
The Design and Implementation of a Decentralized
Scheduling Facility for a Workstation Cluster

Michael Stumm
University of Toronto

Toronto, Canada M5S 1A4

Abstract
This paper describes a decentralized scheduling facility de-
signed for a large, heterogeneous, workstation-based dis-
tributed system. It assumes a system with existing facilities
for remote execution and (possibly) task migration. The so-
lution proposed is not only performance effective, but also
robust against processor and communication failures, scal-
able to large systems with a high frequency of scheduling
needs, and stable. It has been implemented on a large dis-
tributed system based on the V kernel.

This paper also exposes several scheduling require-
ments of parallel computations executing as task groups,
where the individual tasks execute in parallel on different
workstations. These requirement significantly complicate
the scheduling process. We present a possible solution for
effectively scheduling these task groups.

1 Introduction
The availability of remote execution facilities in distributed
systems allows its users to offload their workstations by ex-
ecuting some tasks at remote sites and it allows users to
effectively exploit remote resources. For example, a compu-
tationally intensive application will complete significantly
faster on an idle host than on a busy one. Similarly, users
on workstations based on older technology will observe a
response time improved by an order of magnitude if their
programs are executed on newer, faster workstations - for
example, a text formatting job will run 3 times faster on
a Sun-3 than on a Sun-2. Remote execution also allows
the use of several workstations as a parallel machine with
portions of a parallel computation executing in parallel on
different workstations.

The availability of migration facilities adds an addi-
tional degree of flexibility. The system can more easily
adapt to changes in the load and in the requirements of the
users. For example, a user may want to eject all running
tasks from his workstation in order to reboot it, or in order
to run special applications.

Remote execution and migration facilities are available

in a number of systems [7,12,20,18,22,21]. However, users
generally need to explicitly indicate which programs should
run remotely and when to migrate which programs (see for
example [IS]). This paper describes the design and imple-
mentation of a global, decentralized scheduling facility that
automates this process. For every program that is started,
it chooses an appropriate execution site, either local or re-
mote, depending on the implemented policy. In addition, if
migration is supported, the scheduling facility may decide
to migrate a task (although this happens very infrequently
in practice). Note that the facilities described here only de-
cide on which host a task should run and do not implement
scheduling (or dispatching) within a host. We assume that
mechanisms for that purpose already exist. The solution
we propose is fully distributed among a server process on
each host and some application tasks in execution. It is de-
signed to work in large, heterogeneous, workstation-based
distributed systems. It has been implemented for the V
system [2,6].

This paper is not theoretically oriented; we do not pro-
pose new scheduling algorithms, nor do we analyze their
performance in any depth. Instead, we wish to focus on im-
plementation and systems issues and rely on performance
studies undertaken by others. Our solution had to satisfy
several basic requirements:

Scalability:
It had to work in reasonably large systems with 50-500
workstations or more. We also wanted it to be capable
of scheduling tasks at a relatively high frequency, at
least so that every task could be globally scheduled
before starting execution. Hence, our solution had to
be capable of making quick scheduling decisions, with
minimal overhead.

Performance:
It had to be able to improve performance noticeably
by reducing the average response time.

Heterogeneity:
It had to work in a heterogeneous environment. It had
to differentiate not only between hosts of different ar-
chitectures, but also between compatible hosts running

12
CH2441-4/88/0000/0012$01.00 8 1988 IEEE

at different speeds. We felt it should be possible to let
everyone benefit from the newer and faster worksta-
tions in the cluster. (The most expensive portion of
a workstation is its user interface. One of the goals
of our facility was to be able to prolong the usefulness
of older hardware, while providing the performance of
the newer hardware.)

The scheduling facilities described can be implemented
in any distributed system that supports remote execution
where tasks run in a network-transparent environment. We
assume the availability of (possibly unreliable) multicasting
facilities’ and that the cost of file access is equal across all
hosts’.

Further, we also assume that the target system is a
cluster of workstations. This is important with respect
to the policies we implemented, since such systems have
a large amount of computational power that goes mostly
unused. For example, our implementation site had over 70
workstations with an aggregate processing power of more
than 150 MIPS, yet the average processor load was only
about 20% during the busiest times. Only a fraction of
the total number of hosts are used at any given time. We
expect this low load level to become more pronounced as
faster processors (10-80 MIPS) and multiprocessor work-
stations come to the market in the next few of years.

This paper is divided into three main sections. Sec-
tion 2 presents and defends the policies chosen for our de-
sign and implementation to schedule single, independent
tasks before they start executing. It discusses design is-
sues and identifies a number of problems encountered dur-
ing implementation and proposes solutions. Section 3 ad-
dresses migration and shows that a significant amount of
extra overhead is involved in determining whether to mi-
grate a task. Section 4 focuses on research in progress. It
shows that some tasks that are part of a parallel computa-
tion executing as a task group may have special scheduling
requirements. For example, we show that some of these
tasks cannot share processors with other processes with-
out significantly degrading the performance of the parallel
computation. We then present a decentralized method for
allocating hosts to accommodate tasks with these special
requirements.

2 Scheduling Independent Tasks

In this section we first describe the scheduling policy we
chose for scheduling independent tasks and then discuss
several design issues, such as load characterization, choice
of policy, file system issues, religion, etc. We also describe
our implementation and its performance.

hiulticasts can be emulated by using broadcasts if multicasting
facilities are not available.

ZSince the disk seek time is the dominant factor in accessing a file
page, i t is generally better to have a few expensive, but fast disks
available on the network than having a less expensive, but slower disk
on each workstation [13].

2.1 Scheduling Based on Publishing State
Information

The policy chosen for scheduling single, independent tasks
is based on hosts publishing their state information: Every
host constantly monitors its own state and multicasts it to
all interested parties whenever it changes significantly. The
state information of a host includes attributes that define
the configuration (i.e. processor type, devices, coprocessors,
etc.) and the expected utilization of its resources, such
as processor and memory. Each host maintains a cache
containing the state information of all other hosts. This
cache is updated every time new information is received
and is consulted every time a task is scheduled. If the
system contains very many hosts, then the information of
only the N “best” hosts needs to be cached.

