
Managing Shared L2 Caches on Multicore Systems
in Software

David Tam∗, Reza Azimi∗, Livio Soares∗, and Michael Stumm∗
∗Department of Electrical and Computer Engineering

University of Toronto, Toronto, Canada M5S 3G4
Email: {tamda, azimi, livio, stumm}@eecg.toronto.edu

Abstract—Most of today’s multi-core processors feature shared
L2 caches. A major problem faced by such architectures is cache
contention, where multiple cores compete for usage of the single
shared L2 cache. Uncontrolled sharing leads to scenarios where
one core evicts useful L2 cache content belonging to another
core. To address this problem, we have implemented a software
mechanism in the operating system that allows for partitioning
of the shared L2 cache by guiding the allocation of physical
pages. This mechanism, which can also be applied to virtual
machine monitors, provides isolation capabilities that lead to
reduced contention. We show that this mechanism is effective in
reducing cache contention in multiprogrammed SPECcpu2000
and SPECjbb2000 workloads. Performance improvements of up
to 17% were achieved without adversely affecting co-scheduled
applications.

In order to effectively size L2 cache partitions, a quantifiable
metric is needed to properly predict performance as a function of
L2 cache size. For page management, Miss Rate Curves (MRCs)
have proven to be useful for this purpose. However, for L2 cache
sizing, we have found L2 MRCs to be inadequate and have
found instruction retirement Stall Rate Curves (SRCs) to be more
effective, where the stalls are caused by memory latencies.

I. I NTRODUCTION

On-chip shared L2 cache architectures are common in
today’s multi-core processors, such the Sun Niagara, IBM
Power5, and Intel Core architecture. Shared caches have
important advantages such as increased cache space utilization,
fast inter-core communication (via the high-speed shared L2
cache), and reduced aggregate cache footprint through the
elimination of undesired replication of cache lines.

A major disadvantage of shared L2 caches, however, is that
uncontrolled contention can occur by allowing CPU cores to
freely access the entire L2. As a result, scenarios can occur
where one core constantly evicts useful L2 cache content
belonging to another core without obtaining a significant
improvement itself. Such contention causes increased L2 cache
misses which in turn leads to decreased application perfor-
mance.

Uncontrolled L2 sharing also reduces the ability to enforce
priorities and to provide Quality-of-Service (QoS). For ex-
ample, a low priority application running on one core that
rapidly streams through the L2 cache can consume the entire
L2 cache and remove most of the working set of higher priority
applications co-scheduled on another core.

Many researchers in the architecture community have recog-
nized the problem of uncontrolled contention in the L2 cache

and have explored different hardware support for dynamically
partitioning the L2 cache [1], [2], [3], [4], [5], [6], [7]. Some
of these hardware solutions are effective and may eventually
appear in future processors. We argue that an alternative,
operating system-level solution is viable by exploiting the
hardware performance monitoring features available in many
existing microprocessors.

In this paper, we present such a software solution based on
a low-overhead and flexible implementation of cache partition-
ing through physical page allocation on a real operating system
(Linux) running on a real multi-core system (IBM Power5).
We show how to exploit the hardware performance monitoring
features of the microprocessor to aid in determining the L2
partition size that should be given to each application. More
specifically, for each application, we generate L2 Miss Rate1

Curves (MRCs) and instruction retirement Stall Rate Curves
(SRCs), where the stalls are caused by memory latencies. We
use these curves to predict L2 contention to guide the CPU
scheduling algorithm in deciding which subsets of applications
should be co-scheduled.

In our experimental analysis, we first show the negative
impact of uncontrolled sharing of the L2 cache and then
show how our software cache partitioning algorithm can
eliminate this negative impact. We used SPECcpu2000 and
SPECjbb2000 as our workloads, running Linux 2.6.15 on an
IBM Power5 CMP system. Our experimental results indicate
that by carefully partitioning the L2 cache and co-scheduling
compatible applications appropriately, improvements as high
as 17% in total system IPC can be achieved without adversely
affecting any of the co-scheduled applications.

One of the insights we obtained by experimenting on a
real system was that L2 MRCs alone were inadequate in
predicting co-scheduled performance impact on our system.
We found that an application’s rate of instruction retirement
stall due to memory latencies, as a function of L2 cache
size, to be more effective. This instruction retirement stall
rate curve (SRC), incorporates factors such as (1) the L2
cache miss rate; (2) instruction retirement stall sensitivity to
L2 cache misses; (3) non-uniform access latencies to lower
levels of the memory hierarchy, such as the L3 victim cache,
local main memory, and remote main memory; and (4) shared

1We use missrate, rather than missratio, sincerate incorporates time and
gives an indication of access intensity that can be easily compared among
applications.



memory bus contention [8]. On our system, we found that
the instruction retirement stall rate due to L1 data cache
misses was sufficient to reasonably predict performance as a
function of L2 cache size, and was directly obtainable from
the hardware performance counters. Section VI provides more
details.

