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Abstract 
This paper describes a decentralized scheduling facility de- 
signed for a large, heterogeneous, workstation-based dis- 
tributed system. It assumes a system with existing facilities 
for remote execution and (possibly) task migration. The so- 
lution proposed is not only performance effective, but also 
robust against processor and communication failures, scal- 
able to large systems with a high frequency of scheduling 
needs, and stable. It has been implemented on a large dis- 
tributed system based on the V kernel. 

This paper also exposes several scheduling require- 
ments of parallel computations executing as task groups, 
where the individual tasks execute in parallel on different 
workstations. These requirement significantly complicate 
the scheduling process. We present a possible solution for 
effectively scheduling these task groups. 

1 Introduction 
The availability of remote execution facilities in distributed 
systems allows its users to offload their workstations by ex- 
ecuting some tasks at  remote sites and it allows users to 
effectively exploit remote resources. For example, a compu- 
tationally intensive application will complete significantly 
faster on an idle host than on a busy one. Similarly, users 
on workstations based on older technology will observe a 
response time improved by an order of magnitude if their 
programs are executed on newer, faster workstations - for 
example, a text formatting job will run 3 times faster on 
a Sun-3 than on a Sun-2. Remote execution also allows 
the use of several workstations as a parallel machine with 
portions of a parallel computation executing in parallel on 
different workstations. 

The availability of migration facilities adds an addi- 
tional degree of flexibility. The system can more easily 
adapt to changes in the load and in the requirements of the 
users. For example, a user may want to eject all running 
tasks from his workstation in order to reboot it, or in order 
to run special applications. 

Remote execution and migration facilities are available 

in a number of systems [7,12,20,18,22,21]. However, users 
generally need to explicitly indicate which programs should 
run remotely and when to migrate which programs (see for 
example [IS]). This paper describes the design and imple- 
mentation of a global, decentralized scheduling facility that 
automates this process. For every program that is started, 
it chooses an appropriate execution site, either local or re- 
mote, depending on the implemented policy. In addition, if 
migration is supported, the scheduling facility may decide 
to migrate a task (although this happens very infrequently 
in practice). Note that the facilities described here only de- 
cide on which host a task should run and do not implement 
scheduling (or dispatching) within a host. We assume that 
mechanisms for that purpose already exist. The solution 
we propose is fully distributed among a server process on 
each host and some application tasks in execution. It is de- 
signed to work in large, heterogeneous, workstation-based 
distributed systems. It has been implemented for the V 
system [2,6]. 

This paper is not theoretically oriented; we do not pro- 
pose new scheduling algorithms, nor do we analyze their 
performance in any depth. Instead, we wish to focus on im- 
plementation and systems issues and rely on performance 
studies undertaken by others. Our solution had to satisfy 
several basic requirements: 

Scalability: 
It had to work in reasonably large systems with 50-500 
workstations or more. We also wanted it to be capable 
of scheduling tasks at a relatively high frequency, at 
least so that every task could be globally scheduled 
before starting execution. Hence, our solution had to 
be capable of making quick scheduling decisions, with 
minimal overhead. 

Performance: 
It had to be able to improve performance noticeably 
by reducing the average response time. 

Heterogeneity: 
It had to work in a heterogeneous environment. It had 
to differentiate not only between hosts of different ar- 
chitectures, but also between compatible hosts running 
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at different speeds. We felt it should be possible to let 
everyone benefit from the newer and faster worksta- 
tions in the cluster. (The most expensive portion of 
a workstation is its user interface. One of the goals 
of our facility was to be able to prolong the usefulness 
of older hardware, while providing the performance of 
the newer hardware.) 

The scheduling facilities described can be implemented 
in any distributed system that supports remote execution 
where tasks run in a network-transparent environment. We 
assume the availability of (possibly unreliable) multicasting 
facilities’ and that the cost of file access is equal across all 
hosts’. 

Further, we also assume that the target system is a 
cluster of workstations. This is important with respect 
to the policies we implemented, since such systems have 
a large amount of computational power that goes mostly 
unused. For example, our implementation site had over 70 
workstations with an aggregate processing power of more 
than 150 MIPS, yet the average processor load was only 
about 20% during the busiest times. Only a fraction of 
the total number of hosts are used at any given time. We 
expect this low load level to become more pronounced as 
faster processors (10-80 MIPS) and multiprocessor work- 
stations come to the market in the next few of years. 

This paper is divided into three main sections. Sec- 
tion 2 presents and defends the policies chosen for our de- 
sign and implementation to schedule single, independent 
tasks before they start executing. It discusses design is- 
sues and identifies a number of problems encountered dur- 
ing implementation and proposes solutions. Section 3 ad- 
dresses migration and shows that a significant amount of 
extra overhead is involved in determining whether to mi- 
grate a task. Section 4 focuses on research in progress. It 
shows that some tasks that are part of a parallel computa- 
tion executing as a task group may have special scheduling 
requirements. For example, we show that some of these 
tasks cannot share processors with other processes with- 
out significantly degrading the performance of the parallel 
computation. We then present a decentralized method for 
allocating hosts to accommodate tasks with these special 
requirements. 

2 Scheduling Independent Tasks 

In this section we first describe the scheduling policy we 
chose for scheduling independent tasks and then discuss 
several design issues, such as load characterization, choice 
of policy, file system issues, religion, etc. We also describe 
our implementation and its performance. 

hiulticasts can be emulated by using broadcasts if multicasting 
facilities are not available. 

ZSince the disk seek time is the dominant factor in accessing a file 
page, i t  is generally better to have a few expensive, but fast disks 
available on the network than having a less expensive, but slower disk 
on each workstation [13]. 

