
Fault Tolerant Distributed Shared
Memory Algorithms

Michael Stumm and Songnian Zhou
University of Toronto

Toronto, Canada M5S 1A4

Abstract

Distributed shared memory (DSM) has received increased atten-
tion as a mechanism for interprocess communication in loosely-
coupled distributed systems because of its perceived advantages
over direct use of message passing or remote procedure calls. One
problem with most DSM algorithms proposed to date, however, is
that they do not tolerate faults.

In this paper. we extend four basic DSM algorithms to tolerate
single host failures and argue that this degree of fault tolerance
is sufficient for most applications. We analyze the performance
behavior of the fault tolerant DSM algorithms and show that for
some algorithms the additional overhead for fault tolerance is quite
small, but that for other algorithms the extra overhead can be
substantial and even unpredictable.

1 Introduction

Distributed shared memory (DSM) is a mechanism for interprocess
communication in (loosely-coupled) distributed systems, where
processes running on separate hosts can access a shared, coherent'
address space through memory access operations, such ils read and
write. To emulate this abstraction, distributed sha.red memory is
implemented in a layer of software between the application and a
message passing system.

The advaiita.ges of DSM over direct use of message passing and
'RPC made distributed shared memory to be the focus of recent
study 12, 4, 7, 9, 10, 11. 12, 13, 11, lS]. Performancewise, it has
been shown that DShl can be competitive to direct use of message
passing and in some cases may even result in superior performance
[4, 7, 12, 13, 181. despit,e the fact that DSM is implemented using
underlying message passing primitives. For an overview of DSM
and its advantages. see 11.11.

Nevertheless. t.he DSbl algorithms proposed to date also have
disadvantages. One of the disadvanta.ges is that they cannot tol-
erate faults: the fault of a single participating host ma,y cause a
portion of the shared address space to be permanently lost.

Fault tolerance is important for many applications which are
traditionally not. considered to be fault-critical. Consider, for ex-
ample, a distribut.ed editor a.pplication that allows multiple users
sitting at different workstations to edit the same document and
see the updates of all users in real t.ime. This application is typical
of many coopera.tive shared workspace applications [SI, for which
distributed shared meniory is well suited. Since the shared data
is transparently mamged by the DSBI system. the user has no

'Non-coherent, problem specific distributed shared memory has also been
proposed [4]. but in this paper we only coiisider coherent. DSM.

control over the location of the dat,a so that data critical to d-
participating users may be lost if a host crashes.

As another example, distributed shared memory has been es-
tensively used for implementing parallel, computationally intensive
applications in order to exploit the vast processing power of work-
station clusters. Such computa.tions often run for long periods of
time. If the shared memory cannot tolerate faults, then the com-
putation must be restarted from t,he beginning if da.ta is lost due
to a host failure.

In this paper, we present and analyze basic algorithms that
implement fault tolerant distributed shared memory (FTDSM).
Our approach is to take existing, well-known bosic DSM algorithms
and extend them to make them more tolerant of faults. (Most
of the DSM algorithms proposed and implemented to date are
variations on these basic algorithms.) This approach allows US

to directly compare the complexity and performance of the fault
tolerant algorithms to t1ia.t of their non-fault tolerant counterpa.rt,s.

Our aim is to make the resulting algorithms as efficient as pos-
sible so that , from a performance point of view. FTDSM remains
viable as an IPC mechanism and Competitive to message passing.
We assume a distributed system environment consisting of a cluster
of hosts connected by a local area net.work, such its an Ethernet,
where communication between processors is unreliable and slow
relative to local memory access. Hence, the performance of dis-
tributed and parallel applications i n this environment is strongly
affected by corhmunication costs. For our performance analyses
and comparisons, n e abstract communica.tion costs in terms of the
number messages sent and the number of packet events, where a
packet event is the cost associa.ted with either receiving or sending
a small packet (about 1 ms on a Sun 3/50). We also assume that
broadcast or multicast communication is available.

