
Algorithms
Implementing

Distributed Shared
Memory

Michael Stumm and Songnian Zhou

University of Toronto

raditionally, communication sage passing) communication system. The
among processes in a distributed shared memory model applied to loosely a system is based on the data-pass-

ing model. Message-passing systems or
systems that support remote procedure
calls (RPCs) adhere to this model. The
data-passing model logically and conven-
iently extends the underlying communica-
tion mechanism of the system; port or
mailbox abstractions along with primitives
such as Send and Receive are used for
interprocess communication. This func-
tionality can also be hidden in language-
level constructs, as with RPC mechanisms.
In either case, distributed processes pass
shared information by value.

This article compares
several algorithms for

implementing
distributed shared

memory. It shows that
the performance of
these algorithms is

sensitive to the
memory access

behavior of
applications.

In contrast to the data-passing model,
the shared memory model provides pro-

space. Application programs can use this
cesses in a system with a shared address

space in the same way they use normal . .

local memory. That is, data in the shared
space is accessed through Read and Write
operations. As a result, applications can
pass shared information by reference. The
shared memory model is natural for dis-
tributed computations running on shared
memory multiprocessors. For loosely
coupled distributed systems, no physically
shared memory is available to support such
a model. However, a layer of software can
provide a shared memory abstraction to the

applications. This software layer, which
can be implemented either in an operating
system kernel or, with proper system ker-
nel support, in runtime library routines,
uses the services of an underlying (mes-

coupled systems is referred to as distrib-
uted shared memory.

In this article, we describe and compare
basic algorithms for implementing distrib-
uted shared memory by analyzing their
performance. Conceptually, these algo-
rithms extend local virtual address spaces
to span multiple hosts connected by a local
area network, and some of them can easily
be integrated with the hosts’ virtual mem-
ory systems. In the remainder of this sec-
tion, we describe the merits of distributed
shared memory and the assumptions we
make with respect to the environment in
which the shared memory algorithms are
executed. We then describe four basic
algorithms, provide a comparative analy-
sis of their performance in relation to
application-level access behavior, and
show that the correct choice of algorithm is
determined largely by the memory access
behavior of the applications. We describe
two particularly interesting extensions of
the basic algorithms and conclude by ob-
serving some limitations of distributed
shared memory.

Advantages of distributed shared
memory. The primary advantage of dis-
tributed shared memory over data passing

54 0018-9162/90/0500-0054S01.00 Q 1990 IEEE COMPUTER

is the simpler abstraction provided to the
application programmer, an abstraction
the programmer already understands well.
The access protocol used is consistent with
the way sequential applications access
data, allowing for a more natural transition
from sequential to distributed applications.
In principle, parallel and distributed com-
putations written for a shared memory
multiprocessor can be executed on a dis-
tributed shared memory system without
change. The shared memory system hides
the remote communication mechanism
from the processes and allows complex
structures to be passed by reference, sub-
stantially simplifying the programming of
distributed applications. Moreover, data in
distributed shared memory can persist
beyond the lifetime of a process accessing
the shared memory.

In contrast, the message-passing models
force programmers to be conscious of data
movement between processes at all times,
since processes must explicitly use com-
munication primitives and channels or
ports. Also, since data in the data-passing
model is passed between multiple address
spaces, it is difficult to pass complex data
structures. Data structures passed between
processes must be marshaled and un-
marshaled by the application. (Marshaling
refers to the linearizing and packing of a
data structure into a message.)

For these reasons, the code of distrib-
uted applications written for distributed
shared memory is usually significantly
shorter and easier to understand than
equivalent programs that use data passing.

The advantages of distributed shared
memory have made it the focus of recent
study and have prompted the development
of various algorithms for implementing
the shared data model.'-8 Several imple-
mentations have demonstrated that, in
terms of performance, distributed shared
memory can compete with direct use of
data passing in loosely coupled distributed
 system^.'-^.^

In a few cases, applications using dis-
tributed shared memory can even outper-
form their message-passing counterparts
(even though the shared memory system is
implemented on top of a message-passing
system). This is possible for three reasons:

(1) For shared memory algorithms that
move data between hosts in large blocks,
communication overhead is amortized
over multiple memory accesses, reducing
overall communication requirements if the
application exhibits a sufficient degree of
locality in its data accesses.

(2) Many (distributed) parallel applica-
tions execute in phases, where each com-
putation phase is preceded by a data-ex-
change phase. The time needed for the
data-exchange phase is often dictated by
the throughput limitations of the commu-
nication system. Distributed shared mem-
ory algorithms typically move data on
demand as they are being accessed, elimi-
nating the data-exchange phase, spreading
the communication load over a longer
period of time, and allowing for a greater
degree of concurrency.

(3) The total amount of memory may be
increased proportionally, reducing paging
and swapping activity!

Similar systems. Distributed shared
memory systems have goals similar to
those of CPU cache memories in shared-
memory multiprocessors, local memories
in shared memory multiprocessors with
nonuniform memory access (NUMA)
times, distributed caching in network file
systems, and distributed databases. In par-
ticular, they all attempt to minimize the
access time to potentially shared data that
is to be kept consistent. Consequently,
many of the algorithmic issues that must be
addressed in these systems are similar.

Although these systems therefore often
use algorithms that appear similar from a
distance, their details and implementations
can vary significantly because of differ-
ences in the cost parameters and in the
ways they are used. For example, in
NUMA multiprocessors, the memories are
physically shared and the time differential
between accesses of local and remote
memory is lower than in distributed sys-
tems, as is the cost of transferring a block
of data between the local memories of two
processors. Hence, some of the algorithms
we discuss in this article will be relevant to
designers of NUMA memory management
systems, but the algorithms they chose as
most appropriate may differ.

