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Abstract 

Distributed shared memory (DSM) has received increased atten- 
tion as a mechanism for interprocess communication in loosely- 
coupled distributed systems because of its perceived advantages 
over direct use of message passing or remote procedure calls. One 
problem with most DSM algorithms proposed to date, however, is 
that  they do not tolerate faults. 

In this paper. we extend four basic DSM algorithms to tolerate 
single host failures and argue that this degree of fault tolerance 
is sufficient for most applications. We analyze the performance 
behavior of the fault tolerant DSM algorithms and show that for 
some algorithms the additional overhead for fault tolerance is quite 
small, but that for other algorithms the extra overhead can be 
substantial and even unpredictable. 

1 Introduction 

Distributed shared memory (DSM) is a mechanism for interprocess 
communication in (loosely-coupled) distributed systems, where 
processes running on separate hosts can access a shared, coherent' 
address space through memory access operations, such ils read and 
write. To emulate this abstraction, distributed sha.red memory is 
implemented in a layer of software between the application and a 
message passing system. 

The advaiita.ges of DSM over direct use of message passing and 
'RPC made distributed shared memory to be the focus of recent 
study 12, 4, 7,  9, 10, 11. 12, 13, 11, lS]. Performancewise, it has 
been shown that DShl can be competitive to  direct use of message 
passing and in some cases may even result in superior performance 
[4, 7, 12, 13, 181. despit,e the fact that DSM is implemented using 
underlying message passing primitives. For an overview of DSM 
and its advantages. see 11.11. 

Nevertheless. t.he DSbl algorithms proposed to date also have 
disadvantages. One of the disadvanta.ges is that they cannot tol- 
erate faults: the fault of a single participating host ma,y cause a 
portion of the shared address space to  be permanently lost. 

Fault tolerance is important for many applications which are 
traditionally not. considered to  be fault-critical. Consider, for ex- 
ample, a distribut.ed editor a.pplication that allows multiple users 
sitting at  different workstations to  edit the same document and 
see the updates of all users in real t.ime. This application is typical 
of many coopera.tive shared workspace applications [SI, for which 
distributed shared meniory is well suited. Since the shared data 
is transparently mamged by the DSBI system. the user has no 

'Non-coherent, problem specific distributed shared memory has also been 
proposed [4]. but in this paper we only coiisider coherent. DSM. 

control over the location of the dat,a so that data critical to d- 
participating users may be lost if a host crashes. 

As another example, distributed shared memory has been es- 
tensively used for implementing parallel, computationally intensive 
applications in order to  exploit the vast processing power of work- 
station clusters. Such computa.tions often run for long periods of 
time. If the shared memory cannot tolerate faults, then the com- 
putation must be restarted from t,he beginning if da.ta is lost due 
to  a host failure. 

In this paper, we present and analyze basic algorithms that 
implement fault tolerant distributed shared memory (FTDSM). 
Our approach is to take existing, well-known bosic DSM algorithms 
and extend them to  make them more tolerant of faults. (Most 
of the DSM algorithms proposed and implemented to  date are 
variations on these basic algorithms.) This approach allows US 

to  directly compare the complexity and performance of the fault 
tolerant algorithms to t1ia.t of their non-fault tolerant counterpa.rt,s. 

Our aim is to make the resulting algorithms as efficient as pos- 
sible so that ,  from a performance point of view. FTDSM remains 
viable as an IPC mechanism and Competitive to  message passing. 
We assume a distributed system environment consisting of a cluster 
of hosts connected by a local area net.work, such its an Ethernet, 
where communication between processors is unreliable and slow 
relative to  local memory access. Hence, the performance of dis- 
tributed and parallel applications i n  this environment is strongly 
affected by corhmunication costs. For our performance analyses 
and comparisons, n e  abstract communica.tion costs in terms of the 
number messages sent and the number of packet events, where a 
packet event is the cost associa.ted with either receiving or sending 
a small packet (about 1 ms on a Sun 3/50). We also assume that 
broadcast or multicast communication is available. 