We treat fault tolerance somewhat differently than is com-
monly the case. Instead of trying to survive all types of faults, we
attempt to survive only the most common and probable ones and
attempt to do so at a reasonable cost. Since we observe that host
failures in a distributed system a.re usually independent of each,
other2 a.nd relatively infrequent (say, at most several a day), we
design our a.lgorithms t.o to1era.t.e only single faults. As soon as a
host failure is detected. the algorithms enter a recouery phase, aft.er
which they are a.gain capable of t,olerating another fault. 1-resilient
algorithms appear desirable because the cost for providing this de-
gree of resiliency is relatively modest (compared to more resilient
versions of the algorithm) and beca.use the time it takes to recover
from a. fault can be made short. so t1~a.t the probability of a sec-
ond fault occurring during the recovery phase is small. The cost

'This is not true in the case of a power glitch or failure, which may well
affect all h0st.s.

TH0328-5/90/0000/0719/$01 .OO 0 1990 IEEE 719

server

c l i e n t 0
Cl ient Primary Server

send req
rece ive req

a c c e s s data

send to backup

rece ive rep ly

Clienr

send data request

Backup Server

rece ive req

access data

rece ive response

Central server

rece ive request
perform data access
send response

I rece ive send reply I reply

(b) The fault tolerant algorithm for writes

Figure 1: The Central Server Algorithm

of &resilient algorithms with t > 1 are substantially higher and
appears to be acceptable to only the most critical applications.

We achieve fault tolerance by replicating critical state onto
physically separated hosts; critical state iucludes DSM data and
state information that cannot be otherwise recovered if lost. Ac-
cess to replicated data must be managed such that DSM remains
consistent even during and after a recovery phase. We do not save
da ta onto persistent storage, because of the overhead and delays
i t would cause. We only consider host failures (detected through
timeouts, taking on the order of a few scconds in an Ethernet-based
environment) and assume hosts act in a fail-stop way. We assume
communication faults are detected (by checksums and sequence
numbers) and corrected by underlying communication protocols.
Finally, we do not consider network partitions.

2 Fault Tolerant DSM Algorithms

In this section, we extend four basic DSRl algorithms to make them
fault tolerate. We always first briefly describe the non-fault tol-
erant, base algorithm, before describing the fault tolerant version.
For a more complete discussion of the base algorithms we refer the
reader to [14].

2.1 The Central-Server Algorithm

The CentraJ Server algorithm is the simplest strategy for imple-
menting distributed shared memory. A \ingle server is responsible
for servicing all accesses to shared data.3 It maintains the only
copy of the shared data. Both read and write operations involve
the sending of a request message to the data server by the process
executing the operation, as depicted in Figure 1.a. The data server
executes the request and responds either with the data item in the
case of a read operation or with an acknowledgement in the case
of a write operation.

3Data can be partitioned and managed by several servers but the conceptual
central server model remains valid.

A simple request-response protocol can be used for communi-
cation in an implementation of this algorithm. For communication
reliability, a request is retransmitted after each time-out period
with no response from the server. A failure condition is raised af-
ter several timeout periods with no response. Duplicate requests
(due to retransmissions) are detected at the server with sequence
numbers, as is typical in communication protocols. Duplicate read
requests can be serviced again, since read operations are idempo-
tent, and duplicate write requests are simply reacknowledged. AS
can be seen in Figure la, this algorithm requires4 two messages
and four packet events.

One way to make this algorithm tolerate single faults is to
replicate the data maintained by the data server to a backup server,
as depicted in Figure l .b. With this setup, read requests could be
serviced from the primary server as before (or from the backup
server, since i t has the same data). However, write requests re-
ceived by the primary server are also sent to the backup server
where it is also processed. The primary server does not reply to
the client until it receives the acknowledgement from the backup.

We now informally argue the fault tolerance of this algorithm
by considering the failure of individual processes at different points
in time and by describing the steps necessary to recover from fail-
ures. If a client fails, then either the data server received the
client’s most recent write request in which case the system be-
haves as if the client failed immediately after the write, or the data
server did not receive the most recent write request in which case
the system behaves as if the client failed without having executed
a write.