2.1 Scheduling Based on Publishing State 
Information 

The policy chosen for scheduling single, independent tasks 
is based on hosts publishing their state information: Every 
host constantly monitors its own state and multicasts it to 
all interested parties whenever it changes significantly. The 
state information of a host includes attributes that define 
the configuration (i.e. processor type, devices, coprocessors, 
etc.) and the expected utilization of its resources, such 
as processor and memory. Each host maintains a cache 
containing the state information of all other hosts. This 
cache is updated every time new information is received 
and is consulted every time a task is scheduled. If the 
system contains very many hosts, then the information of 
only the N “best” hosts needs to be cached. 

A program is scheduled by first determining what files 
are available for executing that program. There may be 
several, each for a different configuration or host type. Also, 
any special requirements an executable file may have, such 
as minimal memory requirements, is determined. A set is 
then constructed, consisting of the M most lightly loaded 
hosts (as indicated by our cache) that are eligible execution 
sites, as determined by the requirements of the program or 
specified by the user. The load measure maintained for each 
host is appropriately scaled to reflect its processing power. 

If the local workstation belongs to this set, then it is 
chosen, biasing the choice towards local execution. (This 
bias can artificially be made arbitrarily large.) Otherwise, 
workstations are randomly chosen from this set and probed 
to verify that the cached information is still valid (to within 
a certain degree of accuracy). If a probe identifies an in- 
accurate cache entry, then the cache is updated and the 
set is modified appropriately; otherwise that host is chc- 
sen for execution. (Our implementation indicates that the 
cache will be accurate enough so that a second probe will 
very rarely become necessary. The number of probes can 
therefore be limited to 2 or 3.) The randomness in the se- 
lection process helps avoid scheduling clashes where several 
hosts simultaneously select the same execution site for their 
programs. 

This scheme uses a policy similar to the Threshold pol- 
icy analyzed by Eager, Lasowska and Zahorjan [8], except 
that the decision whether to execute a program remotely is 
made based on approximate global information as opposed 
to the state of the local system alone. Also, instead of 
probing hosts completely at  random, we attempt to make 
an intelligent guess as to which ones would perform best. 

2.2 Load Characterizing Parameters 

A key issue is how to measure the load of a host. Two im- 
portant factors are the load on the processor and the load 
on the memory system as indicated by the amount of on- 
going paging activity (or the amount of free memory on a 
system without demand-paged virtual memory). Although 
the processor load is more important with respect to  its 
effects on response time, the effects of the memory load 
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should not be underestimated. Adding a new task can sig- 
nificantly increase the page swapping activity, thereby de- 
creasing the performance of all tasks running on that host. 
However, we consider memory utilization to become a less 
important factor as memory sizes increase with decreasing 
memory costs in the future. (Another possible load factor, 
a host’s networking activity, is not considered significant 
enough, especially since much of it is already captured by 
the processor load.) 

At issue is how to characterize and measure processor 
load. Often a count of the processes assigned to a proces- 
sor is implicitly used to measure the load of the processor 
[8,19]. Similarly, Ferrari proposes to use a combination of 
queue lengths[9]. Unfortunately, observation in our system 
indicate that this is not a good measure; we could find no 
correlation between individual queue lengths and processor 
utilization. The workload characteristics on workstations 
may differ from those of more traditional time-sharing sys- 
tems. 

A better way of measuring the load of a processor is to 
periodically poll it to determine if it is idle or busy, that is, 
measure processor utilization3 directly. This can be done 
by having an idle-proce88 (an eternal process always run- 
ning at  lowest priority) regularly increment a counter. This 
counter can be periodically polled to see what proportion of 
the processor is allocated to the idle-process. For systems 
with higher loads, a more accurate indication of processor 
load can be obtained by periodically polling the length of 
the queue of ready-to-run processes, but at  a higher cost. 
Ferrari and Zhou conclude from a measurement study of 
load balancing that queue length averages will result in 
better load balancing for systems with higher loads (e.g. 
an average utilization of 50% and more) [lo]. 

The processor utilization undergoes short term fluctu- 
ations that are largely irrelevant to the overall trend. Sud- 
den short-term changes are due to external events and can 
happen frequently without having any significance to the 
average load. One typically applies a smoothing function to 
the values of the processor utilization to be able to identify 
significant changes in the overall trend. One inexpensive 
possibility is to use an exponential smoothing function: 

AweUtiZi = (w x AweUtilt-l) + ((1 - w) x Uti l i )  

where the weight, w E ( O , l ) ,  determines the amount of 
smoothing. In effect, this is a poor man’s way of predicting 
the future behavior of the processor. 

2.3 Publishing vs. Other Schemes 
A number of other policies besides Publishing are also suit- 
able for decentralized scheduling. For example, a Querying 
policy can be used to  query the current load of hosts and 
schedule a new task to the most lightly loaded host that re- 
sponds. Other policies do not make use of load information 
when choosing an execution site for a task. For example, 

3Note that processor utilization is important only because the sys- 
tem is heavily underutilized. If it were not, then the processor utiliza- 
tion would remain constant a t  about 100%. 
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Figure 1: Messages per 100 Hosts. 

a host is selected randomly with the Random policy and a 
Cyclical policy attempts to assign tasks to hosts in a round 
robin fashion. 

All of these algorithms have been well studied using 
both analytical models and simulations [8,24,23]. We also 
analyzed these policies through simulations. They indi- 
cated that Publishing and Querying performed comparably 
under light to medium system loads and that the Querying 
policy performed slightly better under higher loads and for 
computationally intensive tasks. Moreover, it was found 
that the Random and Cyclical policies performed signifi- 
cantly worse. 