We treat fault tolerance somewhat differently than is com- 
monly the case. Instead of trying to survive all types of faults, we 
attempt to survive only the most common and probable ones and 
attempt to do so at  a reasonable cost. Since we observe that host 
failures in a distributed system a.re usually independent of each, 
other2 a.nd relatively infrequent (say, at  most several a day), we 
design our a.lgorithms t.o to1era.t.e only single faults. As soon as a 
host failure is detected. the algorithms enter a recouery phase, aft.er 
which they are a.gain capable of t,olerating another fault. 1-resilient 
algorithms appear desirable because the cost for providing this de- 
gree of resiliency is relatively modest (compared to  more resilient 
versions of the algorithm) and beca.use the time it takes to  recover 
from a. fault can be made short. so t1~a.t the probability of a sec- 
ond fault occurring during the recovery phase is small. The cost 

'This is not true in the case of a power glitch or failure, which may well 
affect all h0st.s. 
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Figure 1: The Central Server Algorithm 

of &resilient algorithms with t > 1 are substantially higher and 
appears to  be acceptable to  only the most critical applications. 

We achieve fault tolerance by replicating critical state onto 
physically separated hosts; critical state iucludes DSM data and 
state information that cannot be otherwise recovered if lost. Ac- 
cess to  replicated data must be managed such that DSM remains 
consistent even during and after a recovery phase. We do not save 
da ta  onto persistent storage, because of the overhead and delays 
i t  would cause. We only consider host failures (detected through 
timeouts, taking on the order of a few scconds in an Ethernet-based 
environment) and assume hosts act in a fail-stop way. We assume 
communication faults are detected (by checksums and sequence 
numbers) and corrected by underlying communication protocols. 
Finally, we do not consider network partitions. 

2 Fault Tolerant DSM Algorithms 

In this section, we extend four basic DSRl algorithms to  make them 
fault tolerate. We always first briefly describe the non-fault tol- 
erant, base algorithm, before describing the fault tolerant version. 
For a more complete discussion of the base algorithms we refer the 
reader to  [14]. 

2.1 The Central-Server Algorithm 

The CentraJ Server algorithm is the simplest strategy for imple- 
menting distributed shared memory. A \ingle server is responsible 
for servicing all accesses to shared data.3 It maintains the only 
copy of the shared data. Both read and write operations involve 
the sending of a request message to the data server by the process 
executing the operation, as depicted in Figure 1.a. The data server 
executes the request and responds either with the data item in the 
case of a read operation or with an acknowledgement in the case 
of a write operation. 

3Data can be partitioned and managed by several servers but the conceptual 
central server model remains valid. 

A simple request-response protocol can be used for communi- 
cation in an implementation of this algorithm. For communication 
reliability, a request is retransmitted after each time-out period 
with no response from the server. A failure condition is raised af- 
ter several timeout periods with no response. Duplicate requests 
(due to  retransmissions) are detected at  the server with sequence 
numbers, as is typical in communication protocols. Duplicate read 
requests can be serviced again, since read operations are idempo- 
tent, and duplicate write requests are simply reacknowledged. AS 
can be seen in Figure la, this algorithm requires4 two messages 
and four packet events. 

One way to  make this algorithm tolerate single faults is to  
replicate the data maintained by the data server to  a backup server, 
as depicted in Figure l .b.  With this setup, read requests could be 
serviced from the primary server as before (or from the backup 
server, since i t  has the same data).  However, write requests re- 
ceived by the primary server are also sent to the backup server 
where it is also processed. The primary server does not reply to  
the client until it receives the acknowledgement from the backup. 

We now informally argue the fault tolerance of this algorithm 
by considering the failure of individual processes at  different points 
in time and by describing the steps necessary to  recover from fail- 
ures. If a client fails, then either the data server received the 
client’s most recent write request in which case the system be- 
haves as if the client failed immediately after the write, or the data 
server did not receive the most recent write request in which case 
the system behaves as if the client failed without having executed 
a write. 

If the backup server fails, then the primary server will detect 
this (by repeatedly timing out when trying to  send a message), 
start up a new one and pass it a copy of the shared data space. (If 
the backup fails while in the process of servicing a write request, 
then the new backup data copy will reflect that change.) If the 
primary server fails5, then the backup server becomes the new 
primary server, creates and starts a new backup server and passes 
it a copy the shared data space. The fact that a new process is 
now serving as the primary data server causes a minor addressing 
problem: clients will address their next data access request to the 
failed primary server and therefore will timeout. Clients can resort 
to  broadcasting to determine the identity of the new server.6 Also, 
to  reduce the need for such broadcasts, the new primary server may 
broadcast its address to  the clients. 