Similarly, in bus-based shared memory
multiprocessors, replication in the CPU
caches (to avoid the much higher delays of
accessing main memory and to reduce bus
congestion) can be implemented cost ef-
fectively because of the reliability and
broadcast properties of the bus. On the
other hand, in distributed systems where
communication is unreliable, we show that
algorithms without replication can benefit
certain types of applications. As a third
example, distributed file systems and data-
bases must provide for persistent data and,
in the case of distributed databases, relia-
bility and atomicity. These requirements

can significantly affect the choice of algo-
rithm.

Model and environmental assump-
tions. In our discussions and analyses, we
make certain assumptions with respect to
the environment in which the algorithms
are implemented. These are described
here. The extrapolation of our results to
other environments is left for future work.

In general, the performance of distrib-
uted and parallel applications is dictated
primarily by communication costs, which
in turn are dictated by the underlying hard-
ware. Here, we assume a distributed sys-
tem environment consisting of a cluster of
hosts connected by a local area network,
such as an Ethernet. In this environment,
communication between processors is
unreliable and slow relative to local mem-
ory access. We assume that broadcast and
multicast communication, where a single
message can be sent (unreliably) to mul-
tiple receivers in a single network transac-
tion, is available. Most bus and ring net-
works fit this description.

For performance analysis, communica-
tion costs are abstracted in terms of the
number of messages sent and the number
of packet events. A packet event is the cost
associated with either receiving or sending
a small packet (about 1 millisecond on a
Sun-3/50). A point-to-point message
transfer therefore requires one message, a
packet event at the sending site, and a
packet event at the receiving site. A multi-
cast or broadcast message transmission
requires one message, apacket event at the
sending site, and a packet event at each
receiving site.

The shared memory model provides two
basic operations for accessing shared data:

data := read(address)
write(data, address)

Read returns the data item referenced by
Address, and Write sets the contents refer-
enced by Address to the value of Data. For
simplicity, the algorithms for implement-
ing shared data are described in terms of
these two operations. We assume that the
distributed applications call these func-
tions explicitly, although this may not
always be necessary with suitable com-
piler and/or operating-system support, and
that the data item accessed is always a
single word.

Of course, variations in the syntax and
semantics of these operations are possible.
For instance, the operations may be called
by a number of different names, such as

May 1990 55

NonreDlicated ReDliCated

Migrating

Non-migrating I Central I Full-replication I
Migration Read-replication I

Figure 1. Four distributed memory algorithms.

Central
sewer

0 &O
Clients

Client

Send data request

Receive response

Central sewer

Receive request
Perform data access
Send response

Figure 2. The central-server algorithm.

fetch/store and in/out. The type of the data
being accessed can also vary and include
integers, byte arrays, or more complex
user-defined types. Finally, the semantics
of the memory access functions can go
beyond those offered by traditional mem-
ory systems and can include atomic
enqueuing or dequeuing operations, or
even entire database operations. For ex-
ample, Linda” is a programming language
that directly supports a shared data space
by providing a shared tuple space and three
basic operations: Read reads an existing
data item called “tuple” from the tuple
space, Out adds a new tuple, and In reads
and then removes an existing tuple.
Linda’s tuples are addressed by content
rather than by location.

Basic algorithms
This section describes four basic distrib-

uted shared memory algorithms. For each
of these algorithms, we consider the cost of
read and write operations and issues in
their implementation. The algorithms de-
scribed can be categorized by whether they
migrate and/or replicate data, as depicted
in Figure 1. Two of the algorithms migrate
data to the site where it is accessed in an

attempt to exploit locality in data accesses
and decrease the number of remote ac-
cesses, thus avoiding communication
overhead. The two other algorithms repli-
cate data so that multiple read accesses can
take place at the same time using local
accesses.

Implementations of distributed shared
memory based on replication should make
this replication transparent to the applica-
tions. In other words, processes should not
be able to observe (by reading and writing
shared data) that all data accesses are not
directed to the same copy of data.

More formally,” the result of applica-
tions using shared data should be the same
as if the memory operations of all hosts
were executing in some sequential order,
and the operations of each individual host
appear in sequence in the order specified
by its program, in which case the shared
memory is said to be consistent.

Shared memory in a shared memory
multiprocessor is expected to behave this
way. This definition of consistency should
not be confused with a stricter definition
requiring read accesses to return the value
of the most.recent write to the same loca-
tion, which is naturally applicable to con-
current processes running on a uniproces-
sor but not necessarily to those on shared

memory multiprocessors with CPU caches
and write-back buffers.’* If the stricter
definition holds, then so does the weaker
definition (but the converse is not true).

Central-server algorithm. The sim-
plest strategy for implementing distributed
shared memory uses a central server that is
responsible for servicing all accesses to
shared data and maintains the only copy of
the shared data. Both read and write opera-
tions involve the sending of a request
message to the data server by the process
executing the operation, as depicted in
Figure 2. The data server executes the
request and responds either with the data
item in the case of a read operation or with
an acknowledgment in the case of a write
operation.

A simple request-response protocol can
be used for communication in implementa-
tions of this algorithm. For reliability, a
request is retransmitted after each time-out
period with no response. This is sufficient,
since the read request is idempotent; for
write requests, the server must keep a
sequence number for each client so that it
can detect duplicate transmissions and
acknowledge them appropriately. A fail-
ure condition is raised after several time-
out periods with no response.

Hence, this algorithm requires two
messages for each data access: one from
the process requesting the access to the
data server and the other containing the
data server’s response. Moreover, each
data access requires four packet events:
two at the requesting process (one to send
the request and one to receive the re-
sponse), and two at the server.

One potential problem with the central
server is that it may become a bottleneck,
since it has to service the requests from all
clients. To distribute the server load, the
shared data can be distributed onto several
servers. In that case, clients must be able to
locate the correct server for data access. A
client can multicast its access requests to
all servers, but this would not significantly
decrease the load on all servers, since every
server would incur the overhead of apacket
event for each such request. A better solu-
tion is to partition the data by address and
use some simple mapping function to de-
cide which server to contact.