A program is scheduled by first determining what files
are available for executing that program. There may be
several, each for a different configuration or host type. Also,
any special requirements an executable file may have, such
as minimal memory requirements, is determined. A set is
then constructed, consisting of the M most lightly loaded
hosts (as indicated by our cache) that are eligible execution
sites, as determined by the requirements of the program or
specified by the user. The load measure maintained for each
host is appropriately scaled to reflect its processing power.

If the local workstation belongs to this set, then it is
chosen, biasing the choice towards local execution. (This
bias can artificially be made arbitrarily large.) Otherwise,
workstations are randomly chosen from this set and probed
to verify that the cached information is still valid (to within
a certain degree of accuracy). If a probe identifies an in-
accurate cache entry, then the cache is updated and the
set is modified appropriately; otherwise that host is chc-
sen for execution. (Our implementation indicates that the
cache will be accurate enough so that a second probe will
very rarely become necessary. The number of probes can
therefore be limited to 2 or 3.) The randomness in the se-
lection process helps avoid scheduling clashes where several
hosts simultaneously select the same execution site for their
programs.

This scheme uses a policy similar to the Threshold pol-
icy analyzed by Eager, Lasowska and Zahorjan [8], except
that the decision whether to execute a program remotely is
made based on approximate global information as opposed
to the state of the local system alone. Also, instead of
probing hosts completely at random, we attempt to make
an intelligent guess as to which ones would perform best.

2.2 Load Characterizing Parameters

A key issue is how to measure the load of a host. Two im-
portant factors are the load on the processor and the load
on the memory system as indicated by the amount of on-
going paging activity (or the amount of free memory on a
system without demand-paged virtual memory). Although
the processor load is more important with respect to its
effects on response time, the effects of the memory load

13

should not be underestimated. Adding a new task can sig-
nificantly increase the page swapping activity, thereby de-
creasing the performance of all tasks running on that host.
However, we consider memory utilization to become a less
important factor as memory sizes increase with decreasing
memory costs in the future. (Another possible load factor,
a host’s networking activity, is not considered significant
enough, especially since much of it is already captured by
the processor load.)

At issue is how to characterize and measure processor
load. Often a count of the processes assigned to a proces-
sor is implicitly used to measure the load of the processor
[8,19]. Similarly, Ferrari proposes to use a combination of
queue lengths[9]. Unfortunately, observation in our system
indicate that this is not a good measure; we could find no
correlation between individual queue lengths and processor
utilization. The workload characteristics on workstations
may differ from those of more traditional time-sharing sys-
tems.

A better way of measuring the load of a processor is to
periodically poll it to determine if it is idle or busy, that is,
measure processor utilization3 directly. This can be done
by having an idle-proce88 (an eternal process always run-
ning at lowest priority) regularly increment a counter. This
counter can be periodically polled to see what proportion of
the processor is allocated to the idle-process. For systems
with higher loads, a more accurate indication of processor
load can be obtained by periodically polling the length of
the queue of ready-to-run processes, but at a higher cost.
Ferrari and Zhou conclude from a measurement study of
load balancing that queue length averages will result in
better load balancing for systems with higher loads (e.g.
an average utilization of 50% and more) [lo].

The processor utilization undergoes short term fluctu-
ations that are largely irrelevant to the overall trend. Sud-
den short-term changes are due to external events and can
happen frequently without having any significance to the
average load. One typically applies a smoothing function to
the values of the processor utilization to be able to identify
significant changes in the overall trend. One inexpensive
possibility is to use an exponential smoothing function:

AweUtiZi = (w x AweUtilt-l) + ((1 - w) x Uti l i)

where the weight, w E (O , l) , determines the amount of
smoothing. In effect, this is a poor man’s way of predicting
the future behavior of the processor.

2.3 Publishing vs. Other Schemes
A number of other policies besides Publishing are also suit-
able for decentralized scheduling. For example, a Querying
policy can be used to query the current load of hosts and
schedule a new task to the most lightly loaded host that re-
sponds. Other policies do not make use of load information
when choosing an execution site for a task. For example,

3Note that processor utilization is important only because the sys-
tem is heavily underutilized. If it were not, then the processor utiliza-
tion would remain constant a t about 100%.

lo00

100

10

1

Publishing

Query: 1 tasWhour/host

0.1 I I
0 50 100 150

Hosts

Figure 1: Messages per 100 Hosts.

a host is selected randomly with the Random policy and a
Cyclical policy attempts to assign tasks to hosts in a round
robin fashion.

All of these algorithms have been well studied using
both analytical models and simulations [8,24,23]. We also
analyzed these policies through simulations. They indi-
cated that Publishing and Querying performed comparably
under light to medium system loads and that the Querying
policy performed slightly better under higher loads and for
computationally intensive tasks. Moreover, it was found
that the Random and Cyclical policies performed signifi-
cantly worse.

The major reason for choosing a Publishing-based
scheme over Querying was scalability. In Publishing-based
schemes, the number of messages is a function of the num-
ber of hosts. The overhead can be tuned to an acceptable
level. Our implementation indicated that approximately
20 messages per minute are generated per 100 hosts during
busy periods a day, when hosts multicast their state infor-
mation when the load changes by more than 10%. About
four times as many messages are generated when state in-
formation is multicast with load changes of 5%. Our sim-
ulations indicated that the number of messages published
would not increase significantly under higher system loads.

Although Querying has the advantage that the most
current load information can be obtained, it delays the start
of a task until responses are received from a query. Also, in
Querying-based schemes the number of messages is a func-
tion of the number of tasks scheduled. Not all hosts have
to queried each time a task is scheduled - for example,
hosts can join a group depending on their load and clients
can first query lightly loaded hosts [21] - but the number
of messages generated in large systems can easily limit the
number tasks that can be scheduled. Figure 1 compares the
number of network messages in Publishing to the number of
messages in Querying for different scheduling frequencies,
assuming only 9 hosts receive and respond to an average
query. (Note, however, that the messages due to Publish-
ing are all broadcasts and hence interrupt each host.)

