
IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 11, NOVEMBER 1997 1155

Analytical Prediction of Performance
for Cache Coherence Protocols

Sinisa Srbljic, Zvonko G. Vranesic, Senior Member, IEEE
Michael Stumm, Member, IEEE Computer Society, and Leo Budin, Member, IEEE

Abstract —In this paper, we introduce new analytical models for predicting the performance of parallel applications under various
cache coherence protocol assumptions. The purpose of these models is to determine which protocols are to be used for which data
blocks, and, in the case of dynamic protocols, also to determine when to change protocols. Although we focus on tightly-coupled
multiprocessor systems, similar models can be derived for loosely-coupled distributed systems, such as networks of workstations.

Our models are unique in that they lie between a large body of theoretical models that assume independence and a uniform
distribution of memory accesses across processors, and a large body of address-trace oriented models that assume the availability
of a precise characterization of interleaving behavior of memory accesses. The former are not very realistic, and the latter are not
suitable for compile-time and run-time usage. In contrast, our models enable us to choose different input parameters depending on
how the models will be used and depending on the needed accuracy in performance prediction.

We present the models and show how the required parameters can be obtained. We assess the accuracy of our models on 15
parallel applications. For these applications, our most complete model predicts performance within a 10 percent margin when
compared to a simulation of a sequentially consistent multiprocessor system. As part of this study, we also show the potential
advantage of using dynamic hybrid protocols.

Index Terms —Cache coherence, distributed shared memory, memory access behavior, analytical performance prediction,
performance evaluation, dynamic hybrid protocols.

—————————— ✦ ——————————

1 INTRODUCTION

N a modern shared memory multiprocessor, it is possible
to support more than one protocol for maintaining cache

coherence. Possible candidates might be based on the Write-
Back/Invalidate, Write-Through/Invalidate, and Write-
Update protocols. Hybrid protocols allow the use of differ-
ent protocols for different data blocks. For hybrid protocols,
it might be possible to specify which protocol to use on a
per program, per segment, per page, or on a per cache line
basis. Dynamic hybrid protocols additionally allow for
changes in the choice of protocol during the run time of an
application [1].

In this paper, we introduce a set of analytical models for
predicting the performance of parallel applications under
various cache coherence protocol assumptions. In the case
of hybrid protocols, these models are intended to be used to
determine which protocols to use for which data blocks,
and, in the case of dynamic protocols, to determine when to
change protocols.

Each model in the set differs in the number and types of
parameters it requires. The simplest one, which we refer to
as the core model, requires a characterization of the type of
accesses to each data block, and the probabilities of each

type of access occurring. The core model serves two pur-
poses in this paper. First, it is a useful model in its own
right; while it is not very accurate in predicting the absolute
performance, it is very useful in predicting the relative per-
formance of the different cache coherence protocols. Sec-
ond, it serves as a convenient vehicle for explaining the
derivation of more complex models that predict absolute
performance more accurately. These more complex models
require as input the interleaving parameters that charac-
terize and describe the ordering of accesses performed by
different processors on each data block. These parameters
might be estimated using modern compiler technology, but
the parameters can probably be obtained more accurately
by analyzing address traces generated by simulations or by
monitoring previous runs (assuming that monitoring
hardware is available to allow nonintrusive run-time pro-
filing [2], [3]).

The accuracy and usefulness of our models is assessed
by comparing the performance predicted by the models
with the results of simulated execution for 15 parallel appli-
cations, mostly from the SPLASH and SPLASH-2 bench-
mark suites [4], [5], and also with simulation results re-
ported by others [1], [6]. These comparisons show that our
core model is capable of choosing the right cache coherence
protocol for all the applications we considered, and the
predictions of our more sophisticated models lie within 10
percent of the simulation results. As a side effect of our
studies, we are also able to show the benefits of supporting
hybrid and dynamic hybrid protocols, and that the benefits
of dynamic protocols are limited to some applications. Al-
though we focus on tightly-coupled multiprocessor systems

0018-9340/97/$10.00 © 1997 IEEE

————————————————

• S. Srbljic and L. Budin are with the Faculty of Electrical Engineering and
Computing, University of Zagreb, Zagreb, Croatia.

 E-mail: {sinisa, leo}@zemris.fer.hr.
• Z.G. Vranesic and M. Stumm are with the Department of Electrical and

Computer Engineering, University of Toronto, Toronto, Ontario, Canada
M5S 3G4. E-mail: {zvonko, stumm}@eecg.toronto.edu.

Manuscript received 24 Aug. 1995; revised 10 June 1997.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 105633.

I

1156 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 11, NOVEMBER 1997

in this paper, we believe that similar models can also be
derived for loosely-coupled distributed memory systems
[6], [7], [8], [9].

In recent years, many models for predicting the per-
formance of parallel systems have been proposed. They can
roughly be classified into two groups based on the infor-
mation they use to characterize the data access behavior of
applications. One group of models assumes that shared
data accesses are independent and uniformly distributed
across processors and are, thus, theoretical in nature [8], [10],
[11], [12]. While simple, these models are too inaccurate in
their predictions to be useful for our purposes. The second
group of models is mostly experimental in nature, in that the
models use information from complete memory traces of
real applications [2], [13], [14], [15], [16], [17], or fully
simulate the applications [1], [7], [18], [19], [20], [21]. They
define data access parameters based on the precise inter-
leaving characterization of the memory accesses performed
by different processors. For example, they predict perform-
ance based on how many different processors perform
reads between two writes, or on the number of reads
and/or writes performed by one processor. These experi-
mental models are unsuitable for compile-time or run-time
usage due to the type and amount of information they re-
quire.

The set of models that we propose in this paper is
unique in that it lies between the two groups described
above, and has, in fact, been developed from experience
using models from both groups. The core of our models is
theoretical in that it makes no assumptions about the inter-
leaving of memory accesses from different processors. In-
stead of assuming that accesses to shared data are uni-
formly distributed across all processors, we characterize the
access patterns to blocks of data according to the number of
processors performing accesses and the type of accesses
they perform. For each of these patterns, we define addi-
tional parameters such as the probabilities of various types
of accesses. Based on these parameters, we derive one ana-
lytical formula for predicting the performance for each
pattern and for each basic cache coherence protocol.

The more sophisticated models are refinements of the
core model that add parameters to characterize interleav-
ing. These models are then almost experimental in that the
parameters are most accurately obtained through address
traces, but, as we will show, they can easily be averaged
and are thus suitable for inclusion in analytical expressions.

Our core model is described in Section 2 and assessed in
Section 3. Section 4 extends the core model by introducing
the interleaving parameters. Dynamic hybrid protocols are
considered in Section 5.

2 THE CORE MODEL

For the core model, the memory space is partitioned into
data blocks of equal size, such as pages or cache lines. The
accesses to each data block are then classified into a few
predetermined data access patterns according to the num-
ber of processors that perform the accesses and according
to the type (read, write) of accesses. For example, a data
block might have multiple readers and no writers, or it

might have multiple readers and a single writer, etc. For
each access pattern, we introduce parameters, such as the
number of processors that access the data block, and the
probabilities of the type of accesses. Based on these pa-
rameters, we derive analytical formulas for predicting the
steady-state costs incurred for each data block, given a par-
ticular type of cache coherence protocol.

The core model is described in five steps. Section 2.1 in-
troduces the multiprocessor system we are considering,
together with the cache coherence protocols it supports and
the system events that can occur. Section 2.2 describes the
data access patterns we consider and their parameters. In
Section 2.3, we introduce analytical formulas for calculating
average costs for each of the access patterns, given the val-
ues of their parameters. Section 2.4 describes how the per-
formance of an application can be predicted, given the costs
incurred for each data block. Finally, Section 2.5 refines the
model by partitioning time into smaller intervals and then
calculating the cost incurred at each data block within each
time interval. In the discussion, it is assumed that all the
parameters needed are known. In Section 2.6, we describe
how they can be obtained.

To simplify the derivation and to focus on the cost of
cache coherence, we assume infinite caches, as was done,
for example, in Dubois and Wang’s burst model study [16],
[17]. As is typical for theoretical models [8], [10], [11], [12],
we also assume that accesses performed by different proc-
essors are independent in time, making no assumptions on
the interleaving of these accesses. However, we do not as-
sume that accesses are uniformly distributed across all
processors, as is usually done in theoretical models. We in-
troduce a few predetermined data access patterns according
to the number of processors which perform accesses and
according to the type of accesses. We note that Dubois and
Wang introduced the burst parameters assuming that ac-
cesses are not independent in time; but, they assumed that
the access bursts are independent in time and are uniformly
distributed across a subset of processors [16], [17].

The concept of classifying data by how it is accessed (i.e.,
degree of sharing and access mode) has been used by many
researchers for various purposes. For example, Weber and
Gupta [22] proposed several classes of data objects that can
be distinguished by their use in parallel programs and by
their invalidation traffic patterns. Carter et al. [7] used the
concept of data classification for coherence protocol selec-
tion in the Munin DSM system. Brorsson and Stenstrom
[23], [24], [25] visualized the statistics of accesses to differ-
ent data classes in order to analyze performance of applica-
tions running on the systems with limited-directory write-
invalidate cache coherence protocol. Adve et al. [26] com-
pared hardware and software cache coherence protocols for
each introduced data class. We propose a classification that
enables efficient comparison of different cache coherence
protocols (Write-back, Write-through, Update, and un-
cached accesses). While most researches have tried to find
the data classes that can be accurately distinguished by
their features [7], [22], [23], [24], [25], we define additional
parameters that facilitate quantitative comparison of differ-
ent coherence protocols for each data class [27], [28], [29].
Adve et al. [26] also introduced additional parameters.

SRBLJIC ET AL.: ANALYTICAL PREDICTION OF PERFORMANCE FOR CACHE COHERENCE PROTOCOLS 1157

However, they chose the data classes and parameters to
efficiently compare performance of hardware and software
coherence protocols, while we optimize our choice of data
classes and parameters to compare different coherence
protocols.

Our choice of access patterns and parameters, as well as
how they can be obtained, is similar to the Brorsson and
Stenstrom’s workload model [23], [24], [25], although both
models were developed independently. While we develop
analytical expressions in order to directly predict the per-
formance based on the workload parameters, Brorsson and
Stenstrom use their workload parameters as input to a
memory reference generator. They show that, for an appro-
priate choice of time interval, for which the data access
characterization is performed, the stream of memory refer-
ences produced by the memory reference generator will
generate the same cache miss ratio as the stream of memory
references from a real application.

Section 3 will show that our choice of access patterns,
their parameters, and appropriate choice of characterization
interval, results in a sufficiently good prediction of relative
performance. Hence, our core model can be used as a deci-
sion making tool to choose the best basic protocol without
determining the exact interleaving of accesses performed by
different processors.

2.1 The Multiprocessor System Model
We consider the performance of a multiprocessor that sup-
ports three different cache coherence protocols: Write-
through and Write-back both of the write-invalidate type,
and Update. Table 1 shows all system events that are possi-
ble in a multiprocessor system using the three cache coher-
ence protocols. The Write-through protocol can incur four
system events: E2, E4, E10, and E11. Each write access up-
dates the memory and the copy in the local cache; all other
copies are invalidated. The Write-back protocol can incur
eight possible events: E2, E3, E4, E6, E7, E8, E9, and E14. The
first write to a cache line invalidates the copies in all other

caches and the copy in the memory. From then on, only the
local copy is updated. When a data block is read from a
remote cache, then the contents of the data block are also
written back to the memory. The Update protocol has four
events: E2, E4, E12, and E13. It keeps the copies in the mem-
ory and in all caches coherent after each write. It is also use-
ful to consider uncached operations for which each read
and each write proceeds directly to the memory (system
events E1 and E5).