In terms of overhead, the fault tolerant extensions to  the Cen- 
tral Server algorithm requires two additional messages and 4 addi- 
tional packet events, as can be seen in Figure 1.b. The maximum 
time to recover, tTecoue,, is on the order of several seconds. If a 
watchdog process polls each server once a second, and we allow 5 
to  G timeouts at  appr. 300 msecs each. then it will take at  most 
3 seconds to  establish the existence of a failure. In addition, 1 
to  2 seconds are needed to create and start a new server, as are 
several seconds to  copy the shared data space (at  appr. 3 seconds 
per Mbytes in an Ethernet environment ). 

2.2 The Full-Replication Algorithm 

The Full-Replication Algorithm replicates all data on each host. 
Read requests are serviced locally. requiring no communication 

‘We assume for this analysis that no communication errors occur, although 
we do count the acknowledgement message needed to determine this. 

’A practical way to detect failures is to have a separate watchdog process 
that periodically polls t.he server t.o see if i t  is still operational. (Of course, the 
watchdog process also needs to be watched by a process on a different host: in 
our case, this can be done by t.he backup server.) 

61f group communication and process group addressing as, for example, in 
the V system[5] is available. then the primary server can always be addressed 
with the same (singlton group) address even if the server processes change. 
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Figure 2: The base Full-Replication algorithm 

overhead, but write requests are sent to  all hosts so that all copies 
can be updated. One way to  maintain consistent copies of data on 
all hosts is to  globally sequence all write operations. This can be 
implemented with a central sequencer: write requests are sent to  
the sequencer, which appends it with the next sequence number 
before broadcasting it to  all hosts. If a host detects a gap in the 
sequence numbers, then it missed a write request, in which case 
i t  requests a retransmission from the sequencer. The broadcast 
message also serves as an acknowledgement t o  the writing process. 
As can be seen from Figure 2, an implementation of this algorithm 
requires two m$sages and S + 2 packet events for each write re- 
quest, assuming all messages arrive i n  their proper order and a 
total of S hosts. 

This algorithm maintains no critical state, since all data is 
replicated at  all hosts. Only a recovery procedure is needed to  
make i t  fault tolerant. A client can recover by querying all other 
participating hosts to  determine which host has the most up-to- 
date copy of the data (by comparing the highest sequence num- 
ber received at  earh host) and obtaining a copy of the data from 
that host. The sequencer can recover in the same way. After a 
sequencer failure, all hosts must make sure their replicas are up- 
to-date, possibly obtaining a new copy from other hosts. 

The time needed to  recover a sequencer failure (i.e., the time it 
takes to detect a fault, to  poll all hosts and for those hosts that  do 
not have an up-to-date copy of data to  obtain a new copy) is again 
on the order of several seconds. In the worst case. the sequencer 
fails immediately after a broadcast which is only received by one 
client, requiring all but one host to obtain a copy of the shared 
data space from the one host that did receive this last update. 

To reduce the recovery time, but at  the cost of increasing the 
overhead of every write operation. it is possible to back up the 
sequencer. A write request sent to the sequencer is first forwarded 
t o  a backup sequencer which broadcasts the write operation to  all 
hosts. The sequencer now needs to keep track of the most recently 
received request from each client and the sequence number assigned 
to  it, so that retransinissions can be detected and forwarded (with 
the correct sequence number) to the backup processor. Requests 
for missed write requests by other clients can be serviced by the 
sequencer directly. The recovery procedure in this case is similar 
to that of the Central Server algorithm. 

2.3 The Migration Algorithm 

In the Migration Algorithm, data is always migrated to the 
host where it is accessed. Thi5 is a “single-reader/single writer” 
(SRSW) protocol, since only the threads executing on one host 
can read or write a given data item at any one time. Typically, 
data is migrated between hosts in fix-sized blocks in order to  facil- 
itate the management of the data. If an application eshibits high 
locality of reference. then the cost of block migration is amortized 
over niany accesses. since accesses to a block held locally incur no 
communication overhead. 

One advantage of the Migration algorithm is that it can be 
integrated with the virtual memory system of the host operating 
system if the size of tlie block is chosen to  be equal to  (or a mul- 
tiple of) the size of a virtual meniory page. If a shared memory 
page is held locally, i t  can be mapped into the application’s virtual 
address space and accessed using the normal machine instructions 
for accessing memory. An access to a data item located in a data 
block not held locally triggers a page fault so that the fault han- 
dler can communicate with the remote hosts to  obtain the data 
block before mapping it into the application’s address space. The 
location of a remote data block can be found, for example, by 
broadcasting a query to all remote hosts. When a data block is 
migrated away, it is removed from any local address space it has 
been mapped into. 