The major reason for choosing a Publishing-based 
scheme over Querying was scalability. In Publishing-based 
schemes, the number of messages is a function of the num- 
ber of hosts. The overhead can be tuned to an acceptable 
level. Our implementation indicated that approximately 
20 messages per minute are generated per 100 hosts during 
busy periods a day, when hosts multicast their state infor- 
mation when the load changes by more than 10%. About 
four times as many messages are generated when state in- 
formation is multicast with load changes of 5%. Our sim- 
ulations indicated that the number of messages published 
would not increase significantly under higher system loads. 

Although Querying has the advantage that the most 
current load information can be obtained, it delays the start 
of a task until responses are received from a query. Also, in 
Querying-based schemes the number of messages is a func- 
tion of the number of tasks scheduled. Not all hosts have 
to queried each time a task is scheduled - for example, 
hosts can join a group depending on their load and clients 
can first query lightly loaded hosts [21] - but the number 
of messages generated in large systems can easily limit the 
number tasks that can be scheduled. Figure 1 compares the 
number of network messages in Publishing to the number of 
messages in Querying for different scheduling frequencies, 
assuming only 9 hosts receive and respond to an average 
query. (Note, however, that the messages due to Publish- 
ing are all broadcasts and hence interrupt each host.) 

Finally, with Publishing, all packet events are evenly 
distributed across all hosts, whereas hosts that issue a query 
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Figure 2: Average speedup. 

incur most of the packet events themselves. Hence, pre- 
cisely those hosts that want to offload some of their load 
will momentarily have an even higher load (due to packet 
processing) every time they need to schedule. 

Our simulations were carried out by using a subset, i.e. 
10 workstations, of the workstation cluster, by implement- 
ing the scheduling scheme under consideration and actually 
scheduling and executing tasks. However, the workload and 
tasks used were artificial, since the natural workload was 
not high enough. Other results of our simulations were: 

The scheme based on Querying performed slightly bet- 
ter than one based on Publishing at higher loads and 
for processor-intensive tasks. 

It is worthwhile to globally schedule tasks under all 
system load conditions, including very high and low 
ones. 

It is also worthwhile to schedule processor-unintensive 
(interactive) tasks. 

Figure 2 contains a sample result of our simulation. It 
depicts the speedup obtained for scheduling in a system 
with 8 Sun-2's and 2 Sun-3's an average task that would 
run for 10 seconds, with 2 seconds CPU time, on a Sun-2. 

Some studies indicate that centralized schemes may 
outperform decentralized ones [21,24]. They can reduce 
communication overhead, since less broadcasting is neces- 
sary and they can more easily prevent scheduling clashes. 
However, we never seriously considered them. We felt 
that centralized solutions could be (aesthetically) tolerated 
only if they significantly outperformed the decentralized 
schemes, which, according to our simulations, they did not. 
Also, they would not scale to systems with a very high 
scheduling frequency, without dedicating server hosts for 
this purpose. 

2.4 Search Path Semantics 
In a heterogeneous system, a simple command, such as ca t ,  
will actually refer to multiple executable files, possibly one 
for each host type and configuration. There are various 
approaches to representing multiple related files in a file 

system. Locus [22] uses the hidden directory approach, 
where a given file name actually refers to a directory (e.g. 
/bin/cat) containing the executable files: m68k, vax, etc. 
In V, a naming convention is followed where the host type 
is appended directly to the file name; i.e. cat exists as a 
set of relativex cat. m68k, cat. vax, etc. The convention 
followed by V has several unfortunate consequences. For 
one, unless entries in a directory are maintained in sorted 
order (which they are usually not) then every entry in the 
directory must be read to obtain the set of all relatives 
of a given file. Since each program will now have several 
executable files, directories will become much larger. 

A further disadvantage is that the search path seman- 
tics are confusing. For example, if we have a search path 
" A  B . C", and a user would like to execute file f o o  on an 
M680XO and there is such a file in '.', his current directory, 
but there is a Vax executable file f 0 0 .  vax in A, what does 
the user really want to execute, his file or the one in direc- 
tory A? The search path semantics in Locus appear clear: 
The first hidden directory with the name f o o  is chosen and 
an attempt is made to execute a file from this directory. 
An error is signaled if an appropriate file cannot be found 
there. 

We have chosen to interpret the search path similarly: 
An error is signaled if an appropriate file cannot be found 
in the first directory containing a relative of the program 
the user want to execute. However, we are still uncertain 
how much this interpretation will cause confusion to the 
casual user. 

Note that both systems, V and Locus, use the ad- 
hoc technique of encoding information about files in the 
file name. Although this may be an efficient method for 
storing a small amount of information, such as host type 
specification, it is not suitable for storing larger amounts of 
information. Examples of information about files that may 
be of interest with respect to scheduling include: minimal, 
average or maximum memory requirements, that fact that 
it should be executed locally, expected execution time, ex- 
pected processor intensity, etc. Several proposals for mech- 
anisms to store information about files exist, including aux- 
iliary pages [l] and property lists [14]. It remains to be seen 
how mechanisms of this type can be exploited for schedul- 
ing purposes. One would like to be able to quickly obtain 
a set of files together with associated properties of inter- 
est with minimal overhead, that is without having to go 
through the overhead of opening additional files. 

2.5 The Communists and the Niggards 
The introduction of remote execution (and migration) fa- 
cilities invariably leads to an intensive religious debate be- 
tween those members of the user community that view a 
workstation as a personal computer that should remain un- 
der the absolute control of the user, and those that view 
a cluster of workstations as a single machine, in effect, a 
loosely coupled multiprocessor. 