Finally, with Publishing, all packet events are evenly
distributed across all hosts, whereas hosts that issue a query

14

10% 4
local execution ooAi 'F
Ave. System Load

I I I I @
20% 40% 60% 80%

Figure 2: Average speedup.

incur most of the packet events themselves. Hence, pre-
cisely those hosts that want to offload some of their load
will momentarily have an even higher load (due to packet
processing) every time they need to schedule.

Our simulations were carried out by using a subset, i.e.
10 workstations, of the workstation cluster, by implement-
ing the scheduling scheme under consideration and actually
scheduling and executing tasks. However, the workload and
tasks used were artificial, since the natural workload was
not high enough. Other results of our simulations were:

The scheme based on Querying performed slightly bet-
ter than one based on Publishing at higher loads and
for processor-intensive tasks.

It is worthwhile to globally schedule tasks under all
system load conditions, including very high and low
ones.

It is also worthwhile to schedule processor-unintensive
(interactive) tasks.

Figure 2 contains a sample result of our simulation. It
depicts the speedup obtained for scheduling in a system
with 8 Sun-2's and 2 Sun-3's an average task that would
run for 10 seconds, with 2 seconds CPU time, on a Sun-2.

Some studies indicate that centralized schemes may
outperform decentralized ones [21,24]. They can reduce
communication overhead, since less broadcasting is neces-
sary and they can more easily prevent scheduling clashes.
However, we never seriously considered them. We felt
that centralized solutions could be (aesthetically) tolerated
only if they significantly outperformed the decentralized
schemes, which, according to our simulations, they did not.
Also, they would not scale to systems with a very high
scheduling frequency, without dedicating server hosts for
this purpose.

2.4 Search Path Semantics
In a heterogeneous system, a simple command, such as ca t ,
will actually refer to multiple executable files, possibly one
for each host type and configuration. There are various
approaches to representing multiple related files in a file

system. Locus [22] uses the hidden directory approach,
where a given file name actually refers to a directory (e.g.
/bin/cat) containing the executable files: m68k, vax, etc.
In V, a naming convention is followed where the host type
is appended directly to the file name; i.e. cat exists as a
set of relativex cat. m68k, cat. vax, etc. The convention
followed by V has several unfortunate consequences. For
one, unless entries in a directory are maintained in sorted
order (which they are usually not) then every entry in the
directory must be read to obtain the set of all relatives
of a given file. Since each program will now have several
executable files, directories will become much larger.

A further disadvantage is that the search path seman-
tics are confusing. For example, if we have a search path
" A B . C", and a user would like to execute file f o o on an
M680XO and there is such a file in '.', his current directory,
but there is a Vax executable file f 0 0 . vax in A, what does
the user really want to execute, his file or the one in direc-
tory A? The search path semantics in Locus appear clear:
The first hidden directory with the name f o o is chosen and
an attempt is made to execute a file from this directory.
An error is signaled if an appropriate file cannot be found
there.

We have chosen to interpret the search path similarly:
An error is signaled if an appropriate file cannot be found
in the first directory containing a relative of the program
the user want to execute. However, we are still uncertain
how much this interpretation will cause confusion to the
casual user.

Note that both systems, V and Locus, use the ad-
hoc technique of encoding information about files in the
file name. Although this may be an efficient method for
storing a small amount of information, such as host type
specification, it is not suitable for storing larger amounts of
information. Examples of information about files that may
be of interest with respect to scheduling include: minimal,
average or maximum memory requirements, that fact that
it should be executed locally, expected execution time, ex-
pected processor intensity, etc. Several proposals for mech-
anisms to store information about files exist, including aux-
iliary pages [l] and property lists [14]. It remains to be seen
how mechanisms of this type can be exploited for schedul-
ing purposes. One would like to be able to quickly obtain
a set of files together with associated properties of inter-
est with minimal overhead, that is without having to go
through the overhead of opening additional files.

2.5 The Communists and the Niggards
The introduction of remote execution (and migration) fa-
cilities invariably leads to an intensive religious debate be-
tween those members of the user community that view a
workstation as a personal computer that should remain un-
der the absolute control of the user, and those that view
a cluster of workstations as a single machine, in effect, a
loosely coupled multiprocessor.

For example, as the remote execution facilities were
first introduced in the V system at Stanford, a lengthy de-

bate enswed whether a uaer ahould have to explicitly add
hiis workstation to the ppcemox pool or if he should shpuld
have to expb#y disalhar obbers from using t4e worksta-
tipn when he would liketp +."e "serious" camputink, It
took e v e @ alonthp to ccurvince. the user community that

1. the number of idle workstations at any given time is rel-
o n l ~ rarely would a program be sched-
tation OD which someone was working,

2. a usex d d not notice if the workstation waa also

ativelg
uled 08

u d for a foreign p r o p , since his
ran at a highei priority,

3. fon?ign progame do not erash the workstation, and

4. that "dt people would Xforget" to put their worksta-
tions in bhe proeerulor pool if the default case disallowed
motA3 txdution.

Note that-we have mainly described mecbisms for
scheduling which. cam be.& to realize many types of
poliei6s. Fbr our own-rite, we realized an uxtmme policy,
namely, that of viewing the workstation aa a component of
a coupled rwltiprocestor d scheduling (almost)
eveay tmk oa a global baris. We believe t& policy i s 9 m . a -
sonebb+ since 'typically a worbtation cluster i paid for by
&n Orgeoizath d helm itr, rmowes should be allocated
so as to b e d % &e entire organiastion and not individual
members. Also, it is in the interest of the a v e w USQ to
globally &ed& task since the average execution time
decreases.