Migration algorithm. In the migration
algorithm, depicted in Figure 3, the data is
always migrated to the site where it is
accessed. This is a “single reader/single
writer” (SRSW) protocol, since only the
threads executing on one host can read or

56 COMPUTER

write a given data item at any one time.
Instead of migrating individual data

items, data is typically migrated between
servers in a fixed size unit called a block to
facilitate the management of the data. The
advantage of this algorithm is that no
communication costs are incurred when a
process accesses data currently held lo-
cally.

If an application exhibits high locality of
reference, the cost of data migration is
amortized over multiple accesses. How-
ever, with this algorithm, it is also possible
for pages to thrash between hosts, result-
ing in few memory accesses between mi-
grations and thereby poor performance.
Often, the application writer will be able to
control thrashing by judiciously assigning
data to blocks.

A second advantage of the migration
algorithm is that it can be integrated with
the virtual memory system of the host
operating system if the size of the block is
chosen equal to the size of a virtual mem-
ory page (or a multiple thereof). If a shared
memory page is held locally, it can be
mapped into the application’s virtual ad-
dress space and accessed using the normal
machine instructions for accessing mem-
ory. An access to a data item located in data
blocks not held locally triggers a page fault
so that the fault handler can communicate
with the remote hosts to obtain the data
block before mapping it into the
application’s address space. When a data
block is migrated away, it is removed from
any local address space it has been mapped
into.

The location of a remote data block can
be found by multicasting a migration re-
quest message to all remote hosts, but more
efficient methods are known.3 For ex-
ample, one can statically assign each data
block to a managing server that always
knows the location of the data block. To
distribute the load, the management of all
data blocks is partitioned across all hosts.
A client queries the managing server of a
data block, both to determine the current
location of the data block and to inform the
manager that it will migrate the data block.

Read-replication algorithm. One dis-
advantage of the algorithms described so
far is that only the threads on one host can
access data contained in the same block at
any given time. Replication can reduce the
average cost of read operations, since it
allows read operations to be simultane-
ously executed locally (with no communi-
cation overhead) at multiple hosts. How-
ever, some of the write operations may

Migration Client
request

If block not local,
determine location
send request

Data block Receive response
Access data

0 0

Remote host

Receive request
Send block

Figure 3. The migration algorithm.

Block Client
request

If block not local,
determine location
send request

Receive block
Multicast invalidate

Access data

Block

Invalidate
0

Remote host

Receive request
Send block

Receive invalidate
invalidate block

Figure 4. The write operation in the read-replication algorithm.

become more expensive, since the replicas
may have to be invalidated or updated to
maintain consistency. Nevertheless, if the
ratio of reads over writes is large, the extra
expense for the write operations may be
more than offset by the lower average cost
of the read operations.

Replication can be naturally added to
the migration algorithm by allowing either
one site a read/write copy of a particular
block or multiple sites read-only copies of
that block. This type of replication is re-
ferred to as “multiple readers/single
writer” (MRSW) replication.

For a read operation on a data item in a
block that is currently not local, it is neces-
sary to communicate with remote sites to
first acquire a read-only copy of that block
and to change to read-only the access rights
to any writable copy if necessary before
the read operation can complete. For a
write operation to data in a block that is
either not local or for which the local host
has no write permission, all copies of the
same block held at other sites must be
invalidated before the write can proceed.
(See Figure 4.)

This strategy resembles the write-invali-
date algorithm for cache consistency im-
plemented by hardware in some multi-
p rocessor~ . ’~ The read-replication algo-
rithm is consistent because a read access
always returns the value of the most recent
write to the same location.

This type of replication has been inves-
tigated ex ten~ive ly .~ .~ In Li’s implementa-
tion, each block has a server designated as
its owner that is responsible for maintain-
ing a list of the servers having a read-only
copy of that block. This list is called the
block’s copy ser.

A read (or write) access to a block for
which a server does not have the appropri-
ate access rights causes a read (or write)
fault. The fault handler transmits a request
to the server that has ownership of the
appropriate block. For a read fault, the
owning server replies with a copy of the
block, adds the requesting server to the
copy set of the requested block and, if
necessary, changes the access rights of its
local copy to read-only.

When a write fault occurs, ownership
for the block is transferred from the previ-

May 1990

.-

57

Sequencer

Client
Write If write

send data

Clients Receive
acknow-
ledgement

Update local
memory

Sequencer

Receive data
Add sequencer

number
Multicast n Hosts

Receive data
Update local

memory

Figure 5. The full-replication algorithm.

ous owner to the server where the write
fault occurred. After receiving the re-
sponse, the write-fault handler requests all
servers in the copy set to invalidate their
local copy, after which the access rights to
that block are set to write access at the site
of the new owner and the copy set is
cleared.

Full-replication algorithm. Full repli-
cation allows data blocks to be replicated
even while being written to. The full-repli-
cation algorithm therefore adheres to a
“multiple readers/multiple writers”
(MRMW) protocol. Keeping the data cop-
ies consistent is straightforward for non-
replicated algorithms, since accesses to
data are sequenced according to the order
in which they occur at the site where the
data is held. In the case of fully replicated
data, accesses to the data must either be
properly sequenced or controlled to ensure
consistency.

One possible way to keep the replicated
data consistent is to globally sequence the
write operations, while only sequencing
the read operations relative to the writes
that occur local to the site where the reads
are executed. For example, the write up-
date algorithm for cache consistency im-
plemented by hardware in some multi-
processor~’~ maintains consistency in this
fashion: that is, its reads occur locally from
the cache while writes are broadcast over
the bus that sequences them automatically.

A simple strategy based on sequencing
uses a single global gap-free sequencer,
depicted in Figure 5, which is a process
executing on a host participating in distrib-
uted shared memory. When a process at-
tempts a write to shared memory, the in-

tended modification is sent to the se-
quencer. This sequencer assigns the next
sequence number to the modification and
multicasts the modification with this se-
quence number to all sites.

Each site processes broadcast write
operations in sequence number order.
When a modification arrives at a site, the
sequence number is verified as the next
expected one. If a gap in the sequence
numbers is detected, either a modification
was missed or a modification was received
out of order, in which case a retransmission
of the modification message is requested.
(This implies that somewhere a log of
recent write requests be maintained.) In
effect, this strategy implements a negative
acknowledgment protocol.