For example, as the remote execution facilities were 
first introduced in the V system at Stanford, a lengthy de- 



bate enswed whether a uaer ahould have to explicitly add 
hiis workstation to the ppcemox pool or if he should shpuld 
have to expb#y disalhar obbers from using t4e worksta- 
tipn when he would liketp +."e "serious" camputink, It 
took e v e @  alonthp to ccurvince. the user community that 

1. the number of idle workstations at  any given time is rel- 
o n l ~  rarely would a program be sched- 
tation OD which someone was working, 

2. a usex d d  not notice if the workstation waa also 

ativelg 
uled 08 

u d  for a foreign p r o p ,  since his 
ran at a highei priority, 

3. fon?ign progame do not erash the workstation, and 

4. that "dt people would Xforget" to put their worksta- 
tions in bhe proeerulor pool if the default case disallowed 
motA3 txdution. 

Note that-we have mainly described mecbisms for 
scheduling which. cam be.& to realize many types of 
poliei6s. Fbr our own-rite, we realized an uxtmme policy, 
namely, that of viewing the workstation aa a component of 
a coupled rwltiprocestor d scheduling (almost) 
eveay tmk oa a global baris. We believe t& policy i s 9 m . a -  
sonebb+ since 'typically a worbtation cluster i paid for by 
&n Orgeoizath d helm itr, rmowes should be allocated 
so as to b e d %  &e entire organiastion and not individual 
members. Also, it is in the interest of the a v e w  USQ to 
globally &ed& task since the average execution time 
decreases. 

But we I.erdiaa&aC,withour policy, we ask the user to 
cross asr additioacl pay- bafiier in that not only is 
"his" werketa4irm;ueed tmnsprexitly by others, he does not 
know where his taslrs areacmutimg. (He can determine this, 
however, if he so w i t h  d the ushell" can be switched into 
a v e r b  mode that dmp diaplays the exwution site.) 
We still need to furthsr educate users not to reboot their 
workstations without &ut atigracingaway all running tasks. 
Unfortunately, we still h d  it nqxsacrry to execute all pro- 
grants that maintain a lot' of non-reproducible s tab,  such 
as editors, locally by default. - 

2.6 Implementation 
We describe the implementation for the V-system [2,6] of 
our scheduling facility based on the Publishing policy. At 
the time of implementation, V did not cache file pages in 
memory [SI between ptogram execution. Section 2.8 ad- 
dreasea scheduliag in systems with such caching facilities. 

The V-system colrsiste of a distributed k d  and a 
distributed collection of server processes. Each host hsa a 
progtom-racmwget that provides program management for 
programs executing on t b t  host and an ewe-derver that 
providos a shell-like service for interpreting command lines 
and starting programs for the user. The program-manager 
monitors the host on wbi& it is executing and maintains 
the cache containing state information of all other hosts in 

the system. It makes this information available to all ather 
local tasks. 

The load of a host is measured by monitoring the CPU 
time allocated to the idle-process and is scaled by a factor 
representing the processing power of the host. Two ex- 
ponential smoothjug functions with difrercnt weights are 
applied to this d u e .  One tracks long-term trends and is 
smoother (i.e. give more d g h t  to past values), while the 
other tracks short-term trends. The available memory is 
monitored in a eimih fashion. The computed long-term 
values (together with configuration information] are mul- 
ticast to all other program-managers, if they differ signif- 
icantly from the values that were last multicast (i.e. by 
more than 10% of meximum.value). The group commu- 
nication facilities of V [5] are used for this purpose. Each 
host that receives the multicast message updges its cache 
approp$ately. A newly star host can initialize its cache 
by obtaining a copy from any one of the other hosts. 

To schedule a task, the exec-server [or any other pro- 
gram wishiog to schedule 4 task) reads the cache from the 
progrq-manager and of the hosts represented 
there& Assuming a r is selected, remote exe- 
cution proceeds basically as described in [20]. A probe is 
sent to'that host by sending a load-request message to its 
p r o g r a - " g e r ,  asking it to load and start executing the 
specified program. The load d u e  used to select a host is 
included in the Id-request measage. If this d u e  is much 
lower than the short-term load value, then the request is 
turned down, and if it is much lower than the long-term 
value, then besides turning down the request the requester 
is also aaked to correct its cschk =try. 

Once started, the program is run in its own address 
space and is provided with a network-transparent execution 
q-ent. Except €w the time n e e d  for scheduling, 
the fact that a task may be executing remotely% is trans- 
parent to the user'. The difference between loading a task 
locally OP remotely is equd CO the diEerence between a local 
and +emote message transaction (ca. 1.5 me), since all files 
am Wecl OW the network. Hence, even small tasks can 
safeky be scheduled remotely. Also; a user will not notice 
any sluggishness when interacting with remotely executing 
ideractive pmgrams, since all inter-process communication 
is based on message passing t h t  differs only by a factor of 
two for the local and remote ( ca  1.5 1118 vs. 3 ms). In 
fact, we were surprised to find usas on slower workstations 
notice a significantly i m p m d  zespomivemss in running 
interactive tasks, such as editam, remotely on newer, more 
powerful workstations. 

Note that the multicasts used torndistributing load in- 
formation need not be reliable. State cache entries are de- 
tected and updated on use. Orphaned cache entries (those 
of crashed hosts) indicating light load are also detected on 
use: The first host to deteot an orphan multicasts that in- 
formation to all other program-managers. 

Orphaned entries indicating heavier load are seldom 
detected on use. Hence, these entries must periodically 

'Some programs have location-dependent semantics. 
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be found and disposed of. Unfortunately, it is not reason- 
able in larger systems to periodically validate each entry 
by querying the host in question, as this would cause con- 
siderable network traffic. One possibility is to include a 
permanent host identifier, such as a unique physical net- 
work address, with each entry in the cache. Each host then 
periodically checks for duplicate entries from one host. Al- 
ternatively, one can require each host to multicast its state 
information at  least every so often (say, once an hour). 
Then, if the state information of a host is not updated for 
a lengthier period of time (e.g. several hours), that entry 
can be removed. 