II. RELATED WORK

Many researchers in the architecture community have rec-
ognized the cache contention problem in shared L2 caches and
have proposed hardware support for partitioning the cache [1],
[2], [3], [4], [5], [6], [7]. Some of these hardware solutions are
effective, with reasonable complexity and resource consump-
tion, and may be eventually implemented in real processors
in the future. Our work explores an alternative solution that
is entirely based on software using hardware performance
monitoring features of today’s microprocessors. Our software-
based approach has the advantage of being implementable and
deployable today. Moreover, it is more flexible as it can be
built with standard hardware performance monitoring features
and does not add to the design complexity of already complex
microprocessors. While the hardware solution proposed by
Qureshi and Patt [6] can achieve up to 23% performance
improvement on a simulated platform, our software-based
solution running on a real system is able to achieve up to
17% improvement.

The work closest to our approach is by Cho and Jin, who
propose a software-based mechanism for L2 cache partitioning
based on physical page allocation [9], [10]. However, the
major focus of their work is on how to distribute data in
a Non-Uniform Cache Architecture (NUCA) to minimize
overall data access latencies. In contrast, we concentratesolely
on the problem of uncontrolled contention on a shared L2
cache. Furthermore, we have implemented our solution in
a real environment based on features available in today’s
processors. This enables us to examine the impact of the
cache partitioning on real processor performance using hard-
ware performance counters. Similar to their philosophy, we
advocate low-overhead, flexible software solutions that help
to simplify the hardware. Due to their target platform, they
used a simulation environment (SimpleScalar) that does not
take the interference of the operating system into account.

III. D ESIGN & I MPLEMENTATION

To provide software-based L2 cache partitioning, we simply
apply the classic technique of OS page-coloring [9], [10], [11],
[12], [13]. When a new physical page is required by a target
application, the OS allocates a page that maps onto a section
of the L2 cache assigned to the target application. By doing so
for every new physical page request of the target application,
we isolate L2 cache usage of the application.

Fig. 1 illustrates the page-mapping technique in general.
In a physically indexed L2 cache, every physical page has
a fixed mapping to a physically contiguous group of cache
lines. The figure shows that there are several physical pages
labeledColor A that all map to the same group of physically

Fig. 1. Page and cache line mapping.

Fig. 2. Bit-field perspective of partitioning on the Power5.

contiguous L2 cache lines labeledColor A. For the Power5
processor used in our experiments, there are 32 physically
contiguous cache lines to a page because the page size is
4 KB and the cache line size is 128 bytes. The figure also
shows that physical pages of the same color are given to the
same application. For example, physical pages ofColor A
have been assigned solely to application processA. The OS
is responsible for this mapping of virtual-to-physical memory
pages and it is this capability that enables control of L2
cache usage and isolation. We implemented this mechanism
in Linux 2.6.15 by modifying the physical page allocation
component of the OS. For non-targeted applications, the OS
allocates any free physical page when requested, thus these
non-targeted applications would not adhere to any cache
partition restrictions.

Although we implemented this mechanism at the OS level
in this paper, this solution could also be applied at the level
of a virtual machine monitor.



A. Partitioning on the Power5

Using the page-mapping technique, the Power5 processor
is able to support 16 distinct colors, which we will refer to
as partitions. Fig. 2 illustrates a bit-field perspective of the
page-mapping technique. The upper 4 bits of the L2 cache set
number field overlap with the bottom 4 bits of the physical
page number field. Since the operating system has direct
control of the physical page number field, it has 4 bits of
influence on the L2 cache set number. The lower 5 bits of the
L2 cache set number, which are beyond the direct control of
the operating system, means that there are 32 sets per partition.

Note that there are no bits in the physical address that are
related to set-associativity because eviction within eachset is
managed online, at run-time by the hardware using an LRU
policy.

The L2 cache on the Power5 is physically implemented as
3 symmetric slices, where the slice number is determined by a
hash function using bits 8 to 27 inclusively. Unfortunately, 4 of
these bits are beyond the direct control of the operating system,
meaning that slice usage appears uniformly random. Having
directly control of the L2 slice usage would have enabled us
to support 48 partitions.

Our L2 cache partitioning mechanism also causes the L3
victim cache of the Power5 to be divided into 16 partitions.
The derivation is similar to the L2 cache derivation and is
therefore not shown. Each partition in the L2 has a direct
mapping to a corresponding partition in the L3 victim cache.

B. OS Implementation

Although partitioning physical memory is a fairly simple
concept, its implementation in the Linux kernel must be done
carefully to prevent any negative performance side effects. In
our first attempt, we simply used a single free list of physical
pages for each CPU core. Having a single free list, however,
incurred expensive linear search of the potentially long free
list frequently.