In the common case within our assumed
environment, packets arrive at all sites in
their proper order. Therefore, a write re-
quires two packet events at the writing
process, two packet events at the se-
quencer, and a packet event at each of the
other replica sites, for a system total of S+2
packet events with S participating sites.

Many variants to the above algorithms
exist. For example, Bisiani and Forin’
described an algorithm for full replication
that uses the same principle as the sequenc-
ing algorithm to ensure individual data
structures remain consistent. However,
rather than using a single server to se-
quence all writes, writes to any particular
data structure are sequenced by the server
that manages the master copy of that data
structure. Although each data structure is
maintained in a consistent manner, there is
no assurance with this algorithm that up-
dates to multiple data structures are made
consistently.

Performance
comparisons

All four algorithms described in the
previous section ensure consistency in
distributed shared memory. However,
their performance is sensitive to the data-
access behavior of the application. In this
section, we identify the factors in data-
access costs and investigate the applica-
tion behaviors that have significant bear-
ings on the performance of the algorithms.
Based on some simple analyses, we com-
pare the relative merits of the algorithms in
an attempt to unveil the underlying rela-
tionship between access patterns of appli-
cations and the shared memory algorithms
that are likely to produce better perfor-
mance for them.

Model and assumptions. The parame-
ters in Figure 6 characterize the basic costs
of accessing shared data and the applica-
tion behaviors. Among them, the two types
of access fault rates, f and f ’, have the
greatest impact on performance of the cor-
responding algorithms but, unfortunately,
are also the most difficult to assess since
they vary widely from application to appli-
cation. We should also point out that these
parameters are not entirely independent of
one another. For instance, the size of a data
block and therefore the block transfer cost,
P, influencesfandf’, in conflicting direc-
tions. As the block size increases, more
accesses to the block are possible before
another block is accessed; however, access
interferences between sites become more
likely. S also has direct impact on the fault
rates. Nevertheless, the analyses below
suffice to characterize the shared memory
algorithms.

To focus on the essential performance
characteristics of the algorithms and to
simplify our analyses, we make a number
of assumptions:

(1) The amount of message traffic will
not cause network congestion. Hence, we
will only consider the message-processing
costs, p and P, but not the network band-
width occupied by messages.

(2) Server congestion is not serious
enough to significantly delay remote ac-
cess. This is reasonable for the algorithms
we study, since there are effective ways to
reduce the load on the servers (see the
“Central-server algorithm” section).

(3) The cost of accessing a locally avail-
able data item is negligible compared to
remote access cost and therefore does not

58 COMPUTER

show up in our access cost calculations
below.

(4) Message passing is assumed to be
reliable, so the cost of retransmission is not
incurred. Note, however, that the cost for
acknowledgment messages, required to
determine whether a retransmission is
necessary or not, is included in our models.

To compare the performance of the dis-
tributed shared memory algorithms, we
need to define a performance measure.
Distributed shared memory is often used to
support parallel applications in which
multiple threads of execution may be in
progress on a number of sites. We there-
fore choose the average cost per data ac-
cess to the entire system as the perfor-
mance measure. Hence, if a data access in-
volves one or more remote sites, the mes-
sage-processing costs on both the local and
remote site(s) are included.

Using the basic parameters and the
simplifying assumptions described above,
the average access costs of the four algo-
rithms can be expressed as follows:

Central server: C< = (1 - +) * 4p

Cm =f * (2P + 4p)

C,, =f * [2P + 4p +r*l I
c = 1 * (S + 2)p

Migration:

Read replication:
F ~ I I replication:

Each of these expressions has two com-
ponents. The first component, to the left of
the *, is the probability of an access to a
data item being remote. The second com-
ponent, to the right of the *, is equal to the
average cost of accessing a remote data
item. Since the cost of local accesses is
assumed to be negligible, the average cost
of accessing a data item therefore equals
the product of these two components.

In the case of the central-server algo-
rithm, the probability of accessing a re-
mote data item is 1-l/S, in which case four
packet events are necessary for the access
(assuming that data is uniformly distrib-
uted over all sites). The overall cost, Cc, is
therefore mainly determined by the cost of
a packet event, as long as the number of
sites is more than four or five.

For the migration algorithmJrepresents
the probability of accessing a nonlocal
data item. The cost of accessing a data item
in that case equals the cost of bringing the
data block containing the data item to the
local site, which includes a total of one
block transfer (2P) and four packet events
distributed across the local, manager, and
server sites. We assume here that the local,
manager, and server sites are all distinct,

f. r + l

p: The cost of a packet event, that is, the processing cost of sending or re-
ceiving a short packet, which includes possible context switchine, iiata
copying, and interrupt handling overhead. Typical values for real systems
range from one to several milliseconds.

P: The cost of sending or receiving a data block. This is similar to p . except
that P is typically significantly higher. For an 8-kilobyte block, where of-
ten multiple packets are needed, typical values range from 20 to 40 milli-
seconds.

For our analyses, only the ratio between P and p is important, rather than
their absolute values.

S: The number of sites participating in distributed shared memory.

r : Read/write ratio, that is, there is one write operation for every r reads on
average. This parameter is also used to refer to the access pattern of entire
blocks. Although the two ratios may differ, we assume they are equal in
order to simplify our analyses.

f: Probability of an access fault on a nonreplicated data block (used in the
migration algorithm). This is equal to the inverse of the average number of
consecutive accesses to a block by a single site, before another site makes
an access to the same block, causing a fault. fcharacterizes the locality of
data accesses for the migration algorithm.

f’: Probability of an access fault on replicated data blocks used in the read-
replication algorithm. It is the inverse of the average number of consecu-
tive accesses to data items in blocks kept locally, before a data item in a
block not kept locally is accessed.f’ characterizes the locality of data ac-
cesses for the read-replication algorithm.

