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raditionally, communication sage passing) communication system. The 
among processes in a distributed shared memory model applied to loosely a system is based on the data-pass- 

ing model. Message-passing systems or 
systems that support remote procedure 
calls (RPCs) adhere to this model. The 
data-passing model logically and conven- 
iently extends the underlying communica- 
tion mechanism of the system; port or 
mailbox abstractions along with primitives 
such as Send and Receive are used for 
interprocess communication. This func- 
tionality can also be hidden in language- 
level constructs, as with RPC mechanisms. 
In either case, distributed processes pass 
shared information by value. 

This article compares 
several algorithms for 

implementing 
distributed shared 

memory. It shows that 
the performance of 
these algorithms is 

sensitive to the 
memory access 

behavior of 
applications. 

In contrast to the data-passing model, 
the shared memory model provides pro- 

space. Application programs can use this 
cesses in a system with a shared address 

space in the same way they use normal . .  

local memory. That is, data in the shared 
space is accessed through Read and Write 
operations. As a result, applications can 
pass shared information by reference. The 
shared memory model is natural for dis- 
tributed computations running on shared 
memory multiprocessors. For loosely 
coupled distributed systems, no physically 
shared memory is available to support such 
a model. However, a layer of software can 
provide a shared memory abstraction to the 

applications. This software layer, which 
can be implemented either in an operating 
system kernel or, with proper system ker- 
nel support, in runtime library routines, 
uses the services of an underlying (mes- 

coupled systems is referred to as distrib- 
uted shared memory. 

In this article, we describe and compare 
basic algorithms for implementing distrib- 
uted shared memory by analyzing their 
performance. Conceptually, these algo- 
rithms extend local virtual address spaces 
to span multiple hosts connected by a local 
area network, and some of them can easily 
be integrated with the hosts’ virtual mem- 
ory systems. In the remainder of this sec- 
tion, we describe the merits of distributed 
shared memory and the assumptions we 
make with respect to the environment in 
which the shared memory algorithms are 
executed. We then describe four basic 
algorithms, provide a comparative analy- 
sis of their performance in relation to 
application-level access behavior, and 
show that the correct choice of algorithm is 
determined largely by the memory access 
behavior of the applications. We describe 
two particularly interesting extensions of 
the basic algorithms and conclude by ob- 
serving some limitations of distributed 
shared memory. 

Advantages of distributed shared 
memory. The primary advantage of dis- 
tributed shared memory over data passing 
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is the simpler abstraction provided to the 
application programmer, an abstraction 
the programmer already understands well. 
The access protocol used is consistent with 
the way sequential applications access 
data, allowing for a more natural transition 
from sequential to distributed applications. 
In principle, parallel and distributed com- 
putations written for a shared memory 
multiprocessor can be executed on a dis- 
tributed shared memory system without 
change. The shared memory system hides 
the remote communication mechanism 
from the processes and allows complex 
structures to be passed by reference, sub- 
stantially simplifying the programming of 
distributed applications. Moreover, data in 
distributed shared memory can persist 
beyond the lifetime of a process accessing 
the shared memory. 

In contrast, the message-passing models 
force programmers to be conscious of data 
movement between processes at all times, 
since processes must explicitly use com- 
munication primitives and channels or 
ports. Also, since data in the data-passing 
model is passed between multiple address 
spaces, it is difficult to pass complex data 
structures. Data structures passed between 
processes must be marshaled and un- 
marshaled by the application. (Marshaling 
refers to the linearizing and packing of a 
data structure into a message.) 

For these reasons, the code of distrib- 
uted applications written for distributed 
shared memory is usually significantly 
shorter and easier to understand than 
equivalent programs that use data passing. 

The advantages of distributed shared 
memory have made it the focus of recent 
study and have prompted the development 
of various algorithms for implementing 
the shared data model.'-8 Several imple- 
mentations have demonstrated that, in 
terms of performance, distributed shared 
memory can compete with direct use of 
data passing in loosely coupled distributed 
 system^.'-^.^ 

In a few cases, applications using dis- 
tributed shared memory can even outper- 
form their message-passing counterparts 
(even though the shared memory system is 
implemented on top of a message-passing 
system). This is possible for three reasons: 

(1) For shared memory algorithms that 
move data between hosts in large blocks, 
communication overhead is amortized 
over multiple memory accesses, reducing 
overall communication requirements if the 
application exhibits a sufficient degree of 
locality in its data accesses. 

(2) Many (distributed) parallel applica- 
tions execute in phases, where each com- 
putation phase is preceded by a data-ex- 
change phase. The time needed for the 
data-exchange phase is often dictated by 
the throughput limitations of the commu- 
nication system. Distributed shared mem- 
ory algorithms typically move data on 
demand as they are being accessed, elimi- 
nating the data-exchange phase, spreading 
the communication load over a longer 
period of time, and allowing for a greater 
degree of concurrency. 

(3) The total amount of memory may be 
increased proportionally, reducing paging 
and swapping activity! 

Similar systems. Distributed shared 
memory systems have goals similar to 
those of CPU cache memories in shared- 
memory multiprocessors, local memories 
in shared memory multiprocessors with 
nonuniform memory access (NUMA) 
times, distributed caching in network file 
systems, and distributed databases. In par- 
ticular, they all attempt to minimize the 
access time to potentially shared data that 
is to be kept consistent. Consequently, 
many of the algorithmic issues that must be 
addressed in these systems are similar. 