Another problem with having a single free list is that upon
application termination, a large number of pages are freed
and put at the head of the free list. Since these pages were
assigned to the recently terminated application, they may not
be suitable for another application running on a different core.
As a result, a linear traversal of the free list scans througha
potentially large number of unsuitable pages before it finds
the first suitable page.

To address this issue, we converted the single free list into
multiple free lists (still on a per CPU basis). Each list contains
free physical pages that map to a designated section of the
L2 cache. Having multiple free lists, each corresponding an
L2 partition, dramatically accelerates the process of finding a
suitable page, as it removes the need for linearly searching
the free list. A simple Round-Robin scheme is used when
multiple free lists are eligible to select a free page from. Since
the Power5 L2 cache can be divided by software to have a
maximum of 16 partitions, we had 16 free lists for each CPU
in the system.

When a large number of physical pages are requested at
once, Linux allocates a group of physically contiguous pages
as long as the groups are powers of 2 in size. To support
this, Linux maintains lists of groups of contiguous free pages
of size 1 to 1024 pages (i.e., level 0 to level 10). For page
allocation of levels higher than 0 we use the single free list
of the target level (i.e., for levels higher than 0, we do not
use separate lists per partition). We traverse the list to find a
suitable page group that maps to the target L2 partition. Since
allocations at higher levels is fairly rare, we do not foresee
this case impacting performance significantly.

When a new physical page is being allocated for an appli-
cation and its assigned partition free list is empty, then the
allocator must request additional free pages from the Linux
buddy allocator. A problem may arise in that none of the
pages returned by the buddy allocator have the color of the
target partition. Even repeated attempts may be unsuccessful.
We employ a configuration parameter,MaxTry, to limit the
number of such attempts. If, afterMaxTry attempts, the
partition free list remains empty, the physical page is allocated
from another partition free list chosen randomly. The default
value forMaxTry is set to 100.

IV. EXPERIMENTAL SETUP

The multiprocessor used in our experiments is an IBM
OpenPower 720 computer, as specified in Table I. It is an
8-way Power5 consisting of a 2x2x2 SMPxCMPxSMT con-
figuration2. Each chip has 1.875 MB of shared L2 cache that
is shared between the on-chip cores. There is an off-chip
36 MB L3 victim cache per chip. As mentioned previously,
Linux 2.6.15 was used and modified to allow for L2 cache
partitioning. With the given hardware, a total of 16 partitions
are possible on the Power5 processor, each of size 120 KB in
the L2 cache and 2.25 MB in the L3 victim cache.

To create a controlled execution environment for our exper-
iments, the Linux task scheduler was modified to completely
disable the default reactive and pro-active task migration
mechanisms and policies. Our partitioning mechanism has
no compatibility issues with process migration across cores
since physical-to-virtual page mappings remain unchanged.
In addition and for the same reasons, our mechanism is
independent of the number of cores sharing the L2 cache.

The workloads used were SPECjbb2000 and SPECcpu2000.
The IBM J2SE 5.0 JVM was used to run SPECjbb (1 ware-
house configuration). For SPECcpu, 20 out of the 26 appli-
cations were run using the standardreference input set. (The
remaining 6 applications, which were mostly Fortran-based,
did not compile successfully.) To simulate a multiprogrammed
server environment, various combinations of these applications
were run together.

V. RESULTS

With software-based partitioning, we have the ability to
study the impact of L2 cache size on execution time. Fig. 3

22 chips x 2 cores per chip x 2 hardware threads per core.



TABLE I
IBM OPENPOWER720SPECIFICATION.

Item Specification
# of Chips 2
# of Cores 2 per chip
CPU Cores IBM Power5, 1.5 GHz, 2-way SMT
L1 ICache 64 KB, 128-byte lines, 2-way associative, per core
L1 DCache 32 KB, 128-byte lines, 4-way associative, per core
L2 Cache 1.875 MB, 128-byte lines, 10-way associative, 14 cycle latency, per chip
L3 Victim Cache 36 MB, 256-byte lines, 12-way associative, 90 cycle latency, per chip, off-chip
RAM 8 GB (2 banks x 4 GB), 280/310 cycle latency local/remote

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0  2  4  6  8  10  12  14  16

R
un

 T
im

e 
pe

r 
10

0 
ko

ps
 (

s)

L2 Cache Size (# of partitions)

 0

 20

 40

 60

 80

 100

 120

 0  2  4  6  8  10  12  14  16

R
un

 T
im

e 
(s

)

L2 Cache Size (# of partitions)

 0

 50

 100

 150

 200

 250

 0  2  4  6  8  10  12  14  16

R
un

 T
im

e 
(s

)

