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Abstract
We describe the locking architecture of a new operating sys-
tem, HURRICANE, designed for large scale shared-memory
multiprocessors. Many papers already describe kernel lock-
ing techniques, and some of the techniques we use have been
previously described by others. However, our work is novel
in the particular combination of techniques used, as well as
several of the individual techniques themselves. Moreover,
it is the way the techniques work together that is the source
of our performance advantages and scalability. Briefly, we
use:

a hybrid coarse-grain/fine-grain locking strategy that
has the low latency and space overhead of a coarse-
grain locking strategy while having the high concur-
rency of a fine-grain locking strategy;

replication of data structures to increase access band-
width and improve concurrency;

a clustered kernel that bounds the number of processors
that can compete for a lock so as to reduce second order
effects such as memory and interconnect contention;

Distributed Locks to further reduce second order ef-
fects, with modifications that reduce the uncontended
latency of these locks to close to that of spin locks.

1 Introduction

The question of how to structure locks within an operat-
ing system is important, because it directly affects both the
available concurrency and the latency of operating system
services. The correct choice of locking strategy for a par-
ticular data structure or subsystem depends on the expected
access pattern and the overall system workload. In a shared-
memory multiprocessor environment, we need to efficiently
support a workload consisting of either parallel applications
or multiple sequential applications or both. These work-
loads result in four types of access behaviors for operating
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system data structures: 1) non-concurrent accesses, 2) con-
current accesses to independent data structures, 3) concur-
rent, read-shared accesses, and 4) concurrent, write-shared
accesses.

A Unix application workload consisting of many sequen-
tial applications will primarily induce the first two types of
access behaviors. Much of the existing work on operating
system locking issues has focused on these types of work-
loads. Parallel applications, on the other hand, primarily
induce the second and third type of behavior. The third and
fourth types of behaviors are in some ways the most impor-
tant, however, as these can induce worst-case behavior in
the operating system.

In this paper, we describe a locking architecture that
addresses all four types of access behaviors. It uses a hy-
brid approach, which combines properties of both coarse-
grained and fine-grained locks. The coarse-grained locks
minimize the number of atomic operations needed in the
critical path of non-concurrent operations. Minimizing the
latency of uncontended locks in the critical path is impor-
tant, because it can constitute a significant portion of the
overall response time of an operation. In our system, for
example, the measured time for a simple page fault is 160

sec, of which 40 sec is attributable to lock overhead.
Fine-grained locks, on the other hand, provide the high
degree of concurrency needed for concurrent, independent
operations. Further, we employ a technique called hier-
archical clustering, which replicates data that is primarily
read-shared so as to increase overall lock bandwidth, and
bounds the contention on shared structures by constrain-
ing the number of processors that can access the structure.
Finally, we make extensive use of Distributed Locks pro-
posed by Mellor-Crummey and Scott [19], in order to re-
duce second-order effects for those cases where contention
cannot be otherwise avoided. We have improved on the
basic algorithm and optimized Distributed Locks for use in
a kernel environment.

The design of a locking architecture is heavily dependent
on the parameters of the system environment for which
it is targeted. In our case, the design is influenced by



the fact that 1) atomic operations are expensive relative to
normal memory accesses, 2) is the only atomic op-
eration supported, 3) our operating system is an exception-
based micro-kernel (as opposed to process-based [6]), and
4) many of the kernel data structures are left uncached
because our hardware does not support cache-coherence.
Nevertheless, we believe that elements of our architecture
are relevant to a wide variety of system architectures. It
should also be noted that many of the techniques we use
have been proposed previously. However, the strength of
our approach lies in the particular combination of tech-
niques used to efficiently support the four access patterns
described above.

Section 2 of this paper describes our general locking
architecture. Section 3 describes our improvements to,
and experiences with, Distributed Locks. In Section 4 we
present performance results from our system. This is fol-
lowed in Section 5 by a discussion of how our approach to
locking might generalize to other systems, and a discussion
of our ongoing work. Finally, we conclude in Section 6
with a summary of this paper.

2 Locking Architecture

This section describes the locking architecture of the
HURRICANE [8, 13, 25, 26] operating system. Three key
features distinguish this architecture: a mix of coarse and
fine grained locks are used to achieve low latency while
still supporting high concurrency for independent opera-
tions; hierarchical clustering is used to limit contention by
replicating data structures and constraining the number of
processors that can directly access a particular data struc-
ture; and an optimistic deadlock avoidance protocol is used
to reduce common case latency.

2.1 A Hybrid Approach
Our Hybrid approach uses coarse-grained locks, where a
single lock may be used to protect several data structures
but may only be held for short periods of time, and it uses
“light-weight” fine-grained locks to protect data for longer
periods of time but at a much finer granularity.

Consider the chained hash table of Figure 1. In a system
using fine-grained locks (Figure 1a), each bin would have
its own lock to serialize updates to the hash chains, and each
hash entry would have one or more locks to protect the data
therein. With our hybrid approach, the entire hash table
might be protected by a single coarse-grained lock. Using
coarse-grained locks in this way has both advantages and
disadvantages with respect to space and time. Clearly the
number of locks required to access a data structure is min-
imized, but that alone does not minimize the locking time,
except in the case of no contention. The challenge is thus
to keep locking time low as concurrency is increased, while

a) Fineïgrained locks
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Figure 1: A chained hash table in a) a system with fine-grained
locks, and b) the hybrid locking of HURRICANE. The boxes marked
with the dark shading indicate locks that are set with atomic oper-
ations. The boxes marked with light shading are reserve bits.

still minimizing the number of locks held. The remainder
of this section considers the trade-offs involved.

One disadvantage of a coarse-grained lock is that con-
current accesses to different elements are protected by the
same lock, causing unnecessary contention for independent
operations. Our first step to resolve this issue was to use
Distributed Locks. Distributed Locks allow processors to
spin locally while waiting for a lock, thereby removing the
second order contention effects caused by spinning over
the inter-connection network. The additional traffic on the
network and memory caused by remote spinning not only
slows down other non-contending processors, but also slows
the processor that is holding the lock, extending the length
of its critical section and exacerbating the contention prob-
lem. Although a Distributed Lock requires more space than
a spin lock (an additional two words per actively spinning
processor), a fine-grained approach would require one spin
lock per hash element, a much higher total cost.

