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he architecture of  the Hector 
multiprocessor exploits current 
microprocessor  technology t o  

produce a machine with a good costlper- 
formance trade-off. A key design feature 
of Hector is its interconnection backplane, 
which can accommodate future technolo- 
gy because it uses simple hardware with 
short critical paths in logic circuits and 
short lines in the interconnection network. 
The system is reliable and flexible, and can 
be realized at a relatively low cost. 

An important aim of the Hector project 
is to develop an architecture suitable for a 
general-purpose multiprocessor whose cost 
is directly proportional to size. Thus, an 
entry-level machine would be inexpen- 
sive, but can scale to larger sizes. To ac- 
commodate configurations with varying 
numbers of processors, Hector has a hier- 
archical structure. Bit-parallel rings inter- 
connect small bus sections. The buses and 
rings can transfer data independently of 
each other, so aggregate bandwidth in- 
creases proportionally with the number of 
these units. 

Hector is suitable for single jobs with 
many parallel tasks, as well as for concur- 
rent execution of multiple jobs consisting 
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of predominantly serial tasks. In other 
words, it is effective in a Unix environ- 
ment, as well as in such highly parallel 
commercial and scientific applications as 
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transaction systems, finite-element analy- 
sis, and computer-aided design. 

Hector in the 
multiprocessor picture 

Our goal in the Hector project is to ex- 
plore a design region where the most cost- 
effective multiprocessor solutions are likely 
to lie. Figure 1 shows where the Hector 
architecture fits with existing machines 
and well-known research projects. The 
figure indicates the relative characteristics 
of different machines configured to have 
approximately the same computational 
power - 0.5 to 1 Gflops. 

The two axes in the figure represent two 
important design options. The horizontal 
axis represents the power of the individual 
processors used, with very simple proces- 
sors at the origin. The less powerful the 
processors, the larger the number needed 
to achieve the desired aggregate system 
power. 

The vertical axis represents the degree 
of coupling between the processing mod- 
ules. In loosely coupled systems, proces- 
sors can directly access only their local 
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memories, but use data passing to commu- 
nicate with other processors over the inter- 
connection network. In tightly coupled 
systems, processors communicate through 
shared memory at speeds normally associ- 
ated with local (cached) memory access. 
Between these two possibilities are distrib- 
uted memory systems that allow proces- 
sors to access shared memory directly, but 
with reduced access times to some memory 
locations. 

Loosely coupled systems are easier to 
build and less expensive, but shared- 
memory systems are considered by many 
to be easier to program.’ Given two sys- 
tems with processors of equivalent power, 
the more tightly coupled one is considered 
to be more general. Typically, it can exe- 
cute more efficiently all applications that 
its more loosely coupled counterpart can. 
It can also execute some applications not 
suitable for more loosely coupled systems 
where sharing occurs at a finer granular- 
ity. Hence, any system represented by a 
point in the figure is more general than all 
systems represented by points directly 
above it. 

Two extremes in the figure are immedi- 
ately apparent. On the left side are ma- 
chines with many simple processors, such 
as the Connection Machine, which has many 
I-bit processors. With such machines, in- 
terconnection requires a data-passing or- 
ganization. On the right side are machines 
that comprise only a few exceptionally 
powerful processors, such as the Cray Y- 
MP/4. These machines can make full use of 
the shared-memory concept. 

Computational power is not simply a 
function of the architecture: An entry us- 
ing the Connection Machine (running an 
application executing at 6 Gflops) won 
the Gordon Bell prize for supercomputing 
for 1989, while an entry using the Cray Y- 
MP/8 (running at 1 Gflops) won it for 
1988.’ 

Multiprocessors that rely heavily on ad- 
vanced microprocessors lie between the 
extremes. These machines fall into three 
categories, according to  the coupling 
scheme used. A data-passing organi~at ion 
has been the natural choice in multiproces- 
sors based on hypercube interconnection 
backplanes. Well-known examples are the 
Intel iPSC, the Floating Point Systems T 
Series (FPS-T), and the NCube machines. 