If the backup server fails, then the primary server will detect
this (by repeatedly timing out when trying to send a message),
start up a new one and pass it a copy of the shared data space. (If
the backup fails while in the process of servicing a write request,
then the new backup data copy will reflect that change.) If the
primary server fails5, then the backup server becomes the new
primary server, creates and starts a new backup server and passes
it a copy the shared data space. The fact that a new process is
now serving as the primary data server causes a minor addressing
problem: clients will address their next data access request to the
failed primary server and therefore will timeout. Clients can resort
to broadcasting to determine the identity of the new server.6 Also,
to reduce the need for such broadcasts, the new primary server may
broadcast its address to the clients.

In terms of overhead, the fault tolerant extensions to the Cen-
tral Server algorithm requires two additional messages and 4 addi-
tional packet events, as can be seen in Figure 1.b. The maximum
time to recover, tTecoue,, is on the order of several seconds. If a
watchdog process polls each server once a second, and we allow 5
to G timeouts at appr. 300 msecs each. then it will take at most
3 seconds to establish the existence of a failure. In addition, 1
to 2 seconds are needed to create and start a new server, as are
several seconds to copy the shared data space (at appr. 3 seconds
per Mbytes in an Ethernet environment).

2.2 The Full-Replication Algorithm

The Full-Replication Algorithm replicates all data on each host.
Read requests are serviced locally. requiring no communication

‘We assume for this analysis that no communication errors occur, although
we do count the acknowledgement message needed to determine this.

’A practical way to detect failures is to have a separate watchdog process
that periodically polls t.he server t.o see if i t is still operational. (Of course, the
watchdog process also needs to be watched by a process on a different host: in
our case, this can be done by t.he backup server.)

61f group communication and process group addressing as, for example, in
the V system[5] is available. then the primary server can always be addressed
with the same (singlton group) address even if the server processes change.

sequencer Client I Sequencer I Hosts
if write

receive data
add seq. no.
multicast

receive ack
update local

clients

receive data
update local

memory

Figure 2: The base Full-Replication algorithm

overhead, but write requests are sent to all hosts so that all copies
can be updated. One way to maintain consistent copies of data on
all hosts is to globally sequence all write operations. This can be
implemented with a central sequencer: write requests are sent to
the sequencer, which appends it with the next sequence number
before broadcasting it to all hosts. If a host detects a gap in the
sequence numbers, then it missed a write request, in which case
i t requests a retransmission from the sequencer. The broadcast
message also serves as an acknowledgement t o the writing process.
As can be seen from Figure 2, an implementation of this algorithm
requires two m$sages and S + 2 packet events for each write re-
quest, assuming all messages arrive i n their proper order and a
total of S hosts.

This algorithm maintains no critical state, since all data is
replicated at all hosts. Only a recovery procedure is needed to
make i t fault tolerant. A client can recover by querying all other
participating hosts to determine which host has the most up-to-
date copy of the data (by comparing the highest sequence num-
ber received at earh host) and obtaining a copy of the data from
that host. The sequencer can recover in the same way. After a
sequencer failure, all hosts must make sure their replicas are up-
to-date, possibly obtaining a new copy from other hosts.

The time needed to recover a sequencer failure (i.e., the time it
takes to detect a fault, to poll all hosts and for those hosts that do
not have an up-to-date copy of data to obtain a new copy) is again
on the order of several seconds. In the worst case. the sequencer
fails immediately after a broadcast which is only received by one
client, requiring all but one host to obtain a copy of the shared
data space from the one host that did receive this last update.

To reduce the recovery time, but at the cost of increasing the
overhead of every write operation. it is possible to back up the
sequencer. A write request sent to the sequencer is first forwarded
t o a backup sequencer which broadcasts the write operation to all
hosts. The sequencer now needs to keep track of the most recently
received request from each client and the sequence number assigned
to it, so that retransinissions can be detected and forwarded (with
the correct sequence number) to the backup processor. Requests
for missed write requests by other clients can be serviced by the
sequencer directly. The recovery procedure in this case is similar
to that of the Central Server algorithm.