Figure 1b) shows how we allow increased concurrency
by holding the main lock only long enough to search the
hash table and set a reserve bit in the required element, after
which the coarse-grained lock is released. Other proces-
sors waiting for the reserved element spin on the reserve bit
(with exponential back-off). When the bit is released, the
waiting processors re-acquire the coarse-grained lock and
search again.

Our hybrid locking approach is in some ways similar to the locking
strategy used by Peacock, et al, for locking cache elements in a multipro-
cessor version of System V Release 4 [12, 21].

Currently in our kernel, memory used for an object is always reused
for objects of the same type. Hence, there is no danger that a process could
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Figure 2: A chained hash table in a system with 2 clusters. Each
cluster has a separate instantiation of the hash table and the locks
that protect it. Deadlock must be avoided when a cluster requires
a lock in two clusters simultaneously, for example, to instantiate
a new copy of element on cluster 1.

The reserve bit is in essence a fine-grained spin lock,
except that 1) it requires only one bit of storage instead of
a whole word and is typically co-located with other needed
status information, 2) multiple reserve bits can be acquired
while the main lock is held, and atomic operations are not
required to do so, and 3) it plays a special role in our dead-
lock avoidance strategy (described in Section 2.3). The
fine-grained spin locks, however, can be subject to the con-
tention effects that result from the bursty accesses we ex-
pect in a multiprocessor environment. We counteract this
problem by controlling the number of processors that can
simultaneously access the data structure and by replicating
the data structure, as described next.

2.2 Hierarchical Clustering
To control the concurrency demands on the kernel data
structures, we use a technique called hierarchical clustering.
Briefly, hierarchical clustering is a framework for managing
locality in a scalable shared-memory multiprocessor [25].
Instead of having one set of system data structures shared
by all processors in the system, the processors are grouped
into clusters and a complete set of system data structures
are instantiated within each cluster. With this framework,
the read-mostly data is replicated onto each cluster, and
write-shared data exists on only one cluster, possibly being
migrated from one cluster to another.

Figure 2 shows how the hash table of Figure 1 might
appear in a two cluster system. A separate instance of the
hash table, each with its own lock, exists in each cluster.
The hash tables are used to hold both replicated entries (if
they are primarily read-only) and non-replicated entries. In
Figure 2, is replicated to cluster 1 and cluster 2, while
there is only a single copy of and in the system. Only

spin indefinitely because the memory has been reallocated for another type
of object that happensto have the same bit permanentlyset. If memorywas
arbitrarily recycled, then it would be necessary to either (i) periodically
check, while spinning, that the data structure is still the one being sought,
or (ii) use reference counts [1] to ensure that objects are not deallocated
while a process is spinning on them.

processors in the cluster may access the cluster-local hash
table. To access entries of a hash table in another cluster, a
remote procedure call (RPC) must be made to that cluster.

Replicas of primarily read-shared data are typically made
on demand. Hierarchical clustering supports efficient repli-
cation management by organizing the system into a tree. In
the simplest case, the tree has three levels, with processors at
the leaves, clusters forming intermediary nodes, and a log-
ical top of tree for the entire system. The act of replication
is made more efficient by combining multiple simultaneous
requests from the processors in one cluster into a single re-
quest to the target cluster. This is accomplished by always
first creating a local (reserved) instance before performing
the replication. This local instance acts as a place-holder
until the real data is obtained, preventing redundant repli-
cation requests from being issued. Combining is important
because it is common that the many processes of a large
SPMD program make concurrent demands that require the
same (read shared) data.

The hierarchical clustering tree is also used to efficiently
support the broadcast of modifications or invalidations when
a replicated data structure is changed. For most data struc-
tures, the change is simply sent in parallel to each cluster.
For data structures that are replicated per-processor, such as
page tables in our system, the change is further broadcast
within each cluster to each processor affected.

From the point of view of locking, hierarchical cluster-
ing provides two major benefits. First, it bounds contention
for both coarse-grained locks and reserve bits, since RPCs
are used instead of shared memory to access remote en-
tries (Chaves et al discuss some of the trade-offs between
using RPC and shared-memory [3]). Second, it increases
lock bandwidth by ) instantiating per-cluster system data
structures (such as the hash table in Figure 2), each with its
own coarse-grained lock, and by ) replicating read-shared
objects (such as in Figure 2), each with its own reserve
bit.

Although hierarchical clustering bounds lock contention
and increases lock bandwidth, it does complicate locking
protocols [26]. For example, a needed data structure may
not be present in the local cluster, requiring a remote oper-
ation to get it. If the data is replicated, then it must be kept
consistent, which also requires remote operations. If the
local kernel is holding any locks when initiating a remote
operation, then some protocol must be established so that
deadlock does not occur.

2.3 Deadlock Management Protocols
This section describes the protocolused to prevent deadlock
across the clusters of a hierarchically clustered system. The
protocol applies only to locks within the same class (e.g., the

In theory, any processor of the target cluster may be used to execute
the RPC. In our implementation, RPCs from the th processor in the source
cluster are always directed to the th processor in the target cluster so as
to roughly balance the RPC load.



class of process descriptor locks); we use a lock hierarchy
across classes.

Consider again the clustered hash table of Figure 2. As-
sume a local copy of element is required by cluster
1. A search of the local hash table reveals that it is not
present, at which point a data specific location resolution
technique [25] indicates that the item resides in cluster 2.
The kernel on cluster 1 then allocates a local instance of
the element, , and initiates an RPC call to cluster 2 to
retrieve the data. The local instance is created before the
remote access is started so that other processors within the
cluster that try to access while the remote operation is in
progress will not also initiate (redundant) remote requests.

Because of the symmetric relationship between clusters,
deadlock can result at this point if the RPC to retrieve
is started without releasing the locally held locks. Our
initial pessimistic deadlock prevention protocol required
the initiator to release all locks before initiating the RPC,
and then to re-acquire them once the remote operation had
completed. This added considerable overhead to the code.
Because the data structures were unprotected and could
be modified or even removed while the local locks were
released, the kernel had to search the hash table again to
re-establish the continued existence of element after the
RPC had completed. In addition, the kernel had to be
prepared to handle the case where the data was no longer
present. In the common case this re-establishment of state
was unnecessary, since the probability of the data having
been migrated or destroyed was very small.