2.2 Data Access Patterns and Their Parameters
Table 2 shows six data access patterns defined by the number
of processors that perform reads (loads) and writes (stores).
The meaning of most of these access patterns is straightfor-
ward; only the MRSW and SRMW patterns need explanation.
In the Multiple Reader Single Writer (MRSW) pattern, one
processor performs reads and writes, while the other proces-
sors perform reads only. The Single Reader Multiple Writer
(SRMW) pattern involves one processor that performs reads
and writes, while other processors perform writes only.

For each access pattern, we introduce parameters, such
as the number of processors that perform accesses and the
probabilities of each type of access. The required parame-
ters are given in Table 2. The access patterns and their pa-
rameters were chosen to keep the expressions of our mod-
els simple, yet provide sufficient accuracy for predicting
performance. To avoid excessive complexity, the MRMW
pattern assumes that all b processors perform writes with
equal probability, (r/b), and reads with equal probability,
((1 - r)/b). Similarly, the MRSW and SRMW patterns as-
sume that all b readers read with probability s, and that all
b writers write with probability x, respectively.1 Of course,

1. One might consider combining patterns MRSW, SRMW, and MRMW.
This could be done in two different ways. One possibility is to assume that
MRMW pattern substitutes MRSW and SRMW patterns. However, we found
that this significantly reduces the accuracy of the model. Another possibility is
to add new parameters for the MRMW pattern (for example, separate pa-
rameters that denote the number of processors that perform only reads,
writes,...), but this would make the model mathematically intractable.

TABLE 1
SYSTEM EVENTS

System event System Event Description
Load Instruction

E1 Read one word from memory
E2 Read a data block from memory
E3 Read a data block (Dirty copy) from remote cache and also write back to memory
E4 Read one word from local cache (cache hit)

Store Instruction
E5 Write one word to memory
E6 Obtain ownership and invalidate other copies
E7 Read a data block from memory and invalidate other copies
E8 Read a data block (Dirty copy) from remote cache
E9 Write one word to local cache (hit to Dirty copy)
E10 Update the memory and invalidate all other copies
E11 Update the memory, invalidate all other copies, and read a data block from memory

1

E12 Update both the memory and all caches
E13 Update the memory and all caches and read a data block from memory

Ejection of Dirty copy
E14 Write back a data block to memory

1. This event occurs when a write is issued to a cache in Invalid state; both ownership and data block must be obtained.
2. Invalid, Valid, and Dirty states are defined in the standard way for the Write-Back/Invalidate protocols.

1158 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 11, NOVEMBER 1997

while these assumptions do not correspond to reality, they
keep the analytical expressions simple, while still giving suf-
ficiently good predictions (as we will show in Section 4.3).
An analysis of data accesses of real applications shows that
the probability (r/b) for MRMW and probabilities s and x
for MRSW and SRMW are typically not equal for all b proc-
essors, and that, in the case of MRMW, the set of processors
that read from a data block will not be the same as the set of
processors that write to the same block.

2.3 Cost Calculation for Different Data Access
Patterns

The core model consists of a set of expressions for calculat-
ing the overhead for each access pattern and for each cache
coherence protocol. The expressions are based on the
steady-state analysis of the multiprocessor system, where
the probability of each system event is multiplied by the
cost of the event. These products are summed to obtain the
steady-state average cost per access for a particular pattern
(MR, MW, SRSW, MRSW, SRMW, or MRMW) and cache
coherence protocol (UP–Update, WT–Write-through, WB–
Write-back, or UC–Uncached)2:

C cpattern protocol k k
Ek

, = Â p
system, event

, (1)

where ck is the cost for the system event Ek and pk is the
probability of event Ek. In our studies, the cost ck corre-
sponds to average processor stall time, expressed in the
number of clock cycles needed to perform event Ek. We
note that other metrics may be used, such as the number of
packets required in a distributed system.

The probabilities pk for a given access pattern can be de-

2. The system we model is relatively simple. For example, in evaluating
the cost for the Write-through protocol, each write operation results in a
memory transaction with an attendant cost. It is possible to assume more
sophisticated hardware, say, with buffers capable of coalescing multiple
writes operations to the same data block. This would significantly alter the
cost for basic operations, and, hence, a new set of cost expressions would
have to be developed, or the same set of expressions could be used but the
data access characterization must be performed on the output of coalescing
buffers.

rived as follows. We define a sample space consisting of
read and write accesses, which are treated as random
events. It is assumed that they are mutually exclusive and
independent in time. Therefore, a specific sequence of ac-
cesses can be treated as a sequence of repeated independent
trials. The probability of a specific sequence of accesses is
equal to the product of the probabilities of the individual
accesses. To obtain the probability of a specific system
event, the probabilities of all sequences which result in this
event have to be summed.

To illustrate this, we will derive the probabilities of
events E8, E7, and E3 for the Write-back protocol and
MRMW pattern. System event E8 is an exclusive read from
a remote cache. The event occurs if a write from processor j
follows a write from a different processor i (with any num-
ber of reads from processor i between these two writes). Let
Wi and Wj denote the writes from processors i and j and Ri a
read from processor i. The probability of sequences of the
form WiRiRi, º, RiWj is then

p W R R W p W p R p Wi i i

z

j
z

i i

z

j
z

(, ,)K
124 34

 times=

•

=

•

Â Â
F
H
GG

I
K
JJ =

0 0

c h c hd i e j

=
F
HG

I
KJ

-F
HG

I
KJ=

•

Â r
b

r
b

2

0

1 z

z

, (2)

where r/b is the probability of processor i performing a
write and the probability of processor j performing a write,
and (1 - r)/b is the probability of processor i performing a
read. The sum goes from zero to infinity because any num-
ber of reads from processor i can be performed between the
two writes. Expression (2) is given for only one pair of
processors. After summing the probabilities for all possible
pairs of processors, which is the equivalent of multiplying
(2) by b(b - 1) and calculating the sum of the given series, we
obtain the expression for p8 given in Table 3.

System event E7 occurs when a write is issued to a data
block of which there are multiple copies in other caches but
not in the local cache. The processor must obtain the copy

TABLE 2
DATA ACCESS PATTERNS AND PARAMETERS

Data Access Patterns Pattern Parameters
MR Multiple Reader b number of processors that perform reads

MW Multiple Writer b number of processors that perform writes

SRSW Single Reader Single Writer
1 r probability that the access is a write

1 - r probability that the access is a read

MRSW Multiple Reader Single Writer b number of multiple readers
s probability that the access is a read from one of the b multiple readers

2

r probability that the access is a write from a single writer
1 - r - bs probability that the access is a read from a single writer

SRMW Single Reader Multiple Writer b number of multiple writers
x probability that the access is a write from one of the b multiple writers

2

r probability that the access is a write from a single reader
1 - r - bx probability that the access is a read from a single reader

MRMW Multiple Reader Multiple Writer b number of processors that perform reads and writes
r/b probability that the access is a write from one of the b processors

2

(1 - r)/b probability that the access is a read from one of the b processors
2

 1. Single Reader (SR) and Single Writer (SW) patterns are defined as SRSW with r set to 0 or 1, respectively.
 2. To simplify the derivation of expressions, it is assumed that all b processors perform these accesses with equal probability.

SRBLJIC ET AL.: ANALYTICAL PREDICTION OF PERFORMANCE FOR CACHE COHERENCE PROTOCOLS 1159

of the data block from memory and other copies in the sys-
tem must be invalidated. To calculate probability p7, we

observe that event E7 occurs on processor j when it issues a

write Wj after the data block has been read by another proc-
essor k that is different from processor j and that is also dif-
ferent from processor i that issued the previous write Wi;
i.e., if we denote the relation “happened before” with <,
then $ k: Wi < Rk < Wj, i π k π j. We first calculate the prob-

ability of the sequences WiQQ, º, QWj occurring, where Qs
are reads from any processor except j.3 The probability of Q

is equal to (b - 1)(1 - r)/b.4 We take into account the se-
quences for all possible pairs of processors by multiplying
the probability of sequences WiQQ, º, QWj by b(b - 1).
Finally, we subtract the probability of those sequences in
which all reads are from processor i,5 which is, in fact, equal

to probability p8 calculated above. Hence,

p b b p7
0

81= -
F

H
GG

I

K
JJ

F

H
GG

I

K
JJ -

=

•

Âb g c hp W Q Q Wi

z

j
z

, ,K
1 24 34

 times

= -
F
HG

I
KJ

- -F
HG

I
KJ -

=

•

Âb b
r
b

r b
b p1

1 12

8
0

b g b gb g z

z

. (3)

Similarly, probability p3, which is the probability of
reading a modified copy from a remote cache, is derived as

3. If the read is from processor j, then system event E7 would not be trig-
gered, but, rather, system event E6, which does not require a copy from
memory.

4. The probability of Q can be calculated as the sum of the probabilities of
reads from all processors except processor j, which is the probability of a
read from one processor, (1 - r)/b, multiplied by (b - 1).

5. If all reads Q in a sequence are from processor i, then the write Wj from
processor j will not result in event E7, but, rather, in event E8, which is why
we must subtract the probability p8 to obtain p7.

p b b3
0

1= -
F
H
GG

I
K
JJ

F

H
GG

I

K
JJ=

•

Âb g p W R R Ri i i

z

j
z

(, ,)K
124 34

 times

= -
-F

HG
I
KJ

+

=

•

Âb b
r
b

r
b1

1 1

0

b g
z

z

. (4)

The expressions for all MRMW system events are given
in Table 3. The corresponding expressions for the MR, MW,
and SRSW events can be easily obtained from the MRMW
expressions by setting r = 0, r = 1, and b = 1, respectively. If
we assume zero cost for hits in the local cache (system events
E4 and E9), then all MR events that incur cost have probability
zero for all cache coherence protocols, because, in the steady
state, all accessing caches will have valid copies. Similarly, all
SRSW events that incur overhead using the Write-back pro-
tocol also have probability zero, because, in steady state, the
accessing cache will own the data block and have a local
copy in the Dirty state, so all reads and writes remain local.
Therefore, the average steady-state costs CMR,* and CSRSW,WB
are equal to zero. The expressions for the MRSW and SRMW
patterns are given in Appendix A.6

Each memory access results in exactly one of the given
system events. Therefore, the sum of the probabilities of all
system events for a given data access pattern and for a par-
ticular coherence protocol must be equal to one. It is easy to
verify that this is actually the case for the probabilities for
the MRMW pattern given in Table 3.

2.4 Predicting the Performance of Applications
Our core model partitions the data space into blocks of fixed
size and then evaluates the cost of accessing each data block
separately. For each data block, it is necessary to determine
the access pattern and parameters and, then, to calculate the
average steady-state cost per access, Cpattern,protocol. This value

6. Appendix A actually shows the expressions for an extended model, but
the expressions for the core model can be derived from them by setting l
and h to zero. Parameters l and h are discussed in Section 4.