Figure 6. Parameters that characterize the basic costs of accessing shared data.

and that the request is forwarded by the
manager to the server. The sequence of
packet events is send (on local site), re-
ceive (on manager site), forward (on man-
ager site), and receive (on server site).

For read replication, the remote access
cost approximates that of the migration
algorithm except that, in the case of a write
fault (which occurs with a probability of 1/
(r + 1)). a multicast invalidation packet
must be handled by all S sites. The block
transfer cost is always included in our
expression, although it may not be neces-
sary if a write fault occurs and a local
(read) copy of the block is available.

Finally, for the full-replication algo-
rithm, the probability of a remote access
equals the probability of a write access.
The associated cost for this write is always
a message from the local site to the se-
quencer (two packet events), followed by a
multicast update message to all other sites
(S packet events).

Comparative analyses. The discussion
above prepares us to make some pair-wise
comparisons of the algorithms’ perfor-
mance to illustrate the conditions under
which one algorithm might outperform
another. Each comparison is made by
equating the average costs of the two algo-
rithms concerned, to derive a curve along
which they yield similar performance.

This curve, which we call the equal-
performing curve, divides the parameter
space into two halves such that in each half
one of the algorithms will perform better
than the other. For example, in the follow-
ing comparison between migration and
read replication, the equation on the right
of Figure 7 is that of the equal-performing
curve, derived from Cm = Cn (with some
rearrangement). Since all of the cost for-
mulas include packet cost p , only the ratio
between P and p matters in the following
comparative analyses. We assume the
value of PIP to be 20. Based on these

May 1990 59

L Oel 1

‘U,

0.08- E

3 0.06-
B
2

- -
3
0 0.04-

.- 3 g 0.02-
CT

.F I

4 0.06

8 0.04

I r -
0 0.02 0.64 ~ 0.k ~ 0.b oll

Replicated block fault rate, f’

Figure 7. Performance comparison: migration versus read replication.

0.1 7
Central better

4(1 - &) Read-replication better f‘=
44+*

0 0
2 4 6 8 10 12 14 16 18 20

Number of sites, S

Figure 8. Performance comparison: central server versus read replication.

comparisons, we will be able to make some
general comments on performance.

Migration versus read replication. The
only difference between these two algo-
rithms is that replication is used in the
read-replication algorithm to allow inter-
leaved reads on several sites without block
movements, but at the expense of multi-
casting invalidation requests upon up-
dates. Interestingly, as shown in Figure 7,
the invalidation traffic does not have a
strong influence on the algorithms’ rela-
tive performances. As long as the cost of a
block transfer is substantially higher than

that of a small message, the curves for
different values of S and r cluster closely
together and are very close to the f = f’ line.

Typically, read replication effectively
reduces the block fault rate because, in
contrast to the migration algorithm, inter-
leaved read accesses to the same block will
no longer cause faults, so the value off’ is
smaller than f. Therefore, one can expect
read replication to outperform migration
for a vast majority of applications.

Central server versus read replication.
Figure 8 compares the central-server and
read-replication algorithms. The equal-

performing curve is almost flat, that is,
insensitive to the number of sites. More-
over, the influence of the read/write ratio is
also minimal. Hence, the key considera-
tion. in choosing between the two algo-
rithms is the locality of access. Typically,
a block fault rate of 0.07 (14 accesses
between faults) is considered very high
(faults very frequent). Therefore, read
replication appears to be more favorable
for many applications.

Read replication versus full replication.
Both algorithms use read replication. The
full-replication algorithm is more aggres-
sive in that multiple copies are maintained
even for updates. Figure 9 shows that the
relative performance of the two algorithms
depends on a number of factors, including
the degree of replication, the read/write
ratio, and the degree of locality achievable
in read replication. The full-replication
algorithm is not susceptible to poor local-
ity, since all data is replicated at all sites.
On the other hand, the cost of multicast
increases with S. Therefore, full replica-
tion performs poorly for large systems and
when update frequency is high (that is,
when r is low).

Central server versus full replication.
These two algorithms represent the two
extremes in supporting shared data: one is
completely centralized, the other is com-
pletely distributed and replicated. Except
for small values of S, the curve shown in
Figure 10 is almost linear. For S values of
up to about 20, the aggressive replication
of full replication seems to be advanta-
geous, as long as the read/write ratio is five
or higher. For very large replication, how-
ever, the update costs of full replication
catch up, and the preference turns to the
simple central-server algorithm.

Remaining comparisons. The two re-
maining pairs not yet considered are sum-
marized as follows. The comparison be-
tween central server and migration re-
sembles that between central server and
read replication, with a rather flat curve
beneath f = 0.09. Thus, unless the block
fault rate is very high, migration performs
better. The comparison between migration
and full replication reveals no clear win-
ner, as in the case of read replication versus
full replication, with the key deciding fac-
tors being S and r .

Comments. Based on the comparisons
above, we can make a few observations.
The central-server algorithm is simple to
implement and may be sufficient for infre-

60 COMPUTER

quent accesses to shared data, especially if
the read/write ratio is low (that is, a high
percentage of accesses are writes). This is
often the case with locks, as will be dis-
cussed further below. However, locality of
reference and a high-block-hit ratio are
present in a wide range of applications,
making block migration and replication
advantageous.

The fault rate of the simple migration
algorithm may increase due to interleaved
accesses if different data items that happen
to be in the same block are accessed by
different sites. It thus does not explore
locality to its full extent. The full-replica-
tion algorithm is suitable for small-scale
replication and infrequent updates.

In contrast, the read-replication algo-
rithm is often a good compromise for many
applications. The central-server and full-
replication algorithms share the property
of insensitivity to access locality, so they
may outperform the read-replication algo-
rithm if the application exhibits poor ac-
cess locality.

A potentially serious performance prob-
lem with algorithms that move large data
blocks is block thrashing. For migration, it
takes the form of moving data back and
forth in quick succession when interleaved
data accesses are made by two or more
sites. For read replication, it takes the form
of blocks with read-only permissions being
repeatedly invalidated soon after they are
replicated.