The shared-memory model with full 
cache consistency is the goal of the re- 
cently proposed MIT A l e ~ i f e , ~  Wisconsin 
M ~ l t i c u b e , ~  and Stanford Dash.5 Several 
machines have been built with shared- 
memory capability but without hardware- 
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Figure 1. Coupling and processor power in multiprocessors. 

supported cache consistency. The BBN 
TC2000, the IBM RP3,‘ and our Hector 
multiprocessor are of this type. These sys- 
tems cache read-only code and data, as 
well as local data, but not all shared modi- 
fiable data. The Cm* multiprocessor, de- 
signed and built at Carnegie Mellon Uni- 
versity in the late 1970s, would probably 
also belong to this class if it were imple- 
mented with today’s technology. When 
implemented, the BBN Monarch’ will in- 
corporate in a shared-memory organiza- 
tion many somewhat simpler processors 
with no caches. 

In Figure 1 ,  a line joins the Connection 
Machine and Cray extremes. The machines 
above this line are economically feasible 
with today’s technology. Indeed, all of the 
machines shown in that region have been 
built, although not necessarily in  full size. 
On the other hand, machines that lie below 
the line are more difficult to build; none of 
those shown in the figure have been i n -  
plemented. With these systems, the chal- 
lenge is to provide coherent cached shared 
data with good performance, without in- 
troducing excessive interprocessor traffic. 

The systems at both ends of the diagonal 
are expensive. The most cost-effective so- 
lutions may lie along a line in the region 
where workstation technology is used, in- 
dicated by the vertical line. The point at the 
top end of the line probably represents the 
most inexpensive solution: processors with 
the best price-performance ratio in a sim- 
ple interconnection structure. The work- 
station technology line is rapidly moving 

to the right; 100-M1PS microprocessors 
may soon be available. Increasing the speed 
of the interconnection network is more 
difficult than increasing the speed of the 
processor chips. Thus, i t  will be a chal- 
lenge to build systems at the point where 
the workstation technology line intersects 
the diagonal. To address this challenge, 
Hector incorporates a novel hierarchical 
pipelined backplane that will scale to future 
technologies. 

Organization of Hector 

Although it is the simplest structure for 
interconnecting several processing mod- 
ules, the bus does not scale well in size and 
saturates quickly if too many modules are 
connected. With high-speed processors, 
typically two to six processors can be con- 
nected to a bus without significant perfor- 
mance degradation. Connecting a larger 
number of processors to a single bus is 
feasible only if the processors’ request rate 
for bus transfers is low. 

Hector exploits the natural advantages 
of the bus by using relatively small bus 
sections tied together through hierarchical 
bit-parallel rings. Figure 2 shows the 
overall organization. A bus section, with 
the associated processing modules, is called 
a starion. Several stations are intercon- 
nected by a bit-parallel local ring. Local 
rings are, in turn, interconnected by aglobal 
ring. 

This hierarchical structure is similar to 
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Figure 2. Structure of Hector. 

those of Cm4: and Cedar. In Cm*,8 multiple 
processor-memory pairs are connected by 
a “map-bus” to form a cluster, and mul- 
tiple clusters are  interconnected via 
“intercluster” buses. Rings at higher lev- 
els of the hierarchy, as used in Hector, 
have the advantage that they can be con- 
structed using only short point-to-point 
transmission links, allowing for faster 
signaling. Moreover, the overall bandwidth 
of the ring increases proportionally with 
the number of ring segments (although 
increasing the number of ring segments 
also increases latency by a corresponding 
amount). A second difference between 
Hector and Cm* is in how communication 
is controlled. In Cm*, a relatively power- 
f u l ,  horizontally microcoded processor 
controls communication, whereas in Hec- 
tor, control is by simple discrete logic (im- 
plemented in PALS in our prototype). This 
simplicity allows for faster switching and 
higher throughput. 

In Cedar,’ the lowest level consists of 
several Alliant FX/8 systems, each com- 
prising eight processing elements (with 

vector units) connected by a crossbar 
switch to a cache and higher level commu- 
nication structures. These, in turn, are con- 
nected by another crossbar switch to 
memory. We believe that the relative sim- 
plicity of Hector’s rings allows Hector to 
be more easily scaled to larger sizes and 
faster technology. 

Basic Hector architecture. A station 
consists of a number of processing mod- 
ules (PMs), connected by a bus. A typical 
PM comprises a microprocessor, cache 
memory, on-board memory, and various I/  
0 interfaces. While we use the term PM to 
refer to a module (board) plugged into a 
slot in the backplane, a PM need not have 
any processing capability. Some may be 
just memory modules; other specialized 
PMs provide interfaces to  various U0 de- 
vices. 