TABLE 3
PROBABILITIES FOR SYSTEM EVENTS FOR THE MRMW PATTERN

Write-through Write-back
p2 = r(b - 1)(1 - r)/(1 + (b - 1)r) p2 = r(b - 1)(1 - r)/(1 + (b - 1)r) - r(b - 1)(1 - r)/(r + b - 1)

p4 = (1 - r)/(1 + (b - 1)r) p3 = r(b - 1)(1 - r)/(r + b -1)

p10 = r - (b - 1)r2/(1 + (b - 1)r) p4 = (1 - r)/(1 + (b - 1)r)

p11 = (b - 1)r2/(1 + (b - 1)r) p6 = r - (b - 1)r2/(1 + (b - 1)r) - r2/(r + b - 1)

p7 = (b - 1)r2/(1 + (b - 1)r) - (b - 1)r2/(r + b - 1)

p8 = (b - 1)r2/(r + b - 1)

p9 = r2/(r + b - 1)
Update Uncached

p4 = 1 - r p1 = 1 - r

p12 = r p5 = r

1. The formulas are derived from the steady-state analysis of the system with infinite caches; therefore, the probabilities of events p2 and
p13 for the Update protocol and p14 for the Write-back protocol are equal to zero.
2. Since the probabilities of the system events related to the execution of the read operation should sum to the probability that access is a
read, and, since the probabilities of events related to the execution of the write operation should sum to the probability that access is a
write, the probabilities of the system events E4 and E9 can be derived based on the probabilities of other system events and will not be pre-
sented in the rest of the paper. They are given in this table only to show the completeness of the proposed model.
3. pk is the probability of system event Ek defined in Table 1.

1160 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 11, NOVEMBER 1997

is then multiplied by the percentage of accesses to this
block, and the corresponding values for all blocks are
summed to obtain the average cost per shared access for a
given application and cache coherence protocol:

C Cprotocol
application i

pattern i protocol
i

= Â #
,

Block
Appl

block
a f (5)

where Cpattern(i),protocol is the cost for an access to block i, whose
data accesses are of type pattern(i), for the given coherence
protocol. The terms #Blocki and #Appl denote the number of
accesses to block i and the total number of accesses per-
formed by the application, respectively. While we have
shown how to predict the performance of applications, it
should be noted that this is not necessary for choosing the
most appropriate protocol for each block. For that, it is suffi-
cient to just evaluate Cpattern(i),protocol for each data block and for
each coherence protocol being considered. We compute
Cprotocol

application only to assess the quality of our model.

2.5 Access Pattern Characterization Using Smaller
Time Intervals

Analysis of the data access patterns of various applications
shows that the access pattern characterization of data
blocks typically changes over time [25]. For example, a
block characterized as SRSW may become MR at a later
time. As a result, predicting performance using an access
characterization based on complete application runs will
lead to inaccurate results, because the parameters do not
reflect temporal changes. For the example above, a block
that is first SRSW and later MR would simply be charac-
terized as MRSW. The accuracy of the model can be im-
proved by considering the access patterns for smaller time
intervals. If the application run time is partitioned into
smaller intervals, then the performance of the application
can be predicted as:

C Cprotocol
application ij

pattern i j protocol
i

j

= Â
#
, ,

Block
Appl

block
time interval

b g (6)

where the sum includes the predictions for each block and
for each time interval. The term #Blockij denotes the num-
ber of accesses to the block i during the characterization
interval j.

A correct choice of size for the characterization interval
is important in order to obtain good results with our core
model and will be discussed further in Section 3.4.

2.6 Determining Values of Parameters
Our model requires estimates for the parameters b, r, s,
and x on a per block and per interval basis. There are three
ways these parameters can be obtained. First, they can be
obtained from address traces generated by a simulator. This
is how we obtained the parameters that were input into our
model for the cases considered in this paper. Second, the
parameters can be estimated from data obtained from pre-
vious runs of the application with the help of monitoring
hardware. This implies, however, that hardware exists
which can monitor accesses on a per-block basis in a non-
intrusive way.

Third, we expect that advances in compiler technology
will allow the estimation of the required parameters at
compile time. The compiler might split the application into
a group of statements or regions [30] along natural bounda-
ries (for example synchronization points),7 and, then, apply
advanced data dependence analysis of the type required for
parallelizing compilers [31] for each region to estimate the
access pattern and the associated parameters. An example
of such data dependence analysis can be found in [2]. This
analysis is part of the compiler marking algorithm. In order
to choose the best coherence protocol for each write access,
the compiler marking algorithm must determine the exact
interleaving of accesses performed by different processors.
We believe that the parameters required for our model can
be estimated more easily, because it is not necessary to pre-
dict the exact ordering among all accesses, but rather just
the number of processors that perform the accesses and the
probabilities of such accesses.

3 ASSESSING THE CORE MODEL

In this section, we assess the quality of our core model by
comparing the performance predicted by the model to the
performance determined by simulating a real system.
Overall, we analyzed the performance of 15 applications,
mostly from the SPLASH [4] and SPLASH-2 [5] benchmark
suites. In this section, we present the results obtained from
three applications. The first two, BARNES (512 particles)
and MP3D (25,000 molecules, five steps, test.geom), are from
SPLASH, and the third is LU decomposition (100 ¥ 100 ma-
trix). In Appendix B, we present results for SPLASH-2
applications.

The conclusion that can be drawn from the results pre-
sented here is that the core model is adequate for predicting
the relative performance of the coherence protocols and can
therefore be used to choose an appropriate basic protocol
for each data block. Section 4 describes extensions to the
core model that improve the accuracy, so that the extended
model can be used to predict absolute performance.

3.1 Simulation Details
In order to obtain results for different architectural configu-
rations, we simulated two bus-based multiprocessor sys-
tems: one having eight processors and the other having 16.
To obtain realistic cost estimates, we simulated the systems
with MIPS R4400 processor [33].8 One 64-bit word can be
transferred in one clock cycle in the eight-processor system,
and two such words can be transferred in one clock cycle in
the 16-processor system. The costs for the system events are
given in Table 4. These costs are given in clock cycles which
correspond to processor stall time. Some of the parameters
have two terms. The first is a constant that accounts for the
average number of clock cycles spent on bus arbitration,

7. While we use the characterization intervals of equal size for the cases
presented in this paper, the characterization intervals need not be of the
same size.

8. The parameters of the simulations were chosen to correspond to the
NUMAchine multiprocessor prototype [3], which uses the R4400.

SRBLJIC ET AL.: ANALYTICAL PREDICTION OF PERFORMANCE FOR CACHE COHERENCE PROTOCOLS 1161

memory and cache latency, and processor response time.9

The second term represents the number of clock cycles
needed to transfer a data block. In this section and the next,
we present results for the eight-processor system. Section 5
will present results for the 16-processor system.

3.2 Data Access Pattern Characterization of
Applications

Fig. 1 shows the data access pattern characterizations10 of
three applications: BARNES, MP3D, and LU, as obtained by
processing address traces generated by the MINT program
[34]. We give the characterization of shared data accesses
for various data block and time interval sizes.11 Our graphs
involve seven different block sizes. The largest size is 1M
bytes and the next three sizes correspond to pages of 8K,
4K, and 1K bytes. The remaining three sizes correspond to
typical cache lines of 256, 128, and 64 bytes. We use four

9. Our model does not take bus and memory contention into account, but
uses the same constants for overhead regardless of traffic load. Because of
this, the prediction of our models will be inaccurate under heavy loads.
However, in our experience, bus and memory contention only increase the
difference between the coherence protocols, so the models are still useful
for predicting the relative performance of the protocols. If the models are
being used for predicting absolute performance, then different sets of con-
stants would have to be used for different traffic loads. An alternative,
perhaps more attractive, approach would be to use our models to predict
the amount of traffic produced per load and store (which is independent of
memory and bus contention) and then use Boothe and Ranade’s Squeeze
Model [35] to predict the latency on the basis of the estimated traffic. Our
models can be used to predict network traffic in a relatively straightfor-
ward way by modifying the constants in Table 4 to represent the number of
bits that need to be transferred instead of latency.

10. Note that we do not differentiate between true sharing (where differ-
ent processors access the same shared data) and false sharing (where unre-
lated data accessed by different processors happens to be collocated in the
same cache line). Both kinds of sharing have the same effect on perform-
ance.

11. Brorsson and Stenstrom use similar graphs to visualize the data ac-
cess pattern characterization [23].

different characterization interval sizes: 106, 105, 104, and
103 processor cycles. While the graphs in this section are
used to show general trends, Appendix B presents the val-
ues of selected points for the SPLASH-2 applications we
considered in numerical form.

Each access type (i.e., MR, MW, SRSW, MRSW, SRMW,
and MRMW) has its own graph, and the results are pre-
sented in terms of percentages of total accesses. For a given
block and characterization interval size, the percentages of
all access types add up to 100. For example, the graph MR
shows the percentage of accesses to all data blocks for
which the data access patterns for a given characterization
interval and block size are classified as MR, i.e., the per-
centage of accesses which are of the MR type. We only
show those access types that are significant for a particular
application. For the largest block size (1M bytes) and char-
acterization interval (106 processor cycles), corresponding
to the lower left corner of the graphs, one intuitively ex-
pects that shared data accesses will be mostly of MRMW
type. Other points correspond to smaller blocks and char-
acterization intervals in which other shared data access
types become more probable. For extremely small intervals
(not considered in our graphs), there will typically be, at
most, one access per interval, in which case, all data ac-
cesses will be of SRSW type.

Fig. 1a depicts the access characterization for BARNES.
We can see that, even with a large block and characteriza-
tion interval sizes, almost all of the shared data accesses are
to MR blocks. The percentage of MR accesses decreases as
the characterization interval size decreases, while the per-
centage of SRSW accesses increases correspondingly. In this
case, the MR blocks become mostly SR blocks, which is in-
cluded with the SRSW blocks.

TABLE 4
SYSTEM EVENTS COSTS

8-Processor Multiprocessor 1 16-Processor Multiprocessor 2

64-Bit Data Bus 128-Bit Data Bus
Load Instruction

c1 = 12 c1 = 27
c2 = 10 + h/8 c2 = 26 + h/16
c3 = 15 + h/8 c3 = 29 + h/16

c4 = 0 c4 = 0

Store Instruction
c5 = 5 c5 = 10
c6 = 20 c6 = 30

c7 = 22 + h/8 c7 = 32 + h/16
c8 = 15 + h/8 c8 = 29 + h/16

c9 = 0 c9 = 0
c10 = 20 c10 = 30

c11 = 22 + h/8 c11 = 32 + h/16
c12 = 20 c12 = 30

c13 = 22 + h/8 c13 = 32 + h/16

Ejection of Dirty Copy
c14 = 4 + h/8 c14 = 10 + h/16

1. The constants are determined based on the technical specifications of the MIPS R4400 processor [33].
2. The constants are determined based on simulation results of the University of Toronto NUMAchine multiprocessor [3], also using
MIPS R4400 processor.
3. System events c4 and c9 are hits in the local cache and we assume zero cost for these events.
4. ck is the cost of system event Ek denoting processor stall time in clock cycles; h is the block size in bytes.

1162 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 11, NOVEMBER 1997

Fig. 1b shows the access characterization for the LU ap-
plication. As the block size decreases, the percentage of
shared accesses of the SRSW and MR types increases.

The access characterization for MP3D is presented in
Fig. 1c. It shows that there are only two significant types of
shared data accesses for this application: MRMW and
SRSW. As we decrease the characterization interval size, the
percentage of MRMW type accesses decreases, while the
percentage of SRSW accesses increases.

3.3 Simulation Results
Fig. 2 shows the cost per access as predicted by our model
and as determined by simulation runs for several cache
coherence protocols. The first row shows the results of
simulation, while the other two rows show the prediction of
our model using the characterization interval sizes of 103

and 105 processor cycles, respectively. The costs are given
as averaged values per shared access, which enables both a
comparison of simulation and analytical results for a given
application (by comparing graphs in the same column), as
well as a comparison of results for different applications
(by comparing graphs in the same row).