Such situations indicate poor (site) lo-
cality in references. For many applica-
tions, shared data can be allocated and the
computation can be partitioned to mini-
mize thrashing. Application-controlled
locks can also be used to suppress thrash-
ing (see the section entitled “Application-
level control with locking”). In either case,
the complete transparency of the distrib-
uted shared memory is compromised
somewhat.

5 -

.- 0 4-
E
.- s 3 -
s
a 2- I

L

U
1 -

Applications. From the above compari-
sons, it is clear that strong interactions
exist between the shared data access pat-
terns of applications and their expected
performance using the various algorithms.
To make our discussion more concrete, we
study such interactions further in this sec-
tion, based on our experience implement-
ing the algorithms and measuring their
performance. We do this by examining a
few types of applications and the consis-
tency algorithms that might suit them.

Numerical subroutines and other appli-
cations. The Blas-111 package contains a

I O.l 1
P
2 0.08- E

3 0.06-
0.04-

“n 0.02-

4- -

x 0

d
2

r=5

Full-replication better /

-..--- Read-replication better

2 4 6 8 10 12 14 16 18 20
Number of sites, S

f=- S+ 4 4 (r + 1)

Figure 9. Performance comparison: read replication versus, full replication.

I

0 1
2 4 6 8 10 12 14 16 18 20

Number of sites, S

I

Figure 10. Performance comparison: central server versus full replication.

frequently used set of matrix manipulation
subroutines implemented in Fortran. Typi-
cally, one or more (large) matrices are used
as input to generate a result matrix of the
same dimension. The amount of computa-
tion, usually substantial, can be sped up by
assigning processors to compute
subregions of the result matrix. This re-
sults in the input data being widely read-
shared and the individual regions of the
result matrix being updated by a single
site.

Thus, read replication is highly desir-
able, whereas update multicast for write
replication is unnecessary and too costly.

We observed excellent speedup using the
read replication algorithm. Li studied
similar applications in his thesis, and also
reported very good speedup.’

Interestingly, this data-access pattern is
widespread. For example, we converted a
graphics application to use distributed
shared memory. This application uses a
three-dimensional description of a set of
objects to compute the visible scene.
Again, the scene description is input to the
master process and read-shared among all
the slave processes, which compute parts
of the scene. Once the parts are completed,
the master displays the entire scene. Like

May 1990 61

matrix computation, there is very little
interference between the slaves except at
the block boundaries of the scene buffer.

A parallel version of a printed circuit
board inspection program exhibits a very
similar data-access pattern, as well as
excellent speedup using the read-replica-
tion algorithm.

Shortest paths. Similar to the above ap-
plications, a large matrix represents the
paths between pairs of nodes in a graph.
However, elements of this matrix are up-
dated in place as new, better paths are
discovered. In our straightforward parallel
implementation, the processes make inter-
leaved and mixed read and write accesses
to the matrix, with the update rate being
high at the beginning and declining as
better paths become harder and harder to
find. The central-server algorithm is inap-
propriate because, like the applications
above, accesses are frequent.

On the other hand, since access locality
is poor, large numbers of block transfers
due to thrashing are unavoidable if either
the migration or the read-replication algo-
rithm is used. Full replication appears to
perform better, especially for the later
stages of the computation. Instead of trans-
ferring or invalidating a whole block when
one entry is updated, only that entry is
distributed.

Hypermedia and distributed game play-
ing. Although these two types of applica-
tions serve very different purposes, they
often share the characteristics of making
interactive, concurrent accesses to shared
data, with updates to moving, focused
regions of the data space as the participants
cooperate on or fight over the same areas.
The read-replication algorithm may ex-
hibit block thrashing as a result, and full
replication again shows its merits.

Distributed locks. Locks are often used
in parallel applications for synchroniza-
tion. Typically, locks require little storage
and exhibit poor locality, so that algo-
rithms using block transfers - migration
and read replication - are inappropriate.
If the demand on a lock is light, a thread
will usually find the lock free and may
simply lock it, perform the relevant opera-
tion, and then unlock it.

Since such operations are relatively in-
frequent, a simple algorithm such as cen-
tral server is sufficient. However, if a lock
is highly contended for, a process might
repeatedly attempt to lock it without suc-

cess, or a “call-back” mechanism might be
used to avoid spinning. In either case, the
cost of accessing remotely stored locks can
be significant, and migrating this lock
alone is desirable. Some specialized algo-
rithm seems desirable for distributed locks.

Improving
performance

Many variations to the basic distributed
shared memory algorithms exist. Many of
them improve performance for specific
applications by optimizing for particular
memory access behaviors, typically by
attempting to reduce the amount of com-
munication since costs are dominated by
communication costs. Here, we describe
two particularly interesting variations and
also describe how applications can help
improve performance by controlling the
actions of the distributed shared memory
algorithm. The largest improvements to
performance can probably be achieved by
relaxing consistency constraints,* some-
thing we do not consider here.

Full replication with delayed broad-
casts. The full-replication algorithm in-
curs S + 2 packet events on each write
operation, where S is the number of partici-
pating sites. A slight modification to this
algorithm can reduce the number of packet
events per write to four, while read opera-
tions continue to be executed locally (with
no communication overhead).

Instead of broadcasting the data modifi-
cations to each site, the sequencer only
logs them. A write sent to the sequencer by
process P is acknowledged directly and a
copy of all modifications that arrived at the
sequencer since the previous time P sent a
write request is included with the acknowl-
edgment. Thus, the shared memory at a site
is updated only when a write occurs at that
site. As in the full-replication algorithm,
read operations are performed locally
without delays.

This variation on the full-replication
algorithm still maintains consistency, but
has at least two disadvantages. First, it
refrains from updating shared memory for
as long as possible and therefore does not
conform to any real-time behavior. Pro-
grams cannot simply busywait, waiting for
a variable to be set. Second, it places an
additional load on the (central) sequencer,
which must maintain a log of data modifi-
cations and eventually copy each such
modification into a message S-1 times.