Although these systems therefore often 
use algorithms that appear similar from a 
distance, their details and implementations 
can vary significantly because of differ- 
ences in the cost parameters and in the 
ways they are used. For example, in 
NUMA multiprocessors, the memories are 
physically shared and the time differential 
between accesses of local and remote 
memory is lower than in distributed sys- 
tems, as is the cost of transferring a block 
of data between the local memories of two 
processors. Hence, some of the algorithms 
we discuss in this article will be relevant to 
designers of NUMA memory management 
systems, but the algorithms they chose as 
most appropriate may differ. 

Similarly, in bus-based shared memory 
multiprocessors, replication in the CPU 
caches (to avoid the much higher delays of 
accessing main memory and to reduce bus 
congestion) can be implemented cost ef- 
fectively because of the reliability and 
broadcast properties of the bus. On the 
other hand, in distributed systems where 
communication is unreliable, we show that 
algorithms without replication can benefit 
certain types of applications. As a third 
example, distributed file systems and data- 
bases must provide for persistent data and, 
in the case of distributed databases, relia- 
bility and atomicity. These requirements 

can significantly affect the choice of algo- 
rithm. 

Model and environmental assump- 
tions. In our discussions and analyses, we 
make certain assumptions with respect to 
the environment in which the algorithms 
are implemented. These are described 
here. The extrapolation of our results to 
other environments is left for future work. 

In general, the performance of distrib- 
uted and parallel applications is dictated 
primarily by communication costs, which 
in turn are dictated by the underlying hard- 
ware. Here, we assume a distributed sys- 
tem environment consisting of a cluster of 
hosts connected by a local area network, 
such as an Ethernet. In this environment, 
communication between processors is 
unreliable and slow relative to local mem- 
ory access. We assume that broadcast and 
multicast communication, where a single 
message can be sent (unreliably) to mul- 
tiple receivers in a single network transac- 
tion, is available. Most bus and ring net- 
works fit this description. 

For performance analysis, communica- 
tion costs are abstracted in terms of the 
number of messages sent and the number 
of packet events. A packet event is the cost 
associated with either receiving or sending 
a small packet (about 1 millisecond on a 
Sun-3/50). A point-to-point message 
transfer therefore requires one message, a 
packet event at the sending site, and a 
packet event at the receiving site. A multi- 
cast or broadcast message transmission 
requires one message, apacket event at the 
sending site, and a packet event at each 
receiving site. 

The shared memory model provides two 
basic operations for accessing shared data: 

data := read( address ) 
write( data, address ) 

Read returns the data item referenced by 
Address, and Write sets the contents refer- 
enced by Address to the value of Data. For 
simplicity, the algorithms for implement- 
ing shared data are described in terms of 
these two operations. We assume that the 
distributed applications call these func- 
tions explicitly, although this may not 
always be necessary with suitable com- 
piler and/or operating-system support, and 
that the data item accessed is always a 
single word. 

Of course, variations in the syntax and 
semantics of these operations are possible. 
For instance, the operations may be called 
by a number of different names, such as 
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Figure 1. Four distributed memory algorithms. 
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Figure 2. The central-server algorithm. 

fetch/store and in/out. The type of the data 
being accessed can also vary and include 
integers, byte arrays, or more complex 
user-defined types. Finally, the semantics 
of the memory access functions can go 
beyond those offered by traditional mem- 
ory systems and can include atomic 
enqueuing or dequeuing operations, or 
even entire database operations. For ex- 
ample, Linda” is a programming language 
that directly supports a shared data space 
by providing a shared tuple space and three 
basic operations: Read reads an existing 
data item called “tuple” from the tuple 
space, Out adds a new tuple, and In reads 
and then removes an existing tuple. 
Linda’s tuples are addressed by content 
rather than by location. 

Basic algorithms 
This section describes four basic distrib- 

uted shared memory algorithms. For each 
of these algorithms, we consider the cost of 
read and write operations and issues in 
their implementation. The algorithms de- 
scribed can be categorized by whether they 
migrate and/or replicate data, as depicted 
in Figure 1. Two of the algorithms migrate 
data to the site where it is accessed in an 

attempt to exploit locality in data accesses 
and decrease the number of remote ac- 
cesses, thus avoiding communication 
overhead. The two other algorithms repli- 
cate data so that multiple read accesses can 
take place at the same time using local 
accesses. 

Implementations of distributed shared 
memory based on replication should make 
this replication transparent to the applica- 
tions. In other words, processes should not 
be able to observe (by reading and writing 
shared data) that all data accesses are not 
directed to the same copy of data. 

More formally,” the result of applica- 
tions using shared data should be the same 
as if the memory operations of all hosts 
were executing in some sequential order, 
and the operations of each individual host 
appear in sequence in the order specified 
by its program, in which case the shared 
memory is said to be consistent. 

Shared memory in a shared memory 
multiprocessor is expected to behave this 
way. This definition of consistency should 
not be confused with a stricter definition 
requiring read accesses to return the value 
of the most.recent write to the same loca- 
tion, which is naturally applicable to con- 
current processes running on a uniproces- 
sor but not necessarily to those on shared 

memory multiprocessors with CPU caches 
and write-back buffers.’* If the stricter 
definition holds, then so does the weaker 
definition (but the converse is not true). 