But we I.erdiaa&aC,withour policy, we ask the user to
cross asr additioacl pay- bafiier in that not only is
"his" werketa4irm;ueed tmnsprexitly by others, he does not
know where his taslrs areacmutimg. (He can determine this,
however, if he so w i t h d the ushell" can be switched into
a v e r b mode that dmp diaplays the exwution site.)
We still need to furthsr educate users not to reboot their
workstations without &ut atigracingaway all running tasks.
Unfortunately, we still h d it nqxsacrry to execute all pro-
grants that maintain a lot' of non-reproducible s tab, such
as editors, locally by default. -

2.6 Implementation
We describe the implementation for the V-system [2,6] of
our scheduling facility based on the Publishing policy. At
the time of implementation, V did not cache file pages in
memory [SI between ptogram execution. Section 2.8 ad-
dreasea scheduliag in systems with such caching facilities.

The V-system colrsiste of a distributed k d and a
distributed collection of server processes. Each host hsa a
progtom-racmwget that provides program management for
programs executing on t b t host and an ewe-derver that
providos a shell-like service for interpreting command lines
and starting programs for the user. The program-manager
monitors the host on wbi& it is executing and maintains
the cache containing state information of all other hosts in

the system. It makes this information available to all ather
local tasks.

The load of a host is measured by monitoring the CPU
time allocated to the idle-process and is scaled by a factor
representing the processing power of the host. Two ex-
ponential smoothjug functions with difrercnt weights are
applied to this d u e . One tracks long-term trends and is
smoother (i.e. give more d g h t to past values), while the
other tracks short-term trends. The available memory is
monitored in a eimih fashion. The computed long-term
values (together with configuration information] are mul-
ticast to all other program-managers, if they differ signif-
icantly from the values that were last multicast (i.e. by
more than 10% of meximum.value). The group commu-
nication facilities of V [5] are used for this purpose. Each
host that receives the multicast message updges its cache
approp$ately. A newly star host can initialize its cache
by obtaining a copy from any one of the other hosts.

To schedule a task, the exec-server [or any other pro-
gram wishiog to schedule 4 task) reads the cache from the
progrq-manager and of the hosts represented
there& Assuming a r is selected, remote exe-
cution proceeds basically as described in [20]. A probe is
sent to'that host by sending a load-request message to its
p r o g r a - " g e r , asking it to load and start executing the
specified program. The load d u e used to select a host is
included in the Id-request measage. If this d u e is much
lower than the short-term load value, then the request is
turned down, and if it is much lower than the long-term
value, then besides turning down the request the requester
is also aaked to correct its cschk =try.

Once started, the program is run in its own address
space and is provided with a network-transparent execution
q-ent. Except €w the time n e e d for scheduling,
the fact that a task may be executing remotely% is trans-
parent to the user'. The difference between loading a task
locally OP remotely is equd CO the diEerence between a local
and +emote message transaction (ca. 1.5 me), since all files
am Wecl OW the network. Hence, even small tasks can
safeky be scheduled remotely. Also; a user will not notice
any sluggishness when interacting with remotely executing
ideractive pmgrams, since all inter-process communication
is based on message passing t h t differs only by a factor of
two for the local and remote (ca 1.5 1118 vs. 3 ms). In
fact, we were surprised to find usas on slower workstations
notice a significantly i m p m d zespomivemss in running
interactive tasks, such as editam, remotely on newer, more
powerful workstations.

Note that the multicasts used torndistributing load in-
formation need not be reliable. State cache entries are de-
tected and updated on use. Orphaned cache entries (those
of crashed hosts) indicating light load are also detected on
use: The first host to deteot an orphan multicasts that in-
formation to all other program-managers.

Orphaned entries indicating heavier load are seldom
detected on use. Hence, these entries must periodically

'Some programs have location-dependent semantics.

16

be found and disposed of. Unfortunately, it is not reason-
able in larger systems to periodically validate each entry
by querying the host in question, as this would cause con-
siderable network traffic. One possibility is to include a
permanent host identifier, such as a unique physical net-
work address, with each entry in the cache. Each host then
periodically checks for duplicate entries from one host. Al-
ternatively, one can require each host to multicast its state
information at least every so often (say, once an hour).
Then, if the state information of a host is not updated for
a lengthier period of time (e.g. several hours), that entry
can be removed.

The most serious problem encountered in implement-
ing these scheduling facilities was the overhead in determin-
ing the set of executable files for a given program and deter-
mining its scheduling requirements. Searching through di-
rectory structures along a given search path on a file server
can lead to a large number of messages. For example, in our
first implementation almost 100 messages were generated
per binary file lookup. This can be alleviated, however,
either by introducing a hashed bit-map indicating which
executable files exist in a user’s search path, or by caching
directory entries locally.

2.7 Measurements

Measurement of our implementation indicate that for a sys-
tem with 50 hosts, 10 state-information messages are broad-
cast to all hosts per minute during busy periods. This is
with a normal, real workload with a load average of about
20%. Our simulations indicate that the number of broad-
cast message would increase to about 15 with a higher load
average of 60%. Each host will service each message broad-
cast at a cost of approximately 1.5 to 2 milliseconds in
processing overhead (depending on host type). In order
to compute the load average, the program-manager must
query the kernel for the time allocated to the idle process.
It does so every 5 seconds at a cost of approximately 1 ms.

The scheduling facility described provides the mecha-
nisms for implementing many kinds of policies. Our im-
plementation supported the policy of scheduling every task
that is started in the system, unless the user directs the
“shell” to follow a different policy. Initial measurements
indicate that the response time of large programs decreased
by about 10% on average with this policy. This measure
alone is not very meaningful, as it depends heavily on the
type of hosts running at the time, the distribution of the
arrival rate at the individual hosts, the distribution of the
load, the type of tasks that are executed, etc. Because of
the low load averages, most tasks execute locally. The ben-
efit of remotely executing programs is due mostly to offload-
ing tasks from the older, slower workstations to the newer
faster ones. For example, to TeX a 20-page document on an
otherwise unloaded Sun-2 requires approximately 240 sec-
onds, but only 100 seconds on an otherwise unloaded Sun-3,
150 seconds on a Sun-3 that already has a load average of
50% (as measured by CPU utilization) and 200 seconds on
a 75% loaded sun-3.