The leftmost graph in Fig. 2a shows the performance for
MP3D obtained by simulation. For small blocks, the Write-
back protocol outperforms the other protocols because most
of the accesses are of SRSW type (see Fig. 1c). For SRSW
accesses with the Write-back protocol, only the first write to
a block incurs a cost, while each write to the block incurs a
cost for the other two cache coherence protocols. For un-
cached accesses, each read and write incurs a cost, so the
performance for these accesses is the same for all block
sizes. Since the percentage of writes is very high in MP3D
(about 40 percent), and all accesses that are not of SRSW
type are of MRMW type, the difference between Update,

Write-through, and uncached operations is relatively small.
The Update protocol outperforms the other protocols for
large blocks, because the read/write ratio and the cost for
updating do not depend on the block size.12 In contrast, the
invalidation based protocols become more expensive with
larger blocks, because of the cost of block transfer and also
because the probability of a block being shared increases.
Also, the probability of reading or writing invalidated data
becomes higher because most of the accesses are of MRMW
type (see Fig. 1c). Therefore, Write-back and Write-through
protocols give poor performance for large blocks.

Fig. 2a also shows the simulated performance for LU de-
composition. As in MP3D, the Write-back protocol per-
forms best for small blocks. The cache hit rate is higher for
LU than for MP3D, because data accesses that are not of
SRSW type are of MR type, and because of the lower per-
centage of writes (about 24 percent). The low percentage of
writes causes a higher cost for uncached accesses, because the
cost of a read is higher than the cost of a write. For large
blocks, Update performs better than the other basic protocols.

The rightmost graph in Fig. 2a shows the simulated per-
formance for BARNES. The difference between the per-
formance for cached and uncached accesses is large because
of the low percentage of writes (about 2 percent), and be-
cause most accesses are of SRSW type (see Fig. 1a). The
Write-back protocol outperforms the other basic protocols
for small blocks, while the Update protocol outperforms the
other protocols for large blocks. It is interesting to note that
processor manufactures now primarily support the Write-
back protocol.

12. Performance of the Update protocol depends only on the read/write
ratio and the cost of updating.

Fig. 1. Data access pattern characterization (interval size in processor cycles; block size in bytes): (a) BARNES, (b), LU, (c) MP3D.

SRBLJIC ET AL.: ANALYTICAL PREDICTION OF PERFORMANCE FOR CACHE COHERENCE PROTOCOLS 1163

3.4 Appropriate Choice for Characterization Interval
Size

The quality of results generated by the core model depends
on the size of the characterization intervals (which are as-
sumed to be equisized here13) if either Write-through or
Write-back protocol is used. This is evident in Fig. 2, where
the results with interval size set to 103 processor cycles
(Fig. 2b) correspond more closely to those results produced
by the simulator (Fig. 2a) than the results generated when
the interval size is set to 105 (Fig. 2c).14

If the characterization interval is chosen too large, then the
predicted performance will be pessimistic, and, if it is too
small, then the predicted performance will be optimistic. The
reason for overestimating the cost per access when the char-
acterization interval is too large is that the core model assumes
that all reads and writes are independent in time. Hence, the
probability of a sequence of two accesses to the same block by
the same processor is much lower than the probability of two
accesses by different processors. In practice, however, accesses
to blocks tend to come in bursts from a single processor at a
time [14], [15], [16], [17]. This can also be seen in Fig. 1, where
the percentage of SRSW accesses increases when the charac-

13. Our choice of equal sized characterization intervals stems from the
fact that we have assumed only the availability of address traces. The
model could be extended to include variable sized intervals, based on in-
formation that could be obtained from source code.

14. The size of the characterization interval does not affect the results if the
applications run uncached or if the Update protocol is used, because the re-
sults depend only on the probability of writes, as can be seen from Table 3.

terization interval size is reduced. The probability of two con-
secutive accesses being from the same processor is higher than
the probability assumed by the core model, and the costs of
sequences of accesses from the same processor (which are
mostly zero) are lower on average than the costs for sequences
from different processors (which are nonzero if at least one of
the processors performs a write). Thus, the performance pre-
dicted for larger characterization intervals will be pessimistic.

On the other hand, too small an interval size will under-
estimate the costs because the number of accesses per inter-
val will be too small for the transient costs to be negligible.
For example, in the case of the Write-back protocol, the
predicted cost for the SRSW pattern is CSRSW,WB = 0, as ex-
plained in Section 2.3. This is a good approximation if the
interval contains a large number of accesses where the cost
of reading a block once and/or obtaining ownership can be
ignored because it will be amortized over a large number of
accesses. The smaller the size of the characterization inter-
val, the more important transient effects become, making
the results of our model too optimistic.

The choice of characterization interval is not critical for
large data blocks. For large blocks, long bursts from a single
processor are less likely, so data accesses behave, for the
most part, as if they were independent in time. Moreover,
the effects of transients are lower, because the average
number of accesses per block is higher. For large data
blocks, Fig. 2 confirms that the core model correctly pre-
dicts the relative performance for both interval sizes.

Fig. 2. Comparison of analytical results as predicted by the core model and simulation results (eight-processor system) The number of load and
store instructions is the same for all protocols for a given application. (a) Performance determined by simulation (cache size = infinite), (b) analyti-
cal prediction: interval size = 103 processor cycles, (c) analytical prediction: interval size = 105 processor cycles.

1164 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 11, NOVEMBER 1997

For smaller data blocks (£ 256 bytes), the choice of char-
acterization interval is much more critical. The interval
must be chosen to minimize the effects of both access bursts
and transients. Comparing Fig. 2a and Fig. 2c shows that
even relative performance is not correctly predicted for
large characterization intervals and small data blocks. Ac-
cess bursts argue for using smaller characterization inter-
vals, while transients argue for using larger characteriza-
tion intervals. The appropriate size of characterization in-
terval can, for example, be determined experimentally by
comparing the simulation results with the predicted per-
formance of the model for different characterization inter-
vals. Alternatively, we have obtained good results in prac-
tice by choosing the size of the characterization interval to
contain 2n2/(n - 1) accesses per accesses block, where n is
the number of processors. This expression was derived by
minimizing an error function that embodies the effects of
two worst-case scenarios (that the core model does not ac-
count for), one for access bursts and one for transients.15

Our analysis of the given applications shows that relative
performance can be correctly predicted if the characterization
interval is chosen to be 103 processor cycles. In this case, there
will be, on average, between 20 and 100 accesses per block.
We have experimented with multiprocessor systems from
eight to 64 processors, where the number of accesses should
be between 19 and 130 accesses (for n = 8 and n = 64) using
the above rule, and have obtained good results.

4 EXTENDING THE CORE MODEL

This section describes extensions to the core model that
improve the prediction of absolute performance, regardless
of the size of the characterization interval. For the MW,
MRSW, SRMW, and MRMW patterns and the write-
invalidate protocols, performance is significantly affected by
the order of accesses from different processors, so the exten-
sions assume that some information on this ordering is avail-
able. The order of accesses does not affect the performance of
uncached operations or the performance of the Update pro-
tocol, nor does it affect the performance of SRSW and MR
data blocks with the write-invalidate protocols.

We consider two separate cases, depending on whether
there is less or more interleaving of accesses by different
processors than that assumed by the core model. In the core
model, it is assumed that all processors have equal probabil-
ity of accessing the data; that is, if P(pk) is the probability of
processor pk being the next processor to access the data, the
model assumes that P(pi)/P(pj) = 1 for all i and j. To improve
our prediction for the case where interleaving is less than the
amount assumed by the core model, we introduce a pa-
rameter l ≥ 0. In this case, after processor pi accesses the data,
P(pi)/P(pj) will be greater than one for all j< >i, and we set l =
P(pi)/P(pj) - 1 ≥ 0. To predict the performance for the case

15. The worst case for transients occurs during MR pattern, when all n
processors read a data block from memory or remote caches. For all cached
accesses (Write-back, Write-through, and Update) and MR pattern, the core
model would predict a zero cost. The worst case for access bursts occurs when
all accesses from one processor come in one burst. For write-invalidate proto-
cols (Write-back and Write-through) and MW access pattern, the core model
calculates a higher cost because it assumes that, after a write from a particular
processor, all n processors have equal chance to perform the next write.

where interleaving is greater than the amount assumed by
the core model, i.e., P(pj)/P(pi) > 1 for all j< >i after an ac-
cess by pi, we introduce a parameter h = P(pj)/P(pi) - 1 ≥ 0.

We discuss both how to extend the expressions of the
core model to include the l and h parameters, as well as
how to estimate the values of these two parameters. The
two experimental models, Dubois and Wang’s burst model
[16], [17] and Eggers and Katz’ write-run model [14], [15],
also include interleaving parameters. We tried to estimate
the parameters l and h based on both the burst size [16],
[17] and on the length of write run [14], [15]. Since the val-
ues of l and h estimated by these two methods did not sig-
nificantly improve the accuracy of our extended model, we
introduce a new method based on the expected number of
successive accesses that do not incur coherence overhead
(as described below). While the interleaving parameters
constitute the basic parameters in the models of [14], [15],
[16], [17], the interleaving parameters in our model are used
as auxiliary parameters that are used only to improve the
accuracy in predicting the absolute values of performance.

We will show that the accuracy of the model is retained
when the same averaged parameters are used for each set of
data blocks and characterization intervals (for given access
type), instead of using separate parameter values for each
block and interval.

4.1 Adding the l Parameter
We redefine the probability pk of each event Ek occurring
by including l. For example, for the MRMW case, once
we know that a write is performed by processor i, then
the probability of a write by the same processor i will be
r(l + 1)/(l + b), the probability of a read by the same
processor i will be (1 - r)(l + 1)/(l + b), the probability of a
write by another processor will be r/(l + b), and the prob-
ability of a read by another processor will be (1 - r)/(l + b).
This insight allows us to redefine the probabilities of Table 3.
For example, the probability of event E8 for the MRMW
pattern using the Write-back protocol becomes:

p b b
r
b

r l
l b

r
l b8

0

1
1 1

= -
- +

+
F
HG

I
KJ +

=

•

Âb g b gb g z

z

. (7)

Note that the probability of the write Wi is r/b, because all
b processors have an equal probability of performing the
first access in the sequence WiRiRi, º, RiWj in our assump-
tions. Once the access is performed by processor i, then the
probability of this processor subsequently accessing the
same block before another processor does so will be l + 1
times higher then the probability of a subsequent access by
another processor.

The expressions for the other probabilities can be de-
rived in a similar fashion. Table 5 gives the expressions for
all probabilities that occur in the MRMW pattern for the
Write-through and Write-back protocols. The expressions
for the MR, MW, and SRSW patterns can again be derived
from the expressions for MRMW by setting r = 0, r = 1, or
b = 1. The expressions for the MRSW and SRMW patterns
are given in Appendix A.16

16. Again, the appropriate expressions can be obtained by setting h to
zero in the expressions given in the appendix.

SRBLJIC ET AL.: ANALYTICAL PREDICTION OF PERFORMANCE FOR CACHE COHERENCE PROTOCOLS 1165

4.2 Estimating l from a Memory Trace
In order to estimate l, we measure or estimate the average
number of successive local accesses in the characterization
intervals, where an access is considered local if it does not
result in overhead. For example, a read from a Shared or
Dirty state is considered to be a local access, while a read
from an Invalid state, in which a valid copy must be ob-
tained from either a memory or a remote cache, is an exam-
ple of a remote access.