This algorithm can be made fault tolerant by ensuring that 

(i) whenever a block is migrated from a host A to  another host 
B, the copy at  host A is maintained, but marked invalid; and 

(ii) whenever a dirty  block, p ,  is migrated from host A to  another 
host B, all dirty blocks from A are also copied to  B; all blocks 
copied to  B except for 1) are marked iiwnlzd at B and marked 
clean at A. (-4 block is dirty if it is valid and has been modified 
since it was obtained or marked clean.) 

Action (i) ensures that every block has a copy on at  least two hosts. 
It is not necessary to make a copy of a block every time i t  is written 
to  (or to  log each write operation) because if a host crashes after 
several writes to a block but before i t  is copied to  another host, 
then the system will behave as if the host crashed before these 
writes were executed. Action (ii) is needed for sequential consis- 
tency; otherwise, when a host crashes it is possible for a situation 
to  occur where a modification m to  the shared address space is 
visible to others while modifications made earlier than m are not. 
It should also be noted that all blocks must be transferred in an 
atomic fashion; that is, either all blocks are accepted at  the desti- 
nation host or none of them are. This is simple to implement, but 
is necessary for consistency for the case where the sender crashes 
while i t  is transmitting blocks. 

The recovery procedure of this algorithm is straight-forward. 
All pages a host held at  the time of its failure must be recovered 
from their backup copy and duplicated. This set of blocks can be 
determined on demand: whenever a host cannot locate a block i t  
wishes to  access, it locates the copy of the block. If that  copy is 
local, then a new copy is migrated to a remote host and marked 
invalid there (in order to  have a copy on two physically separated 
hosts); otherwise, a copy of it is migrated to this host where it 
can then be accessed. Since recovering the lost blocks on demand 
makes the recovery time indeterminate. it makes more sense to  
determine and recover the set of lost blocks as soon as a host 
failure is detected. The time needed to do that is again on the 
order of seconds: each host must be querried to determine which 
valid and which backup blocks they have and (possibly) several 
blocks need to be transferred. 

Since copies are continuously being generated as a block mi- 
grates from host to  host, a problem with respect to  garbage collec- 
tion arises. Instead of communicating with the previous owner of 
the block to  inform it that  the old. now obsolete copy of the block 
can be freed, it is possible to  attach a sequence number with each 
block which is incremented edch time tlie block is migrated to a 
new host. Old copies are freed when the primary copy,of the block 
returns to  the host. If this is done, then the copy of the block with 
the highest sequence number must be located during rccovery. 

Many implementations of the Migration Algorithin statically 
assign each block a managing server that always ..knows” the loca- 
tion of the data block in order to eliininate the need for broadcasts. 
Migration requests are always sent lo the inanager that forwards 
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the request to  the current owner. It is not difficult to  make these 
block managers resilient: they do not contain critical state. since 
the current owners of the blorks can be determined by querying 
all hosts. However, to  speed up the recovery procedure, a scheme 
similar to  the backup of the central server could be used. In this 
case, the recovery proceedure is fast, because managers know wrliich 
hosts have backup copies of lost blocks. 

2.4 The Read-Replication A l g o r i t h m  

The Read-Replication algorithm is very similar to  the Migration 
algorithm except that i t  allows multiple read-only copies of blocks; 
that  is, it supports *‘multiple readers/single writer” (hlRSM’) repli- 
cation. For a read operation on a data item in a block that is 
currently not local, it is necessary to communicate with remote 
sites t o  first acquire a read-only copy of that block and to  change 
to  read-only the access rights to  any writable copy if necessary 
before the read operation can complete. For a write operation to 
data in a block that is local. but for which the local host has no 
write permission, all copies of the block held at  all hosts must be 
invalidated before the write can proceed. (The block must first be 
acquired from another host, if it is not local.) 

This algorithm can be made fault tolerant i n  the same way as 
the Migration algorithm. 