The most serious problem encountered in implement- 
ing these scheduling facilities was the overhead in determin- 
ing the set of executable files for a given program and deter- 
mining its scheduling requirements. Searching through di- 
rectory structures along a given search path on a file server 
can lead to a large number of messages. For example, in our 
first implementation almost 100 messages were generated 
per binary file lookup. This can be alleviated, however, 
either by introducing a hashed bit-map indicating which 
executable files exist in a user’s search path, or by caching 
directory entries locally. 

2.7 Measurements 

Measurement of our implementation indicate that for a sys- 
tem with 50 hosts, 10 state-information messages are broad- 
cast to all hosts per minute during busy periods. This is 
with a normal, real workload with a load average of about 
20%. Our simulations indicate that the number of broad- 
cast message would increase to about 15 with a higher load 
average of 60%. Each host will service each message broad- 
cast at a cost of approximately 1.5 to 2 milliseconds in 
processing overhead (depending on host type). In order 
to compute the load average, the program-manager must 
query the kernel for the time allocated to the idle process. 
It does so every 5 seconds at  a cost of approximately 1 ms. 

The scheduling facility described provides the mecha- 
nisms for implementing many kinds of policies. Our im- 
plementation supported the policy of scheduling every task 
that is started in the system, unless the user directs the 
“shell” to follow a different policy. Initial measurements 
indicate that the response time of large programs decreased 
by about 10% on average with this policy. This measure 
alone is not very meaningful, as it depends heavily on the 
type of hosts running at the time, the distribution of the 
arrival rate at the individual hosts, the distribution of the 
load, the type of tasks that are executed, etc. Because of 
the low load averages, most tasks execute locally. The ben- 
efit of remotely executing programs is due mostly to offload- 
ing tasks from the older, slower workstations to the newer 
faster ones. For example, to TeX a 20-page document on an 
otherwise unloaded Sun-2 requires approximately 240 sec- 
onds, but only 100 seconds on an otherwise unloaded Sun-3, 
150 seconds on a Sun-3 that already has a load average of 
50% (as measured by CPU utilization) and 200 seconds on 
a 75% loaded sun-3. 

2.8 File Caching 
The scheduling system described does not account for the 
caching of file pages in the memory of individual hosts be- 
tween program execution. At the time of implementation 
V did not support demand-paged virtual address spaces 
and every file had to be down-loaded in its entirety before 
starting execution. Some systems, however, provide some 
form of automatic caching of files. For example, many Unix 
systems allocate new pages on a least recently freed basis, 
allowing read-only pages to be reused (without having to 
go to a file server) if they can still be found in the free-list. 
It is also possible to implement caching RAM file systems 
on each host. More recently, virtual memory capabilities 
have been added to the V kernel, where large memories are 
exploited to cache file pages [3]. 

Clearly, a program will start executing more quickly if 
scheduled to execute on a host where the executable file is 
being cached, since access to a file server can be avoided. 
However, all file caching schemes rely on both spatial and 
temporal locality of file access and spatial locality is de- 
feated by any scheduling mechanism that spreads the load 
across the system. 

A number of strategies that allow the Publishing policy 
to better cope with caching memories appear to be worth 
exploring, something we plan to do in the future. First, the 
scheduler could remember the host that was last selected for 
remote execution and choose that host for remote execution 
again, if its load remains relatively light (as indicated by 
the cache of load information). Thus, assuming that certain 
programs are repeatedly run by a user or that certain files 
are repeatedly accessed by the programs run by a user, the 
probability of it being cached on a host selected by the 
scheduler is higher. 

Second, it is possible to define a mapping from program 
names to a small subset of the hosts. When scheduling a 
program, an effort is made to execute it on one of the hosts 
to which its name maps to. A host outside of this set is 
chosen only if it clearly has a lighter load. This should 
increase not only the locality of file reference on a per-user 
basis, but on a per-system basis. (It should be possible to 
let the size of these sets vary dynamically, adapting to the 
relative load of each set.) However, this scheme only takes 
executable files into account and not data files. 

Finally, the overhead of down-loading a file is a relevant 
factor only for short jobs. A policy that forces all short 
jobs to execute locally (possibly at a higher priority) would 
restrict remote execution to programs where file loading 
time is insignificant. However, this requires an a priori 
estimate of the execution times, as maintained, for example, 
by the file system. Also, this policy still defeats one of the 
purposes of caching file pages, namely, that of offloading 
file servers. 

The existence of caching memorys may also require us 
to reevaluate the merits of Querying-based schemes. Each 
query could identify the executable file and the respondents 
could indicate to what extent they are caching the file (as- 
suming the respondents can gather this information effi- 
ciently). The overhead of the query will offset the cost of 

17 



having to go to the file server. 

3 Load Balancing through Task 
Migration 

Migrstian facilities are absolutely necessary if tasks are ex- 
ecuted remotely. A user must be able to eject all foreign 
tsska if Be needs exclusive use of his workstation (or would 
like to take it down). 

Migration can also be beneficial for load balancing pur- 
poeeg; a task will complete more quickly if it can be mi- 
grated to a host with a significantly fighter load. This 
may be necessary, for example, after a scheduling clash, 
when several hosts simultaneously select the same site for 
proceasor-bound tasks. The scheduling facilities described 
so far can be extended to also balance the €oad by migrat- 
ing tasks from heavily loaded hwts to more lightly loaded 
hosta The global state is periodically reevaluated for each 
task to  &de whether to migrate it to  another site. This is 
associated with more overhead, however, since when com- 
paring the load of the local host with that of a remote one, 
the local load must be discounted by the proportion due 
to the proccss being considered for migration. Hence, the 
processor load inflieted by each candidate task must also 
be measured and monitored. 