One way to obtain the average numbers of successive lo-
cal accesses to a block from a memory trace is to introduce
an n-bit state variable in which each bit corresponds to one
of the n processors. On each read, the bit corresponding to
the accessing processor is set to one, while each write resets
all bits except the one corresponding to the writing proces-
sor. A read is considered local if the bit in the n-bit state
variable corresponding to the reading processor is already
set, and it is considered remote, otherwise. To determine
whether a write is considered local, we consider two vari-
ants for the following reasons. For large block sizes, the cost
of invalidation is small and almost insignificant relative to
the cost of transferring a data block, while, for small block
sizes, the cost of invalidation and the cost of transfer are
almost the same. To account for this difference, we treat
writes to the data blocks in Shared state either as local ac-
cesses or as remote accesses, depending on whether the
data block is large or small. If the write to Shared state is
considered local, then we check whether the appropriate bit
is already set, as in the read case. If the write to Shared state
is considered remote, then we check whether the appropri-
ate bit is set while all other bits are zero. By dividing the
overall number of accesses by the number of remote ac-
cesses, we can calculate the average number of successive
local accesses to the block.

Given the average number of successive local accesses,
we can now derive l. It can be calculated from the prob-
abilities of system events by setting the average number of
successive local accesses to the reciprocal of the probability
that an access will be remote and solving for l. If the writes
to blocks in Shared state are assumed to be remote, then the
probability that an access will be remote is equal to the sum
of the probabilities p2, p3, p6, p7, and p8 for the Write-back
protocol given in Table 5. Otherwise, if the writes to the
Shared state are assumed to be local, then the probability
that an access will be remote can be calculated in a similar
way, except that probability p6 is excluded from the given
sum. Note that, at this point, l is the only unknown pa-
rameter; all other parameters, including the value of the
average number of successive local accesses, are known.

For the SRMW pattern, we always assume that writes to
data blocks in Shared state are local, because our expres-
sions become too complex, otherwise. This should not pose
a problem, because the number of SRMW accesses tends to
be very low.

4.3 Accuracy of Our Models
Fig. 3 shows the difference between the simulation results
and the predictions of our models for the Write-back proto-
col. There are four curves that show the importance of the l
parameter. Curve 4 shows how poor the accuracy of the
prediction of the core model can be if an inappropriate
characterization interval size is used. In this case, a large
interval was chosen (105 processor cycles), and the differ-
ence between the predictions of the core model and the re-
sults of the simulation can be huge. In contrast, Curve 3
shows the accuracy of the prediction of the core model for
the smaller, more appropriate, characterization interval size
of 103 processor cycles. We found that, if we use this fixed
interval size for the SPLASH and SPLASH-2 applications,
the difference between the model and the simulation will
usually be less than 100 percent (an order of magnitude
smaller than in the case of the larger interval size).

Curve 1 shows the difference between the simulation re-
sults and the prediction of our extended model with the l
parameter when using the larger interval size of 105 proces-
sor cycles. The difference is quite small and, usually, less
then 10 percent, even though an inappropriate characteri-
zation interval is being used. In calculating l, a write to a
data block in Shared state was considered local for large
blocks (4K-8K) and it was considered remote for the other
block sizes. Note, however, that, in the case of Curve 1, a
separate set of parameter values was used for each block
and each characterization interval.

Finally, Curve 2 considers a variation where the same
averaged set of parameters is used for each characterization
interval of each type. That is, the parameters are collected
from the memory trace and averaged within each of the six
access patterns of Table 2 before being used in the model
(Table 6 lists the averaged parameters for the case of a 105-
cycles characterization interval and 64-byte block size). It is
interesting to observe that performance prediction using
only a small number of averaged parameters can be as ac-
curate as the predictions stemming from more accurate in-
formation driven by an entire memory trace. This charac-
teristic makes it possible to use our models for large appli-
cations for which it is impractical to store the entire mem-
ory trace. It should be noted, however, that the perform-
ance prediction for dynamic hybrid protocols (discussed in

TABLE 5
PROBABILITIES FOR SYSTEM EVENTS FOR THE MRMW PATTERN WITH THE l PARAMETER

Write-through Write-back

p2 = r(b - 1)(1 - r)/(lr + 1 + (b - 1)r) p2 = r(b - 1)(1 - r)/(lr + 1 + (b - 1)r) - r(b - 1)(1 - r)/((l + 1)r + b - 1)

p10 = r - (b - 1)r2/(lr + 1 + (b - 1)r) p3 = r(b - 1)(1 - r)/((l + 1)r + b - 1)

p11 = (b - 1)r2/(lr + 1 + (b - 1)r) p6 = r - (b - 1)r2/(lr + 1 + (b - 1)r) - (l + 1)r2/((l + 1)r + b - 1)

p7 = (b - 1)r2/(lr + 1 + (b - 1)r) - (b - 1)r2/((l + 1)r + b - 1)

p8 = (b - 1)r2/((l + 1)r + b - 1)

Pk is the probability of system event Ek defined in Table 1.

1166 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 11, NOVEMBER 1997

Section 5) cannot be done based on averaged parameters,
but must be done with parameters for each block and char-
acterization interval.

Fig. 3 shows the results for the Write-back protocol only,
but our model behaves equally well for the other protocols.

4.4 Taking Transients into Account
While the l parameter allows the use of large characteriza-
tion intervals in our model, it is also necessary to take tran-
sient effects into account when operating with small char-
acterization intervals (103 processor cycles or less). The
transient cost is particularly important for blocks whose
data accesses for a given characterization interval are of MR
or SRSW type, because their cost is assumed to be zero,
even though there is a cost associated with the initial load-
ing of a block.

The transient cost can be estimated by introducing two
n-bit state variables per data block, one for write-invalidate
protocols and one for Update protocol, where n is the num-
ber of processors. Each bit of this variable corresponds to
one processor to indicate if the cache has a valid copy of the
data block. The procedure for the write-invalidate protocols
is the same as that described in Section 4.2 for the case
where writes to the Shared state are considered remote. The
procedure for the Update protocol is different only in that
the appropriate bit is set for both reads and writes, and in
that the remaining bits are not cleared for writes. The tran-
sient cost for a particular data access pattern is calculated
by comparing the state of these variables and data access

pattern with those of previous intervals. Based on the dif-
ferences in the states and data access patterns, we can de-
termine the number of system events which will incur
cost.17 The costs for these events, which are given in Table 4,
are multiplied by the number of the events. The products
are then summed and averaged over the number of ac-
cesses in a given characterization interval to calculate the
average transient cost per access:

C
c m

transient i j protocol
k k

ij
, , #b g = Â

Block (8)

where Ctransient(i,j),protocol is the average transient cost per ac-
cess for data block i during the characterization interval j
for the given protocol, ck is the cost of system event Ek, mk is
the number of system events Ek, and #Blockij is the number
of accesses to block i during interval j. The average tran-
sient cost per access is then added to the cost imposed by
sharing during the characterization interval:

Ci,j,protocol = Cpattern(i,j),protocol + Ctransient(i,j),protocol (9)

4.5 Adding the h Parameter
Even after including the transient costs, there still remain some
differences between the simulation results and the predictions
of our model. The reason is that, for small characterization

17. For example, in the case where MR pattern follows the SRSW pattern,
based on the difference in the state variable for write-invalidate protocol,
we can determine the number of processors that read the data block from
memory or remote cache.

Fig. 3. Write-back protocol: Percent difference between simulation results and the analytical prediction (eight-processor system). 1) Performance
prediction based on prediction for each characterization interval and for each block separately—l parameter included, interval size = 105. 2) Per-
formance prediction based on averaged parameters—l parameter included (see Table 6), interval size = 10

5
 (Write to Shared state is considered

as local access for 8K and 4K byte blocks, otherwise is remote). 3) Interval size = 103, parameter l = 0. 4) Interval size = 105, parameter l = 0.

TABLE 6
AVERAGED PATTERN PARAMETERS

Application BARNES LU MP3D
Data Ac-

cess
% of Pattern % of Pattern % of Pattern

Pattern accesses Average Parameters accesses Average Parameters accesses Average Parameters
MR 81.843 27.733 0.247
MW 0.007 b = 2.000, l = 2.098 NA 0.002 b = 8.000, l = 0

SRSW 11.256 r = 0.067 40.659 r = 0.499 41.640 r = 0.292
MRSW 2.551 r = 0.191, s = 0.153, 20.153 r = 0.068, s = 0.108, 0.030 r = 0.072, s = 0.125,

b = 2.678, l = 7.575 b = 6.961, l = 145.524 b = 5.537, l = 1.718
SRMW 0.100 r = 0.431, x = 0.117, 0.221 r = 0.007, x = 0.077, NA

b = 1.000, l = 0.501 b = 4.522, l = 0.487
MRMW 4.240 r = 0.219, b = 6.026, 11.232 r = 0.263, b = 4.780, 58.078 r = 0.477, b = 6.489,

l = 59.398 l = 84.513 l = 43.254
Eight-Processor System, Block size = 64 bytes; interval size = 105.
The l parameter is estimated by the average number of successive local accesses, with a write to Shared state being defined as a remote access, except for SRMW
pattern, in which case it is defined as a local access.

SRBLJIC ET AL.: ANALYTICAL PREDICTION OF PERFORMANCE FOR CACHE COHERENCE PROTOCOLS 1167

intervals and small blocks, interleaving is higher in practice
for the MW, MRSW, SRMW, and MRMW accesses than
assumed by our model. To take this discrepancy into ac-
count, we introduce a new parameter h. The parameter h
can be estimated from the memory trace using methods
similar to the ones used for estimating l. In the new sample
space, the probability of an access being from the same
processor is then defined to be h + 1 times lower than the
probability of an access being from another processor. This
parameter is incorporated into the core model similar to the
way l was added. Table 7 shows the probabilities for the
events of Table 2 for the MRMW pattern with the h pa-
rameter. As before, the expressions for MR, MW, and SRSW
can be derived directly from the expressions for the
MRMW pattern. The expressions that include both the l
and h for the MRSW and SRMW patterns are given in Ap-
pendix A.

The expressions in Tables 5 and 7 are presented sepa-
rately, so that the reader can get a better understanding of
the effects of each parameter. Our model, however, com-
bines both parameters (even though either l or h will al-
ways be zero). With the addition of these two parameters,
the difference between the results generated by simulation
and our model is less then 10 percent for all characteriza-
tion intervals and block sizes.

5 DYNAMIC HYBRID PROTOCOLS

Dynamic hybrid protocols can dynamically change the
cache coherence protocol during the execution of an appli-
cation. Different coherence protocols are used for different
blocks and over different time intervals. In this section, we
discuss the predicted performance of dynamic hybrid pro-
tocols for a variety of applications from the SPLASH [4] and
SPLASH-2 [5] benchmark suites. In particular, we show
how two parameters, the block size and the frequency at
which the coherence protocol is chosen, affect the perform-
ance of the dynamic hybrid protocol.

Design, implementation, and analysis of dynamic hybrid
protocols has received attention in previous research [2],
[6], [7], [13], [18], [19], [20], [21], [36], [37], [38], [39], [40].
Both hardware [13], [18], [19] and software [7], [37] imple-
mentations have been proposed, as have those that combine
hardware and software [6]. Inevitably, a function is used to
determine which protocol to use when. This decision can be
done based on run-time information [6], [13], [18], [19],

compile-time information [7], or a combination of both [2].
To adapt our models for hybrid protocols, we rearrange

(6) of Section 2.5. Instead of using the cost expression for a
single basic protocol for all characterization intervals, we
choose the cost expression of the basic protocol that for the
characterization interval and block gives the lowest cost.
This allows us to predict the performance of the dynamic
hybrid protocol that chooses the best basic protocol for each
characterization interval and block as:

C Chybrid
ij

protocol i j protocol
i

j

= Â
#
, ,

Block
Appl

block
time interval

min e j. (10)

Fig. 4a shows the performance of MP3D, LU, and BAR-
NES, as predicted by our extended model, which includes
the l parameter, the h parameter, and transients. Of the
basic protocols, the Write-back protocol performs best for
small data blocks, while Update performs best for larger
data blocks, as was discussed in Section 3.3. The figure also
shows the predicted performance of the dynamic hybrid
protocol. Its performance is slightly better than the per-
formance of the Write-back protocol for small blocks, and
better than the performance of the Update protocol for
large blocks. We assume here that the best protocol is cho-
sen at the beginning of each characterization interval and
not changed during the interval. We also assume that the
protocol can be changed at no cost, so our results represent
an upper bound on the improvement one might expect
from a real system.