Central-server algorithm. The sim- 
plest strategy for implementing distributed 
shared memory uses a central server that is 
responsible for servicing all accesses to 
shared data and maintains the only copy of 
the shared data. Both read and write opera- 
tions involve the sending of a request 
message to the data server by the process 
executing the operation, as depicted in 
Figure 2. The data server executes the 
request and responds either with the data 
item in the case of a read operation or with 
an acknowledgment in the case of a write 
operation. 

A simple request-response protocol can 
be used for communication in implementa- 
tions of this algorithm. For reliability, a 
request is retransmitted after each time-out 
period with no response. This is sufficient, 
since the read request is idempotent; for 
write requests, the server must keep a 
sequence number for each client so that it 
can detect duplicate transmissions and 
acknowledge them appropriately. A fail- 
ure condition is raised after several time- 
out periods with no response. 

Hence, this algorithm requires two 
messages for each data access: one from 
the process requesting the access to the 
data server and the other containing the 
data server’s response. Moreover, each 
data access requires four packet events: 
two at the requesting process (one to send 
the request and one to receive the re- 
sponse), and two at the server. 

One potential problem with the central 
server is that it may become a bottleneck, 
since it has to service the requests from all 
clients. To distribute the server load, the 
shared data can be distributed onto several 
servers. In that case, clients must be able to 
locate the correct server for data access. A 
client can multicast its access requests to 
all servers, but this would not significantly 
decrease the load on all servers, since every 
server would incur the overhead of apacket 
event for each such request. A better solu- 
tion is to partition the data by address and 
use some simple mapping function to de- 
cide which server to contact. 

Migration algorithm. In the migration 
algorithm, depicted in Figure 3, the data is 
always migrated to the site where it is 
accessed. This is a “single reader/single 
writer” (SRSW) protocol, since only the 
threads executing on one host can read or 
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write a given data item at any one time. 
Instead of migrating individual data 

items, data is typically migrated between 
servers in a fixed size unit called a block to 
facilitate the management of the data. The 
advantage of this algorithm is that no 
communication costs are incurred when a 
process accesses data currently held lo- 
cally. 

If an application exhibits high locality of 
reference, the cost of data migration is 
amortized over multiple accesses. How- 
ever, with this algorithm, it is also possible 
for pages to thrash between hosts, result- 
ing in few memory accesses between mi- 
grations and thereby poor performance. 
Often, the application writer will be able to 
control thrashing by judiciously assigning 
data to blocks. 

A second advantage of the migration 
algorithm is that it can be integrated with 
the virtual memory system of the host 
operating system if the size of the block is 
chosen equal to the size of a virtual mem- 
ory page (or a multiple thereof). If a shared 
memory page is held locally, it can be 
mapped into the application’s virtual ad- 
dress space and accessed using the normal 
machine instructions for accessing mem- 
ory. An access to a data item located in data 
blocks not held locally triggers a page fault 
so that the fault handler can communicate 
with the remote hosts to obtain the data 
block before mapping it into the 
application’s address space. When a data 
block is migrated away, it is removed from 
any local address space it has been mapped 
into. 

The location of a remote data block can 
be found by multicasting a migration re- 
quest message to all remote hosts, but more 
efficient methods are known.3 For ex- 
ample, one can statically assign each data 
block to a managing server that always 
knows the location of the data block. To 
distribute the load, the management of all 
data blocks is partitioned across all hosts. 
A client queries the managing server of a 
data block, both to determine the current 
location of the data block and to inform the 
manager that it will migrate the data block. 

Read-replication algorithm. One dis- 
advantage of the algorithms described so 
far is that only the threads on one host can 
access data contained in the same block at 
any given time. Replication can reduce the 
average cost of read operations, since it 
allows read operations to be simultane- 
ously executed locally (with no communi- 
cation overhead) at multiple hosts. How- 
ever, some of the write operations may 
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Figure 3. The migration algorithm. 
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Figure 4. The write operation in the read-replication algorithm. 

become more expensive, since the replicas 
may have to be invalidated or updated to 
maintain consistency. Nevertheless, if the 
ratio of reads over writes is large, the extra 
expense for the write operations may be 
more than offset by the lower average cost 
of the read operations. 

Replication can be naturally added to 
the migration algorithm by allowing either 
one site a read/write copy of a particular 
block or multiple sites read-only copies of 
that block. This type of replication is re- 
ferred to as “multiple readers/single 
writer” (MRSW) replication. 

For a read operation on a data item in a 
block that is currently not local, it is neces- 
sary to communicate with remote sites to 
first acquire a read-only copy of that block 
and to change to read-only the access rights 
to any writable copy if necessary before 
the read operation can complete. For a 
write operation to data in a block that is 
either not local or for which the local host 
has no write permission, all copies of the 
same block held at other sites must be 
invalidated before the write can proceed. 
(See Figure 4.) 

This strategy resembles the write-invali- 
date algorithm for cache consistency im- 
plemented by hardware in some multi- 
p rocessor~ . ’~  The read-replication algo- 
rithm is consistent because a read access 
always returns the value of the most recent 
write to the same location. 

This type of replication has been inves- 
tigated ex ten~ive ly .~ .~  In Li’s implementa- 
tion, each block has a server designated as 
its owner that is responsible for maintain- 
ing a list of the servers having a read-only 
copy of that block. This list is called the 
block’s copy ser. 

A read (or write) access to a block for 
which a server does not have the appropri- 
ate access rights causes a read (or write) 
fault. The fault handler transmits a request 
to the server that has ownership of the 
appropriate block. For a read fault, the 
owning server replies with a copy of the 
block, adds the requesting server to the 
copy set of the requested block and, if 
necessary, changes the access rights of its 
local copy to read-only. 