There ere several complications associated with load 
balancing through task migration. First, there is a danger 
of instability where tasks migrate from me host to another. 
This can be solved by requiring the difference h load be- 
tween the two hosts to be larger than a theahold and by 
requiring that a task may only migrate if its expected time 
to completion is large enough. Having these requirements 
has a number of additional other benefits. It decreases the 
number of tasks that must be monitored, since only few 
tasks have an expected remaining life time that is large 
enough. And it increases the probability that the overhead 
of migration will be offset by improved performance at the 
new site 

A second complication is that the measure of the load 
inflicted by a task must be compatible with the measure 
of the processor load for the arithmetic to be meaningful. 
Again, having a large enough threshold allows for (unavoid- 
able) inaccurcrcies in these calculations. 

Finally, the decision whether to migrate and to where 
to migrate cannot always be made by the %ystem” without 
additional information from the application. In some in- 
stances it is easier to let the application make the migration 
decisions. For example, some tasks may require efficient ac- 
cess to certain devices and should not be migrated at  all or 
only to a certain subset of the hosts. Others may have resid- 
ual dependencies [20] (e.g. a compilation that uses local 
temporary flea) that should also be moved, As another ex- 
ample, some tasks function as watchdogs that watch other 
taske fox reliability reasons and therefore should never be 
migrated to the same host. 

On the other hand, if the application makes the migra- 
tion decisions then a separate thread of control is needed to 

periodically evaluate the load situation. It must also pro- 
vide a means for the system to ask it to migrate away (e.g. 
when a user ejects all tasks) by, fer instance, listening on a 
predetermined port. 

In order to prevent the system module from having to 
manage a lot of application data, yet at  the same time al- 
low existing, unaltered programs ts be migratable, both ap- 
proaches need to be supported. This is possible as follows: 
By default, each task is migratable by the system, using the 
same constraints that were available for the initial schedul- 
ing. A task may optionally register itself as non-migratable 
or self-migratable. Tasks that do not register themselves 
are assumed to be freely migratable by the system (in our 
case, by the program-manager). A task registering itself as 
self-migratable must also issue a process (or port or pro- 
cedure) identifier, to allow the system to issue a migration 
request, should the system want to initiate the migration. 

In practice, we expect that most tasks will not need 
special considerations and will not register. We expect 
tasks that register themselves as non-migratable to be local 
servers or applications executed on special hosts. 

4 Initial Thoughts on Scheduling 
Parallel Programs 

4.1 Scheduling Requirements 
A cluster of workstations can be used as a parallel machine 
to run parallel applications br epeed~p. Parallel make is a 
common example of such an application. More tightly cou- 
pled parallel algorithms have also been successfully Tun on 
workstation clusters 14,111; for instance, a number of par- 
allel optimization algorithms, such as branch-and-bound, 
are well suited to run in this environment. In many cases, 
parallel computations will need special scheduling support. 
Unfortunately, scheduling schemes developed for (shared 
memory) multiprocessors, such as those studied by Ouster- 
hout [17] do not apply to more loosely coupled distributed 
systems since they schedule at  too fine a granularity. 

Scheduling requirements of parallel programs can vary 
from program to program, depending on their internal 
structure. Some parallel programs containing (relatively) 
independent tasks can be scheduled with the facilities de- 
scribed so far. For example, a distributed make can sched- 
ule its tasks independently (making sure that multiple tasks 
are not simultaneously assigned to the same host). Some 
parallel programs contain tasks that are well suited to pick 
up any available processing “slop”. These programs are 
typically asynchronous and exhibit (very close to) linear 
speedup, and their tasks a n  also be scheduled using the 
described scheduling facilities. Paralld branch-and-bound 
and Monte Carlo simulations are examples of such pro- 
grams. 

However, classes of parallel programs also exist with 
more specific scheduling requirements. In this section, 
we identify two such classes and describe the scheduling 
requirements they have. We then propose appropriate 



scheduling mechanisms. The two program classes we con- 
sider are synchronous parallel programs and asynchronous 
parallel programs with less than perfect speedup behavior. 
Both classes constitute a significant enough proportion of 
all parallel programs to warrant the introduction of appro- 
priate support. 

Synchronous parallel programs execute in lock-step, 
synchronizing at the end of each iteration. Algorithms for 
dynamic programming or Gaussian elimination, for exam- 
ple, are often structured in this way. Tasks belonging to 
such synchronous computations, should not share the pro- 
cessor assigned to them with any other tasks; that is, it 
should be possible to allocate entire processors to the indi- 
vidual tasks. The reasoning behind this is that even slight 
variations in the processing power made available to a mem- 
ber task can significantly decrease the performance of the 
entire computation, since all member tasks must period- 
ically wait for the slowest task to complete its iteration 
and a single, slowly running task can prevent the compu- 
tation from attaining the expected speedup. For example, 
consider a parallel synchronous computation (with perfect 
speedup behavior) executing as 5 tasks, where 4 of them 
have exclusive use of the processor they are executing on, 
but one of them has only access to 70% of its processor’s 
capacity. This computation will complete more quickly if 
executed using 4 tasks if they can run alone on the proces- 
sors to which they are assigned. 