L2 Cache Size (# of partitions)

 0

 50

 100

 150

 200

 250

 300

 0  2  4  6  8  10  12  14  16

R
un

 T
im

e 
(s

)

L2 Cache Size (# of partitions)

a. SPECjbb2k b. equake c. mcf d. art

 0

 50

 100

 150

 200

 250

 300

 350

 0  2  4  6  8  10  12  14  16

R
un

 T
im

e 
(s

)

L2 Cache Size (# of partitions)

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0  2  4  6  8  10  12  14  16

R
un

 T
im

e 
(s

)

L2 Cache Size (# of partitions)

 0

 50

 100

 150

 200

 250

 300

 350

 0  2  4  6  8  10  12  14  16

R
un

 T
im

e 
(s

)

L2 Cache Size (# of partitions)

 0

 50

 100

 150

 200

 250

 300

 350

 0  2  4  6  8  10  12  14  16

R
un

 T
im

e 
(s

)

L2 Cache Size (# of partitions)

e. vortex f. ammp g. applu h. vpr

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0  2  4  6  8  10  12  14  16

R
un

 T
im

e 
(s

)

L2 Cache Size (# of partitions)

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0  2  4  6  8  10  12  14  16

R
un

 T
im

e 
(s

)

L2 Cache Size (# of partitions)

 0

 100

 200

 300

 400

 500

 600

 0  2  4  6  8  10  12  14  16

R
un

 T
im

e 
(s

)

L2 Cache Size (# of partitions)

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0  2  4  6  8  10  12  14  16

R
un

 T
im

e 
(s

)

L2 Cache Size (# of partitions)

i. swim j. parser k. twolf l. gzip

 0

 50

 100

 150

 200

 250

 300

 0  2  4  6  8  10  12  14  16

R
un

 T
im

e 
(s

)

L2 Cache Size (# of partitions)

 0

 100

 200

 300

 400

 500

 0  2  4  6  8  10  12  14  16

R
un

 T
im

e 
(s

)

L2 Cache Size (# of partitions)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0  2  4  6  8  10  12  14  16

R
un

 T
im

e 
(s

)

L2 Cache Size (# of partitions)

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0  2  4  6  8  10  12  14  16

R
un

 T
im

e 
(s

)

L2 Cache Size (# of partitions)

m. bzip2 n. apsi o. crafty p. mgrid

Fig. 3. Single-programmed application performance as a function of L2 cache size.

shows the impact of varying the L2 cache size using our
partitioning mechanism. Each application was run alone on
a single core. Applicationsgap, wupwise, mesa, gcc, and
sixtrack are not shown because they had flat curves similar
to mgrid in Fig. 3(p). The results of Fig. 3 are similar in spirit
to the initial graphs shown by Qureshi and Patt [6] but our
results come from a software implementation running on a
real system. We show application-reported run times for the
entire run of the application, which includes all overheads. Our
results here are difficult to compare against those obtained

by Qureshi and Patt because we use a 1.875MB L2 cache
that is partitioned at physical page granularity while Qureshi
and Patt used a 1MB L2 cache partitioned by hardware at
cache line, set-associative way granularity. Furthermore, they
generated their results by simulating a fairly short fraction
of application execution (250 million instructions) whereas
we ran applications for much longer periods (several tens of
billions of cycles).

Our results indicate that for some applications, having a
small fraction of the cache is sufficient to achieve performance



close to the performance achieved with the entire cache.
For example, SPECjbb requires 8 partitions,mcf requires 4
partitions, andart requires 2 partitions.

Most graphs show monotonically decreasing execution
times as the cache size is increased, as expected. However,
there are a few exceptions. For instance,swim shows increas-
ing execution times as the cache size is increased from 1 to
5 partitions, andtwolf shows increasing execution times as
the cache size is increased from 12 to 16 partitions. We are
currently investigating such anomalous cases using detailed
hardware performance monitoring tools.

It is important to note that with the initial single-
programmed results shown in Fig. 3, the impact of co-
scheduling two or more applications on a single chip without
software-based cache partitioning cannot be easily predicted.
One important characteristic that is missing from Fig. 3 is the
L2 cache usage demands of each application. For example, an
application could exhibit streaming behavior consisting of high
L2 cache access frequency and no reuse frequency, leading to
a high miss frequency.

Fig. 4 shows the impact of software cache partitioning
on performance for seven combinations of multiprogrammed
workloads. Each application was run on its own core but
within the same chip so that the L2 cache is indeed shared3.
The units shown are IPC improvement per billion cycles as
reported by the hardware performance counter tools developed
by our research group in previous work [14], [15]. The
performance is normalized to the performance of the same
combination of applications without partitioning. We skipthe
first 30 billion cycles of execution and capture IPC data for the
next 60 billion cycles using hardware performance counters.