3 Performance Comparisons 

The algorithms presented in the preceding section are intended 
t o  provide a satisfactory degree of fault tolerance against loss of 
data in shared memory, while minimizing the overhead during the 
normal execution of applications. In this section. we analyze the 
average costs of accesses to data in DSM under each of the four 
algorithms, for both the base and the fault tolerant versions’. To 
do this, we need to  first establish a metric for DShl data access 
cost. Distributed shared memory is used to support distributed 
and parallel applications in which multiple threads of execution 
may be in progress on a number of hosts. We therefore choose 
the average cost per data access to  the entire system as the per- 
formance measure. Hence, if a data access involves one or more 
remote hosts, the message processing costs on both the local and 
remote host(s) are included. An alternative metric would be the 
data access delay to  the process making the access. However, pos- 
sible costs incurred on other hosts would not be reflected in this 
measure, even though other processes executing there would be 
affected. 

3.1 Model and Assumptions 

The following parameters are used to  Characterize the basic costs 
of accessing shared data, and the application behaviors: 

p: The cost of a packet event, i.e., the processiiig cost of sending 
or receiving a short packet, which includes possible context 
switching, data copying, and interrupt handling overhead. 
Typical values for real systems range from one to  several mil- 
liseconds [3, 51. 

P: The cost of sending or receiving a data block. This is similar 
to  p ,  except that  P is tvpically significantly higher. For an 
S KB block, typical values range from 1.5 to 40 ms : often 
multiple packets are needed. 

S: The number of participating hosts. 

’An analysis of the access costs of the four base algorithms were presented 
in an earlier paper [14]. 

r:  

f: 

f’: 

m: 

d :  

The read/write ratio. This parameter is also used t o  refer to  
the access pattern of entire blocks. Although the two ratios 
may be different, we assume they are equal in order to  siinplify 
our analyses. 

The probability of an access fault on a non-replicated data 
block in the Migration algorithm, which is the inverse of tlie 
average number of ronsecutive accesses to  a block by a single 
host, before another host accesses the same block, causing 
a fault. f characterizes the locality in data access for the 
Migration algorithm. 

The access fault probability on replicated data blocks in the 
Read-Replication algorithm, which is the inverse of the av- 
erage number of consecutive accesses to  data items in blocks 
kept locally, before a data item in a block not kept locally is 
accessed. f’ characterizes the locality in data access for the 
Read-Replication algorithm. 

The probability of a page transfer request being made for a 
dirty block, i.e., one that has been modified since it was last 
transferred to another host. 

The average number of dirty blocks a host has when servicing 
a page transfer request of a dirty page owned by this host. 

The last four parameters have a large impact on the perfor- - .  

mance of the corresponding algorithms, but, unfortunately, are 
difficult to assess, since they vary widely from application to  ap- 
plication. It should also be pointed out that the above parameters 
are not entirely independent of one another. For instance, the size 
of a data block and therefore the block transfer cost, P ,  influences 
both f and f’, in conflicting directions. As the block size increases, 
more accesses to  a block are possible before another block, is ac- 
cessed; however, access interferences between hosts become more 
likely. S also has direct impact on the fault rates. Nevertheless, 
the analyses below suffice to characterize the DSM algorithms. 

To focus on the essential performance characteristics of the 
algorithms and to simplify our analyses, a number of assumptions 
are made: 

1. The amount of message traffic will not cause network con- 
gestion; hence, we do not consider the network bandwidth 
occupied by messages. 

2. Server congestion is not serious enough to  cause significant 
queueing or processing delay i n  remote access. Effective meth- 
ods to  distribute the load of the servers are discussed in [14]. 

3. The cost of accessing a locally available data item is negligible 
compared to  remote access cost. 

4. Message passing is assumed to be sufficiently reliable, so re- 
transmissions are rare, and not considered in our analyses.s 

3.2 Access  Costs and Comparisons 

IJsing the basic parameters and the simplifying assumptions de- 
scribed above. the average access costs of the four algorithms, in 
both the base and the fault tolerant versions, may be expressed as 
in Table 1. Each of the cost formulas consists of two components. 
The first component, to  the left of the ‘*’, is the probability of 
an access to  a data item being remote. The second component, 
to  the right of the ‘*’. is equal to the average cost of accessing a 
remote data item. Since the cost of local accesses is assumed to  
be negligible, the average cost of accessing a data item is therefore 

‘Note, however, that the cost for acknowledgment messages, required to 
deterniine whether a retransmission is secessary. is included in our models. 

722 



Algorithm 
Central 
Migration 
Read-Repl. 
Full-Repl. 