On the other hand, tasks of asynchronous parallel com- 
putation with less than perfect speedup behavior can be 
scheduled to run with other tasks as long as these tasks are 
not part of another parallel computation. The reasoning 
behind this is that the speedup curve of almost all paral- 
lel computations is concave5 (i.e. the efficiency of a paral- 
lel computation cannot increase with the number of pro- 
cessors), so the efficiency of two computations suffer when 
they both increase their degree of parallelism but start to 
share processors. Consider, for example, a parallel matrix 
multiplication of two 48 x 48 matrices with the speedup as 
obtained on a cluster of Sun-2’s running the V kernel and 
depicted in figure 3. The speedup with 5 processors (4.5) 
will always be greater than or equal to half the speedup 
with 10 processors (3.75). Therefore, if, for example, we 
wish to run two such computations at  the same time, then 
it is more efficient (the computations will complete faster 
on average) if each computation uses 5 separate processors, 
rather than if each computation time-shared the same 10 
processors. The two computations will also complete slower 
on average if 10 processors first run the tasks of the first 
computation followed by those of the second computation.6 

Hence, we identify two scheduling requirements: 

’Programs with anomalous behavior exist 
6Using the same line of reasoning, one can also argue that parallel 

computations should use the most powerful processors in the system, 
since a parallel computation will always complete faster when using two 
fast processors than if run on 6 processors one third the power of the 
fast ones. This may, however, contradict scheduling policies concerning 
interactive jobs. 
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Figure 3: Matrix multiplication speedup on a workstation 
cluster. 

1. A task of a synchronous parallel computations should 
not share a processor with any other tasks. 

2. A task of an asynchronous parallel computation should 
not share a processor with a task belonging to any 
other asynchronous parallel computation. 

Section 4.2 shows how the scheduling facilities described 
previously can be modified slightly to provide the necessary 
support to meet these two requirements. 

Both of these requirements make the scheduling of par- 
allel programs, executing as task groups, very difficult. Ei- 
ther the number of processors a program may use is re- 
stricted to a small number in anticipation that other pro- 
grams will also run. Or, alternatively, one may allow a 
program to “grab” as many hosts as it wishes. However, 
the first case will limit some programs from fully exploit- 
ing the available processing power and the second case may 
block out other parallel programs, since each host may run 
at  most one task belonging to a parallel application. 

A third alternative is to require each program to be 
capable of dynamically adjusting the number of hosts it is 
using. This would allow the implementation of a policy that 
is fair, but at the same time allow programs to exploit as 
much parallelism as is currently available. This approach 
requires parallel computations to be capable of internally 
restructuring and redistributing their workload to be able 
to adapt to changes in the number of processors available 
to them. Clearly, the overhead for doing this can be signifi- 
cant if the structure of the parallel program is not designed 
from the start to allow for such reorganizations. Having 
self-adjustable parallel programs may not be as difficult as 
it may sound at first. Cheriton and Stumm [4] describe a 
model for structuring parallel computations for a worksta- 
tion environment that is capable of running while the num- 
ber of processors vary. Many parallel programs, such as 
simulations described by Nicol and Reynolds [15], must be 
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capable of dynamically changing the distribution of compu- 
tational work to  adapt to changing processing requirements 
within its (internal) problem domain. The methodology 
used in these programs can be generalized for releasing and 
adding processors to a parallel computation. 

In section 4.3 we describes how task groups can com- 
pete for processors distributing the processing power evenly 
among competing groups. 

4.2 Exclusive Processor Allocation 
The scheduling facilities described in Section 2 can be used, 
with only minor modifications, to implement a policy where 
at  most one task belonging to a parallel computation may 
run on a host at  one time. As soon as one of these tasks 
is started, it registers itself as such with the local program- 
manager. The fact that a processor is running a registered 
task becomes part of the host state information that is dis- 
seminated to all other hosts. The task responsible for start- 
ing up a parallel program can schedule its tasks by consult- 
ing the local cache of state information, making sure that 
at  most one task belonging to a parallel computation is run 
per host. (Note that it is in the interest of these tasks to 
register themselves, so enforcing mechanisms are not nec- 
essary.) 

Similarly, synchronous tasks, requiring exclusive use of 
a processor, register themselves as synchronous when they 
start up. When this happens, the program-manager evicts 
all other locally running tasks by migrating them to other 
hosts. The fact that a host is executing a synchronous task 
also becomes part of the state information that is published. 
This ensures that no other task is scheduled to run on a host 
already running a synchronous task. 

If migration is not available, then it is possible to al- 
ways keep a few hosts in reserve for executing synchronous 
tasks. That is, the set of all hosts can be partitioned into 
two disjoint subsets, one reserved for executing tasks be- 
longing to synchronous computations and the other for all 
other tasks. Keeping a number of hosts idle, in reserve 
for synchronous tasks, is tolerable in large systems, due to 
the assumed overabundance of processing power. (In order 
not to waste these cycles completely, short tasks’ can still 
be allowed to run on the reserved, but not yet allocated 
hosts. These short tasks would always be allowed to run to 
completion.) 

The number of hosts reserved for executing syn- 
chronous tasks should not be static, but should vary dy- 
namically, adapting to the current state of the system (i.e. 
the relative number of reserved hosts, the average load on 
the non-reserved hosts, etc.). A dynamic partitioning can 
be implemented in a decentralized fashion if the two bits 
added to the state information associated with each host 
are interpreted such that one bit identifies a host as being 
reserved for executing synchronous tasks and the second bit 
indicating if such a task is currently executing. Since the 

7The definition of short here is relative and taken to mean not more 
than a few minutes. But it does require an a priori estimate of a task’s 
execution time . 

state information of each host is published whenever one of 
these bits change, every host can independently and peri- 
odically reevaluate the global and local state to determine 
if it should change sides and become a member of the other 
subset. (But one must be careful to ensure that hosts do 
not oscillate between the two subsets.) 