When a write fault occurs, ownership 
for the block is transferred from the previ- 
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Figure 5. The full-replication algorithm. 

ous owner to the server where the write 
fault occurred. After receiving the re- 
sponse, the write-fault handler requests all 
servers in the copy set to invalidate their 
local copy, after which the access rights to 
that block are set to write access at the site 
of the new owner and the copy set is 
cleared. 

Full-replication algorithm. Full repli- 
cation allows data blocks to be replicated 
even while being written to. The full-repli- 
cation algorithm therefore adheres to a 
“multiple readers/multiple writers” 
(MRMW) protocol. Keeping the data cop- 
ies consistent is straightforward for non- 
replicated algorithms, since accesses to 
data are sequenced according to the order 
in which they occur at the site where the 
data is held. In the case of fully replicated 
data, accesses to the data must either be 
properly sequenced or controlled to ensure 
consistency. 

One possible way to keep the replicated 
data consistent is to globally sequence the 
write operations, while only sequencing 
the read operations relative to the writes 
that occur local to the site where the reads 
are executed. For example, the write up- 
date algorithm for cache consistency im- 
plemented by hardware in some multi- 
processor~’~ maintains consistency in this 
fashion: that is, its reads occur locally from 
the cache while writes are broadcast over 
the bus that sequences them automatically. 

A simple strategy based on sequencing 
uses a single global gap-free sequencer, 
depicted in Figure 5, which is a process 
executing on a host participating in distrib- 
uted shared memory. When a process at- 
tempts a write to shared memory, the in- 

tended modification is sent to the se- 
quencer. This sequencer assigns the next 
sequence number to the modification and 
multicasts the modification with this se- 
quence number to all sites. 

Each site processes broadcast write 
operations in sequence number order. 
When a modification arrives at a site, the 
sequence number is verified as the next 
expected one. If a gap in the sequence 
numbers is detected, either a modification 
was missed or a modification was received 
out of order, in which case a retransmission 
of the modification message is requested. 
(This implies that somewhere a log of 
recent write requests be maintained.) In 
effect, this strategy implements a negative 
acknowledgment protocol. 

In the common case within our assumed 
environment, packets arrive at all sites in 
their proper order. Therefore, a write re- 
quires two packet events at the writing 
process, two packet events at the se- 
quencer, and a packet event at each of the 
other replica sites, for a system total of S+2 
packet events with S participating sites. 

Many variants to the above algorithms 
exist. For example, Bisiani and Forin’ 
described an algorithm for full replication 
that uses the same principle as the sequenc- 
ing algorithm to ensure individual data 
structures remain consistent. However, 
rather than using a single server to se- 
quence all writes, writes to any particular 
data structure are sequenced by the server 
that manages the master copy of that data 
structure. Although each data structure is 
maintained in a consistent manner, there is 
no assurance with this algorithm that up- 
dates to multiple data structures are made 
consistently. 

Performance 
comparisons 

All four algorithms described in the 
previous section ensure consistency in 
distributed shared memory. However, 
their performance is sensitive to the data- 
access behavior of the application. In this 
section, we identify the factors in data- 
access costs and investigate the applica- 
tion behaviors that have significant bear- 
ings on the performance of the algorithms. 
Based on some simple analyses, we com- 
pare the relative merits of the algorithms in 
an attempt to unveil the underlying rela- 
tionship between access patterns of appli- 
cations and the shared memory algorithms 
that are likely to produce better perfor- 
mance for them. 

Model and assumptions. The parame- 
ters in Figure 6 characterize the basic costs 
of accessing shared data and the applica- 
tion behaviors. Among them, the two types 
of access fault rates, f and f ’, have the 
greatest impact on performance of the cor- 
responding algorithms but, unfortunately, 
are also the most difficult to assess since 
they vary widely from application to appli- 
cation. We should also point out that these 
parameters are not entirely independent of 
one another. For instance, the size of a data 
block and therefore the block transfer cost, 
P, influencesfandf’, in conflicting direc- 
tions. As the block size increases, more 
accesses to the block are possible before 
another block is accessed; however, access 
interferences between sites become more 
likely. S also has direct impact on the fault 
rates. Nevertheless, the analyses below 
suffice to characterize the shared memory 
algorithms. 

To focus on the essential performance 
characteristics of the algorithms and to 
simplify our analyses, we make a number 
of assumptions: 

(1) The amount of message traffic will 
not cause network congestion. Hence, we 
will only consider the message-processing 
costs, p and P, but not the network band- 
width occupied by messages. 

(2) Server congestion is not serious 
enough to significantly delay remote ac- 
cess. This is reasonable for the algorithms 
we study, since there are effective ways to 
reduce the load on the servers (see the 
“Central-server algorithm” section). 

(3) The cost of accessing a locally avail- 
able data item is negligible compared to 
remote access cost and therefore does not 
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show up in our access cost calculations 
below. 

(4) Message passing is assumed to be 
reliable, so the cost of retransmission is not 
incurred. Note, however, that the cost for 
acknowledgment messages, required to 
determine whether a retransmission is 
necessary or not, is included in our models. 

To compare the performance of the dis- 
tributed shared memory algorithms, we 
need to define a performance measure. 
Distributed shared memory is often used to 
support parallel applications in which 
multiple threads of execution may be in 
progress on a number of sites. We there- 
fore choose the average cost per data ac- 
cess to the entire system as the perfor- 
mance measure. Hence, if a data access in- 
volves one or more remote sites, the mes- 
sage-processing costs on both the local and 
remote site(s) are included. 