To avoid the overhead of re-establishing state for the
common case, we have implemented an optimistic algo-
rithm that avoids deadlock and is similar to that described
by Paciorek [20]. Before releasing the local locks, a re-
serve bit is set in any structure that might be needed after
completing the call. The reserve bit may act as an exclu-
sive lock or a reader-writer lock, depending on the data it
protects. The local locks are then released and the RPC is
initiated. If a reserve bit is encountered during processing
in the remote cluster, the RPC operation fails and returns
with an indication that a potential deadlock situation exists.
The local reserve bits set earlier are then released and the
remote operation is retried until it succeeds. Note that the
local state must be re-established only if a retry is necessary.

Our optimistic approach saves us from having to re-
establish state in the common case, although not for ev-
ery case. In practice, we have found that retries are seldom
needed, and the need to restart an operation because of mod-
ified state occurs even less frequently. Our approach does
have two disadvantages, however. First, we have found
that the deadlock avoidance algorithm required us to have
two versions of code in many cases: one version has re-
lease/retry handling (used when executing as the target of
a RPC); and one allows spinning without release/retry han-
dling. Second, by requiring a remote request to contin-
uously retry the RPC until it succeeds, the probability of

being able to acquire a remote reserve bit is lower than for
requesters that are in the target cluster and hence can spin
directly on the reserve bit. Remote processors therefore
have a greater potential of being starved for resources that
are over-committed.

Remote operations must be retried even when the local
locks and reserve bits have all been released, because the
processor itself is effectively a locked resource (that could
participate in a deadlock cycle) in an exception-based ker-
nel. This is particularly apparent in our use of RPCs. Con-
sider once again the hash table in Figure 2, and suppose
processor in cluster 1 would like to modify globally.
Consider the situation where has dropped its local locks
and reserve bits in order to retry the request, but the proces-
sor it directs the RPC to, say processor , has the reserve
bit for set and is currently performing an RPC to another
cluster. If the RPC from processor now executing on
processor were to spin on ’s reserve bit on processor

, deadlock would result. The deadlock cycle is caused
by processor ’s RPC holding the processor as it spins
waiting for the reserve bit, while processor holds the
reserve bit while waiting for the processor to be released.

Although our algorithm has been presented in the context
of a clustered system, it is important to note that the same
protocol could be applied to any system that requires mul-
tiple locks simultaneously. Also, we chose not to use the
more common global ordering approach [22] within a par-
ticular class of locks, because the only ordering that makes
sense in a clustered system is by cluster number. Since re-
mote cluster operations are in general uniformly distributed
across clusters, we would still have to release locks to pre-
serve the correct ordering, and we would still require the
ability to roll-back and restart.

We have observed two situations where modifications
occur often to data required for the completion of the op-
eration while their locks are released: copy-on-write page
faults and program destruction. Both situations occur in-
frequently relative to other kernel operations, and of course
are only a concern with large applications that span multiple
clusters. Nevertheless, they will perform less efficiently on
average because of the overhead of the retries.

2.4 Advantages of our Approach
The four classes of workload an operating system must
handle are: 1) non-concurrent requests, 2) concurrent in-
dependent requests, 3) concurrent requests to read-shared
operating system resources, and 4) concurrent requests to
write-shared operating system resources. We have found
that our hybrid locking approach, in conjunction with hier-
archical clustering, allows us to effectively address all four
workload classes.

Non-concurrent requests: The only important goal for
this workload is to minimize latency. With our hybrid
locking strategy, many kernel requests require only a



single atomic operation. Hence, HURRICANE is able
to achieve uncontended response times comparable to
uniprocessor systems [14].

Concurrent independent requests: The important goal
for this workload is to maximize concurrency, so an
optimal strategy would be to use fine grain locks for
these requests. With our hybrid locking strategy, the
reserve bits serve as fine grain locks to maximize con-
currency and minimize the time that the coarse-grained
locks are held. By using hierarchical clustering, the
number of processes concurrently contending for a
coarse-grained lock is bounded, so, for this workload,
HURRICANE is able to achieve performance compara-
ble to systems structured using only fine grain locks.
This is demonstrated in the results section.

Concurrent requests to read-shared resources:
Hierarchical clustering allows us to instantiate multi-
ple instances of read-mostly data structures to increase
the access bandwidth to the data. Since requests from
SPMD applications to shared resources can be bursty,
it is important that the replication be done efficiently;
hierarchical clustering creates a combining tree to re-
duce the demand on the source data structure, should
many processors wish to make copies of the data struc-
ture simultaneously.

Concurrent requests to write-shared resources:
Although kernel resources are seldom actively write-
shared in our system, it is still important to mini-
mize second order effects for those cases where write-
sharing does occur. Since accesses to shared data
in remote clusters typically occur via RPC calls, the
number of processors competing for a write-shared
data structure is bounded by the number of processors
in the cluster.

2.5 Experiences using our approach
In the previous sections, we discussed our general locking
methodology from an architectural perspective. Naturally,
when applying a general methodology to a particular sit-
uation, one often makes adaptations and optimizations to
accommodate particular uses. In this section we describe
the more interesting lessons we learned from applying our
general techniques to a full operating system implementa-
tion.

Pessimistic vs. Optimistic

In a number of cases we found it advantageous to use a
pessimistic (i.e., release all locks, including reserve bits,
prior to making a remote request) rather than an optimistic
locking strategy, primarily for reasons of simplicity. For
example, although we use an optimistic strategy for many
data structures when creating local replicas, we typically

use a pessimistic strategy for global updates. The optimistic
approach is preferable for the former case, since it allows us
to use the combining tree approach discussed in Section 2.2.
The pessimistic approach is generally preferable for updates
that may be broadcast to many clusters: if a processor in
one cluster asks a processor in another cluster to broadcast
modifications to data for which it also has a copy, then it is
obviously better to have the local copy unlocked from the
start.

Hybrid Compromises

Although we generally use the hybrid coarse-grain/fine-
grain locking strategy as described, we do not follow it
religiously. Our kernel has some data structures that are
protected by coarse-grained locks and have no fine-grained
locks, and in some cases, we have found it advantageous
to split coarse-grained locks to achieve somewhat greater
concurrency.

Retries

The rationale for using an optimistic approach is to trade off
performance under contention (possibly requiring retries)
for performance under light load (allowing locks to be safely
held during remote operations). We found not only that
retries are rarely required, but in those cases where they
are required they would still have been required using a
pessimistic approach.