2.3 The Migration Algorithm

In the Migration Algorithm, data is always migrated to the
host where it is accessed. Thi5 is a “single-reader/single writer”
(SRSW) protocol, since only the threads executing on one host
can read or write a given data item at any one time. Typically,
data is migrated between hosts in fix-sized blocks in order to facil-
itate the management of the data. If an application eshibits high
locality of reference. then the cost of block migration is amortized
over niany accesses. since accesses to a block held locally incur no
communication overhead.

One advantage of the Migration algorithm is that it can be
integrated with the virtual memory system of the host operating
system if the size of tlie block is chosen to be equal to (or a mul-
tiple of) the size of a virtual meniory page. If a shared memory
page is held locally, i t can be mapped into the application’s virtual
address space and accessed using the normal machine instructions
for accessing memory. An access to a data item located in a data
block not held locally triggers a page fault so that the fault han-
dler can communicate with the remote hosts to obtain the data
block before mapping it into the application’s address space. The
location of a remote data block can be found, for example, by
broadcasting a query to all remote hosts. When a data block is
migrated away, it is removed from any local address space it has
been mapped into.

This algorithm can be made fault tolerant by ensuring that

(i) whenever a block is migrated from a host A to another host
B, the copy at host A is maintained, but marked invalid; and

(ii) whenever a dirty block, p , is migrated from host A to another
host B, all dirty blocks from A are also copied to B; all blocks
copied to B except for 1) are marked iiwnlzd at B and marked
clean at A. (-4 block is dirty if it is valid and has been modified
since it was obtained or marked clean.)

Action (i) ensures that every block has a copy on at least two hosts.
It is not necessary to make a copy of a block every time i t is written
to (or to log each write operation) because if a host crashes after
several writes to a block but before i t is copied to another host,
then the system will behave as if the host crashed before these
writes were executed. Action (ii) is needed for sequential consis-
tency; otherwise, when a host crashes it is possible for a situation
to occur where a modification m to the shared address space is
visible to others while modifications made earlier than m are not.
It should also be noted that all blocks must be transferred in an
atomic fashion; that is, either all blocks are accepted at the desti-
nation host or none of them are. This is simple to implement, but
is necessary for consistency for the case where the sender crashes
while i t is transmitting blocks.

The recovery procedure of this algorithm is straight-forward.
All pages a host held at the time of its failure must be recovered
from their backup copy and duplicated. This set of blocks can be
determined on demand: whenever a host cannot locate a block i t
wishes to access, it locates the copy of the block. If that copy is
local, then a new copy is migrated to a remote host and marked
invalid there (in order to have a copy on two physically separated
hosts); otherwise, a copy of it is migrated to this host where it
can then be accessed. Since recovering the lost blocks on demand
makes the recovery time indeterminate. it makes more sense to
determine and recover the set of lost blocks as soon as a host
failure is detected. The time needed to do that is again on the
order of seconds: each host must be querried to determine which
valid and which backup blocks they have and (possibly) several
blocks need to be transferred.

Since copies are continuously being generated as a block mi-
grates from host to host, a problem with respect to garbage collec-
tion arises. Instead of communicating with the previous owner of
the block to inform it that the old. now obsolete copy of the block
can be freed, it is possible to attach a sequence number with each
block which is incremented edch time tlie block is migrated to a
new host. Old copies are freed when the primary copy,of the block
returns to the host. If this is done, then the copy of the block with
the highest sequence number must be located during rccovery.

Many implementations of the Migration Algorithin statically
assign each block a managing server that always ..knows” the loca-
tion of the data block in order to eliininate the need for broadcasts.
Migration requests are always sent lo the inanager that forwards

721

the request to the current owner. It is not difficult to make these
block managers resilient: they do not contain critical state. since
the current owners of the blorks can be determined by querying
all hosts. However, to speed up the recovery procedure, a scheme
similar to the backup of the central server could be used. In this
case, the recovery proceedure is fast, because managers know wrliich
hosts have backup copies of lost blocks.

2.4 The Read-Replication A l g o r i t h m

The Read-Replication algorithm is very similar to the Migration
algorithm except that i t allows multiple read-only copies of blocks;
that is, it supports *‘multiple readers/single writer” (hlRSM’) repli-
cation. For a read operation on a data item in a block that is
currently not local, it is necessary to communicate with remote
sites t o first acquire a read-only copy of that block and to change
to read-only the access rights to any writable copy if necessary
before the read operation can complete. For a write operation to
data in a block that is local. but for which the local host has no
write permission, all copies of the block held at all hosts must be
invalidated before the write can proceed. (The block must first be
acquired from another host, if it is not local.)