The bottom x-axis shows the number of partitions (N) given
to one application, while the remaining16−N partitions are
given to the second application, as indicated by the top x-
axis. For example, when SPECjbb is given 12 partitions in
Fig. 4(a),equake is given the remaining 4 partitions. The graph
indicates that SPECjbb can achieve a throughput improvement
of up to 8% (12 partitions) whileequake is penalized by
less than 5%. If SPECjbb is intended to be the high priority
application whileequake is the low priority application, then
these priorities could be enforced with software-based cache
partitioning. As an extreme example, SPECjbb could be given
14 partitions with the remaining 2 partitions given toequake,
resulting in a 13% improvement to SPECjbb while penalizing
equake by 8%. For the SPECjbb+equake combination, we used
a MaxTry value of 25000, rather than the default. Using
a lower value caused the performance of SPECjbb to begin
showing degradations from 11 to 15 partitions. This occurred
becauseequake would exceed theMaxTry 100 threshold
frequently since it was allowed only 1 to 5 partitions. Upon
this occurrence,equake would obtain physical page belonging
to SPECjbb instead.

Fig. 4(b) indicates that the performance ofmcf can be

3Examining the impact of SMT, by running both applications onthe same
core, is beyond the scope of this paper.

improved by up to 11% (14 partitions) without noticeably
affectingart. In Fig. 4(c),vortex can be improved by 5% (10
partitions) without affectingart. If art is a lower priority task,
then vortex can be improved by up to 8% while penalizing
art by 3%. In Fig. 4(d),ammp can be improved by 5% (14
partitions) while penalizingapplu by 2.5%. In Fig. 4(e),twolf
can be improved by 8% (13 partitions) without penalizinggzip.
The drop in IPC fortwolf at 14 and 15 partitions is due
to the interference fromgzip upon exceeding theMaxTry
100 threshold. A similar situation occurred in Fig. 4(f) as
well, from 1 to 4 partitions invpr, which helpedvpr without
significantly affectingswim. Finally, Fig. 4(g) also shows the
same phenomenon inswim between 1 to 4 partitions.

Although not shown in this paper, we observed no impact
on the L1 instruction cache in the SPECcpu applications.
However for SPECjbb, as the size of the L2 cache was
decreased from 5 partitions to 1 partition, we observed a
noticeable increase in the instruction retirement stall rate due
to L1 instruction cache misses.

VI. QUANTIFYING CHIP SHARING INTERFERENCE

Understanding and characterizing the performance impact
of sharing resources on a CMP chip is an essential part
of (a) predicting which combinations of applications exhibit
performance interference and, (b) quantifying the potential
performance improvements of controlling resource sharing, in
this case, L2 cache sharing. In this section, we demonstrate
that cache partitioning can recover up to 70% of degraded IPC
due to chip sharing. Furthermore, we detail how hardware
performance counters can be used to predict the potential
performance interference between applications executingon
different cores of the same chip.

Fig. 5 shows the performance degradation suffered by
applications when executing as a pair, compared to executing
in single-programmed mode. Each application in the multi-
programmed pair is executed on its own core but within the
same chip, thus sharing the L2 cache. Two different setups
are plotted: (1) the reduction of IPC, normalized to single-
programmed mode, of applications executing with no cache
partitioning, and (2) the reduction of IPC, normalized to
single-programmed mode, of applications executing with a
“best”, fixed, manually selected partition size.

With most combinations shown, cache partitioning is able
to significantly reduce the IPC degradation due to chip sharing
of one of the applications, while possibly slightly degrading
the IPC of the second application. The worst degradation seen
is in equake when run together with SPECjbb;equake’s IPC
suffers a 4% decrease, while enabling a 9% improvement of
SPECjbb’s IPC. The best improvement is seen intwolf when
run together withgzip. This combination shows that cache
partitioning can recover up to 70% of degraded IPC due to
chip sharing.

The main reason behind most of the benefit seen by control-
ling L2 cache sharing is the fact that while some applications
are memory intensive in their behavior, they may not benefit
from using the entire L2 cache. This is the case, for example,



 75
 80
 85
 90
 95

 100
 105
 110
 115

 0  2  4  6  8  10  12  14  16

 0 2 4 6 8 10 12 14 16

N
o

rm
a

liz
e

d
 I

P
C

 (
%

)

L2 Cache Size of SPECjbb (# of partitions)

L2 Cache Size of equake (# of partitions)

equake
SPECjbb

 40
 50
 60
 70
 80
 90

 100
 110
 120
 130
 140

 0  2  4  6  8  10  12  14  16

 0 2 4 6 8 10 12 14 16

N
o

rm
a

liz
e

d
 I

P
C

 (
%

)

