Bailey, T. Harris, W. Saphir, R. van der Wijingaart, A. Woo,
and M. Yarrow, “The NAS parallel benchmarks 2.0,” NASA,
Tech. Rep. NAS-95-020, 1995.

[3] E. Berg and E. Hagersten, “Fast data-locality profiling of native
execution,” in Intl. Conf. on Measurement and Modelling of
Computer Systems (SIGMETRICS), 2005, pp. 169–180.

[4] E. Bugnion, J. M. Anderson, T. C. Mowry, M. Rosenblum, and
M. S. Lam, “Compiler-directed page coloring for multiproces-
sors,” in 7th Intl. Conf. on Arch. Support for Programming
Languages and Operating Systems (ASPLOS), 1996, pp. 244–
255.

[5] D. Chandra, F. Guo, S. Kim, and Y. Solihin, “Predicting
inter-thread cache contention on a chip multi-processor archi-
tecture,” in 11th Intl. Symp. on High-Performance Computer
Architecture (HPCA), 2005, pp. 340–351.

[6] C.-H. Chi and H. Dietz, “Improving cache performance by
selective cache bypass,” in Twenty-Second Annual Hawaii In-
ternational Conference on System Sciences, vol. 1, Architecture
Track, 1989, pp. 277–285.

[7] S. Cho and L. Jin, “Managing distributed, shared L2 caches
through OS-level page allocation,” in 39th Intl. Symp. on
Microarchitecture (MICRO), 2006, pp. 455–468.

[8] J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl, and
G. Chrysos, “ProfileMe: hardware support for instruction-level
profiling on out-of-order processors,” in 30th Intl. Symp. on
Microarchitecture (MICRO), 1997, pp. 292–302.

[9] H. Dybdahl and P. Stenström, “Enhancing last-level cache
performance by block bypassing and early miss determination,”
in Asia-Pacific Computer Systems Arch. Conf., 2006, pp. 52–
66.

[10] A. González, C. Aliagas, and M. Valero, “A data cache with
multiple caching strategies tuned to different types of locality,”
in Intl. Conf. in Supercomputing (ICS), 1995, pp. 338–347.

[11] T. L. Johnson, D. A. Connors, M. C. Merten, and W. mei
W. Hwu, “Run-time cache bypassing,” IEEE Transactions on
Computers, vol. 48, no. 12, pp. 1338–1354, 1999.

[12] R. E. Kessler and M. D. Hill, “Page placement algorithms for
large real-indexed caches,” ACM Transactions on Computer
Systems, vol. 10, no. 4, pp. 338–359, 1992.

[13] M. Kharbutli and Y. Solihin, “Counter-based cache replace-
ment and bypassing algorithms,” IEEE Transactions on Com-
puters, vol. 57, no. 4, pp. 433–447, 2008.

[14] J. Liedtke, H. Hartig, and M. Hohmuth, “OS-controlled cache
predictability for real-time systems,” in Real-Time Technology
and Applications Symposium, 1997, pp. 213–227.

[15] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan,
“Gaining insights into multi-core cache partitioning: Bridging
the gap between simulation and real systems,” in 14th Intl.
Symp. on High-Performance Comp. Arch. (HPCA), 2008, pp.
367–378.

[16] W. Lin and S. Reinhardt, “Predicting last-touch references
under optimal replacement,” University of Michigan, Tech.
Rep. CSE-TR-447-02, 2002.

[17] W. L. Lynch, B. K. Bray, and M. J. Flynn, “The effect of page
allocation on caches,” in 25th Intl. Symp. on Microarchitecture
(MICRO), 1992, pp. 222–225.

[18] F. Mueller, “Compiler support for software-based cache parti-
tioning,” in Conference on Languages, Compilers, and Tools
for Embedded Systems (LCTES), 1995, pp. 125–133.

[19] P. Petoumenos, G. Keramidas, H. Zeffer, S. Kaxiras, and
E. Hagersten, “Modeling cache sharing on chip multiprocessor
architectures,” in Intl. Symp. on Workload Characterization
(IISWC), 2006, pp. 160–171.

[20] T. Piquet, O. Rochecouste, and A. Seznec, “Exploiting single-
usage for effective memory management,” in Asia-Pacific
Computer Systems Architecture Conference, 2007, pp. 90–101.

[21] L. R. Prabhat Jain, Srini Devadas, “Controlling cache pollution
in prefetching with software-assisted cache replacement,” MIT,
Tech. Rep. CSG-462, 2001.

[22] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer,
“Adaptive insertion policies for high performance caching,” in
Intl. Symp. on Comp. Arch. (ISCA), 2007, pp. 381–391.

[23] T. Sherwood, B. Calder, and J. Emer, “Reducing cache misses
using hardware and software page placement,” in International
Conference on Supercomputing (ICS), 1999, pp. 155–164.

[24] R. L. Sites and A. Agarwal, “Multiprocessor cache analysis
using ATUM,” in International Symposium on Computer Ar-
chitecture (ISCA), 1988, pp. 186–195.

[25] G. E. Suh, L. Rudolph, and S. Devadas, “Dynamic partitioning
of shared cache memory,” Journal of Supercomputing, vol. 28,
no. 1, pp. 7–26, 2004.

[26] D. Tam, R. Azimi, L. Soares, and M. Stumm, “Manag-
ing shared L2 caches on multicore systems in software,” in
Workshop on the Interaction between Operating Systems and
Computer Architecture (WIOSCA), 2007.

[27] G. Tyson, M. Farrens, J. Matthews, and A. R. Pleszkun, “A
modified approach to data cache management,” in 28th Intl.
Symp. on Microarchitecture (MICRO), 1995, pp. 93–103.

[28] X. Vera, B. Lisper, and J. Xue, “Data caches in multitasking
hard real-time systems,” in 24th IEEE International Real-Time
Systems Symposium (RTSS), 2003, pp. 154–165.

[29] A. Wolfe, “Software-based cache partitioning for real-time
applications,” Journal of Computer and Software Engineering,
vol. 2, no. 3, pp. 315–327, 1994.

[30] W. A. Wong and J.-L. Baer, “Modified LRU policies for
improving second-level cache behavior,” in 6th Intl. Symp. on
High-Performance Comp. Arch. (HPCA), 2000, pp. 49–60.

[31] Y. Wu, R. Rakvic, L.-L. Chen, C.-C. Miao, G. Chrysos, and
J. Fang, “Compiler managed micro-cache bypassing for high
performance EPIC processors,” in Intl. Symp. on Microarchi-
tecture (MICRO), 2002, pp. 134–145.

[32] J. Zebchuk, E. Safi, and A. Moshovos, “A framework for
coarse-grain optimizations in the on-chip memory hierarchy,”
in 40th Intl. Symp. on Microarchitecture (MICRO), 2007, pp.
314–327.

	Text2: Appeared in Proc. Intl. Symp. on Microarchitecture (MICRO 08), November 2008, pp.258-269.