Using the basic parameters and the 
simplifying assumptions described above, 
the average access costs of the four algo- 
rithms can be expressed as follows: 

Central server: C< = (1 - + ) * 4p 

Cm =f * (2P + 4p) 

C,, =f * [2P + 4p +r*l I 
c = 1 * (S + 2)p 

Migration: 

Read replication: 
F ~ I I  replication: 

Each of these expressions has two com- 
ponents. The first component, to the left of 
the *, is the probability of an access to a 
data item being remote. The second com- 
ponent, to the right of the *, is equal to the 
average cost of accessing a remote data 
item. Since the cost of local accesses is 
assumed to be negligible, the average cost 
of accessing a data item therefore equals 
the product of these two components. 

In the case of the central-server algo- 
rithm, the probability of accessing a re- 
mote data item is 1-l/S, in which case four 
packet events are necessary for the access 
(assuming that data is uniformly distrib- 
uted over all sites). The overall cost, Cc, is 
therefore mainly determined by the cost of 
a packet event, as long as the number of 
sites is more than four or five. 

For the migration algorithmJrepresents 
the probability of accessing a nonlocal 
data item. The cost of accessing a data item 
in that case equals the cost of bringing the 
data block containing the data item to the 
local site, which includes a total of one 
block transfer (2P)  and four packet events 
distributed across the local, manager, and 
server sites. We assume here that the local, 
manager, and server sites are all distinct, 

f. r + l  

p: The cost of a packet event, that is, the processing cost of sending or re- 
ceiving a short packet, which includes possible context switchine, iiata 
copying, and interrupt handling overhead. Typical values for real systems 
range from one to several milliseconds. 

P: The cost of sending or receiving a data block. This is similar to p .  except 
that P is typically significantly higher. For an 8-kilobyte block, where of- 
ten multiple packets are needed, typical values range from 20 to 40 milli- 
seconds. 

For our analyses, only the ratio between P and p is important, rather than 
their absolute values. 

S: The number of sites participating in distributed shared memory. 

r :  Read/write ratio, that is, there is one write operation for every r reads on 
average. This parameter is also used to refer to the access pattern of entire 
blocks. Although the two ratios may differ, we assume they are equal in 
order to simplify our analyses. 

f: Probability of an access fault on a nonreplicated data block (used in the 
migration algorithm). This is equal to the inverse of the average number of 
consecutive accesses to a block by a single site, before another site makes 
an access to the same block, causing a fault. fcharacterizes the locality of 
data accesses for the migration algorithm. 

f’: Probability of an access fault on replicated data blocks used in the read- 
replication algorithm. It is the inverse of the average number of consecu- 
tive accesses to data items in blocks kept locally, before a data item in a 
block not kept locally is accessed.f’ characterizes the locality of data ac- 
cesses for the read-replication algorithm. 

Figure 6. Parameters that characterize the basic costs of accessing shared data. 

and that the request is forwarded by the 
manager to the server. The sequence of 
packet events is send (on local site), re- 
ceive (on manager site), forward (on man- 
ager site), and receive (on server site). 

For read replication, the remote access 
cost approximates that of the migration 
algorithm except that, in the case of a write 
fault (which occurs with a probability of 1/ 
( r  + 1)). a multicast invalidation packet 
must be handled by all S sites. The block 
transfer cost is always included in our 
expression, although it may not be neces- 
sary if a write fault occurs and a local 
(read) copy of the block is available. 

Finally, for the full-replication algo- 
rithm, the probability of a remote access 
equals the probability of a write access. 
The associated cost for this write is always 
a message from the local site to the se- 
quencer (two packet events), followed by a 
multicast update message to all other sites 
(S packet events). 

Comparative analyses. The discussion 
above prepares us to make some pair-wise 
comparisons of the algorithms’ perfor- 
mance to illustrate the conditions under 
which one algorithm might outperform 
another. Each comparison is made by 
equating the average costs of the two algo- 
rithms concerned, to derive a curve along 
which they yield similar performance. 

This curve, which we call the equal- 
performing curve, divides the parameter 
space into two halves such that in each half 
one of the algorithms will perform better 
than the other. For example, in the follow- 
ing comparison between migration and 
read replication, the equation on the right 
of Figure 7 is that of the equal-performing 
curve, derived from Cm = Cn (with some 
rearrangement). Since all of the cost for- 
mulas include packet cost p ,  only the ratio 
between P and p matters in the following 
comparative analyses. We assume the 
value of PIP to be 20. Based on these 
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comparisons, we will be able to make some 
general comments on performance. 

Migration versus read replication. The 
only difference between these two algo- 
rithms is that replication is used in the 
read-replication algorithm to allow inter- 
leaved reads on several sites without block 
movements, but at the expense of multi- 
casting invalidation requests upon up- 
dates. Interestingly, as shown in Figure 7, 
the invalidation traffic does not have a 
strong influence on the algorithms’ rela- 
tive performances. As long as the cost of a 
block transfer is substantially higher than 

that of a small message, the curves for 
different values of S and r cluster closely 
together and are very close to the f = f’ line. 

Typically, read replication effectively 
reduces the block fault rate because, in 
contrast to the migration algorithm, inter- 
leaved read accesses to the same block will 
no longer cause faults, so the value off’ is 
smaller than f. Therefore, one can expect 
read replication to outperform migration 
for a vast majority of applications. 