For example, with SPMD programs, simultaneous faults
to copy-on-write pages raise a number of potential deadlock
situations that require retries with the optimistic approach.
However, because a copy-on-write fault requires instantiat-
ing a new private page to replace the current shared page,
the pessimistic approach would likely find that its copy of
the page had disappeared by the time it completed its re-
mote operation, requiring it to re-search its data structures
and re-issue the request.

A second example can be found in the destruction of
parallel programs containing many processes. Hurricane
maintains a family tree of processes in the system, where the
links of the tree run through the process descriptors. When
a process in the application is to be destroyed, multiple
process descriptors in different clusters must be updated to
remove the process from the tree. Since all processes of an
application are destroyed at approximately the same time,
retries are common, independent of the strategy chosen.

Data structure design

One lesson we learned from the case of program destruction
was that combining two structures with different locking
characteristics into a single entity can lead to many concur-
rency control problems. In this particular case, the problem
came from the fact that program destruction can involve up
to three process descriptors and has a natural lock ordering



that follows the structure of the tree, while process descrip-
tors are also used to implement message passing which
always involves two arbitrarily related processes, with no
natural ordering. Had the family tree been implemented as
a separate data structure, it would have been possible to ex-
ploit the hierarchy of the tree to enforce a lock ordering that
would have allowed us to avoid the RPC retries described
above.

3 Using Distributed Locks

Distributed Locks [19] are used in our system primarily for
per-cluster coarse-grained locks, since cross-cluster interac-
tionsmost often occur throughRPCs. DistributedLocks are
particularly well-suited for NUMA shared-memory multi-
processors and can substantially reduce the second-order
effects stemming from the memory and inter-connection
network contention that occurs when processors spin on
remote memory. Distributed Locks build a queue of pro-
cessors waiting to acquire a lock. Second-order contention
effects are reduced because waiting processors spin on their
local queue elements, instead of across the interconnection
network. The queue also has the benefit that accesses to
the lock are distributed fairly, since processors are queued
in order of arrival. The remainder of this section describes
several interesting lessons we have learned from using Dis-
tributed Locks.

3.1 Latency in the uncontended case
The high uncontended latency of Distributed Locks relative
to spin locks was originally a concern to us, since other
researchers had found that it could be as much as twice as
high as that of simple spin locks [15]. One way to address
this problem is to use an adaptive technique, where the locks
switch between spin and distributed locks, depending on the
amount of contention observed [2, 15]. We instead found
that two simple modifications to the original distributed
locking algorithm could improve the uncontended latency
to make it competitive with that of simple spin locks (on
our system), while preserving the advantages of distributed
locks in the contended case.

The original and modified distributed locking algorithms
are shown in Figures 3a and 3b, respectively. The first mod-
ification removes the code that initializes the per-processor
local structure from the critical path of the uncontended case
(i.e., the first dashed box in Figure 3a). This was done by
requiring the per-processor queue structure to be initialized
prior to the first request to the lock, and by re-initializing the
structure when it is modified, which occurs only when there
is contention for the lock. The code added is highlighted in
Figure 3b.

The second modification to the Distributed Lock algo-
rithm removes the condition in , which de-
termines whether another processor has since added itself

to the queue, and which is executed just prior the execution
of the to release the lock in the uncon-
tended case (i.e., the second dashed box in Figure 3a). The
check was there as an optimization for the contended case,
assuming local memory accesses are much cheaper than
remote accesses. However, this check degrades the perfor-
mance of the common case where the lock is uncontended.
Removing the check does not affect the scalability of the
algorithm, since it adds only a constant overhead to the case
where there is contention.

With these two modifications the uncontended latency
on HECTOR improved from 5.40 sec to 3.69 sec — an
improvement of 32%. The optimized time now compares
favorably to the uncontended spin lock time of 3.65 sec,
the algorithm of which is shown in Figure 3c. These results
are described in more detail in Section 4.1.1.

3.2 TryLock
As described by Mellor-Crummey and Scott, Distributed
Locks do not support a TryLock operation. TryLock makes
a single attempt to obtain a lock, and returns either with the
lock held, or with a failure code if the lock is not free. In
operating system kernels, TryLocks are typically used by
the interrupthandlers, which cannot wait for a lock in case it
is held by the pre-empted process. In our system, interrupts
are used not only for devices, but also for invoking RPCs.
In the case of an RPC, if a TryLock fails then the invoking
processor is returned an error and retries the operation.

Our first attempt to extend the basic Distributed Lock-
ing algorithm to support TryLock took advantage of the
fact that the local queue structures could be pre-allocated
on a per-processor basis, one for each coarse-grained lock.
The interrupt handler checks whether the pre-allocated lo-
cal queue element is in use before it enqueues itself; if the
queue element is free, then it is certain it did not interrupt
a current holder of the lock and can therefore safely wait
for the lock to be released. While this does not implement
a true TryLock (because the interrupt handler will enqueue
itself and wait rather than returning immediately if the lock
is held), it does prevent deadlock and has the advantage
of allowing the interrupt handler to acquire the lock under
all conditions except when it clearly cannot, namely when
it has interrupted the lock holder. Unfortunately, this im-
plementation of TryLock required a flag in the local queue
structure that had to be modified both when acquiring and
releasing the lock, and hence had a negative impact on the
base performance of our distributed locks in the uncon-
tended case.