An optimistic full-replication algo-
rithm. All of the basic algorithms de-
scribed in the “Basic algorithms” section
are pessimistic in that they ensure a priori
that a process can access data only when
the shared data space is and will remain
consistent. Here, we describe an algo-
rithm’ that is optimistic in that it deter-
mines a posteriori whether a process has
accessed inconsistent data, in which case
that process is rolled back to a previous
consistent state. This algorithm evolved
from attempts to increase performance of
the full-replication algorithm by coalesc-
ing multiple write operations into a single
communication packet.

Instead of obtaining a sequence number
for each individual write operation, a se-
quence number is obtained for a series of
consecutive writes by a single process.
Obviously, this may lead to inconsistent
copies of data, since writes are made to the
local copy and only later transmitted (in
batch) to other sites. If the modified data is
not accessed before it reaches a remote
site, temporary inconsistencies will not
matter. Otherwise, a conflict has occurred,
in which case one of the processes will
have to roll back.

To roll back a process, all accesses to
shared data are logged. To maintain the
manageability of the size of these logs (and
the operations on them efficient), it is
convenient to organize the data accesses
into transactions, where each transaction
consists of any number of read
and write operations bracketed by a
begin-transaction and a end-transaction.

When end-transaction is executed, a
unique gap-free sequence number for the
transaction is requested from a central
sequencer. This sequence number deter-
mines the order in which transactions are
to be committed. A transaction T with
sequence number n is aborted if any con-
currently executed transaction with a se-
quence number smaller than n has modi-
fied any of the data that transaction T
accessed. Otherwise, the transaction is
committed and its modifications to shared
data are transmitted to all other sites. These
transactions will never have to roll back.
The logs of a transaction can then be dis-
carded.

Clearly, the performance of this opti-
mistic algorithm will depend on the access
behavior of the application program and
the application program’s use of transac-
tions. If rollbacks are infrequent, it will
easily outperform the basic full-replica-
tion algorithm. It will also outperform the
read-replication algorithm for those appli-

62 COMPUTER

cations that suffer from thrashing, since
the optimistic algorithm compares shared
memory accesses at the per-data-item level
(as opposed to a per-data-block level). The
primary drawback of this algorithm, how-
ever, is the fact that the shared memory is
no longer transparent to the application
because the memory accesses must be
organized into transaction and because roll
backs must be properly handled by the
application.

Application-level control with lock-
ing. Locks can be used by the application
not only for its synchronization needs, but
also to improve the performance of the
shared memory algorithms. For example,
in the case of the migration and read-repli-
cation algorithms, locking data to prevent
other sites from accessing that data for a
short period of time can reduce thrashing.

In the case of the full-replication algo-
rithm, the communication overhead can be
reduced if replica sites only communicate
after multiple writes instead of after each
write. If a write lock is associated with the
data, then once a process has acquired the
lock, it is guaranteed that no other process
will access that data, allowing it to make
multiple modifications to the data and
transmitting all modifications made dur-
ing the time the lock was held in a single
message without causing a consistency
problem. That is, communication costs are
only incurred when data is being unlocked
rather than every time a process writes to
shared data.

Having the application use locks to
improve the performance of the shared
memory has a number of disadvantages,
however. First, the use of locks needs to be
directed towards a particular shared mem-
ory algorithm; the shared memory abstrac-
tion can no longer be transparent. Second,
the application must be aware of the shared
data it is accessing and its shared data-
access patterns. Finally, in the case of those
algorithms that migrate data blocks, the
application must be aware of the block
sizes and the layout of its data in the
memory.

espite the simplifying assump-
tions made in the performance
analyses, the essential characteris-

tics of the four basic algorithms are cap-
tured in the models used. The concept of
distributed shared memory is appealing
because, for many distributed applica-
tions, the shared memory paradigm leads
to simpler (application) programs than

when data is passed directly using commu-
nication primitives. Moreover, with re-
spect to performance, numerous imple-
mentations have shown that distributed
shared memory can compete with and, in
some cases, even outperform data-passing
programs.

On the negative side, the performance of
the algorithms that implement distributed
shared memory are sensitive to the shared
memory access behavior of the applica-
tions. Hence, as we have shown, no single
algorithm for distributed shared memory
will be suitable for most applications. The
performance-conscious application writer
will need to choose an appropriate algo-
rithm for an application after careful analy-
sis or experimentation.

In some cases, he or she will want to use
different algorithms (for different data)
within a single application. Moreover,
because these algorithms are sensitive to
the access behavior of the applications, it is
possible to improve their performance
significantly either by fine-tuning the
application’s use of the memory or by fine-
tuning the shared memory algorithm for
the access behavior of the particular appli-
cation, thus eliminating the advantages of
transparent shared memory access. We
should also emphasize that distributed
shared memory may be entirely unsuitable
for some applications.

Further work is still needed to make
distributed shared memory as versatile as
its data-passing counterparts. For ex-
ample, the distributed shared memory al-
gorithms we have described are not toler-
ant of faults. Whenever a host containing
the only copy of some data items crashes,
critical state is lost. Although the central-
server and the full-replication algorithms
can be made tolerant of single-host crashes
(for example, by using a backup server in
the case of the central-server algorithm), it
is not clear how to make the migration and
read-replication algorithms equally fault
tolerant.

Compared to data passing, distributed
shared memory does not appear to be as
suitable for heterogeneous environments
at this time, although several research ef-
forts on this problem are currently under

Consider, for example, the migra-
tion algorithm in an environment consist-
ing of hosts that use different byte order-
ings and floating-point representations.

When a page is migrated between two
hosts of different types, the contents of the
page must be converted before it can be
accessed by the application. It is not pos-
sible for the distributed memory system to

convert the page without knowing the type
of the application-level data contained in
the page and the actual page layout. This
complicates the interface between the
memory system and the application.