Hector provides a flat, global (physical) 
address space, where each PM is assigned 
a unique range of addresses. All processors 
can transparently access all memory loca- 
tions. Information transfer takes place in a 

packet format using a synchronized pack- 
et-transfer scheme. The traffic is controlled 
by three types of interface circuits. A stu- 
tion bus interface in each PM handles the 
communication requirements of the PM. A 
s tu t ion con tro 1 le r con t ro  1 s on - station 
transfers as well as the local ring traffic at 
the station. It contains a set of latches that 
hold an entire packet and a set of transceiv- 
ers that isolate the station bus from the 
local ring. A packet traverses the ring by 
being transferred from the latches of one 
station into the latches of the next station. 
An infer-ring interfiice connects a local ring 
to the global ring. Within one clock cycle, 
a packet can be transferred 

between two PMs within a station, 
between the latches of two adjacent 
station controllers or inter-ring inter- 
faces. 
from a PM in a station into the latches 
of the next station controller on the 
ring, or 
from the latches of a station controller 
to a PM in the station it controls. 

An on-station transfer and a transfer from 
the latches of that station controller to the 
latches of the next station can occur si- 
multaneously. The low complexity of each 
operation makes the backplane scalable. 

By controlling both the station bus and 
the corresponding ring segment, the sta- 
tion controller can give priority to packets 
being transferred on the ring. It does not 
allow a local PM to access the bus when 
there is a packet in the ring latches ad- 
dressed to this station (thus allowing the 
packet to be latched onto the station bus). 
Also, i t  allows only on-station transfers 
whenever a valid packet in its latches is to 
be transferred to the next station. This 
strategy prevents packets from having to 
be dropped or queued at the station and 
local ring levels. 

The inter-ring interface, which is essen- 
tially a2x2c rossba r  switch,requiresFIFO 
buffers to store packets when collisions 
occur- that is, when packets coming from 
both the local and global rings in a given 
clock cycle have to be routed to the same 
output. 

The addressing scheme is simple, so 
packets can be routed with minimal over- 
head in a fraction of a clock cycle. Each 
ring is identified by the most significant r 
bits of the (memory) address, the station is 
identified by the next s bits, and the slot in 
the station is identified by the least signif- 
icant p bits. This allows simple and fast 
address decoding. 
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Memory access and communication 
protocol. Accesses to remote memory 
modules are transparent to the processors. 
A nonlocal memory request is recognized 
by the control circuitry at the station bus 
interface, which forms a request packet. 
The request packet includes a 32-bit desti- 
nation memory address and a source PM 
address. In the case of a write, the packet 
also contains 32 bits of data. When the 
packet arrives at the destination, the desti- 
nation station bus interface performs the 
action requested (read or write) and returns 
a response packet to the source. For a read, 
the response packet contains up to 64  bits 
of data. For a write, the response packet is 
just the acknowledgment that the write 
operation has been completed. The response 
packet is sent to the PM identified by the 
source address in the request packet. 

If the source PM receives no response 
packet within a time-out period, it retrans- 
mits the request. If it receives no response 
after multiple retries, the operation fails. 
The requesting PM also retransmits the 
request if it receives a negative acknowl- 
edgment response, which happens, for 
example, when a remote PM recognizes a 
request but cannot service it. T o  allow a 
PM to have multiple outstanding requests, 
a tag is included in each request packet and 
returned with the response packet so that 
the response can be matched to the correct 
request. (Our prototype implementation 
allows only one outstanding request.) 

Considerable flexibility is permitted in 
the memory-access requests, which can 
involve 8-, 16-, 32-, or 64-bit data. A burst 
read of 128 bits can be used to load cache 
lines. For burst reads, the responding PM 
automatically generates multiple response 
packets, each containing 64 bits of data. 
The entire operation is retried if any response 
packet does not arrive within the time-out 
period. 

Atomic operations. Packet transfer is 
usually reliable. Therefore, to reduce hard- 
ware complexity and cycle time and hence 
increase performance for the common case, 
we believe that individual packet transfers 
can be aborted without specifically sig- 
nalling an error condition. For example, a 
packet may be dropped when a transmis- 
sion error is detected (by parity bits) or 
when a buffer overflows. Requiring the 
hardware to generate negative acknowl- 
edgment packets in these cases would add 
to its complexity. Hector’s communication 
protocol allows source PMs to detect aborted 
transfers by timing out, at which time they 
can retransmit the request packets. 