2.8 File Caching
The scheduling system described does not account for the
caching of file pages in the memory of individual hosts be-
tween program execution. At the time of implementation
V did not support demand-paged virtual address spaces
and every file had to be down-loaded in its entirety before
starting execution. Some systems, however, provide some
form of automatic caching of files. For example, many Unix
systems allocate new pages on a least recently freed basis,
allowing read-only pages to be reused (without having to
go to a file server) if they can still be found in the free-list.
It is also possible to implement caching RAM file systems
on each host. More recently, virtual memory capabilities
have been added to the V kernel, where large memories are
exploited to cache file pages [3].

Clearly, a program will start executing more quickly if
scheduled to execute on a host where the executable file is
being cached, since access to a file server can be avoided.
However, all file caching schemes rely on both spatial and
temporal locality of file access and spatial locality is de-
feated by any scheduling mechanism that spreads the load
across the system.

A number of strategies that allow the Publishing policy
to better cope with caching memories appear to be worth
exploring, something we plan to do in the future. First, the
scheduler could remember the host that was last selected for
remote execution and choose that host for remote execution
again, if its load remains relatively light (as indicated by
the cache of load information). Thus, assuming that certain
programs are repeatedly run by a user or that certain files
are repeatedly accessed by the programs run by a user, the
probability of it being cached on a host selected by the
scheduler is higher.

Second, it is possible to define a mapping from program
names to a small subset of the hosts. When scheduling a
program, an effort is made to execute it on one of the hosts
to which its name maps to. A host outside of this set is
chosen only if it clearly has a lighter load. This should
increase not only the locality of file reference on a per-user
basis, but on a per-system basis. (It should be possible to
let the size of these sets vary dynamically, adapting to the
relative load of each set.) However, this scheme only takes
executable files into account and not data files.

Finally, the overhead of down-loading a file is a relevant
factor only for short jobs. A policy that forces all short
jobs to execute locally (possibly at a higher priority) would
restrict remote execution to programs where file loading
time is insignificant. However, this requires an a priori
estimate of the execution times, as maintained, for example,
by the file system. Also, this policy still defeats one of the
purposes of caching file pages, namely, that of offloading
file servers.

The existence of caching memorys may also require us
to reevaluate the merits of Querying-based schemes. Each
query could identify the executable file and the respondents
could indicate to what extent they are caching the file (as-
suming the respondents can gather this information effi-
ciently). The overhead of the query will offset the cost of

17

having to go to the file server.

3 Load Balancing through Task
Migration

Migrstian facilities are absolutely necessary if tasks are ex-
ecuted remotely. A user must be able to eject all foreign
tsska if Be needs exclusive use of his workstation (or would
like to take it down).

Migration can also be beneficial for load balancing pur-
poeeg; a task will complete more quickly if it can be mi-
grated to a host with a significantly fighter load. This
may be necessary, for example, after a scheduling clash,
when several hosts simultaneously select the same site for
proceasor-bound tasks. The scheduling facilities described
so far can be extended to also balance the €oad by migrat-
ing tasks from heavily loaded hwts to more lightly loaded
hosta The global state is periodically reevaluated for each
task to &de whether to migrate it to another site. This is
associated with more overhead, however, since when com-
paring the load of the local host with that of a remote one,
the local load must be discounted by the proportion due
to the proccss being considered for migration. Hence, the
processor load inflieted by each candidate task must also
be measured and monitored.

There ere several complications associated with load
balancing through task migration. First, there is a danger
of instability where tasks migrate from me host to another.
This can be solved by requiring the difference h load be-
tween the two hosts to be larger than a theahold and by
requiring that a task may only migrate if its expected time
to completion is large enough. Having these requirements
has a number of additional other benefits. It decreases the
number of tasks that must be monitored, since only few
tasks have an expected remaining life time that is large
enough. And it increases the probability that the overhead
of migration will be offset by improved performance at the
new site

A second complication is that the measure of the load
inflicted by a task must be compatible with the measure
of the processor load for the arithmetic to be meaningful.
Again, having a large enough threshold allows for (unavoid-
able) inaccurcrcies in these calculations.

Finally, the decision whether to migrate and to where
to migrate cannot always be made by the %ystem” without
additional information from the application. In some in-
stances it is easier to let the application make the migration
decisions. For example, some tasks may require efficient ac-
cess to certain devices and should not be migrated at all or
only to a certain subset of the hosts. Others may have resid-
ual dependencies [20] (e.g. a compilation that uses local
temporary flea) that should also be moved, As another ex-
ample, some tasks function as watchdogs that watch other
taske fox reliability reasons and therefore should never be
migrated to the same host.

On the other hand, if the application makes the migra-
tion decisions then a separate thread of control is needed to

periodically evaluate the load situation. It must also pro-
vide a means for the system to ask it to migrate away (e.g.
when a user ejects all tasks) by, fer instance, listening on a
predetermined port.

In order to prevent the system module from having to
manage a lot of application data, yet at the same time al-
low existing, unaltered programs ts be migratable, both ap-
proaches need to be supported. This is possible as follows:
By default, each task is migratable by the system, using the
same constraints that were available for the initial schedul-
ing. A task may optionally register itself as non-migratable
or self-migratable. Tasks that do not register themselves
are assumed to be freely migratable by the system (in our
case, by the program-manager). A task registering itself as
self-migratable must also issue a process (or port or pro-
cedure) identifier, to allow the system to issue a migration
request, should the system want to initiate the migration.

In practice, we expect that most tasks will not need
special considerations and will not register. We expect
tasks that register themselves as non-migratable to be local
servers or applications executed on special hosts.

4 Initial Thoughts on Scheduling
Parallel Programs

4.1 Scheduling Requirements
A cluster of workstations can be used as a parallel machine
to run parallel applications br epeed~p. Parallel make is a
common example of such an application. More tightly cou-
pled parallel algorithms have also been successfully Tun on
workstation clusters 14,111; for instance, a number of par-
allel optimization algorithms, such as branch-and-bound,
are well suited to run in this environment. In many cases,
parallel computations will need special scheduling support.
Unfortunately, scheduling schemes developed for (shared
memory) multiprocessors, such as those studied by Ouster-
hout [17] do not apply to more loosely coupled distributed
systems since they schedule at too fine a granularity.