L2 Cache Size of mcf (# of partitions)

L2 Cache Size of art (# of partitions)

art
mcf

 60
 65
 70
 75
 80
 85
 90
 95

 100
 105
 110

 0  2  4  6  8  10  12  14  16

 0 2 4 6 8 10 12 14 16

N
o

rm
a

liz
e

d
 I

P
C

 (
%

)

L2 Cache Size of art (# of partitions)

L2 Cache Size of vortex (# of partitions)

vortex
art

 55
 60
 65
 70
 75
 80
 85
 90
 95

 100
 105
 110

 0  2  4  6  8  10  12  14  16

 0 2 4 6 8 10 12 14 16

N
o

rm
a

liz
e

d
 I

P
C

 (
%

)

L2 Cache Size of ammp (# of partitions)

L2 Cache Size of applu (# of partitions)

applu
ammp

a. SPECjbb+equake b. mcf+art c. art+vortex d. ammp+applu

 70
 75
 80
 85
 90
 95

 100
 105
 110

 0  2  4  6  8  10  12  14  16

 0 2 4 6 8 10 12 14 16

N
o

rm
a

liz
e

d
 I

P
C

 (
%

)

L2 Cache Size of twolf (# of partitions)

L2 Cache Size of gzip (# of partitions)

gzip
twolf

 80
 85
 90
 95

 100
 105
 110
 115

 0  2  4  6  8  10  12  14  16

 0 2 4 6 8 10 12 14 16

N
o

rm
a

liz
e

d
 I

P
C

 (
%

)

L2 Cache Size of vpr (# of partitions)

L2 Cache Size of swim (# of partitions)

swim
vpr

 88
 90
 92
 94
 96
 98

 100
 102
 104
 106
 108

 0  2  4  6  8  10  12  14  16

 0 2 4 6 8 10 12 14 16

N
o

rm
a

liz
e

d
 I

P
C

 (
%

)
L2 Cache Size of swim (# of partitions)

L2 Cache Size of parser (# of partitions)

parser
swim

e. gzip+twolf f. vpr+swim g. swim+parser

Fig. 4. Multiprogrammed workload performance as a functionof L2 cache size.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

parser

gap
am

m
p

applu

art
vortex

vpr
sw

im
sw

im
parser

tw
olf

gzip
m

cf
art

crafty

apsi

vortex

m
esa

SpecJB
B

equake

IP
C

 R
e
d

u
c
ti

o
n

 (
%

)

Application

Chip Sharing Performance Degradation

no cache partitioning
manual cache partitioning

Fig. 5. IPC comparison of applications executing in isolation on a CMP chip, versus executing while sharing the chip.

for the art application. Fig. 6 shows the number of cycles in
which instruction retirement is stalled due to L1 data cache
misses in a billion cycles, with varying L2 cache partition
sizes, as collected by the Power5 hardware performance coun-
ters. In this figure, each application is executed alone on the
chip. Fig. 6(a) shows the variation of memory access related
stalls forart. There are two notable observations. First, the run
time curve shown in Fig. 3(d) closely resembles curve 6(a),
demonstrating that for this application, memory stalls seen
by the core are strongly related to its performance. Second,
it is clear that giving more than 2 L2 cache partitions to

art does not improve its memory performance. The same
characteristics apply toswim and gzip, as can be seen by
comparing Fig. 3(i) and Fig. 3(l) to the various combinations in
Fig. 5, and described in various papers regarding their access
intensities [7], [8], [16], [17].

The curves formcf and vortex in Fig. 6, however, show
a different behavior. The number of memory related stalls
monotonically decreases as the number of partitions grows.As
can be seen in Fig. 5, bothmcf andvortex show performance
benefits with cache partitioning when executing along side of
art, because the partitioning isolates the lack of locality seen in



 0

 100

 200

 300

 400

 500

 600

 0  2  4  6  8  10  12  14  16

d-
ca

ch
e 

m
is

s 
st

al
ls

(in
 m

ill
io

n 
cy

cl
es

)

L2 Cache Size (# of partitions)

 0

 100

 200

 300

 400

 500

 600

 700

 0  2  4  6  8  10  12  14  16

d-
ca

ch
e 

m
is

s 
st

al
ls

(in
 m

ill
io

n 
cy

cl
es

)

L2 Cache Size (# of partitions)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0  2  4  6  8  10  12  14  16

d-
ca

ch
e 

m
is

s 
st

al
ls

(in
 m

ill
io

n 
cy

cl
es

)

L2 Cache Size (# of partitions)

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0  2  4  6  8  10  12  14  16

d-
ca

ch
e 

m
is

s 
st

al
ls

(in
 m

ill
io

n 
cy

cl
es

)

L2 Cache Size (# of partitions)

a. art b.mcf c. vortex d. mesa

Fig. 6. Data cache stall rate curve (SRC): Number of cycles inwhich instruction retirement is stalled due to L1 data cachemisses per billion cycles, as
derived from the PowerPC performance counters. Single-programmed mode.