Source PM Destination PM 

Response lost 

Negative acknowledgment 

Time 

set 
lock 

Lock 
already 
set 

Figure 3. The problem with nonidem- 
potent requests. 

For read and write operations, the re- 
quest-response protocol with time-out 
works correctly because of the idempotent 
nature of the operations. (Strictly speak- 
ing, the write operation is not idempotent: 
A retransmission of a write request may 
result in the write operation occurring twice. 
This is acceptable for most applications; 
for the others, the write must be made part 
of a critical region.) 

An important operation for which the 
request-response protocol will not work 
directly is read-modify-write, which is 
needed to implement a processor’s test- 
and-set or swap instructions. Here, a diffi- 
culty arises if a PM does not receive a 
response to a read-modify-write request 
within a time-out period. The source sta- 
tion bus interface does not know whether 
its request packet was dropped or whether 
the corresponding response packet was 
dropped (in which case all further retries 
may fail). This situation is shown in Figure 
3, where the response to a test-and-set 
request is dropped. When the destination 
PM receives the retransmission of the test- 
and-set request, i t  returns a negative ac- 
knowledgment because the lock is already 
set. The source PM cannot determine 
whether the lock was set by its initial re- 
quest or whether it was set by another 
processor in the meantime. 

To handle this situation, the read-mod- 
ify-write operation is performed in two 

separate stages. In the first stage, the PM 
sends a read-and-lock request, which caus- 
es the responding PM to read the addressed 
memory location and return its contents in 
a response packet. When the requester re- 
ceives the data requested in its read-and- 
lock packet, it starts the second part of the 
read-modify-write by sending the data to 
be written to the destination memory in a 
write-and-unlock packet. To guarantee 
atomicity, the responding PM must pre- 
vent other processors from performing a 
read-and-lock at the same memory loca- 
tion between these two operations. Each 
station bus interface maintains a set of 
<proc, addr> pairs for this purpose, so an 
entry is recorded during the read-and-lock 
operation and cleared during the write- 
and-unlock operation. The station bus in- 
terface also uses these <proc, addr> pairs 
to detect and appropriately handle dupli- 
cate requests resulting from retransmis- 
sions. 

This protocol allows atomic operations 
on any memory location and can survive 
losses of packets, regardless of the packet 
lost. If either the read-and-lock or its re- 
sponse is lost, the requester will time out 
and retransmit the request. If the destina- 
tion PM received the original request, it 
will recognize the retransmission (since it 
stored the requester’s identifier) and re- 
spond with an acknowledgment. If either 
the write-and-unlock or its response is lost, 
the requester will also time out and re- 
transmit the request. If the original write- 
and-unlock packet was lost, this will result 
in a write-and-unlock action. Otherwise, 
the destination PM will send an acknowl- 
edgment. 

Hector’s backplane compared with 
other interconnection structures. As a 
hierarchical system, Hector provides for 
fast local operations over a bus. Most sys- 
tems with nonuniform memory-access times 
support memory accesses at only two time- 
cost levels - namely, local on-board ac- 
cesses and remote accesses. For example, 
in a 16-processor BBN TC2000, the ac- 
cess-time differential between local memory 
and remote memory is 1.4. In contrast, 
Hector has multiple levels in its hierarchy, 
so the cost of accessing data increases 
incrementally with the distance. In our 
prototype implementation, the access time 
differentials between local, on-station, on- 
ring, and off-ring memory are 1:1.2:2:4. 
The advantage of  a hierarchical structure 
is that much of the communication re- 
mains within the lower levels of the hier- 
archy because of the locality in data ac- 
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Table 1. The cost and complexity of interconnection structures (n 5 256 is the 
number of processors). 

Parameter Hector Banyan Crossbar Hypercube 

Longest wire length 0 (1) 0 ( n  ) 0 ( n  1 0 ( n  1 
Gates in switch path 0 (log n ) 0 (log n ) 0 (log n ) 0 (log n ) 
Total switch cost O ( n )  O ( n  I o g n )  O ( n 2 )  O ( n  l o g n )  

Switch data bits 0 (1) 0 ( 1 )  0 ( n  1 0 (log n 1 
Switch control bits 0 (1) 0 ( 1 )  0 ( n  log n )  0 (log n )  
Switch complexity 0 (1) 0 (1) O ( n  ’) o (log n ) 

Fan-out 0 (1) 0 (1) 0 ( n  1 0 (log n) 

cesses, resulting in relatively low average 
memory-access times. Moreover, since a 
bus is used at the hierarchy’s lowest level, 
a simple snoopy protocol can provide cache 
consistency among the PMs attached to the 
bus. 