If noncompatible compilers are used for
an application to generate code for the
different hosts such that size of the applica-
tion-level data structures differs from host
to host, then conversions on a per-page
basis become impossible. For example, an
additional problem for numerical applica-
tions is that, since the application has no
control over how often a block is migrated
or converted and since accuracy may be
lost on floating-point conversions, the
result may become numerically question-
able.

For these reasons, we consider distrib-
uted shared memory to be a useful para-
digm for implementing a large class of
distributed applications, but do not expect
it to become widely available in the form of
a single standardized package, as has been
the case for remote procedure calls, for
example. Rather, we expect that distrib-
uted shared memory will be made avail-
able in a number of forms from which the
application writer can choose.

Acknowledgments
Many thanks go to Tim McInerney, who did

most of the work implementing the migration
and read-replication algorithms for the Sun and
DEC Firefly workstations, and to Orran Krie-
ger, who designed and implemented the opti-
mistic full-replication algorithm. The anony-
mous reviewers and the editors provided nu-
merous valuable suggestions for improve-
ments.

References
1. R. Bisiani and A. Forin, “Multilanguage

Parallel Programming of Heterogeneous
Machines, IEEE Trans. Computers, Vol.
37, NO. 8, Aug. 1988, pp. 930-945.

2. D.R. Cheriton, “Problem-Oriented Shared
Memory: A Decentralized Approach to
Distributed System Design, Proc. Sixth
Int’I Conf. Distributed Computing Systems,
May 1986, pp. 190-197.

3. K. Li, “Shared Virtual Memory on Loosely
Coupled Multiprocessors.” PhD thesis,
Dept. of Computer Science, Yale Univ.,
1986.

May 1990 63

4. K. Li and P. Hudak, “Memory Coherence in
Shared Virtual Memory Systems,” ACM
Trans. Computing Systems, Vol. I, No. 4,
NOV. 1989, pp. 321-359.

5 . A. Forin et al., “The Shared Memory
Server,” Proc. 1989 Winter Usenix Conf.,
Jan. 1989, pp. 229-243.

6 . R.E. Kessler and M. Livny, “An Analysis of
Distributed Shared Memory Algorithms,”
Proc. 9th Int’l. Conf. Distributed Cornput-
ing Systems, CS Press, Los Alamitos, Calif.,
Order No. 1953, June 1989, pp. 498-505.

7. 0. Krieger and M. Stumm, “An Optimistic
Algorithm for Consistent Replicated
Shared Data,” Proc. 1990 Hawaii Int’l
Conf. on System Sciences, CS Press, Los
Alamitos, Calif., Order No. 2009, Vol. 2,
1990, pp. 367-375.

8. B.D. Fleisch and G.J. Popek, “Mirage: A
Coherent Distributed Shared Memory De-
sign,” Proc. 12th ACM Symp. Operating
System Principles, Dec. 1989, pp. 21 1-222.

9 . S . Zhou, M. Stumm, and T. McInemey,
“Extending Distributed Shared Memory to
Heterogeneous Environments,” Proc. 10th
Int’l. Conf. Distributed Computing Sps-
terns, CS Press, Los Alamitos, Calif., Order
No. 2048, May-June 1990.

I O . S . Ahuja, N. Carriero, and D. Gelernter,

“Linda and Friends,” Computer, Vol. 19,
No. 8, Aug. 1986, pp. 26-34.

1 1. L. Lamport, “How to Make a Multiproces-
sor Computer that Correctly Executes
Multiprocess Programs,”lEEE Trans. Com-
puters, Vol. 28, No. 9, Sept. 1979, pp. 690-
691.

His research interests are In the area of computer
systems.

Stumm received a diploma in mathematics
and a PhD in computer science from the Univer-
sity of Zurich in 1980 and 1984, respectively.
He is a member of the IEEE Computer Society
and ACM.

2. M. Dubois, C. Scheurich, and F.A. Briggs,
“Synchronization, Coherence, and Event
Ordering in Multiprocessors,” Computer,
Vol. 21, No. 2, Feb. 1988, pp. 9-21.

3. J. Archibald and J.L. Baer, “Cache Coher-
ence Protocols: Evaluation Using a Multi-
processor Simulation Model, ACM Trans.
Computing Systems, Vol. 4, No. 4, Nov.
1986, pp. 273-298. Songnian Zhou is an assistant professor in the

departments of computer science and electrical
engineering at the University of Toronto. His
research interests include operating system
design, distributed and parallel systems, com-
puter networks, and performance evaluation.

Zhou received the BS degree from Northeast-
e m University, Boston, in 1982, and MS and
PhD degrees in computer science from the
University of California, Berkeley, in 1984 and
1987, respectively. He is a member of the IEEE
Computer Society and ACM.

Michael Stumm is an assistant professor in the
deoartments of electrical engineering and The authors can be contacted at the Univer-
computer hcience at the University of Toronto. sity of Toronto, Toronto, Canada, M5S 1A4.

:-)rEDAC*

CALL
FOR

PAPERS

THE INSTITUTE OF ELECTRICAL AND
ELECTRONICS ENGINEERS, INC.

The European Design Automation Conference
Amsterdam, The Netherlands, 25-28 February 1991

EDAC-90 attracted in Glasgow 450 delegates and 159 attended the 3
tutorials. Frommore than 300 submitted papers, 120 verbal presentations
and 30 poster presentations were organized.

EDAC-91 will be held in Amsterdam, The Conference will cover all areas
of the design process of electronic circuits and systems from concept to
manufacture and includes CAD and DA tools for analog, digital, VLSI,
microwave and high-speed electronics.

In addition, a panel session, a number of fringe meetings, a day of
tutorials and vendors presence are planned.
EDAC Conferences are run by EDAC, a non-profit association, in
association with IEEE/DATC, ACM/SIGDA and other European
technical societies.
The deadline for receipt for papers is 3 September 90 and intending
authors should contact the Secretariat for instructions for submission.
For further details, contact: Secretariat, EDAC 91

CEP Consultants Ltd.
26-28 Albany Street
Edinburgh EH1 3QH, SCOTLAND
Telephone: +44 31 557 2478
FAX: +44 31 557 5749.