 0

 2

 4

 6

 8

 10

 12

 14

 0  2  4  6  8  10  12  14  16

L2
 m

is
s 

ra
te

 (
m

ill
io

ns
)

L2 Cache Size (# of partitions)

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0  2  4  6  8  10  12  14  16

L2
 m

is
s 

ra
te

 (
m

ill
io

ns
)

L2 Cache Size (# of partitions)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  2  4  6  8  10  12  14  16
L2

 m
is

s 
ra

te
 (

th
ou

sa
nd

s)
L2 Cache Size (# of partitions)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0  2  4  6  8  10  12  14  16

L2
 m

is
s 

ra
te

 (
th

ou
sa

nd
s)

L2 Cache Size (# of partitions)

a. art b.mcf c. vortex d. mesa

Fig. 7. L2 miss rate curve (MRC) of varying L2 cache partitionsizes, as reported by the PowerPC performance counters. Single-programmed mode.

art and avoids the replacement of useful cache lines belonging
to the other application, which otherwise would have been the
case with the LRU hardware mechanism.

Finally, the performance of a few application combinations
are not affected when sharing the same chip. This is the case
for the apsi+crafty, vortex+mesa, and gap+parser combina-
tions shown in Fig. 5. This can also be explained by analyzing
the instruction retirement stalls due to L1 data cache misses.
As can be seen in Fig. 6(d), althoughmesa shows sensitivity
to varying cache partitions, instruction retirement is stalled
due to L1 data cache misses for, typically, only around 5%
of the cycles. This indicates thatmesa has very low cache
requirements and is unlikely to replace important cache lines
from applications executing on a sibling core when using the
default LRU hardware mechanism.

A. Stall Rate Curve Versus Miss Rate Curve

Fig. 7 shows the L2 miss rate curves for the same four
applications in Fig. 6. While the stall rate curves (SRCs) in
Fig. 6 directly measure instruction retirement stalls caused
by the memory hierarchy, the L2 miss rate curves in Fig. 7
measure only a single component of the performance picture,
which is therate of misses experienced at the L2 cache only.

It is interesting to note that in some scenarios, the L2 miss
rate is not sufficient to accurately predict the performanceim-
pact of memory operations because it does not account for the
penalty of misses. In a multi-level cache hierarchy, the penalty
of an L2 cache miss can vary dramatically depending on the
source from which the cache miss is served. For example,
when varying from 1 to 2 partitions withart, although there
is a significant performance increase and L1 data cache stalls
drop, the L2 miss rate curve does not show a corresponding
decrease. Rather, it shows an increase in the miss rate. By

 0

 2

 4

 6

 8

 10

 12

 14

 0  2  4  6  8  10  12  14  16

# 
of

 L
3 

H
its

 (
m

ill
io

ns
)

L2 Cache Size (# of partitions)

 0

 1

 2

 3

 4

 5

 6

 0  2  4  6  8  10  12  14  16# 
of

 L
oc

al
 M

em
 H

its
 (

m
ill

io
ns

)
L2 Cache Size (# of partitions)

Fig. 8. L3 victim cache and local memory hit rates forart, per billion cycles,
as reported by the PowerPC performance counters. Single-programmed mode.

examining the L3 victim cache and local memory hit rate
curves, shown in Fig. 8, it is apparent that the source of the
performance improvements is due to the source in which data
is acquired. In the 2 partition case, most L2 cache misses are
resolved in the L3 victim cache. In contrast, in the 1 partition
case, most L2 cache misses are resolved in the local main
memory due to L3 partitioning.

VII. D ISCUSSION

Due to current hardware indexing of cache lines, software
cache partitioning is compatible with larger page sizes up to
a certain extent. As the size of a page grows by doubling its
size, the number of possible partitions in the L2 decreases
by half. However, if the size of a page causes the number of
possible partitions to drop below two, then cache partitioning
would no longer be possible.

Our partition mechanism does not create load imbalance
on the main memory banks of the system since our Power5
system make use of standard interleaved memory design.

In this work, we have assumed that per application L2
MRCs and instruction retirement stall rate curves (SRCs),
where stalls are caused by memory latencies, are available to
the operating system as they are obtained during profiling runs



and stored in a repository. In order to add a new application
to the repository, these curves must be calculated by running
the application (or at least a representative portion of it)
several times (16 in our setup). Ideally, one might want to
calculate an application’s L2 MRC online with low overhead.
Unfortunately, this is not possible given the existing hardware
performance monitoring features of today’s microprocessors.
Nonetheless, there is much room for speeding up the process
of calculating the L2 MRC. For instance, Berg and Hagersten
use a software approach based on data addresswatchpoints to
calculate MRC online with the runtime overhead of 40% [18].