This algorithm can be made fault tolerant i n the same way as
the Migration algorithm.

3 Performance Comparisons

The algorithms presented in the preceding section are intended
t o provide a satisfactory degree of fault tolerance against loss of
data in shared memory, while minimizing the overhead during the
normal execution of applications. In this section. we analyze the
average costs of accesses to data in DSM under each of the four
algorithms, for both the base and the fault tolerant versions’. To
do this, we need to first establish a metric for DShl data access
cost. Distributed shared memory is used to support distributed
and parallel applications in which multiple threads of execution
may be in progress on a number of hosts. We therefore choose
the average cost per data access to the entire system as the per-
formance measure. Hence, if a data access involves one or more
remote hosts, the message processing costs on both the local and
remote host(s) are included. An alternative metric would be the
data access delay to the process making the access. However, pos-
sible costs incurred on other hosts would not be reflected in this
measure, even though other processes executing there would be
affected.

3.1 Model and Assumptions

The following parameters are used to Characterize the basic costs
of accessing shared data, and the application behaviors:

p: The cost of a packet event, i.e., the processiiig cost of sending
or receiving a short packet, which includes possible context
switching, data copying, and interrupt handling overhead.
Typical values for real systems range from one to several mil-
liseconds [3, 51.

P: The cost of sending or receiving a data block. This is similar
to p , except that P is tvpically significantly higher. For an
S KB block, typical values range from 1.5 to 40 ms : often
multiple packets are needed.

S: The number of participating hosts.

’An analysis of the access costs of the four base algorithms were presented
in an earlier paper [14].

r:

f:

f’:

m:

d :

The read/write ratio. This parameter is also used t o refer to
the access pattern of entire blocks. Although the two ratios
may be different, we assume they are equal in order to siinplify
our analyses.

The probability of an access fault on a non-replicated data
block in the Migration algorithm, which is the inverse of tlie
average number of ronsecutive accesses to a block by a single
host, before another host accesses the same block, causing
a fault. f characterizes the locality in data access for the
Migration algorithm.

The access fault probability on replicated data blocks in the
Read-Replication algorithm, which is the inverse of the av-
erage number of consecutive accesses to data items in blocks
kept locally, before a data item in a block not kept locally is
accessed. f’ characterizes the locality in data access for the
Read-Replication algorithm.

The probability of a page transfer request being made for a
dirty block, i.e., one that has been modified since it was last
transferred to another host.

The average number of dirty blocks a host has when servicing
a page transfer request of a dirty page owned by this host.

The last four parameters have a large impact on the perfor- - .

mance of the corresponding algorithms, but, unfortunately, are
difficult to assess, since they vary widely from application to ap-
plication. It should also be pointed out that the above parameters
are not entirely independent of one another. For instance, the size
of a data block and therefore the block transfer cost, P , influences
both f and f’, in conflicting directions. As the block size increases,
more accesses to a block are possible before another block, is ac-
cessed; however, access interferences between hosts become more
likely. S also has direct impact on the fault rates. Nevertheless,
the analyses below suffice to characterize the DSM algorithms.

To focus on the essential performance characteristics of the
algorithms and to simplify our analyses, a number of assumptions
are made:

1. The amount of message traffic will not cause network con-
gestion; hence, we do not consider the network bandwidth
occupied by messages.

2. Server congestion is not serious enough to cause significant
queueing or processing delay i n remote access. Effective meth-
ods to distribute the load of the servers are discussed in [14].