Fig. 4b shows the improvement for the dynamic hybrid
protocol. We calculate the improvement attained with dy-
namic hybrid protocol as:

Improvement = 100 ¥ (Cbest - Chybrid)/(Cbest), (11)

where Cbest = minprotocol(Cprotocol) is the cost of the basic proto-
col that gives the best result for a given data block and in-
terval size. The improvement is given for different sizes of
characterization intervals and blocks. As one would expect,
the improvement for the dynamic hybrid protocol is greater
if one can choose the best protocol more frequently, which
is the case for small characterization intervals. For larger
characterization intervals, the hybrid protocol becomes less
attractive and can be completely ineffective. For small char-
acterization intervals, the improvement decreases for small
and for large data blocks. The Write-back and the Update
protocols provide the best performance at these extremes.

TABLE 7
PROBABILITIES FOR SYSTEM EVENTS FOR THE MRMW PATTERN WITH THE h PARAMETER

Write-through
p2 = (h + 1)r(b - 1)(1 - r)/(r(b - 1)h + (1 - r)h + 1 + (b - 1)r)

p10 = r - (h + 1)(b - 1)r2/(r(b - 1)h + (1 - r)h + 1 + (b - 1)r)

p11 = (h + 1)(b - 1)r2/(r(b - 1)h + (1 - r)h + 1 + (b - 1)r)
Write-back

p2 = (h + 1)r(b - 1)(1 - r)/(r(b - 1)h + (1 - r)h + 1 + (b - 1)r) - (h + 1)r(b - 1)(1 - r)/((b - 1)h + b + r - 1)

p3 = (h + 1)r(b - 1)(1 - r)/((b - 1)h + b + r - 1)

p6 = r - (h + 1)(b - 1)r2/(r(b - 1)h + (1 - r)h + 1 + (b - 1)r) - r2/((b - 1)h + b + r - 1)

p7 = (h + 1)(b - 1)r2/(r(b - 1)h + (1 - r)h + 1 + (b - 1)r) - (h + 1)(b - 1)r2/((b - 1)h + b + r - 1)

p8 = (h + 1)(b - 1)r2/((b - 1)h + b + r - 1)

1168 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 11, NOVEMBER 1997

The greatest improvement for the dynamic hybrid protocol
occurs when the difference between the Write-back and
Update is small.

The improvement obtained with the dynamic hybrid
protocol for MP3D is low (under 25 percent) for 64-byte
and 128-byte blocks. This result agrees with simulation re-
sults obtained by others. A simulation of MP3D by Wilson
et al. shows that the performance of a page-based competi-
tive algorithm is the same as that of the Update protocol [6].
(The competitive algorithm can dynamically choose be-
tween write update and write invalidate.) Wilson et al. used
a block size of a page, which corresponds to our 4K-byte or
8K-byte block sizes. Our results show that Update is better
than the other basic protocols, and that the upper limit for
improvement with the dynamic hybrid protocol is less than
15 percent for these block sizes. Our analytical predictions
also agree with the results of simulation by Veenstra and
Fowler [1]. The upper limits for improvement for the dy-
namic hybrid protocol for LU (30 percent) and Barnes (60
percent) are larger than for MP3D.

The improvements for other applications from the
SPLASH-2 [5] benchmark suite, as predicted by our ex-
tended model, are given in Table 8.18 The results were ob-
tained by assuming a 16-processor bus-based multiproces-
sor (see Table 4). The access pattern characterization of
these applications shows a high percentage of SRSW accesses.
For seven of 12 applications, the SRSW pattern is prevalent for
all block and characterization interval sizes (see Table 11 in
Appendix B). For the other five applications (Ocean–
contiguous, Ocean–noncontiguous, FFT, LU–contiguous, and

18. A technical report [32] contains graphs depicting the data access char-
acterization, the performance prediction and the relative improvement in
performance for four of the SPLASH-2 applications: Cholesky, Ocean
(contiguous), Ocean (noncontiguous), and FFT. Appendix B presents the
data access characterization and performance prediction for twelve appli-
cations from the SPLASH-2 benchmark suite.

LU–noncontiguous), the SRSW pattern is dominant either
for blocks smaller than 256 bytes or for characterization
intervals smaller than 105 processor cycles. Since there is a
high percentage of SRSW accesses, the Write-back protocol
is the best choice for eight of these applications, even for
large blocks (1K bytes and more). For the other four appli-
cations (Radix, Ocean–noncontiguous, FFT, and LU–
noncontiguous), the best choice is the Update protocol when
using blocks larger than 1K bytes (see Table 12 in Appendix
B).

From these results, it is apparent that only few applica-
tions show a significant performance improvement with the
dynamic hybrid protocol when blocks are smaller than 256
bytes. For two applications, the improvement is greater
than 50 percent, and, for seven applications, it is greater
than 30 percent. Although patterns of data sharing were not
examined by Woo et al. in their study [5], a breakdown of
miss rates for the SPLASH-2 applications was given. Based
on this breakdown, certain conclusions about how blocks
are accessed can be made. The results presented for Radix,
Barnes, and FMM show a large percentage of misses due to
both true and false sharing, indicating that, besides se-
quential sharing of data blocks, there is also a significant
amount of concurrent sharing. The Update protocol is more
suitable for concurrent sharing, while the Write-back proto-
col is better for sequential sharing (SRSW data access pat-
tern). As a result, these three applications are good candi-
dates for performance improvement using the dynamic
hybrid protocol, and the results in Table 8 substantiate this.
With blocks larger than 1K bytes, 11 applications have sig-
nificantly improved performance (more than 50 percent)
with the dynamic hybrid protocol. The frequency with
which protocols are changed has a larger effect when small
block sizes are used than when larger block sizes are used.

Fig. 4. Analytical prediction as predicted by the extended analytical model (l and h parameters included, as well as transients) (eight-processor
system). (a) Performance prediction (interval size = 103 processor cycles. (b) The percent improvement for dynamic hybrid protocol with respect
to the best nonhybrid protocol.

SRBLJIC ET AL.: ANALYTICAL PREDICTION OF PERFORMANCE FOR CACHE COHERENCE PROTOCOLS 1169

6 CONCLUSIONS

We have presented a set of analytical models for predicting
the performance of parallel applications under various
cache coherence protocol assumptions. The models differ in
the number and types of parameters they require and in the
level of accuracy of performance prediction they provide.
For the simplest, core model, we expect that advances in
compiler technology will allow the estimation of the re-
quired parameters at compile time. The more sophisticated
models extend the core model by adding the l and h pa-
rameters, and taking transients into account. These pa-
rameters are best obtained by analyzing address traces gen-
erated from simulators or by monitoring previous runs.
Our models are unique in that they lie between the many
theoretical models and the many address-trace oriented
models that have been proposed in literature.

We assessed the accuracy of our models by comparing
their predictions with the results of simulation runs. We

were able to show that, on 15 representative applications,
even our simple core model was able to correctly predict
the relative performance; i.e., which protocol performed
better than the others. Hence, this model is suitable for
compile time use to implement hybrid protocols that allow
different data blocks to use different coherence protocols,
and dynamic hybrid protocols that also allow for changes in
the choice of protocol during the run time of the applica-
tion. As a result, we believe that, with the availability of this
model, dynamic hybrid protocols can be implemented with
no specialized hardware support for run-time data access
monitoring and decision making. The extended models
provide for more accurate prediction of absolute perform-
ance. We were able to show that the models can predict
the performance to within 10 percent of actual (simulated)
executions.

Our study also provided other interesting insights. For
example, we characterized the memory access behavior of

TABLE 8
THE PERCENT IMPROVEMENT FOR DYNAMIC HYBRID PROTOCOL WITH RESPECT TO THE BEST NONHYBRID PROTOCOL

FOR SPLASH-2 APPLICATIONS AS PREDICTED BY THE EXTENDED ANALYTICAL MODEL

Application Interval Block size
Size 64 bytes 128 bytes 256 bytes 1K bytes 4K bytes 8K bytes

Radix 10
3

53.4 66.7 73.1 85.3 93.2 93.0
10

6
1.7 18.0 34.8 70.2 89.1 88.8

Barnes 10
3

50.1 53.3 60.5 77.5 89.3 93.8
10

6
19.2 15.8 17.8 38.0 76.6 86.9

Water-Spatial 10
3

35.1 43.7 49.4 54.1 84.6 92.0
10

6
27.7 27.0 21.3 10.1 76.7 89.8

FMM 10
3

33.7 36.7 41.3 56.5 85.3 91.6
10

6
10.6 7.9 6.5 14.9 61.2 76.0

Ocean (contiguous) 10
3

31.9 36.3 40.7 45.5 75.3 85.7
10

6
3.6 4.0 4.5 7.2 14.2 21.9

Raytrace 10
3

30.1 38.2 47.7 70.9 84.4 86.5
10

6
27.3 35.7 45.1 66.7 80.0 82.2

Cholesky 10
3

8.1 17.0 29.9 67.7 84.5 88.9
10

6
4.6 12.0 23.1 62.0 69.3 69.6

Water-Nsquared 10
3

11.7 15.3 24.2 41.8 76.4 86.0
10

6
3.6 3.0 2.9 4.1 58.0 72.7

Ocean (noncontiguous) 10
3

29.4 29.8 33.4 51.3 43.9 43.0
10

6
5.4 5.7 9.5 34.1 25.5 25.5

FFT 10
3

15.8 21.5 27.4 33.8 36.4 41.7
10

6
2.4 3.7 5.3 8.1 12.6 29.7

LU (contiguous) 10
3

5.9 14.6 22.2 27.8 43.1 70.8
10

6
0.9 1.4 2.6 5.6 25.4 31.1

LU (noncontiguous) 10
3

5.6 6.7 5.3 34.1 65.7 28.0
10

6
1.4 2.3 0.0 10.6 60.6 13.7

l and h parameters included, as well as transients; 16-processor system; interval size in processor cycles.
All applications are run with SPLASH-2 default values, except Barnes (1K particles) and LU Factorization (256 × 256 matrix).

TABLE 9
PROBABILITIES FOR SYSTEM EVENTS FOR THE MRSW PATTERN

Write-through Write-back
p2 = (h + 1)brs/((h + 1)r + (l + 1)s) p2 = (h + 1)brs/((h + 1)r + (l + 1)s) - brs/((h + 1)r + (l + 1)bs)

p10 = r p3 = brs/((h + 1)r + (l + 1)bs)

p6 = (h + 1)brs/((l + 1)r + (h + 1)bs)
Update Uncached

p12 = r p1 = 1 - r

p5 = r

1170 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 11, NOVEMBER 1997

several applications, representing the characterization in
visual form. We also assessed the potential advantage of
dynamic hybrid protocols and showed that the advantages
are limited, especially for smaller block sizes. However,
recent research has shown that dynamic hybrid protocols
can be more effective if multiple writes to the same data
block can be coalesced into a single transaction. This sig-
nificantly changes the communication patterns, and Dahl-
gren recently showed that dynamic hybrid protocols are
much more effective under these circumstances [36].