We developed a second variant of the Distributed Locking
algorithm, which also supported TryLock (this time a true
TryLock) but which only added overhead to
in the contended case. The new algorithm is similar to

of Figure 3b, except that it uses a separate
local queue structure just for interrupt handlers. If an in-
terrupt handler discovers that the lock is already held after



type qnode = record
  next : ^qnode
  locked : Boolean
type lock = ^qnode

procedure acquire_lock( L: ^lock, I : ^qnode )
  Iï>next := nil
  predecessor : ^qnode := fetch_and_store( L, I )
  if predecessor != nil
    Iï>locked := true
    predecessorï>next := I
    while Iï>locked do <nothing> 

procedure release_lock( L: ^lock, I: ^qnode )
  if Iï>next = nil
    if compare_and_swap( L, I, nil )
      return
    while Iï>next = nil do <nothing>
  Iï>nextï>locked := false

a) MCS distributed locks

type qnode = record
  next : ^qnode
  locked : Boolean
type lock = ^qnode

procedure init_qnode( I : ^qnode )
  Iï>next := nil 

procedure acquire_lock( L: ^lock, I : ^qnode )
  predecessor : ^qnode := fetch_and_store( L, I )
  if predecessor != nil
    Iï>locked := true
    predecessorï>next := I
    while Iï>locked  do <nothing>

procedure release_lock( L: ^lock, I: ^qnode )
  if compare_and_swap( L, I, nil )
    return
  while Iï>next = nil do <nothing>
  Iï>nextï>locked := false
  Iï>next := nil
  

b) modified distributed locks

type lock = (unlocked, locked)

procedure acquire_lock(L : ^lock)
  while test_and_set( L ) = locked
    delay : integer := 1
    while delay < MAX_DELAY
      Delay( delay )
      if test_and_set( L ) != locked
        return
      delay := delay * 2

procedure release_lock(L : ^lock)
  lock^ := unlocked 

c) exponential backoff locks

Figure 3: Locking algorithms used by HURRICANE

having enqueued itself, then it returns with an error code
(rather than spinning), leaving its local queue structure still
in the queue. The queue structures from failed TryLock re-
quests are garbage collected by operations.
This implementation of TryLock is similar to the timeout
mechanism for the queueing lock, developed independently
by Craig [5].

Unfortunately, we found that this second variant of Try-
Lock discriminated against RPC operations and favored
local operations. In hindsight, we realized that this use of
TryLock was fundamentally incompatible with Distributed
Locks, since Distributed Locks are inherently fair, while
retry-based locking is only probabilistically fair. That is, if
a lock is saturated, then a Distributed Lock’s
operation will always hand-off the lock to some local pro-
cessor that is waiting in the queue, keeping the lock perma-
nently held; remote requests using TryLock will never see
the lock free.

An alternative to using TryLock for RPCs is to disable
interrupts while the lock is held, thus preventing RPCs from
getting through. This way, the RPC interrupt handler can
be sure it cannot deadlock with the processor it interrupted.
Unfortunately, our hardware only provides the ability to
enable and disable all interrupts, and for a number of reasons
the HURRICANE kernel always runs with interrupts on. We
therefore adapted a strategy first suggested by Stodolsky et
al [23].

Inter-processor interrupts are treated as a separate inter-
rupt class that can be logically masked. A per-processor
flag is set whenever a lock is about to be acquired that could
cause deadlock with an interrupt handler. An interrupt han-
dler always first checks the flag, and if clear, can safely
queue for the lock. If, on the other hand, the flag is set,
then the interrupt handler enqueues a record of the work
to be done on a per-processor work queue. When the flag

is cleared, the queue is checked and any pending work is
immediately completed. Because the flag and the queue are
accessed strictly locally, they can be cached effectively.

The per-processor flag acts as a lock for the processor,
placed at the top of the lock hierarchy: it must be acquired
before any other lock can be acquired. For RPCs, it al-
lows fair access to the processor, because work is enqueued
for later execution whenever the interrupt handler finds the
processor locked in a manner similar to the way processors
enqueue themselves on Distributed Locks.

In retrospect, it may have been better to combine the
work queue with our second TryLock variant, rather than
adding the additional per-processor flag to the top of the
lock hierarchy.

4 Experimental Results

In this section, we use synthetic stress tests to demonstrate
the performance of our locking architecture. The experi-
ments were run on a fully configured version of HURRICANE
with all servers active, but with no other applications run-
ning at the time. The operating system was running on a 16
processor HECTOR prototype with 16 MHz MC88100 pro-
cessors [27]. The particular hardware configuration used in
our experiments consists of 4 processor-memory modules
per station (a shared bus) and 4 stations connected by a ring.
This causes access times to vary from 10 cycles for a local
(on-board) access, to 19 cycles for an on-station access, and
23 cycles for a cross-ring access.

4.1 Basic locking performance
We first present performance results for the three locking
algorithms of Figure 3 in the absence of contention, and
then show their performance as the locks become con-



Atomic Mem. Reg. Br.
MCS 2 2 3 5
H1-MCS 2 1 3 5
H2-MCS 2 0 3 4
Spin 2 0 1 3

Figure 4: Instruction counts required to execute a lock/unlock
pair for the various routines in the absence of contention. MCS
is the unmodified Mellor-Crummey and Scott Distributed Lock
algorithm; H1-MCS is the MCS algorithm with our first modifica-
tion, that removes the initialization code; H2-MCS is the H1-MCS
algorithm with the conditional test in the unlock removed; Spin is
the exponential backoff spin lock algorithm. Atomic are atomic

instructions (swap instructions in our case);
Mem are loads or stores to memory; Reg are single-cycle register-
to-register instructions; Br are branch instructions (including re-
turn).

tended. Our processors only support
instructions (and not ). Therefore, we
use Mellor-Crummey and Scott’s vari-
ant of their Distributed Lock algorithm in these experiments.
Using this variant of the algorithm only impacts the perfor-
mance of the contended case, as described in Section 4.1.2.

4.1.1 Uncontended performance

We measured the performance of the three locking algo-
rithms by measuring the average time to acquire and release
a lock times. The uncontended latency of exponential
backoff spin locks (Figure 3c) varies between 3.65 sec
and 4.63 sec, depending on the distance between the pro-
cess requesting the lock and the lock variable. The latency
of the unmodified Distributed Locks (Figure 3a) varies be-
tween 5.40 sec and 6.02 sec. With our first modification
that eliminates the initialization code, latency improves to
between 4.56 sec and 5.33 sec, and with our second
modification that also removes the condition code, the un-
contended latency further improves to between 3.69 sec
and 4.63 sec.

The instruction counts for the three locking algorithms,
obtained by inspecting the assembly code, are shown in
Figure 4. While the modified Distributed Lock algorithm
(H2-MCS) has the same number of atomic operations and
memory accesses as the spin lock algorithm, it should have
five additional cycles of latency due to branch instructions
and register to register instructions. This expected latency
is not reflected in the measured performance results, be-
cause the execution of these instructions is overlapped with
the part of the instructions (the
MC88100 processor can proceed as soon as the por-
tion of the has completed). Hence, our

On our system, all stores to a variable that might be modified with a
instruction must also occur using a

instruction. For this reason, the unlock operation for a spin lock releases
the lock using a rather than a store instruction.

modified Distributed Lock algorithm performs almost as
well as the spin lock algorithm on our system.