3. The cost of accessing a locally available data item is negligible
compared to remote access cost.

4. Message passing is assumed to be sufficiently reliable, so re-
transmissions are rare, and not considered in our analyses.s

3.2 Access Costs and Comparisons

IJsing the basic parameters and the simplifying assumptions de-
scribed above. the average access costs of the four algorithms, in
both the base and the fault tolerant versions, may be expressed as
in Table 1. Each of the cost formulas consists of two components.
The first component, to the left of the ‘*’, is the probability of
an access to a data item being remote. The second component,
to the right of the ‘*’. is equal to the average cost of accessing a
remote data item. Since the cost of local accesses is assumed to
be negligible, the average cost of accessing a data item is therefore

‘Note, however, that the cost for acknowledgment messages, required to
deterniine whether a retransmission is secessary. is included in our models.

722

Algorithm
Central
Migration
Read-Repl.
Full-Repl.

Base Version Fault Tolerant Version

Table 1: Cost of algorithm for an average memory access operation

5-1
...... ._.... _,_.................

r=3 , , , , '

Ave. 3
access

I
I I I I I I I I I

2 4 6 8 10 12 14 16 18 20

Number of hosts, S

Figure 3: Performanance comparison between the base and fault
tolerant versions of the Central Server algorithm

equal t o the product of these two components. Below, we explain
the derivation of these models and comment on the extra costs due
to fault tolerance.

Cen t ra l Server Algor i thm

Under the assumption that data is uniformly distributed over all
hosts, the probability of an accessed data item being remote is
1 - $ for the base algorithm, in which case four packet events are
necessary for the access, as described in Section 2.1. The overall
cost is mainly determined by the cost of a packet event, as long
as the number of hosts is over four or five. For the fault tolerant
version, a read access is processed in the same way as in the base
algorithm. Since both the server for the block and its backup has
an up-to-date copy of the shared data, however. the probability of
an access being remote is 1 - 4. A write access is more expensive in
the fault tolerant algorithm, since both the server and its backup
need to be contacted, incurring a total of eight packet events for
an access from a third host. The cost is only four packet events if
the access originates from the server or its backup, since only one
other host needs to be contacted. Again. assuming uniformity of
accesses, the average update cost is (1 - $)Sp. Considering both
read and write accesses, with a ratio of T , the overall average access
cost for the fault tolerant Central algorithm is as shown in Table 1,
third column.

Comparing the cost forinulas for the base and fault tolerant
versions of the algorithm. one can see that the cost of the fault
tolerant version is close to that of the base algorithm for typical
values for the read/write ratio (over thiee). The replication of the
shared data at two hosts actually helps reduce the read access cost.
Figure 3 illustrate our observation graphically.

Full-Replication Algor i thm

For the base Full-Replication algorithm, the remote access proba-
bility is simply the write access probability; the associated cost is
always a message from the local host to the sequencer (two packet

events), followed by a multicast update message (S packet events).
There is no additional cost for fa.ult tolerance if no backup is used.
Otherwise, the cost of remote access is increased by 2p. Given the
tradeoff between increased access cost during normal operation,
and a more complicated recovery procedure, the algorithm with
no backup is generally preferable. As in Central, the additional
overhead due t o fault tolerance is minimal.

Migra t ion Algor i thm

For the base Migration algorithm, f represents the probability of
an access to a data item being remote. Assuming the variant of
the algorithm with a manager process that is backed up, the cost
of bringing the data block containing this data item to the local
host includes a total of four packet events distributed across the
local, manager, and server hostsg, and one block transfer (2 P) . For
the fault tolerant version, if the data block causing the fault is not
dirty on the current owner host (the probability of which is 1 - m),
then only this block needs to be transferred to the faulting host.
Otherwise, a total of d dirty blocks need to be transferred to ensure
sequential consistency. Two extra packet events are needed to keep
the backup for the manager of this block up to date. The cost of
garbage-collecting old backup copies of blocks is not considered,
since i t can be done in the background.

Assessment of the extra overhead due to fault tolerance is gen-
erally difficult, since the values of the crucial parameters, m and d,
vary greatly from application to application. On the one extreme,
if the probability of a fault on a dirty block is low (read-only or
read-mostly accesses), or the average number of dirty blocks on
the owner host is close to one. then the extra cost for tolerating
faults may be little more than four more packet events. which is
relatively small compared to the block transfer cost. On the other
extreme, if a fault on a dirty block occurs after its owner host
has recently updated a large number of other blocks, then these
blocks all need to be transferred, even if they are not shared at all.
Applications performance may be seriously degraded in this case.