In our current work, we are assessing how the working
set size of applications, the number of processors, and dif-
ferent communication networks might affect the perform-
ance of dynamic hybrid protocols. In particular, we will
assess the accuracy of our models in predicting the per-
formance of distributed shared memory systems that run
on workstation clusters. Finally, we intend to incorporate
the core model into a compiler that can insert instructions
into the code capable of managing a dynamic hybrid proto-
col. This code will then be run on a University of Toronto
NUMAchine multiprocessor [3], where we will be able to
accurately measure the improvement.

APPENDIX A
Tables 9 and 10 show the probabilities, pk, of system events
Ek occurring for the MRSW and SRMW data access pat-
terns. The events, Ek, are defined in Table 1 and the data
access patterns and their parameters b, r, s, and x are de-
fined in Table 2. The interleaving parameters l and h are
defined in Sections 4.1 and 4.5, respectively. The formulas
are derived from the steady-state analysis of the system
with infinite caches; therefore, the probabilities of events p2
and p11 for the Update protocol and p12 for the Write-back
are equal to zero. We assume zero cost for events E4 and E9,
so probabilities p4 and p9 are not presented in the tables.
The interleaving parameters l and h do not affect the per-
formance of the Update protocol and uncached operations.

APPENDIX B
Table 11 shows the data access pattern characterization for
applications from the SPLASH-2 benchmark suite [5], as-

suming a 16-processor system (see Table 4). Table 12 pres-
ents the performance as predicted by the extended analyti-
cal model for different cache coherence protocols, including
the dynamic hybrid protocol.

ACKNOWLEDGMENTS

The authors wish to thank D. Vrsalovic, K. Sevcik, T. Ab-
delrahman, T. Mowry, N. Elezovic, A. Grbic, R. Grindley,
V. Sruk, H. Bunjevac, T. Grcanac, J. Radej, G. Omrcen-Ceko,
and A. Budin for their valuable comments on the research
reported in this paper.

REFERENCES

[1] J.E. Veenstra and R.J. Fowler, “A Performance Evaluation of Optimal
Hybrid Cache Coherency Protocols,” Proc. Fifth Int’l Conf. Architectural
Support for Languages and Operating Systems, ASPLOS-V, pp. 149-160,
Boston, Oct. 1992.

[2] F. Mounes-Toussi and D.J. Lilja, “The Potential of Compile-Time
Analysis to Adapt the Cache Coherence Enforcement Strategy to
the Data Sharing Characteristics,” IEEE Trans. Parallel and Distrib-
uted Systems, vol. 6, no. 5, pp. 470-481, May 1995.

[3] Z.G. Vranesic et al., “The NUMAchine Multiprocessor,” Technical
Report CSRI-324, Computer Systems Research Inst., Univ. of To-
ronto, Canada, 1995.

[4] J.P. Singh, W.-D. Weber, and A. Gupta, “SPLASH: Stanford Par-
allel Applications for Shared Memory,” Computer Architecture
News, vol. 20, no. 1, pp. 5-44, Mar. 1992.

[5] S.C. Woo et al., “The SPLASH-2 Programs: Characterization and
Methodological Consideration,” Proc. 22nd Ann. Int’l Symp. Com-
puter Architecture, pp. 24-36, Santa Margherita Ligure, Italy, June
1995.

[6] A.W. Wilson, R.P. LaRowe, and M.J. Teller, “Hardware Assist for
Distributed Shared Memory,” Proc. 13th Int’l Conf. Distributed
Computing Systems, pp. 246-255, Pittsburgh, Penn., May 1993.

[7] J.B. Carter, J.K. Bennett, and W. Zwaenepoel, “Techniques for
Reducing Consistency-Related Communication in Distributed
Shared-Memory Systems,” ACM Trans. Computer Systems, vol. 13,
no. 3, pp. 205-243, Aug. 1995.

[8] A. Duda, “Analysis of Multicast-Based Object Replication Strate-
gies in Distributed Systems,” Proc. 13th Int’l Conf. Distributed
Computing Systems, pp. 311-318, Pittsburgh, Penn., May 1993.

[9] M. Stumm and S. Zhou, “Algorithms Implementing Distributed
Shared Memory,” Computer, vol. 23, no. 5, pp. 54-64, May 1990.

[10] M. Dubois and F.A. Briggs, “Effects of Cache Coherency in Multi-
processors,” IEEE Trans. Computers, vol. 31, no. 11, pp. 1,083-1,099,
Nov. 1982.

TABLE 10
PROBABILITIES FOR SYSTEM EVENTS FOR THE SRMW PATTERN

Write-through
p2 = (h + 1)(1 - r - bx)bx/((hbx + 1)(bx + (l + 1)(1 - bx)))

p10 = (l + 1)(1 - bx)r/((hbx + 1)(bx + (l + 1)(1 - bx))) + (l + 1)bx2/((h + 1)r + (l + b)x)

p11 = (h + 1)brx/((hbx + 1)(bx + (l + 1)(1 - bx))) + ((h + 1)brx + b(b - 1)x2)/((h + 1)r + (l + b)x)
Write-back
p3 = (h + 1)(1 - r - bx)bx)/((hbx + 1)(bx + (l + 1)(1 - bx)))

p6 = (l + 1)(h + 1)(1 - r - bx)bx2/((h(1 - bx) + 1)((h + 1)r + (l + b)x)(lx + 1)) +

 (l + 1)(h + 1)(1 - r -bx)brx/((hbx + 1)((l + 1)r + (h + 1)bx)(bx + (l + 1)(1 - bx)))

p7 =(h + 1)b(b - 1)x2(1 - r - bx)/((h(1 - bx)+ 1)((h + 1)r + (l + b)x)(lx + 1))

p8 = (h + 1)brx/((hbx + 1)(bx + (l + 1)(1 - bx))) + (h + 1)brx/((h + 1)r + (l + b)x) + b(b - 1)x2/((h(1 - bx) + 1)(lx + 1))
Update Uncached
p12 = r + bx p1 = 1 - r - bx

p5 = r + bx

SRBLJIC ET AL.: ANALYTICAL PREDICTION OF PERFORMANCE FOR CACHE COHERENCE PROTOCOLS 1171

[11] J.H. Patel, “Analysis of Multiprocessors with Private Cache
Memories,” IEEE Trans. Computers, vol. 31, no. 4, pp. 296-304, Apr.
1982.

[12] Q. Yang, L.N. Bhuyan, and B.-C. Liu, “Analysis and Comparison
of Cache Coherence Protocols for a Packet-Switch Multiproces-
sor,” IEEE Trans. Computers, vol. 38, no. 8, pp. 1,143-1,153, Aug.
1989.

[13] A.R. Karlin et al., “Competitive Snoopy Caching,” Proc. 27th Ann.
Symp. Foundations of Computer Science, pp. 244-254, Oct. 1986.

[14] S.J. Eggers, “Simplicity Versus Accuracy in a Model of Cache
Coherency Overhead,” IEEE Trans. Computers, vol. 40, no. 8, pp. 893-
906, Aug. 1991.

[15] S.J. Eggers and R.H. Katz, “A Characterization of Sharing in Par-
allel Programs and its Application to Coherency Protocol Evalua-
tion,” Proc. 15th Ann. Int’l Symp. Computer Architecture, pp. 373-
382, Honolulu, Haw., May 1988.

[16] M. Dubois and J.-C. Wang, “Shared Block Contention in a Cache
Coherence Protocol,” IEEE Trans. Computers, vol. 40, no. 5, pp. 640-
644, May 1991.

TABLE 11
THE PERCENTAGE OF DIFFERENT TYPES OF ACCESSES

Application Interval Block Data Access Pattern (% of accesses)
Size Size MR MW SRSW MRSW SRMW MRMW
10

6
8K 0.0 0.0 86.8 0.2 5.1 7.9

Radix 10
3

8K 1.2 2.5 91.1 0.0 0.0 5.1
10

6
64 0.2 0.0 87.8 7.8 3.8 0.5

10
3

64 0.2 0.0 99.7 0.0 0.0 0.1

10
6

8K 11.8 0.0 74.8 0.2 0.0 13.2
Barnes 10

3
8K 17.6 0.0 80.5 1.2 0.0 0.6

10
6

64 14.2 0.0 75.3 7.6 0.0 2.9
10

3
64 5.8 0.0 94.1 0.1 0.0 0.1

10
6

8K 7.6 0.0 72.7 1.3 0.0 18.3
Water-Spatial 10

3
8K 15.3 0.0 81.4 1.9 0.0 1.3

10
6

64 20.0 0.0 78.5 1.4 0.0 0.0
10

3
64 0.5 0.0 99.4 0.0 0.0 0.0

10
6

8K 0.2 0.0 61.0 2.7 0.1 36.0
FMM 10

3
8K 12.4 0.0 76.5 8.5 0.1 2.4

10
6

64 17.6 0.0 69.1 9.9 0.1 3.2
10

3
64 2.3 0.0 97.5 0.2 0.0 0.1

10
6

8K 1.1 0.0 24.6 68.9 0.1 5.3
Ocean (contiguous) 10

3
8K 2.4 0.0 95.7 1.8 0.0 0.0

10
6

64 2.6 0.0 85.4 11.8 0.0 0.0
10

3
64 1.7 0.0 98.0 0.3 0.0 0.0

10
6

8K 27.9 0.0 71.4 0.1 0.0 0.6
Raytrace 10

3
8K 21.6 0.0 78.2 0.0 0.0 0.2

10
6

64 26.6 0.0 73.2 0.1 0.0 0.2
10

3
64 7.8 0.0 92.0 0.0 0.0 0.1

10
6

8K 1.1 0.0 41.9 26.4 0.0 30.6
Cholesky 10

3
8K 30.3 0.0 64.1 3.6 0.0 1.9

10
6

64 2.8 0.0 47.0 22.7 0.0 27.5
10

3
64 24.5 0.0 74.2 0.6 0.0 0.6

10
6

8K 23.3 0.0 71.8 0.5 0.0 4.3
Water-Nsquared 10

3
8K 10.4 0.0 89.4 0.2 0.0 0.0

10
6

64 26.4 0.0 72.5 0.8 0.0 0.3
10

3
64 1.3 0.0 98.7 0.0 0.0 0.0

10
6

8K 30.3 5.4 1.3 0.0 0.0 63.1
Ocean (noncontiguous) 10

3
8K 53.6 10.0 2.9 0.6 0.0 32.9

10
6

64 3.7 0.6 84.5 4.4 0.1 6.7
10

3
64 2.2 0.2 96.8 0.4 0.0 0.4

10
6

8K 0.0 0.0 19.5 12.2 0.0 68.3
FFT 10

3
8K 14.4 5.0 28.1 0.1 0.0 52.2

10
6

64 0.0 0.0 19.9 46.8 0.0 33.3
10

3
64 6.4 0.1 92.7 0.8 0.0 0.1

10
6

8K 0.1 0.0 29.0 57.1 0.0 13.7
LU (contiguous) 10

3
8K 27.8 0.0 65.9 6.3 0.0 0.0

10
6

64 3.2 0.0 57.1 39.8 0.0 0.0
10

3
64 27.3 0.0 72.6 0.0 0.0 0.0

10
6

8K 5.4 0.0 8.3 0.0 0.0 86.3
LU (noncontiguous) 10

3
8K 27.7 0.0 15.9 0.8 0.2 55.5

10
6

64 8.4 0.0 55.2 36.4 0.0 0.0
10

3
64 27.4 0.0 72.6 0.0 0.0 0.0

 Interval size in processor cycles; Block size in bytes.