Central server versus read replication. 
Figure 8 compares the central-server and 
read-replication algorithms. The equal- 

performing curve is almost flat, that is, 
insensitive to the number of sites. More- 
over, the influence of the read/write ratio is 
also minimal. Hence, the key considera- 
tion. in choosing between the two algo- 
rithms is the locality of access. Typically, 
a block fault rate of 0.07 (14 accesses 
between faults) is considered very high 
(faults very frequent). Therefore, read 
replication appears to be more favorable 
for many applications. 

Read replication versus full replication. 
Both algorithms use read replication. The 
full-replication algorithm is more aggres- 
sive in that multiple copies are maintained 
even for updates. Figure 9 shows that the 
relative performance of the two algorithms 
depends on a number of factors, including 
the degree of replication, the read/write 
ratio, and the degree of locality achievable 
in read replication. The full-replication 
algorithm is not susceptible to poor local- 
ity, since all data is replicated at all sites. 
On the other hand, the cost of multicast 
increases with S. Therefore, full replica- 
tion performs poorly for large systems and 
when update frequency is high (that is, 
when r is low). 

Central server versus full replication. 
These two algorithms represent the two 
extremes in supporting shared data: one is 
completely centralized, the other is com- 
pletely distributed and replicated. Except 
for small values of S, the curve shown in 
Figure 10 is almost linear. For S values of 
up to about 20, the aggressive replication 
of full replication seems to be advanta- 
geous, as long as the read/write ratio is five 
or higher. For very large replication, how- 
ever, the update costs of full replication 
catch up, and the preference turns to the 
simple central-server algorithm. 

Remaining comparisons. The two re- 
maining pairs not yet considered are sum- 
marized as follows. The comparison be- 
tween central server and migration re- 
sembles that between central server and 
read replication, with a rather flat curve 
beneath f = 0.09. Thus, unless the block 
fault rate is very high, migration performs 
better. The comparison between migration 
and full replication reveals no clear win- 
ner, as in the case of read replication versus 
full replication, with the key deciding fac- 
tors being S and r .  

Comments. Based on the comparisons 
above, we can make a few observations. 
The central-server algorithm is simple to 
implement and may be sufficient for infre- 

60 COMPUTER 



quent accesses to shared data, especially if 
the read/write ratio is low (that is, a high 
percentage of accesses are writes). This is 
often the case with locks, as will be dis- 
cussed further below. However, locality of 
reference and a high-block-hit ratio are 
present in a wide range of applications, 
making block migration and replication 
advantageous. 

The fault rate of the simple migration 
algorithm may increase due to interleaved 
accesses if different data items that happen 
to be in the same block are accessed by 
different sites. It thus does not explore 
locality to its full extent. The full-replica- 
tion algorithm is suitable for small-scale 
replication and infrequent updates. 

In contrast, the read-replication algo- 
rithm is often a good compromise for many 
applications. The central-server and full- 
replication algorithms share the property 
of insensitivity to access locality, so they 
may outperform the read-replication algo- 
rithm if the application exhibits poor ac- 
cess locality. 

A potentially serious performance prob- 
lem with algorithms that move large data 
blocks is block thrashing. For migration, it 
takes the form of moving data back and 
forth in quick succession when interleaved 
data accesses are made by two or more 
sites. For read replication, it takes the form 
of blocks with read-only permissions being 
repeatedly invalidated soon after they are 
replicated. 

Such situations indicate poor (site) lo- 
cality in references. For many applica- 
tions, shared data can be allocated and the 
computation can be partitioned to mini- 
mize thrashing. Application-controlled 
locks can also be used to suppress thrash- 
ing (see the section entitled “Application- 
level control with locking”). In either case, 
the complete transparency of the distrib- 
uted shared memory is compromised 
somewhat. 
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Applications. From the above compari- 
sons, it is clear that strong interactions 
exist between the shared data access pat- 
terns of applications and their expected 
performance using the various algorithms. 
To make our discussion more concrete, we 
study such interactions further in this sec- 
tion, based on our experience implement- 
ing the algorithms and measuring their 
performance. We do this by examining a 
few types of applications and the consis- 
tency algorithms that might suit them. 

Numerical subroutines and other appli- 
cations. The Blas-111 package contains a 
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frequently used set of matrix manipulation 
subroutines implemented in Fortran. Typi- 
cally, one or more (large) matrices are used 
as input to generate a result matrix of the 
same dimension. The amount of computa- 
tion, usually substantial, can be sped up by 
assigning processors to compute 
subregions of the result matrix. This re- 
sults in the input data being widely read- 
shared and the individual regions of the 
result matrix being updated by a single 
site. 

Thus, read replication is highly desir- 
able, whereas update multicast for write 
replication is unnecessary and too costly. 

We observed excellent speedup using the 
read replication algorithm. Li studied 
similar applications in his thesis, and also 
reported very good speedup.’ 

Interestingly, this data-access pattern is 
widespread. For example, we converted a 
graphics application to use distributed 
shared memory. This application uses a 
three-dimensional description of a set of 
objects to compute the visible scene. 
Again, the scene description is input to the 
master process and read-shared among all 
the slave processes, which compute parts 
of the scene. Once the parts are completed, 
the master displays the entire scene. Like 
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matrix computation, there is very little 
interference between the slaves except at 
the block boundaries of the scene buffer. 