Scheduling requirements of parallel programs can vary
from program to program, depending on their internal
structure. Some parallel programs containing (relatively)
independent tasks can be scheduled with the facilities de-
scribed so far. For example, a distributed make can sched-
ule its tasks independently (making sure that multiple tasks
are not simultaneously assigned to the same host). Some
parallel programs contain tasks that are well suited to pick
up any available processing “slop”. These programs are
typically asynchronous and exhibit (very close to) linear
speedup, and their tasks a n also be scheduled using the
described scheduling facilities. Paralld branch-and-bound
and Monte Carlo simulations are examples of such pro-
grams.

However, classes of parallel programs also exist with
more specific scheduling requirements. In this section,
we identify two such classes and describe the scheduling
requirements they have. We then propose appropriate

scheduling mechanisms. The two program classes we con-
sider are synchronous parallel programs and asynchronous
parallel programs with less than perfect speedup behavior.
Both classes constitute a significant enough proportion of
all parallel programs to warrant the introduction of appro-
priate support.

Synchronous parallel programs execute in lock-step,
synchronizing at the end of each iteration. Algorithms for
dynamic programming or Gaussian elimination, for exam-
ple, are often structured in this way. Tasks belonging to
such synchronous computations, should not share the pro-
cessor assigned to them with any other tasks; that is, it
should be possible to allocate entire processors to the indi-
vidual tasks. The reasoning behind this is that even slight
variations in the processing power made available to a mem-
ber task can significantly decrease the performance of the
entire computation, since all member tasks must period-
ically wait for the slowest task to complete its iteration
and a single, slowly running task can prevent the compu-
tation from attaining the expected speedup. For example,
consider a parallel synchronous computation (with perfect
speedup behavior) executing as 5 tasks, where 4 of them
have exclusive use of the processor they are executing on,
but one of them has only access to 70% of its processor’s
capacity. This computation will complete more quickly if
executed using 4 tasks if they can run alone on the proces-
sors to which they are assigned.

On the other hand, tasks of asynchronous parallel com-
putation with less than perfect speedup behavior can be
scheduled to run with other tasks as long as these tasks are
not part of another parallel computation. The reasoning
behind this is that the speedup curve of almost all paral-
lel computations is concave5 (i.e. the efficiency of a paral-
lel computation cannot increase with the number of pro-
cessors), so the efficiency of two computations suffer when
they both increase their degree of parallelism but start to
share processors. Consider, for example, a parallel matrix
multiplication of two 48 x 48 matrices with the speedup as
obtained on a cluster of Sun-2’s running the V kernel and
depicted in figure 3. The speedup with 5 processors (4.5)
will always be greater than or equal to half the speedup
with 10 processors (3.75). Therefore, if, for example, we
wish to run two such computations at the same time, then
it is more efficient (the computations will complete faster
on average) if each computation uses 5 separate processors,
rather than if each computation time-shared the same 10
processors. The two computations will also complete slower
on average if 10 processors first run the tasks of the first
computation followed by those of the second computation.6

Hence, we identify two scheduling requirements:

’Programs with anomalous behavior exist
6Using the same line of reasoning, one can also argue that parallel

computations should use the most powerful processors in the system,
since a parallel computation will always complete faster when using two
fast processors than if run on 6 processors one third the power of the
fast ones. This may, however, contradict scheduling policies concerning
interactive jobs.

A /

hosts
1 I I ‘
5 10 15

Figure 3: Matrix multiplication speedup on a workstation
cluster.

1. A task of a synchronous parallel computations should
not share a processor with any other tasks.

2. A task of an asynchronous parallel computation should
not share a processor with a task belonging to any
other asynchronous parallel computation.

Section 4.2 shows how the scheduling facilities described
previously can be modified slightly to provide the necessary
support to meet these two requirements.

Both of these requirements make the scheduling of par-
allel programs, executing as task groups, very difficult. Ei-
ther the number of processors a program may use is re-
stricted to a small number in anticipation that other pro-
grams will also run. Or, alternatively, one may allow a
program to “grab” as many hosts as it wishes. However,
the first case will limit some programs from fully exploit-
ing the available processing power and the second case may
block out other parallel programs, since each host may run
at most one task belonging to a parallel application.

A third alternative is to require each program to be
capable of dynamically adjusting the number of hosts it is
using. This would allow the implementation of a policy that
is fair, but at the same time allow programs to exploit as
much parallelism as is currently available. This approach
requires parallel computations to be capable of internally
restructuring and redistributing their workload to be able
to adapt to changes in the number of processors available
to them. Clearly, the overhead for doing this can be signifi-
cant if the structure of the parallel program is not designed
from the start to allow for such reorganizations. Having
self-adjustable parallel programs may not be as difficult as
it may sound at first. Cheriton and Stumm [4] describe a
model for structuring parallel computations for a worksta-
tion environment that is capable of running while the num-
ber of processors vary. Many parallel programs, such as
simulations described by Nicol and Reynolds [15], must be

19

capable of dynamically changing the distribution of compu-
tational work to adapt to changing processing requirements
within its (internal) problem domain. The methodology
used in these programs can be generalized for releasing and
adding processors to a parallel computation.

In section 4.3 we describes how task groups can com-
pete for processors distributing the processing power evenly
among competing groups.

4.2 Exclusive Processor Allocation
The scheduling facilities described in Section 2 can be used,
with only minor modifications, to implement a policy where
at most one task belonging to a parallel computation may
run on a host at one time. As soon as one of these tasks
is started, it registers itself as such with the local program-
manager. The fact that a processor is running a registered
task becomes part of the host state information that is dis-
seminated to all other hosts. The task responsible for start-
ing up a parallel program can schedule its tasks by consult-
ing the local cache of state information, making sure that
at most one task belonging to a parallel computation is run
per host. (Note that it is in the interest of these tasks to
register themselves, so enforcing mechanisms are not nec-
essary.)