4.1.2 Performance under contention

Figure 5 compares the response times of the different lock-
ing algorithms under contention, when processors contin-
uously acquire and release the same lock. Figure 5a and 5b
show the performance for the case where the lock is held
for 0 sec and 25 sec, respectively.

Because we use the variant of Dis-
tributed Locks, it is possible that a nil will be stored to
the lock variable in , even if there is some
successor waiting for the lock. In this case, a performance
penalty is incurred to repair the queue. From Figure 5a and
5b, we can see that the first modification we made to Dis-
tributed Locks does not degrade performance in the case of
contention, while the second modification adds a constant
overhead to , which is shown by that fact
that the latency increases linearly with the number of con-
tending processors. The extra latency for the second variant
is a result of not checking for successors in the unlock oper-
ation, requiring the queue to always be repaired if there is a
successor. If the lock is held for zero time, then this degra-
dation has a significant effect on performance (Figure 5a),
but if the lock is held for as little as 25 sec, then the extra
latency is much less significant (Figure 5b). Note that if

were available, then the performance
differential would be significantly lower, although it would
not be eliminated.

The Distributed Locks are compared against two variants
of the exponential backoff spin locks in Figure 5, one where
the maximum backoff is 35 sec and the other where the
maximum backoff is 2 msec. The former value is intended
for lightly contended locks to reduce the latency in the case
where the lock could not be acquired immediately, and is the
value used internal to our operating system (for a cluster size
of 4). The latter value was chosen because it yields optimal
results for the experiments presented. With a maximum
backoff of 2 msec, the performance of the spin locks is
competitive with that of the Distributed Locks, since the
memory contention becomes negligible. However, using
this value makes the lock highly susceptible to starvation:
with 16 processors contending for the lock and a lock hold
time of 25 sec, it took over 2 msec to acquire the lock in
over 13% of the acquisition attempts.

4.2 General locking results
We use two synthetic page fault tests to demonstrate the
effects of our locking architecture. In particular, the tests
use soft page faults (i.e., faults to pages already in core),
since such faults are fairly common in our system, both for
mapping in cached files, and to support page-level cache
coherence, page migration, and page replication. The tests
model particular phases of real applications, stressing the
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Figure 6: A schematic depiction of the programs that stress the memory management sub-system. (a) processes repeatedly fault on a
region of local memory. (b) processes simultaneously write to the same small number of shared pages.

boundary cases. Using synthetic tests instead of real ap-
plications has the advantage that it allows us to focus our
attention on results of interest to this paper. Application
results on our system are presented in [25].

The two synthetic tests used are:

Independent faults (Figure 6a): processes repeatedly
fault on a per-process private region of local memory.
Because the faults are to different physical resources
(i.e., different pages) the only lock contention in this
experiment is due to unnecessary locking conflicts in
the kernel.

Shared faults (Figure 6b): processes repeatedly
1) write to the same small number of shared pages,
2) barrier, and 3) unmap the pages from the processes’
page tables. Because the faults from the different pro-
cesses are all to the same shared pages, lock contention
is implicit in the application demands.

Figures 7a and 7b show the response time of a page fault
for the two tests on a single cluster of 16 processors, as

is varied from 1 to 16 processors. The different curves
represent performance when either Distributed Locks or
exponential backoff spin locks are used.

For the independent fault test (Figure 7a), there is little
difference between the performance of Distributed and ex-
ponential backoff spin locks if the number of contending
processors is between 1 and 4. However, if is increased
beyond four, then the use of spin locks degrades perfor-
mance substantially, indicating that the coarse grain locks
are a source of contention. With 16 processors faulting con-
currently, the latency to handle a page fault is over twice as
high when spin locks are used instead of Distributed Locks.
These results demonstrate the dramatic impact that second
order effects can have on the performance of kernel opera-
tions, since the latency increases are due almost entirely to
contention at the memory and interconnection network.

For the shared fault test (Figure 7b), the difference in
latency between Distributed Locks and spin locks is much
smaller. This is because processes contend more for re-
serve bits, and less for the coarse grain locks. However,
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it is apparent that there is at least some contention for the
coarse grain locks as the number of contending processors
increases. This stems from the fact that multiple processors
simultaneously attempt to acquire the coarse grain lock that
protects the reserve bit they are waiting on whenever a re-
serve bit is cleared, so there are bursts of heavy demand on
the coarse grain locks.

Figures 7c and 7d show the response time with 16 proces-
sors as a function of the cluster size, which is varied between
1 and 16. For the independent page fault test, we expect
small cluster sizes to result in the best performance. For the
shared fault test, however, the situation is not so clear. We
expect the sharing in this test to give larger cluster sizes an
advantage. On the other hand, having a cluster size smaller
than the system size means that the page descriptors are
replicated to each cluster, increasing the lock bandwidth
and bounding the contention on each page descriptor to the
number of processors in the cluster.

Figure 7c shows that smaller cluster sizes do indeed lead
to better performance for independent requests. For this
experiment, performance does not degrade under contention
if the cluster size is 4 or less. Hence, it is clear that

The difference between the performance of the 2 processor cluster
and 4 processor cluster is due to NUMA affects rather than contention.

the coarse-grained locks that protect the reserve bits do
not constrain concurrency; i.e., they do as well as a fine
grained locking strategy. Since this is a stress test that
exerts demands on the kernel that are more extreme than
that of any application, one can expect cluster sizes larger
than 4 to perform as well with our hybrid locking strategy as
with a fine grained locking strategy, assuming the requests
are independent.

By comparing the results of Figure 7c to those of Fig-
ure 7a, we can see that the performance of 16 processes,
faulting independently in 4 clusters of 4 processors each,
is as good as the performance of 4 processes faulting in a
single 16 processor cluster. From this we can conclude that
hierarchical clustering is effective in localizing requests, al-
lowing independent requests on different clusters to proceed
concurrently without interference.