A parallel version of a printed circuit 
board inspection program exhibits a very 
similar data-access pattern, as well as 
excellent speedup using the read-replica- 
tion algorithm. 

Shortest paths. Similar to the above ap- 
plications, a large matrix represents the 
paths between pairs of nodes in a graph. 
However, elements of this matrix are up- 
dated in place as new, better paths are 
discovered. In our straightforward parallel 
implementation, the processes make inter- 
leaved and mixed read and write accesses 
to the matrix, with the update rate being 
high at the beginning and declining as 
better paths become harder and harder to 
find. The central-server algorithm is inap- 
propriate because, like the applications 
above, accesses are frequent. 

On the other hand, since access locality 
is poor, large numbers of block transfers 
due to thrashing are unavoidable if either 
the migration or the read-replication algo- 
rithm is used. Full replication appears to 
perform better, especially for the later 
stages of the computation. Instead of trans- 
ferring or invalidating a whole block when 
one entry is updated, only that entry is 
distributed. 

Hypermedia and distributed game play- 
ing. Although these two types of applica- 
tions serve very different purposes, they 
often share the characteristics of making 
interactive, concurrent accesses to shared 
data, with updates to moving, focused 
regions of the data space as the participants 
cooperate on or fight over the same areas. 
The read-replication algorithm may ex- 
hibit block thrashing as a result, and full 
replication again shows its merits. 

Distributed locks. Locks are often used 
in parallel applications for synchroniza- 
tion. Typically, locks require little storage 
and exhibit poor locality, so that algo- 
rithms using block transfers - migration 
and read replication - are inappropriate. 
If the demand on a lock is light, a thread 
will usually find the lock free and may 
simply lock it, perform the relevant opera- 
tion, and then unlock it. 

Since such operations are relatively in- 
frequent, a simple algorithm such as cen- 
tral server is sufficient. However, if a lock 
is highly contended for, a process might 
repeatedly attempt to lock it without suc- 

cess, or a “call-back” mechanism might be 
used to avoid spinning. In either case, the 
cost of accessing remotely stored locks can 
be significant, and migrating this lock 
alone is desirable. Some specialized algo- 
rithm seems desirable for distributed locks. 

Improving 
performance 

Many variations to the basic distributed 
shared memory algorithms exist. Many of 
them improve performance for specific 
applications by optimizing for particular 
memory access behaviors, typically by 
attempting to reduce the amount of com- 
munication since costs are dominated by 
communication costs. Here, we describe 
two particularly interesting variations and 
also describe how applications can help 
improve performance by controlling the 
actions of the distributed shared memory 
algorithm. The largest improvements to 
performance can probably be achieved by 
relaxing consistency constraints,* some- 
thing we do not consider here. 

Full replication with delayed broad- 
casts. The full-replication algorithm in- 
curs S + 2 packet events on each write 
operation, where S is the number of partici- 
pating sites. A slight modification to this 
algorithm can reduce the number of packet 
events per write to four, while read opera- 
tions continue to be executed locally (with 
no communication overhead). 

Instead of broadcasting the data modifi- 
cations to each site, the sequencer only 
logs them. A write sent to the sequencer by 
process P is acknowledged directly and a 
copy of all modifications that arrived at the 
sequencer since the previous time P sent a 
write request is included with the acknowl- 
edgment. Thus, the shared memory at a site 
is updated only when a write occurs at that 
site. As in the full-replication algorithm, 
read operations are performed locally 
without delays. 

This variation on the full-replication 
algorithm still maintains consistency, but 
has at least two disadvantages. First, it 
refrains from updating shared memory for 
as long as possible and therefore does not 
conform to any real-time behavior. Pro- 
grams cannot simply busywait, waiting for 
a variable to be set. Second, it places an 
additional load on the (central) sequencer, 
which must maintain a log of data modifi- 
cations and eventually copy each such 
modification into a message S-1 times. 

An optimistic full-replication algo- 
rithm. All of the basic algorithms de- 
scribed in the “Basic algorithms” section 
are pessimistic in that they ensure a priori 
that a process can access data only when 
the shared data space is and will remain 
consistent. Here, we describe an algo- 
rithm’ that is optimistic in that it deter- 
mines a posteriori whether a process has 
accessed inconsistent data, in which case 
that process is rolled back to a previous 
consistent state. This algorithm evolved 
from attempts to increase performance of 
the full-replication algorithm by coalesc- 
ing multiple write operations into a single 
communication packet. 

Instead of obtaining a sequence number 
for each individual write operation, a se- 
quence number is obtained for a series of 
consecutive writes by a single process. 
Obviously, this may lead to inconsistent 
copies of data, since writes are made to the 
local copy and only later transmitted (in 
batch) to other sites. If the modified data is 
not accessed before it reaches a remote 
site, temporary inconsistencies will not 
matter. Otherwise, a conflict has occurred, 
in which case one of the processes will 
have to roll back. 

To roll back a process, all accesses to 
shared data are logged. To maintain the 
manageability of the size of these logs (and 
the operations on them efficient), it is 
convenient to organize the data accesses 
into transactions, where each transaction 
consists of any number of read 
and write operations bracketed by a 
begin-transaction and a end-transaction. 

When end-transaction is executed, a 
unique gap-free sequence number for the 
transaction is requested from a central 
sequencer. This sequence number deter- 
mines the order in which transactions are 
to be committed. A transaction T with 
sequence number n is aborted if any con- 
currently executed transaction with a se- 
quence number smaller than n has modi- 
fied any of the data that transaction T 
accessed. Otherwise, the transaction is 
committed and its modifications to shared 
data are transmitted to all other sites. These 
transactions will never have to roll back. 
The logs of a transaction can then be dis- 
carded. 