Read-Repl ica t ion Algor i thm

For the base Read-Replication algorithm, the remote access cost
is similar to that of the base Migration algorithm, except that, in
the case of a write fault (with a probability of A), a multicast
invalidation packet must be serviced by all S hosts. The block
transfer cost is always included in our expression, although it may
not be necessary if a write fault occurs and a local (read) copy
of the block is available. The characterization of the overhead for
fault tolerance is also similar to that for the hligration algorithm.
However, the values of the crucial parameters, m and d, are gener-
ally different from those in the fault tolerant Migration algorithm,
even for the same application.

S u m m a r y

The fault tolerant versions of the Central Server and Full-
Replication algorithms do not. introduce substantially more over-
head, whereas the estra. overhead introduced by the fault toler-
ant versions of the Migration and Read-Replication algorithms is
very heavily dependent on the applications' data access behav-
ior. In 1141, it is pointed out that the Central Server algorithm
is suitable when accesses to shared data are infrequent, and the
Full-Replication algorithm performs well when accesses are mostly

'We assume that the local, manager, and server hods are all distinct, and
that the request is forwarded by the manager to t.he server. The sequence of
packet events are send (on local host). receive (on manager host), forward (on
manager host), and receive (011 server host).

123

read. The Migration and Read-Replication algorithms support fre-
quent shared data accesses better, provided that sufficient access
locality exists. In particular, Read-Replication is suitable for many
applications and is the most widely implemented DSM algorithm.
Unfortunately, fault tolerance potentially makes the applications'
performance with the Migration and Read-Replication algorithms
significantly poorer and less predictable.

4 Related Work

Distributed shared memory is an active area of research [;?, 4, 6 ,
7 , 9, 10, 11, 12, 13, 14, 181, but little work has been done with
respect t o making the algorithms fault tolerant. Xu and Liskov
[U] describe an fault tolerant implementatioil of Linda [l], which
is a language based on the distributed shared memory model. In
their design, data is replicated onto t hosts, where t must be larger
than 2 since a majority is needed for memory operations t o be
successful. The semantics of some of the Linda operations (i n
and o u t) make communication with each server for each of these
operations necessary, and in the case of in , each server must be
contacted twice in a two phase protocol. Therefore, the communi-
cation overhead for this iniplementation is far higher than for the
protocols presented in this paper.

Wu and Fuchs [lG] extend the Read-Replication algorithm
t o make it fault tolerant. They effectively checkpoint the entire
system on each page fault. In contrast to our algorithm that copies
blocks onto other hosts, they copy blocks onto a single backing
store (i.e. disks).

5 Concluding Remarks

In this paper we exfended four basic DSM algorithms to tolerate
single host failures. In doing so we had t o strike a balance be-
tween performance and fault, tolerance. Our algorithms are o d y
1-resilient, but we argue t.liat this degree of fault tolerance is suffi-
cient for most applications; a. higher degree of fault tolerance would
degrade performance substantially. Instead. we a.ttempted to make
FTDSM as efficient as possible to remain competitive as an inter-
process communicat.ion mechanism. For two of the algorithms,
namely the Central Server and the Full Replica.tion algorithms,
the extra overhead for fault tolerance is very small. but for the
other two, Migration and Read Replication, the extra overhead
can vary from being very small to being very large, depending on
the data access patterns of the application.

This paper only considered ma.king the distributed shared
memory resilient. Additional mechanisms inay be needed to make
applications that use FTSDM fault tolerant. For example, a check-
pointing facility. as described in Section 1. would allow an a.ppli-
cation to restart computation from the last checkpoint instead of
from the beginning. But less expensive mechanisms would also
suffice for many applications. For instance, some applications, like
the distributed editor of Section 1, can use FTDSM a.s is and can
simply continue t o run with fewer processes after a host failure.
For other applications, say those based on the Work-Crew model of
parallel computation [5, 151. subtasks that never complete can be
detected relatively easily and simply restarted. An atomic write
operation (that gets executed a t the end of the subtasks) could
help prevent problems due to partially eseruting a subtasli multi-
ple times.