Similarly, synchronous tasks, requiring exclusive use of
a processor, register themselves as synchronous when they
start up. When this happens, the program-manager evicts
all other locally running tasks by migrating them to other
hosts. The fact that a host is executing a synchronous task
also becomes part of the state information that is published.
This ensures that no other task is scheduled to run on a host
already running a synchronous task.

If migration is not available, then it is possible to al-
ways keep a few hosts in reserve for executing synchronous
tasks. That is, the set of all hosts can be partitioned into
two disjoint subsets, one reserved for executing tasks be-
longing to synchronous computations and the other for all
other tasks. Keeping a number of hosts idle, in reserve
for synchronous tasks, is tolerable in large systems, due to
the assumed overabundance of processing power. (In order
not to waste these cycles completely, short tasks’ can still
be allowed to run on the reserved, but not yet allocated
hosts. These short tasks would always be allowed to run to
completion.)

The number of hosts reserved for executing syn-
chronous tasks should not be static, but should vary dy-
namically, adapting to the current state of the system (i.e.
the relative number of reserved hosts, the average load on
the non-reserved hosts, etc.). A dynamic partitioning can
be implemented in a decentralized fashion if the two bits
added to the state information associated with each host
are interpreted such that one bit identifies a host as being
reserved for executing synchronous tasks and the second bit
indicating if such a task is currently executing. Since the

7The definition of short here is relative and taken to mean not more
than a few minutes. But it does require an a priori estimate of a task’s
execution time .

state information of each host is published whenever one of
these bits change, every host can independently and peri-
odically reevaluate the global and local state to determine
if it should change sides and become a member of the other
subset. (But one must be careful to ensure that hosts do
not oscillate between the two subsets.)

4.3 Task Groups Competing for Re-
sources

By allowing each parallel application to exploit as much
parallelism as it can and wishes, it is possible that a new
program will want more processors than are immediately
available. In this case, it may be necessary to force other
parallel programs to “relinquish” some of the processors on
which they are running tasks, in order to be able to fairly
distribute the hosts among all parallel programs. In theory,
a system server, such as the program-manager, could take
on the responsibility for doing this. In our case, however,
the “system” does not know which tasks belong to which
parallel computations, making it difficult for the system
to take on this responsibility. Hence, we let each parallel
application schedule its own tasks and let the parallel ap-
plications negotiate for processors directly with each other.
We define a simple protocol that defines the interactions
between negotiating task groups.

We assume that each parallel program in execution
is being controlled by a master process (that belongs to
the parallel application). Each such master process joins
a well known group (so that it will receive messages ad-
dressed to this group) and is responsible for negotiating
with other master modules and for restructuring the coni-
putation if required to do so. If an application wants to
use more processors than are currently available, then it
sends a query message to the group of master processes to
determine their identity and the number of tasks in their
task group. Using this information, it may request some of
these computations to release processors. It must do this
in a way that distributes the processors more evenly among
the task groups. A parallel computation must reduce the
number of tasks if asked to do so. The master process of a
parallel computation may also periodically reevaluate the
global state to determine if it should expand, to adapt to
changes in the global state.

Hence, in this scheme, task groups compete for proces-
sors. If each parallel application attempts to maximize its
number of parallel executing tasks, then each task group
will be approximately of equal size. It is possible to re-
fine this scheme by having the master modules specify the
speedup characteristics during the negotiation process, to
allow computations with better speedup to have more pro-
cessors. It would also be straightforward to modify the
scheme to accommodate task group priorities. In practice,
we expect very little competition between task groups be-
cause of the large number of available processors and the
fact that most parallel applications can make effective use
of only a small number of processors. hiIoreover, parallel
computations tend to run for a long time.

20

There is a tradeoff in the choice of how often task
groups reevaluate the global state and subsequently self-
regulate. If done often, the groups will quickly adapt to
changes in the system, but at the cost of additional over-
head and possible instability. In our case, a slow regulation
process is tolerable, since significant changes in the over-
all global state are very infrequent and only few parallel
programs are ever run.

Tasks belonging to parallel computations compete not
only among each other; the available processing cycles must
be divided among normal, sequential tasks and those be-
longing to parallel applications requiring special consider-
ation. In the previous subsection, we described how pro-
cessing cycles are assigned on a per processor basis to syn-
chronously executing tasks. The situation with tasks be-
longing to asynchronous parallel computations is more com-
plicated, however, since they can run on a processor to-
gether with sequential tasks. A spectrum of policies that
regulate the priority of sequential tasks over those of par-
allel computations can be implemented by modifying the
definition of a processor’s load to also include a portion at-
tributed to the execution of the parallel task. The definition
of processor load (see section 2.2) is modified to be equal
to the weighted sum of processor utilization consumed by
“normal” tasks and processor utilization consumed by a
task belonging to a parallel computation. The weights can
be chosen appropriately to implement a desired policy.

5 Conclusions
We described the design of a decentralized global schedul-
ing facility in the context of a large, workstation-based dis-
tributed system that can remotely execute and (possibly)
migrate tasks. The solution proposed is fully decentralized
and is

robust against processor and communication failures,
including network partitions;

stable in that tasks do not continuously migrate from
host to host;

performance effective in that overall the average re-
sponse time decreases;

scalable to many hosts and capable of scheduling many
tasks at a high frequency;

designed to accommodate heterogeneous hosts.

In order to validate our claim of scalability, we im-
plemented these facilities on a cluster of 70 workstations,
running the V kernel, with a policy of scheduling every
task, including small ones, on a global basis. Our solution
or implementation can be seen as a further step in the di-
rection of system integration, where a workstation cluster
operates as a single system, rather than a set of intercon-
nected personal and server computers. We believe that this
step is in the interest of the users, because of the reduced
response times, and in the interest of the organization that

paid for the system, since the system resources are used
more effectively.

Finally, we considered the scheduling of parallel pro-
grams executing as task groups in a workstation environ-
ment and showed that some require that their tasks have
exclusive use of the processor and that in general proces-
sor intensive tasks that are part of a parallel computation
should not share processors. We presented a protocol for
scheduling competing task groups in an underutilized, rel-
ative infrequently changing environment.