Secondly, we have assumed the application’s L2 MRC and
SRC are stable throughout the execution of the application.
In reality, each application goes through severalphases that
may have different memory access patterns. To react to such
phase changes, dynamic repartitioning of the L2 cache may
be required which may potentially incur significant copyingof
data from one color to another. However, if program phases
are long enough to offset the overhead of repartitioning, our
software-based approach is still applicable.

VIII. C ONCLUSION & FUTURE WORK

We have demonstrated a software-based cache partitioning
mechanism and shown some of the potential gains in a
multiprogrammed computing environment. Our mechanism
allows for flexible management of the shared L2 cache re-
source. Although we have implemented this mechanism at the
operating system level in this paper, it can also be applied at
the virtual machine monitor level.

Our experience on a real system has led us to the insight that
instruction retirement stall rate curves (SRCs), where stalls are
caused by memory latencies, provide more useful information
for our purposes than L2 cache miss rate curves (MRCs).

We are currently investigating many other possible com-
binations of workloads. Other potential workloads that we
are considering include SPECcpu2006, and SPECweb2000
multiprogrammed with TPC-C.

We plan to extend the basic mechanism by creating a contin-
uous optimization system that (1) dynamically determines the
optimal partition size in an automated, online, low overhead
manner using hardware performance monitoring facilities,and
that (2) dynamically adjusts the number of partitions givento
an application in an online, low overhead manner.

ACKNOWLEDGEMENTS

This work was supported by the Director, Office of Science,
of the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231.

REFERENCES

[1] D. Chandra, F. Guo, S. Kim, and Y. Solihin, “Predicting inter-thread
cache contention on a chip multi-processor architecture,”in HPCA,
2005.

[2] F. Guo and Y. Solihin, “An analytical model for cache replacement policy
performance,” inSIGMETRICS, 2006.

[3] R. Iyer, “CQoS: a framework for enabling QoS in shared caches of CMP
platforms,” in ICS, 2004.

[4] H. Kannan, F. Guo, L. Zhao, R. Illikkal, R. Iyer, D. Newell, Y. Solihin,
and C.Kozyrakis, “From chaos to QoS: Case studies in CMP resource
management,” indasCMP, 2006.

[5] S. Kim, D. Chandra, and Y. Solihin, “Fair cache sharing and partitioning
in a chip multiprocessor architecture,” inPACT, 2004.

[6] M. Qureshi and Y. Patt, “Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition shared
caches,” inMicro, 2006.

[7] E. Suh, L. Rudolph, and S. Devadas, “Dynamic partitioning of shared
cache memory,”The Journal of Supercomputing, vol. 28, no. 1, pp. 7–26,
April 2004.

[8] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith, “Fair queuing
cmp memory systems,” inMicro, 2006.

[9] S. Cho and L. Jin, “Managing distributed, shared L2 caches through
OS-level page allocation,” inMicro, 2006.

[10] ——, “Better than the two: Exceeding private and shared caches via
two-dimensional page coloring,” inWorkshop on Chip Multiprocessor
Memory Systems and Interconnects, 2007.

[11] B. Bershad, D. Lee, T. Romer, and J. Chen, “Avoiding conflict misses
dynamically in large direct-mapped caches,” inASPLOS, 1994.

[12] W. Lynch, B. Bray, and M. Flynn, “The effect of page allocation on
caches,” inMicro, 1992.

[13] T. Sherwood, B. Calder, and J. Emer, “Reducing cache misses using
hardware and software page placement,” inSupercomputing, 1999.

[14] R. Azimi, M. Stumm, and R. Wisniewski, “Online performance analysis
by statistical sampling of microprocessor performance counters,” inICS,
2005.

[15] D. Tam, R. Azimi, and M. Stumm, “Thread clustering: Sharing-aware
scheduling on SMP-CMP-SMT multiprocessors,” inEuroSys, 2007.

[16] J. L. Henning, “SPEC CPU2000: Measuring CPU performance in the
new millennium,”IEEE Computer, vol. 33, no. 7, pp. 28–35, July 2000.

[17] M. Moreto, F. Cazorla, A. Ramirez, and M. Valero, “Explaining dynamic
cache partitioning speed ups,”Computer Architecture Letters, vol. 6,
no. 1, Jan-Jun 2007.

[18] E. Berg and E. Hagersten, “Fast data-locality profilingof native execu-
tion,” in SIGMETRICS, 2005.


	Text2: Appeared in Proc. Workshop on the Interaction between Operating Systems and Computer Architecture                                                         (WIOSCA  07), June 2007, pp.26-33.