1172 IEEE TRANSACTIONS ON COMPUTERS, VOL. 46, NO. 11, NOVEMBER 1997

[17] M. Dubois and J.-C. Wang, “Shared Data Contention in a Cache
Coherence Protocol,” Proc. 1988 Int’l Conf. Parallel Processing, vol. I,
pp. 146-155, Aug. 1988.

[18] J. Archibald and J.-L. Baer, “Cache Coherence Protocols: Evalua-
tion Using a Multiprocessor Simulation Model,” ACM Trans.
Computer Systems, vol. 4, no. 4, pp. 273-298, Nov. 1986.

[19] J. Archibald, “A Cache Coherence Approach for Large Multiproc-
essor Systems,” Proc. Int’l Conf. Supercomputing, pp. 337-345, St.
Malo, France, July 1988.

[20] A.L. Cox and R.J. Fowler, “Adaptive Cache Coherency for De-
tecting Migratory Shared Data,” Proc. 20th Ann. Int’l Symp. Com-
puter Architecture, pp. 98-108, San Diego, Calif., May 1993.

[21] P. Stenstrom, M. Brorsson, and L. Sandberg, “An Adaptive Cache
Coherence Protocol Optimized for Migratory Sharing,” Proc. 20th
Ann. Int’l Symp. Computer Architecture, pp. 109-118, San Diego,
Calif., May 1993.

[22] W.-D. Weber and A. Gupta, “Analysis of Cache Invalidation Pat-
terns in Multiprocessors,” Proc. Third Symp. Architectural Support
for Programming Languages and Operating Systems, pp. 243-256,
Boston, Apr. 1989.

[23] M. Brorsson and P. Stenstrom, “Visualizing Sharing Behavior in
Relation to Shared Memory Management,” Proc. 1992 Int’l Conf.
Parallel and Distributed Systems, pp. 528-536, Hsinchu, Taiwan,
Dec. 1992.

[24] M. Brorsson and P. Stenstrom, “Modeling Accesses to Migratory
and Producer-Consumer Characterized Data in a Shared-Memory
Multiprocessor,” Proc. Sixth IEEE Symp. Parallel and Distributed
Processing, pp. 612-619, Dallas, Tex., Oct. 1994.

[25] M. Brorsson, “SM-prof: A Tool to Visualize and Find Cache Co-
herence Performance Bottlenecks in Multiprocessor Programs,”
Proc. 1995 ACM SIGMETRICS and Performance ’95, Int’l Conf.
Measurement & Modeling of Computer Systems, pp. 178-187, Ottawa,
Canada, May 1995.

[26] S.V. Adve, V.S. Adve, M.D. Hill, and M.K. Vernon, “Comparison
of Hardware and Software Cache Coherence Scheme,” Proc. 18th
Ann. Int’l Symp. Computer Architecture, pp. 298-308, Toronto, Can-
ada, May 1991.

[27] S. Srbljic, “Model of Distributed Processing in Flexible Manufac-
turing Systems,” PhD dissertation, Inst. for Electronics, Faculty of
Electrical Eng., Univ. of Zagreb, Croatia, Nov. 1990. (Work pub-
lished in Croatian, original title: “Model distribuirane obrade u
prilagodljivim proizvodnim sustavima”)

[28] S. Srbljic and L. Budin, “Analytical Performance Evaluation of
Data Replication Based Shared Memory Model,” Proc. Second
IEEE Int’l Symp. High Performance Distributed Computing, pp. 326-
335, Spokane, Wash., July 1993.

[29] S. Srbljic, Z.G. Vranesic, and L. Budin, “Performance Prediction
for Different Consistency Schemes in Distributed Shared Memory
Systems,” Proc. Third IEEE Int’l Symp. High Performance Distributed
Computing, pp. 295-302, San Francisco, Aug. 1994.

[30] V. Balasundaram, “A Mechanism for Keeping Useful Internal
Information in Parallel Programing Tools: The Data Access De-
scriptor,” J. Parallel and Distributed Computing, vol. 9, pp. 154-169,
June 1990.

[31] M.W. Hall, S.P. Amarasinghe. B.R. Murphy, S.W. Liao, and M.S.
Lam, “Detecting Coarse-Grain Parallelism in Using an Interpro-
cedural Parallelizing Compiler,” Proc. Supercomputing ‘95, 1995.

[32] S. Srbljic et al., “Models for Performance Prediction of Cache Co-
herence Protocols,” Technical Report CSRI-332, Computer Sys-
tems Research Inst., Univ. of Toronto, Canada, 1995.

 (ftp://ftp.cs.toronto.edu/pub/reports/ csri/332/332.ps.Z)
[33] J. Heinrich, MIPS R4000 User’s Manual. Prentice Hall, 1993.
[34] J.E. Veenstra, “Mint Tutorial and User Manual,” Technical Report

452, Computer Science Dept., Univ. of Rochester, May 1993.
[35] B. Boothe and A. Ranade, “Performance on a Bandwidth Con-

strained Network: How Much Bandwidth Do We Need?” Proc.
Supercomputing ‘93, Portland, Ore., Nov. 1993.

[36] F. Dahlgren, “Boosting the Performance of Hybrid Snooping
Cache Protocols,” Proc. 22nd Ann. Int’l Symp. Computer Architec-
ture, pp. 60-69, Santa Margherita Ligure, Italy, June 1995.

[37] H.V. Leong and D. Agrawal, “Type-Specific Coherence Protocols
for Distributed Shared Memory,” Proc. 12th Int’l Conf. Distributed
Computing Systems, pp. 434-441, Yokohama, Japan, June 1992.

[38] S. Dwarkadas et al., “Evaluation of Release Consistent Software
Distributed Shared Memory on Emerging Network Technology,”
Proc. 20th Ann. Int’l Symp. Computer Architecture, pp. 144-155, San
Diego, Calif., May 1993.

[39] F. Dahlgren, M. Dubois, and P. Stenstrom, “Combined Perform-
ance Gains of Simple Cache Protocol Extensions,” Proc. 21st Ann.
Int’l Symp. Computer Architecture, pp. 187-197, Chicago, Apr. 1994.

[40] J.E. Veenstra and R.J. Fowler, “The Prospects for On-Line Hybrid
Coherency Protocols on Bus-Based Multiprocessors,” Technical
Report 490, Computer Science Dept., Univ. of Rochester, 1994.

TABLE 12
AVERAGE NUMBER OF CLOCK CYCLES PER LOAD AND STORE PREDICTED BY THE EXTENDED ANALYTICAL MODEL

Application Block Cache coherence protocol
Size Uncached Update Write-through Write-back Hybrid

Radix 8K bytes 18.9 14.3 39.5 26.4 1.0
64 bytes 18.9 14.4 14.5 0.2 0.1

Barnes 8K bytes 19.5 13.2 15.4 2.2 0.1
64 bytes 19.5 13.3 13.3 0.1 0.05

Water-Spatial 8K bytes 21.6 9.5 11.6 2.2 0.2
64 bytes 21.6 9.5 9.5 0.01 0.01

FMM 8K bytes 23.6 6.0 10.7 5.0 0.4
64 bytes 23.6 6.0 6.0 0.1 0.1

Ocean (contiguous) 8K bytes 23.8 5.7 6.9 1.2 0.2
64 bytes 23.8 5.7 5.8 0.1 0.1

Raytrace 8K bytes 22.2 8.5 8.7 0.3 0.04
64 bytes 22.2 8.5 8.5 0.1 0.04

Cholesky 8K bytes 23.4 6.4 7.9 1.6 0.2
64 bytes 23.4 6.5 6.5 0.2 0.2

Water-Nsquared 8K bytes 21.5 9.6 9.8 0.2 0.02
64 bytes 21.5 9.7 9.7 0.02 0.02

Ocean (noncontiguous) 8K bytes 23.8 5.7 102.6 100.9 3.2
64 bytes 23.8 5.7 5.8 0.2 0.2

FFT 8K bytes 18.8 15.4 140.6 133.0 9.0
64 bytes 18.8 14.9 15.0 0.6 0.5

LU (contiguous) 8K bytes 21.2 10.1 12.3 2.3 0.7
64 bytes 21.2 10.2 10.2 0.04 0.04

LU (noncontiguous) 8K bytes 21.2 10.2 57.8 50.0 7.3
64 bytes 21.2 10.2 10.2 0.04 0.04

Interval size = 10
3
 processor cycles; l and h parameters included, as well as transients.

SRBLJIC ET AL.: ANALYTICAL PREDICTION OF PERFORMANCE FOR CACHE COHERENCE PROTOCOLS 1173

Sinisa Srbljic received his BS degree in electri-
cal engineering in 1981, and MS and PhD de-
grees in computer engineering in 1985 and
1990, respectively, all from the University of
Zagreb, Croatia. He is an associate professor at
the University of Zagreb, School of Electrical
Engineering and Computing. He was visiting the
University of Toronto, Canada, from 1993 to
1995, where he worked on the NUMAchine mul-
tiprocessor project. As a visiting scientist from
1995 to 1996, he was working with the Advanced

Technology Group of AT&T, USA, on caching of Internet objects in
large distributed multimedia systems.

His research interests include parallel and distributed computer
systems, compiler design, and performance evaluation.

Zvonko G. Vranesic received the BASc, MASc,
and PhD degrees in electrical engineering from
the University of Toronto, Canada, in 1963,
1966, and 1968, respectively.

From 1963 to 1965, he worked as a design
engineer for Northern Electric Co. Ltd., Bramalea,
Ontario, Canada. In 1968, he joined the faculty
of the Departments of Electrical Engineering and
Computer Science at the University of Toronto,
where he is now a professor. During the aca-
demic years 1977/78 and 1984/85, he was a

senior visitor at the Computer Laboratory at the University of Cam-
bridge, England, and at the Institut de Programmation at the University
of Paris 6, France.

His research interests include computer architecture, VLSI systems,
local area networks and many-valued switching systems. He has
coauthored three books and has published more than 100 scientific
papers. He was the chairman of the Third International Symposium on
Multiple-Valued Logic in 1973 and of the 18th International Symposium
on Computer Architecture in 1991.

Michael Stumm received a diploma in mathe-
matics and a PhD in computer science from the
University of Zurich in 1980 and 1984, respec-
tively. He is a professor in the Department of
Electrical and Computer Engineering and the
Department of Computer Science at the Univer-
sity of Toronto, Toronto, Canada.

Dr. Stumm’s research interests are in the
areas of computer systems, in particular, oper-
ating systems for distributed and parallel sys-
tems. He is a member of the IEEE Computer

 Society and the ACM.

Leo Budin received the BE, MS, and doctoral
degrees, all in electrical engineering, from the
University of Zagreb, Croatia. In 1962, he joined
the research and teaching staff of the Faculty of
Electrical Engineering of the University of Za-
greb. He spent the academic year 1968-1969 as
an Alexander von Humboldt scholar, at the Uni-
versity of Erlangen-Nuernberg, Germany, and
the academic year 1979-1980 as a Fullbright
scholar at the University of Illinois, Urbana-
Champaign. In 1982, Dr. Budin was appointed a

professor of electrical and computer engineering and computer science
at the University of Zagreb. He is coauthor of the textbook Computer-
Aided Analysis (in Croatian). He served for several years as the editor-
in-chief of the Journal of Computing and Information Technology (CIT).
His current research interests include distributed systems, real-time
systems, soft computing, and problem solving environment in engi-
neering. He is a member of the IEEE and the ACM.