With respect to migration and the scheduling of task
groups representing parallel computations, we found that
we had to perform some scheduling functions in the ap-
plications instead of in system modules. The information
and algorithms needed to decide what actions to take were
too complex and application dependent to be abstracted
into a simplified, generic model. However, with applica-
tions performing system functions, the need to access sys-
tem state efficiently is crucial and improvements to this
effect are necessary. For example, suitable address map-
ping techniques could be exploited for this one-directional
information transfer at memory speeds, reducing the num-
ber of system calls and messages. We also found that more
general and more efficient querying facilities for file systems
are needed.

In conclusion, we view the scheduling of tasks and task
groups as an important facility of workstation-based dis-
tributed systems. With the increasing prevalence of power-
ful uni- and multi-processor workstations in the computing
environments of most organizations, the user transparently
has at his disposal computational power far in excess of
that provided by a single personal workstation. The com-
putational power is in a parallel form that is transparently
exploited at the command execution level and that can also,
with suitable support, be explicitly exploited by computa-
tionally intensive programs.

Acknowledgments

Many contributed to this work. P. Brundrett helped imple-
ment and find bugs. S. Shi performed the simulations. Dis-
cusions with members of the Distributed Systems Group at
Stanford and S. Zhou helped improve the design and helped
improve this paper.

References

[l] Alto Operating System Reference Manual. Xerox Palo
Alto Research Center, Palo Alto, California, 1979.

[2] E.J. Berglund. An introduction to the V system.
IEEE Micro, 6(4), 1986.

[3] D. R. Cheriton. Effective Use of Large RAM Disk-
less Workstations with the V Virtual Memory System.
1987. Working paper.

21

[4] D.R. Cheriton and M. Stumm. The Multi-Satellite
Star: Structuring Parallel Computations for a Work-
station Cluster. Distributed Computing, to appear
1988.

[5] D.R. Cheriton and W. Zwaenepoel. Distributed Pro-
cess Groups in the V Kernel. ACM Trans. on Com-
puter Systems, 3(2), 1985.

[6] D.R. Cheriton and W. Zwaenepoel. The Distributed V
Kernel and its Performance for Diskless Workstations.
In PTOC. 9th AGM Symp on Operating System Prin-
ciples, 1983. Appeared in Operating System Review
17(5).

[7] F. Douglis. Process Migration in the Sprite Operating
System. Technical Report UCB/CSD 87/343, Coni-
puter Science Division (EECS), University of Califor-
nia, Berkeley, California 94720, 1987.

[8] D. Eager, E. Lazowska, and J. Zahorjan. Dynamic
Load Sharing in Homogeneous Distributed Systems.
IEEE Trans. Soft. Eng., SE-12(5):662-675, 1986.

[9] D. Ferrari. A Study of Load Indices for Load Balancing
Schemes. Technical Report UCB/CSD 85/262, Com-
puter Science Division (EECS), University of Califor-
nia, Berkeley, California, 1985.

[lo] D. Ferrari and S. Zhou. An Emperzcal Investigation of
Load Indices for Load Balancing Applications. Techni-
cal Report UCB/CSD 87/353, Computer Science Di-
vision (EECS), University of California, Berkeley, Cal-
ifornia 94720, 1987.

[ll] R. Finkel and U. Manber. DIB - A Distributed Im-
plementations of Backtracking. ACM Transactions on
Programming Languages and Systems, 9(2):235-256,
1987.

[12] R. Hagmann. Process Server: Sharing Processing
Power in a Workstation Environment. In PTOC. Prin-
ciples of Distributed Computing, 1986.

[13] E.D. Lazowska, J. Zahorjan, D.R. Cheriton, and W.
Zwaenepoel. File Access Performance of Diskless
Workstations. A CM Trans. o n Computer Systems,
4(3), 1986.

1141 J.C. Mogul. Representing Information about Files.
PhD thesis, Stanford University, Stanford, California
94305, 1986.

[15] D.M. Nicol and P.F. Reynolds. The Automated Par-
titioning of Simulations for Parallel Ezecution. Tech-
nical Report TR-85-15, Dept. of Voniputer Science,
University of Virginia, 1985.

[16] D. Nicols. Using Idle Wrokstations in a Shared Com-
puting Environment. In Proc. 11th ACM symp on
Operating System Principles, 1967. Appeared in Op-
erating System Review 21(5).

[17] J . Ousterhout. Partitioning and Cooperation in a
Distributed Multiprocessor Operating System: Medusa.
PhD thesis, Carnegie-Mellon University, April 1980.

[18] M.L. Powel and B.P. Miller. Process Migration in DE-
MOS/MP. In PTOC. 9th ACM Symp on Operating Sys-
tem Principles, 1983. Appeared in Operating System
Review 17(5).

(191 J.A. Stankovic. Simulations of three Adaptive Decen-
tralized Controlled, Job Scheduling Algorithms. Com-
puter Networks, 8(3), 1984.

[20] M. Theimer, K.A. Lantz, and D.R. Cheriton. Preemp-
tive Remote Execution Facilities for the V-System. In
Proc. 10th ACM Symp. on Operating System Princi-
p le s , 1985. Appeared in ACM Operating System Re-
view 19(5).

[21] M.M. Theimer. Preemptable Remote Esecution Fa-
cilities for Loosely- Coupled Distributed Systems. PhD
thesis, Stanford University, Stanford, California 94305,
1986.

[22] B. Walker, G. Popek, R. English, C. Kline, and G.
Thiel. The LOCUS Distributed Operating System. In
PTOC. 9th A CM Symp on Operating System Principles,
1983. Appeared in Operating System Review 17(5).

Load Balancing in Dis-
tributed Systems. IEEE Trans. Comp., c-34(3), 1985.

[24] S. Zhou. A Trace-Driven Simulation o f Dynamic Load
Balancing. Technical Report UCB/CSD 87/305, Com-
puter Science Division (EECS), University of Califor-
nia, Berkeley, California 94720, 1986.

[23] Y. Wang and R. Morris.

22

	Text17: Appeared in Proc. of the 2nd IEEE Conf. on Computer Workstations, March 1988, pp. 12-22.