4.3 Task Groups Competing for Re- 
sources 

By allowing each parallel application to exploit as much 
parallelism as it can and wishes, it is possible that a new 
program will want more processors than are immediately 
available. In this case, it may be necessary to force other 
parallel programs to “relinquish” some of the processors on 
which they are running tasks, in order to be able to fairly 
distribute the hosts among all parallel programs. In theory, 
a system server, such as the program-manager, could take 
on the responsibility for doing this. In our case, however, 
the “system” does not know which tasks belong to which 
parallel computations, making it difficult for the system 
to take on this responsibility. Hence, we let each parallel 
application schedule its own tasks and let the parallel ap- 
plications negotiate for processors directly with each other. 
We define a simple protocol that defines the interactions 
between negotiating task groups. 

We assume that each parallel program in execution 
is being controlled by a master process (that belongs to 
the parallel application). Each such master process joins 
a well known group (so that it will receive messages ad- 
dressed to this group) and is responsible for negotiating 
with other master modules and for restructuring the coni- 
putation if required to do so. If an application wants to 
use more processors than are currently available, then it 
sends a query message to the group of master processes to 
determine their identity and the number of tasks in their 
task group. Using this information, it may request some of 
these computations to release processors. It must do this 
in a way that distributes the processors more evenly among 
the task groups. A parallel computation must reduce the 
number of tasks if asked to do so. The master process of a 
parallel computation may also periodically reevaluate the 
global state to determine if it should expand, to adapt to 
changes in the global state. 

Hence, in this scheme, task groups compete for proces- 
sors. If each parallel application attempts to maximize its 
number of parallel executing tasks, then each task group 
will be approximately of equal size. It is possible to re- 
fine this scheme by having the master modules specify the 
speedup characteristics during the negotiation process, to 
allow computations with better speedup to have more pro- 
cessors. It would also be straightforward to modify the 
scheme to accommodate task group priorities. In practice, 
we expect very little competition between task groups be- 
cause of the large number of available processors and the 
fact that most parallel applications can make effective use 
of only a small number of processors. hiIoreover, parallel 
computations tend to run for a long time. 
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There is a tradeoff in the choice of how often task 
groups reevaluate the global state and subsequently self- 
regulate. If done often, the groups will quickly adapt to 
changes in the system, but at  the cost of additional over- 
head and possible instability. In our case, a slow regulation 
process is tolerable, since significant changes in the over- 
all global state are very infrequent and only few parallel 
programs are ever run. 

Tasks belonging to parallel computations compete not 
only among each other; the available processing cycles must 
be divided among normal, sequential tasks and those be- 
longing to parallel applications requiring special consider- 
ation. In the previous subsection, we described how pro- 
cessing cycles are assigned on a per processor basis to syn- 
chronously executing tasks. The situation with tasks be- 
longing to asynchronous parallel computations is more com- 
plicated, however, since they can run on a processor to- 
gether with sequential tasks. A spectrum of policies that 
regulate the priority of sequential tasks over those of par- 
allel computations can be implemented by modifying the 
definition of a processor’s load to also include a portion at- 
tributed to  the execution of the parallel task. The definition 
of processor load (see section 2.2) is modified to be equal 
to the weighted sum of processor utilization consumed by 
“normal” tasks and processor utilization consumed by a 
task belonging to a parallel computation. The weights can 
be chosen appropriately to implement a desired policy. 

5 Conclusions 
We described the design of a decentralized global schedul- 
ing facility in the context of a large, workstation-based dis- 
tributed system that can remotely execute and (possibly) 
migrate tasks. The solution proposed is fully decentralized 
and is 

robust against processor and communication failures, 
including network partitions; 

stable in that tasks do not continuously migrate from 
host to host; 

performance effective in that overall the average re- 
sponse time decreases; 

scalable to many hosts and capable of scheduling many 
tasks at  a high frequency; 

designed to accommodate heterogeneous hosts. 

In order to validate our claim of scalability, we im- 
plemented these facilities on a cluster of 70 workstations, 
running the V kernel, with a policy of scheduling every 
task, including small ones, on a global basis. Our solution 
or implementation can be seen as a further step in the di- 
rection of system integration, where a workstation cluster 
operates as a single system, rather than a set of intercon- 
nected personal and server computers. We believe that this 
step is in the interest of the users, because of the reduced 
response times, and in the interest of the organization that 

paid for the system, since the system resources are used 
more effectively. 

Finally, we considered the scheduling of parallel pro- 
grams executing as task groups in a workstation environ- 
ment and showed that some require that their tasks have 
exclusive use of the processor and that in general proces- 
sor intensive tasks that are part of a parallel computation 
should not share processors. We presented a protocol for 
scheduling competing task groups in an underutilized, rel- 
ative infrequently changing environment. 

With respect to migration and the scheduling of task 
groups representing parallel computations, we found that 
we had to perform some scheduling functions in the ap- 
plications instead of in system modules. The information 
and algorithms needed to decide what actions to take were 
too complex and application dependent to be abstracted 
into a simplified, generic model. However, with applica- 
tions performing system functions, the need to access sys- 
tem state efficiently is crucial and improvements to this 
effect are necessary. For example, suitable address map- 
ping techniques could be exploited for this one-directional 
information transfer at  memory speeds, reducing the num- 
ber of system calls and messages. We also found that more 
general and more efficient querying facilities for file systems 
are needed. 

In conclusion, we view the scheduling of tasks and task 
groups as an important facility of workstation-based dis- 
tributed systems. With the increasing prevalence of power- 
ful uni- and multi-processor workstations in the computing 
environments of most organizations, the user transparently 
has at  his disposal computational power far in excess of 
that provided by a single personal workstation. The com- 
putational power is in a parallel form that is transparently 
exploited at  the command execution level and that can also, 
with suitable support, be explicitly exploited by computa- 
tionally intensive programs. 
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