Figure 7d shows that moderate cluster sizes yield the best
performance in the case of the shared fault test. For very
small cluster sizes, the overhead of inter-cluster operations
dominates performance. As the cluster size increases, the
cost of obtaining a local copy of the page descriptor with

A null Remote Procedure Call (RPC) requires 27 sec, while the cost
to perform a cluster-wide page lookup and replicate a page descriptor is
approximately 88 sec.



an RPC is amortized over more processors, since only one
processor in each cluster must do so; the other processors
in the same cluster can then service the fault using the
local replica of the page descriptor. This is an example
of increasing the lock bandwidth through replication, and
merging requests using a combining tree. For very large
cluster sizes, the page descriptors become shared by too
many processors, and lock contention within the cluster
becomes a problem.

A workload with a mix of real applications can be
expected to have both independent and non-independent
faults. The performance behavior can therefore be expected
to be a combination of the behavior of both tests. From this,
we conclude that a cluster size somewhere in the range of
4 to 16 processors could be optimal for our system. It
is also interesting to note that results similar to those pre-
sented above were obtained for stress tests that exercised
other portions of the kernel, such as the message passing
subsystem.

5 Generalization of Experiences

Our experiences relate to one particular system. In this sec-
tion we attempt to generalize our results to other hardware
and software system architectures.

5.1 Other Operating System Designs
Process-based operating systems

Because our operating system is exception-based, as op-
posed to process-based [6], non-blocking locks are the most
natural approach to locking, since there is no process in the
kernel to block. While our approach can be applied di-
rectly to process-based kernels in those places where they
use spin locks, process-based kernels can also use blocking
locks which open up new opportunities to improve on our
techniques. For example, by creating a process to handle
interrupts and letting them block on locks, it is possible
to remove the processor from the lock cycle and to pro-
vide greater fairness for remote requests, eliminating the
problem described in Section 3.2.

Monolithic operating systems

Another question concerns how our locking strategy might
apply to monolithic operating systems. We have applied the
techniques described in this paper to several of our system
servers, in particular the file system [13], and have found
the benefits of reduced latency and increased concurrency
that stem from the use of both hierarchical clustering and
our hybrid locks apply. This gives us some confidence that
our approach would be just as effective when applied to
monolithic kernels.

5.2 Other Multiprocessor Designs
The system we used to test our ideas has only 16 rela-
tively slow processors, does not support hardware cache
coherence, and provides locking support that is relatively
slow (requiring two remote memory accesses for a sin-
gle read-modify-write sequence) and inflexible (supporting
only atomic-swap). It is natural, therefore, to question how
our results might apply to more modern systems, with faster
processors and interconnection networks, cache-coherence
or COMA (Cache-Only Memory Access [7, 9]) support, and
more powerful cache-based atomic primitives. Although
such architectural changes will shift the tradeoff points, we
believe that many of the techniques described in this paper
would still apply to these systems. We address each of these
issues in turn.

Larger and faster systems

Recent progress in processor design and manufacturing
have allowed CPU performance to advance at a signifi-
cantly greater rate than other components in multiprocessor
systems. Although higher bandwidth can be achieved in
other components by widening the data paths, the latency
to access memory or transfer data between processor caches
is a difficult problem to overcome. If one additionally con-
siders the effect of larger systems, it becomes clear that
contention for shared resources and the locks that protect
them will only get worse. Therefore, techniques such as
hierarchical clustering to bound the number of contending
processors and lock replication to increase lock bandwidth,
RPCs to increase locality, and distributed locks to reduce
second-order effects, will become all the more important
for such systems.

Cache-coherent systems

One of the more significant differences between our system
and many others is our lack of hardware cache-coherence.
As a general effect, the lack of cache-coherence makes
physical locality more important in our kernel than in others,
since we run with most of the kernel data uncached and
hence cannot take advantage of temporal locality.

Cache-coherent NUMA and COMA systems have higher
data access bandwidth and lower access latency when data
is read shared, which suggests that our software techniques
for increasing data bandwidth and reducing access latency
would be less important in such systems. However, for
many kernel data structures we do not believe this to be the
case. For example, the HURRICANE memory manager mod-
ifies the reference count on page descriptors when a page is
mapped into an application address space, and hence page
descriptors cannot be replicated efficiently using hardware
cache coherence; with hierarchical clustering, a separate
local reference count is maintained for each instance of the
page descriptor replicated by software. Also, it is still im-



portant to limit the number of processors that can contend
for a lock, and distribute kernel data structures so that they
are near requesting processors. Hence we believe that hier-
archical clustering can help, even for systems with hardware
cache coherence.

(As an aside, we believe that one might want to run with
some portions of the kernel data uncached, even in a hard-
ware cache-coherent system. Running uncached eliminates
cache-line-based false sharing, and with it the cache-line
ping-pong effects that often occur when data with differ-
ent access patterns share cache lines. Also, temporal and
spatial locality in current operating systems is often quite
poor [4, 24], leading to very low cache hit rates, reducing
the benefits of cache-coherence.)

Advanced atomic primitives

The atomic-swap operation supported by our processor re-
quires two main memory accesses and is hence relatively
slow compared to cache-based atomic operations which
permit a lock to be acquired without going to memory
(provided the cache-line is currently held in the exclu-
sive state). Newer systems also provide more powerful
atomic primitives, such as compare-and-swap (CAS) and
load-linked/store-conditional (LL/SC), which allow a num-
ber of additional optimizations that were not available to us
in our system.

The benefits of our hybrid locking strategy come primar-
ily from the reduced number of atomic primitives required,
their reduced space overhead, and their natural support for
performing multiple simple atomic operations under a sin-
gle lock. However, cache-based atomic primitives can re-
duce the cost of atomic operations to close to that of reg-
ular memory accesses, bringing into question our focus
on reducing the number of atomic operations required for
locking. The trade-off between atomic and regular mem-
ory accesses depends, however, on subtle implementation
issues that can change from year to year. We believe that
reducing the number of atomic operations will likely remain
beneficial, although not at the expense of larger numbers of
regular loads and stores, and hence this benefit of hybrid
locking should still apply.

Both CAS and LL/SC instructions allow single bit locks
to be implemented that can share a word with other data,
thus eliminating another advantage of the hybrid locks.
However, the hybrid-locktechnique of using coarse-grained
locks to protect large data structures has the advantage that
multiple operations (such as dequeuing and locking an el-
ement) can be performed atomically under a single lock.
Hence hybrid locks, with Distributed Locks as the coarse-
grain locks, would remain a good choice.