Further work is still necessary t o assess the performa.nce im-
plications of the presented FTDShI algoritlums in practice. Both
fault tolerant versios of the Migrat.ion aiid the Hea.d-Replication
algorithm are susceptible to anomalous beha.vior and an excessive
amount of data copying is possible. For example, in many ap-

plications, worker processes iteratively process and modify large
amounts of data locally before interacting with other processes.
The Read-Replication algorithms can be very well suited for this
type of access behavior, but the fault tolerant version of the al-
gorithm causes all blocks containing locally updated da ta t o be
copied t o a. remote host in each iteration, even though the data in
these blocks is not shared, resulting in a far higher overhead than
in their base counterparts.

References
[I] S. Ahuja, N . Carriero, and D. Gelernter. Linda and friends. IEEE

Computer, 19(8):26-34, August 1986.
[2] J.K. Bennett, J.B. Carter, and W. Zwaenepoel. Munin: Dis-

tributed shared memory based on type-specific memory coherence.
In Proc. 2nd Symp. on Priciples and Practice of Parallel Program-
ming, March 1990.

[3] L.F. Cabrera, E. Hunter, M. Karels. and D. Mosher. A user-process
oriented performance study of ethernet networking under berkeley
UNIX 4.2BSD. Technical Report UCB/CSD 84/217, University of
California, Berkeley, EECS, 1984.

[4] D.R. Cheriton. Problem oriented shared memory: A decentralized
approach to distributed syst,em design. In Proc. 6th ICDCS, pages
190-197, May 1986.

[5] D.R. Cheriton. The V distributed system. Communications of the
ACM, 31(3):314-333, March 1988.

[6] B.D. Fleisch and G.T. Popek. Mirage: A coherent distributed shared
memory design. In Proc. 12th ACY Symp. Operattng System Prin-
erples, pages 211-222, December 1989.

[7] A. Forin, J. Barrera. h4. Young, and R. Rashid. The shared mem-
ory server. In Proc. 1988 1Vinter USENIS Conf., pages 229-243,
January 1989.

[8] I. Greif. Computer-Snpportcd Cooperatetue Work: A Book of Read-
ings. Morgan Kaufinann, 1988.

[9] R.E. Kessler and hl. Livny. An analysis of distributed shared mem-
ory algorithms. In Proc. 9th Intl . Conf. on Disi. Comp. Sys., pages
498-505, June 1989.

[lo] 0. Krieger and M. Stunim. An optimistic apoproach for consistent
replicated data for niulitcomputers. In Pror. 1990 HICSS, volume 2 ,
pages 367-375, 1990.

[ll] K. Li. Shared virtual memory oil loosely coupled multiprocessors.
PhD thesis, Yale University Dept. of Computer Science, 1986.

[12] K. Li and P. Hudak. Memory coherence in shared virtual memory
systems. rlCM TOCS, 7(4), November 1989.

[13] R.G. Minnich and D.J. Farber. Reducing host load, network load
and latency in a distributed shared memory. In Proc. lUth ICDCS,
June 1990.

[14] M. Stunim and S. Zhou. Algorithms implementing distributed
shared memory. IEEE Compuiw, 22(5), May 1990.

[15] M.T. Vandevoorde and E.S. Roberts. WorkCrews: An abstraction
for controlling parallelism. Int l . Journal of Parallel Programming,

[16] K.L. Wu and W.K. Fuchs. Recoverable distributed shared virtual
memory. IEEE Transactions o n Computers, 39(4):460-469, April
1990.

[17] A . Xu and B. Liskov. A design for a fault-tolersnt, distributed
iniplement,ation of Linda. 111 Pror. 1989 Conf. on It+ liability, 1989.

[18] S. Zhou? M. Stumm, and T. hlcInerney. Extending distribut,ed
shared memory to heterogeneous environments. In Proc. 10th
ICDCS. June 1990.

17(4):347-3G6. August 1988.

12A

	Text21: Appeared in Proc. 2nd IEEE Symposium on Distributed and Parallel Systems, Dallas, TX, USA, December 1990, pp. 719-724.