Base Version Fault Tolerant Version 
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Figure 3: Performanance comparison between the base and fault 
tolerant versions of the Central Server algorithm 

equal t o  the product of these two components. Below, we explain 
the derivation of these models and comment on the extra costs due 
to  fault tolerance. 

Cen t ra l  Server Algor i thm 

Under the assumption that data is uniformly distributed over all 
hosts, the probability of an accessed data item being remote is 
1 - $ for the base algorithm, in which case four packet events are 
necessary for the access, as described in Section 2.1. The overall 
cost is mainly determined by the cost of a packet event, as long 
as the number of hosts is over four or five. For the fault tolerant 
version, a read access is processed in the same way as in the base 
algorithm. Since both the server for the block and its backup has 
an up-to-date copy of the shared data, however. the probability of 
an access being remote is 1 - 4. A write access is more expensive in 
the fault tolerant algorithm, since both the server and its backup 
need to  be contacted, incurring a total of eight packet events for 
an access from a third host. The cost is only four packet events if 
the access originates from the server or its backup, since only one 
other host needs to be contacted. Again. assuming uniformity of 
accesses, the average update cost is (1 - $)Sp. Considering both 
read and write accesses, with a ratio of T ,  the overall average access 
cost for the fault tolerant Central algorithm is as shown in Table 1, 
third column. 

Comparing the cost forinulas for the base and fault tolerant 
versions of the algorithm. one can see that the cost of the fault 
tolerant version is close to  that of the base algorithm for typical 
values for the read/write ratio (over thiee). The replication of the 
shared data at  two hosts actually helps reduce the read access cost. 
Figure 3 illustrate our observation graphically. 

Full-Replication Algor i thm 

For the base Full-Replication algorithm, the remote access proba- 
bility is simply the write access probability; the associated cost is 
always a message from the local host to the sequencer (two packet 

events), followed by a multicast update message ( S  packet events). 
There is no additional cost for fa.ult tolerance if no backup is used. 
Otherwise, the cost of remote access is increased by 2p. Given the 
tradeoff between increased access cost during normal operation, 
and a more complicated recovery procedure, the algorithm with 
no backup is generally preferable. As in Central, the additional 
overhead due t o  fault tolerance is minimal. 

Migra t ion  Algor i thm 

For the base Migration algorithm, f represents the probability of 
an access to  a data item being remote. Assuming the variant of 
the algorithm with a manager process that is backed up, the cost 
of bringing the data block containing this data item to  the local 
host includes a total of four packet events distributed across the 
local, manager, and server hostsg, and one block transfer ( 2 P ) .  For 
the fault tolerant version, if the data block causing the fault is not 
dirty on the current owner host (the probability of which is 1 - m), 
then only this block needs to  be transferred to  the faulting host. 
Otherwise, a total of d dirty blocks need to  be transferred to  ensure 
sequential consistency. Two extra packet events are needed to  keep 
the backup for the manager of this block up to  date. The cost of 
garbage-collecting old backup copies of blocks is not considered, 
since i t  can be done in the background. 

Assessment of the extra overhead due to fault tolerance is gen- 
erally difficult, since the values of the crucial parameters, m and d, 
vary greatly from application to  application. On the one extreme, 
if the probability of a fault on a dirty block is low (read-only or 
read-mostly accesses), or the average number of dirty blocks on 
the owner host is close to one. then the extra cost for tolerating 
faults may be little more than four more packet events. which is 
relatively small compared to the block transfer cost. On the other 
extreme, if a fault on a dirty block occurs after its owner host 
has recently updated a large number of other blocks, then these 
blocks all need to  be transferred, even if they are not shared at  all. 
Applications performance may be seriously degraded in this case. 

Read-Repl ica t ion  Algor i thm 

For the base Read-Replication algorithm, the remote access cost 
is similar to  that of the base Migration algorithm, except that, in 
the case of a write fault (with a probability of A), a multicast 
invalidation packet must be serviced by all S hosts. The block 
transfer cost is always included in our expression, although it may 
not be necessary if a write fault occurs and a local (read) copy 
of the block is available. The characterization of the overhead for 
fault tolerance is also similar to  that for the hligration algorithm. 
However, the values of the crucial parameters, m and d, are gener- 
ally different from those in the fault tolerant Migration algorithm, 
even for the same application. 