Clearly, the performance of this opti- 
mistic algorithm will depend on the access 
behavior of the application program and 
the application program’s use of transac- 
tions. If rollbacks are infrequent, it will 
easily outperform the basic full-replica- 
tion algorithm. It will also outperform the 
read-replication algorithm for those appli- 
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cations that suffer from thrashing, since 
the optimistic algorithm compares shared 
memory accesses at the per-data-item level 
(as opposed to a per-data-block level). The 
primary drawback of this algorithm, how- 
ever, is the fact that the shared memory is 
no longer transparent to the application 
because the memory accesses must be 
organized into transaction and because roll 
backs must be properly handled by the 
application. 

Application-level control with lock- 
ing. Locks can be used by the application 
not only for its synchronization needs, but 
also to improve the performance of the 
shared memory algorithms. For example, 
in the case of the migration and read-repli- 
cation algorithms, locking data to prevent 
other sites from accessing that data for a 
short period of time can reduce thrashing. 

In the case of the full-replication algo- 
rithm, the communication overhead can be 
reduced if replica sites only communicate 
after multiple writes instead of after each 
write. If a write lock is associated with the 
data, then once a process has acquired the 
lock, it is guaranteed that no other process 
will access that data, allowing it to make 
multiple modifications to the data and 
transmitting all modifications made dur- 
ing the time the lock was held in a single 
message without causing a consistency 
problem. That is, communication costs are 
only incurred when data is being unlocked 
rather than every time a process writes to 
shared data. 

Having the application use locks to 
improve the performance of the shared 
memory has a number of disadvantages, 
however. First, the use of locks needs to be 
directed towards a particular shared mem- 
ory algorithm; the shared memory abstrac- 
tion can no longer be transparent. Second, 
the application must be aware of the shared 
data it is accessing and its shared data- 
access patterns. Finally, in the case of those 
algorithms that migrate data blocks, the 
application must be aware of the block 
sizes and the layout of its data in the 
memory. 

espite the simplifying assump- 
tions made in the performance 
analyses, the essential characteris- 

tics of the four basic algorithms are cap- 
tured in the models used. The concept of 
distributed shared memory is appealing 
because, for many distributed applica- 
tions, the shared memory paradigm leads 
to simpler (application) programs than 

when data is passed directly using commu- 
nication primitives. Moreover, with re- 
spect to performance, numerous imple- 
mentations have shown that distributed 
shared memory can compete with and, in 
some cases, even outperform data-passing 
programs. 

On the negative side, the performance of 
the algorithms that implement distributed 
shared memory are sensitive to the shared 
memory access behavior of the applica- 
tions. Hence, as we have shown, no single 
algorithm for distributed shared memory 
will be suitable for most applications. The 
performance-conscious application writer 
will need to choose an appropriate algo- 
rithm for an application after careful analy- 
sis or experimentation. 

In some cases, he or she will want to use 
different algorithms (for different data) 
within a single application. Moreover, 
because these algorithms are sensitive to 
the access behavior of the applications, it is 
possible to improve their performance 
significantly either by fine-tuning the 
application’s use of the memory or by fine- 
tuning the shared memory algorithm for 
the access behavior of the particular appli- 
cation, thus eliminating the advantages of 
transparent shared memory access. We 
should also emphasize that distributed 
shared memory may be entirely unsuitable 
for some applications. 

Further work is still needed to make 
distributed shared memory as versatile as 
its data-passing counterparts. For ex- 
ample, the distributed shared memory al- 
gorithms we have described are not toler- 
ant of faults. Whenever a host containing 
the only copy of some data items crashes, 
critical state is lost. Although the central- 
server and the full-replication algorithms 
can be made tolerant of single-host crashes 
(for example, by using a backup server in 
the case of the central-server algorithm), it 
is not clear how to make the migration and 
read-replication algorithms equally fault 
tolerant. 

Compared to data passing, distributed 
shared memory does not appear to be as 
suitable for heterogeneous environments 
at this time, although several research ef- 
forts on this problem are currently under 

Consider, for example, the migra- 
tion algorithm in an environment consist- 
ing of hosts that use different byte order- 
ings and floating-point representations. 

When a page is migrated between two 
hosts of different types, the contents of the 
page must be converted before it can be 
accessed by the application. It is not pos- 
sible for the distributed memory system to 

convert the page without knowing the type 
of the application-level data contained in 
the page and the actual page layout. This 
complicates the interface between the 
memory system and the application. 

If noncompatible compilers are used for 
an application to generate code for the 
different hosts such that size of the applica- 
tion-level data structures differs from host 
to host, then conversions on a per-page 
basis become impossible. For example, an 
additional problem for numerical applica- 
tions is that, since the application has no 
control over how often a block is migrated 
or converted and since accuracy may be 
lost on floating-point conversions, the 
result may become numerically question- 
able. 

For these reasons, we consider distrib- 
uted shared memory to be a useful para- 
digm for implementing a large class of 
distributed applications, but do not expect 
it to become widely available in the form of 
a single standardized package, as has been 
the case for remote procedure calls, for 
example. Rather, we expect that distrib- 
uted shared memory will be made avail- 
able in a number of forms from which the 
application writer can choose. 
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