Distributed Locks are affected by cache-based locks in
a number of ways. The trade-off between regular spin
locks, our version of MCS Distributed Locks, and newer
cache-based queueing locks which are optimized for the
contended case [5, 17] depends on three primary factors:

1) the degree of sharing of the locks (and thus its hit rate);
2) the amount of steady-state contention expected; and 3)
the probability of bursts of very high contention. For low
sharing, low steady-state contention, and low burstiness,
spin locks would be the better choice, since they have the
lowest latency. With higher degrees of sharing the savings
from using spin locks are likely to be minimal, since the cost
of the cache misses will swamp any savings. In addition, if
occasional burstiness is a problem, spin locks must also be
ruled out because of the second-order effects from cache-
coherence traffic. If the steady-state contention is expected
to be low, our modified MCS locks have the advantage, since
they have lower latency than other queueing locks. Finally,
if high contention is common, the cache-based queueing
locks would be the better choice, since their contended-
case performance is better than the MCS locks.

Finally, LL/SC or CAS instructions, whether cached or
not, can be used to implement lock-free operations, which
can remove the need for locks entirely [18]. Lock-free data
structures have a number of benefits, both in terms of per-
formance (by removing the extra space and time cost of
locks) and in terms of functionality (they eliminate dead-
lock), but also have a number of disadvantages. Because
only a single word (or double word) can be updated atomi-
cally, modifications often become more complex: either an
entire data structure is copied, changes made to the copy,
and a pointer to the copy atomically swapped in (provided
the previous pointer still points to the original copy [11]);
or the changes can be performed as a series of atomic oper-
ations on single words, but only if each change leaves the
full data structures in a valid, consistent state [18]. The first
approach can be very expensive if the data structure is large,
while the second approach requires finding safe states for
each atomic change, which can be difficult and error prone.
Even when atomic modifications can be done with a small
number of atomic primitives, it may still be more efficient to
use regular locks depending on the true relative cost of the
atomic primitives compared to regular loads and stores. Fi-
nally one must be careful about the possibility of starvation
using the lock-free approach.

5.3 Current Directions
We are currently in the process of redesigning our locking
strategy for our next operating system, TORNADO, targeting
a new, T5-based multiprocessor called NUMAchine. This
multiprocessor will have an order of magnitude faster pro-
cessors, cache-coherence support in hardware, cache-based
LL/SC instructions, and network caches. Our initial design
considerations include:

Operating systems have traditionallyhad poor caching
behavior [4, 24]. However, we believe this is primarily
because caching and multiprocessor cache-coherence

An alternative is to use a wait-free approach, but this is generally
much more expensive [10].



effects have been largely ignored in the design of op-
erating systems. Today’s processor speeds relative to
memory speeds make it imperative to seriously con-
sider the caching effects. We believe it is possible to
design the data structures and the locking architecture
of an operating system to be cache friendly. Since 10
to 20 lock operations can be performed in the proces-
sor’s primary cache in the time it takes to service a
single cache miss, improving locality and reducing the
sharing of locks is likely to be more important than
reducing the number of locks.

We are considering using lock-free data structures for
simple leaf locks, particularly for data structures that
are required by interrupt handlers and if the data to be
modified is contained in a single word.

Clustering to bound contention and increase lock band-
width is a clear necessity and should prove to be even
more beneficial in our new, larger and faster system.

Although some of the benefits of our hybrid locks
observed in our current system will no longer apply
to our new system, their ability to reduce the number
of critical sections and to simplify atomic operations
involving multiple data structures is still valuable.

We are currently investigating alternative deadlock
management schemes such as the timestamp based ap-
proach used in the OSF/1 UFS implementation [16],
to be used in conjunction with hierarchical cluster-
ing. We hope to be able to preserve the simplicity of
the pessimistic approach, and the performance of the
optimistic approach.

Finally, we are starting with a more process-oriented
kernel, in part to remove some of the complications
of clustering and deadlock, and in part because we
believe dynamic process creation can be made to be
very fast [8]. We will be reducing our reliance on
spin locks, choosing instead to use either lock-free
data structures or spin-then-block locks, depending on
the situation. As such, the benefits of distributed spin
locks will likely be reduced, although it should be
possible to support process blocking under distributed
locks by building on some of the techniques described
in Section 3.2 for handling TryLock.

6 Concluding Remarks

In this paper, we have described a new locking architecture
designed for large-scale shared-memory multiprocessors.
This architecture consists of a number of components that
together provide high performance and scalability. First,
a hybrid coarse-grain/fine-grain locking strategy is used
that has the low latency and space overhead of a coarse-
grained locking strategy, while having the high concurrency

of a fine-grained locking strategy. The coarse-grained locks
protect large amounts of data, but may only be held for
short periods of time. The fine-grained locks must be set
under the protection of coarse-grained locks, but can protect
individual objects, require only a single bit of storage, and
may be held for longer periods of time.

Second, Hierarchical Clustering extends the effective-
ness of the hybrid locking strategy to large systems. It or-
ganizes the processors into clusters, with separate instances
of data structures and the locks that protect them on each
cluster. Primarily read-shared data is replicated as needed
to accessing clusters, increasing concurrency. Because only
processors local to the cluster may access the data in the
cluster (requiring an RPC to access remote data), the num-
ber of processors contending for a lock is bounded, limiting
second-order contention effects on the fine-grained locks.

Finally, Distributed Locks are used to further reduce the
second-order effects of lock contention. Our modifications
to Distributed Locks bring their uncontended cost close to
that of spin locks.

The results of our performance experiments clearly
demonstrate the effectiveness of our strategy, at least for our
current hardware base. The independent fault test showed
little contention for the coarse-grained locks up to 4 pro-
cessors, suggesting that this aspect of the hybrid locking
strategy is appropriate for clusters with up to 8 or even
16 processors under more realistic workloads. However,
for non-independent faults, which require greater cross-
processor interactions, cluster sizes larger than 4 provided
the best performance. Taken together these results suggest
that with a mix of real applications having both independent
and non-independent demands, a cluster size somewhere in
the range of 4 to 16 processors would be optimal for our
system.

Overall, we have found that the design of a locking ar-
chitecture is largely an exercise in global optimization, as
one tries to balance the strengths and weaknesses of both
the techniques and the underlying hardware. However, we
believe that many of the techniques presented in this paper
will also apply to other systems.
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