S u m m a r y  

The fault tolerant versions of the Central Server and Full- 
Replication algorithms do not. introduce substantially more over- 
head, whereas the estra. overhead introduced by the fault toler- 
ant versions of the Migration and Read-Replication algorithms is 
very heavily dependent on the applications' data access behav- 
ior. In 1141, it is pointed out that the Central Server algorithm 
is suitable when accesses to shared data are infrequent, and the 
Full-Replication algorithm performs well when accesses are mostly 

'We assume that  the local, manager, and server hods are all distinct, and 
that the request is forwarded by the manager to t.he server. The sequence of 
packet events are send (on local host). receive (on manager host), forward (on 
manager host), and receive (011 server host). 
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read. The Migration and Read-Replication algorithms support fre- 
quent shared data accesses better, provided that sufficient access 
locality exists. In particular, Read-Replication is suitable for many 
applications and is the most widely implemented DSM algorithm. 
Unfortunately, fault tolerance potentially makes the applications' 
performance with the Migration and Read-Replication algorithms 
significantly poorer and less predictable. 

4 Related Work 

Distributed shared memory is an active area of research [;?, 4, 6 ,  
7 ,  9, 10, 11, 12, 13,  14, 181, but little work has been done with 
respect t o  making the algorithms fault tolerant. Xu and Liskov 
[U] describe an fault tolerant implementatioil of Linda [l], which 
is a language based on the distributed shared memory model. In 
their design, data is replicated onto t hosts, where t must be larger 
than 2 since a majority is needed for memory operations t o  be 
successful. The semantics of some of the Linda operations ( i n  
and o u t )  make communication with each server for each of these 
operations necessary, and in the case of in ,  each server must be 
contacted twice in a two phase protocol. Therefore, the communi- 
cation overhead for this iniplementation is far higher than for the 
protocols presented in this paper. 

Wu and Fuchs [lG] extend the Read-Replication algorithm 
t o  make it fault tolerant. They effectively checkpoint the entire 
system on each page fault. In contrast to our algorithm that copies 
blocks onto other hosts, they copy blocks onto a single backing 
store (i.e. disks). 

5 Concluding Remarks 

In this paper we exfended four basic DSM algorithms to tolerate 
single host failures. In doing so we had t o  strike a balance be- 
tween performance and fault, tolerance. Our algorithms are o d y  
1-resilient, but we argue t.liat this degree of fault tolerance is suffi- 
cient for most applications; a. higher degree of fault tolerance would 
degrade performance substantially. Instead. we a.ttempted to make 
FTDSM as efficient as possible to remain competitive as an inter- 
process communicat.ion mechanism. For two of the algorithms, 
namely the Central Server and the Full Replica.tion algorithms, 
the extra overhead for fault tolerance is very small. but for the 
other two, Migration and Read Replication, the extra overhead 
can vary from being very small to being very large, depending on 
the data access patterns of the application. 

This paper only considered ma.king the distributed shared 
memory resilient. Additional mechanisms inay be needed to make 
applications that use FTSDM fault tolerant. For example, a check- 
pointing facility. as described in Section 1. would allow an a.ppli- 
cation to restart computation from the last checkpoint instead of 
from the beginning. But less expensive mechanisms would also 
suffice for many applications. For instance, some applications, like 
the distributed editor of Section 1, can use FTDSM a.s is and can 
simply continue t o  run with fewer processes after a host failure. 
For other applications, say those based on the Work-Crew model of 
parallel computation [5, 151. subtasks that never complete can be 
detected relatively easily and simply restarted. An atomic write 
operation (that gets executed a t  the end of the subtasks) could 
help prevent problems due to partially eseruting a subtasli multi- 
ple times. 

Further work is still necessary t o  assess the performa.nce im- 
plications of the presented FTDShI algoritlums in practice. Both 
fault tolerant versios of the Migrat.ion aiid the Hea.d-Replication 
algorithm are susceptible to anomalous beha.vior and an excessive 
amount of data copying is possible. For example, in many ap- 

plications, worker processes iteratively process and modify large 
amounts of data locally before interacting with other processes. 
The Read-Replication algorithms can be very well suited for this 
type of access behavior, but the fault tolerant version of the al- 
gorithm causes all blocks containing locally updated da ta  t o  be 
copied t o  a. remote host in each iteration, even though the data in 
these blocks is not shared, resulting in a far higher overhead than 
in their base counterparts. 
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