Other important and distinctive advan- 
tages of the Hector backplane are its sim- 
plicity, low cost, and scalability to higher 
clock rates. Direct comparisons with other 
systems are difficult. Nevertheless, Table 
1 summarizes our attempt to compare met- 
rics that affect the cost and speed of several 
interconnection structures. Besides Hec- 
tor, we considered Banyan networks, 
crossbars, and hypercubes. 

The ability to scale an interconnection 
network to higher speeds depends largely 
on the longest wire length needed to con- 
nect system parts. Signal quality degrades 
over long wires at higher clock rates, and 
skew between signals in a cable makes it 
difficult to reduce the clock cycle time. 
The first line in Table 1 gives the length of 
the longest wire required by each type of 
network. We  assume that these systems 
can be implemented to fit in a single rack, 
since a system within a single rack has a 
maximum wire length that is a linear func- 
tion of processor distance, while i n  a larger 
system the wire length might be the square 
root of the distance. Hector has a constant- 
length wire, since each ring connects only 
to its immediate neighbor. In our proto- 
type, with two levels of rings, the longest 
wire is only seven inches. All the other 
systems require a wire length proportional 
to the size of the system, because they 
require connections to processors at least 
halfway across the entire set of processors. 
This makes i t  difficult to scale to high 
clock speeds. 

The number of gates in the path can also 
cause significant delays. All of the systems 

have identical orders of delay, although 
they still may differ by a constant factor 
that can be quite large (for example, 50 
nanoseconds, the time it takes to transfer a 
packet in Hector, as opposed to 7 ns, the 
delay through a crossbar multiplexer). The 
third line in the table measures the total 
cost of the switch for an entire system. 
Hector maintains O(n) cost, so the switch 
cost is always a small constant fraction of 
the total system cost. At the other extreme, 
the cost of a crossbar is O(n2),  which can 
rapidly dominate the total system cost as n 
becomes larger. 

The remaining lines of Table 1 measure 
the complexity of implementing the inter- 
connection network using application- 
specific integrated circuits (ASICs). The 
fourth line measures the amount of data 
processed by a switch, and the fifth line 
measures the number of bits required to 
control data routing at a switch. These 
metrics are important because the number 
of pins that can be connected to a chip is 
limited. The sixth line gives the logic com- 
plexity in a single switching unit. All net- 
works, with the possible exception of large 
crossbars, are simple enough to be imple- 
mented with ASICs. The last line gives the 
fan-out per wire. 

Table 1 supports our claim that Hector 
offers a scalable architecture through its 
use of short electrical connections, and 
does so at a lower cost than other intercon- 
nection networks. 

Implementation 

Figure 4 shows a block diagram of the 
PM board. The processor is a Motorola 
MC88 100 microprocessor running at 20 
MHz. The cache consists of up to four 
MotorolaMC88200 16-Kbytecachechips. 

The on-board memory comprises up to 16 
Mbytes of RAM, implemented as part of 
the processor boards rather than as sepa- 
rate modules to reduce bus loading and 
the average number of bus accesses. The 
PM contains two on-board buses called 
the processor bus and the memory bus. 
They are separated by buffers to isolate 
the processor from the memory bus, al- 
lowing other PMs to access this memory 
while the processor is accessing off-board 
memory. 

Three main memory activities on a pro- 
cessor board are important: processor on- 
board requests, processor off-board re- 
quests, and requests from the  station bus 
to the memory. The processor accesses on- 
board memory by first obtaining control 
of the memory bus and then accessing the 
memory. Off-board references from the 
processor use the station bus interface 
circuitry, as explained earlier. The station 
bus interface places arriving memory re- 
quests in a two-deep FIFO before re- 
questing control ofthe memory bus. Once 
control is granted, it performs the mem- 
ory operation and returns the acknowl- 
edgment together with any data. It signals 
a negative acknowledgment on a distinct 
bus line if the FIFO is full when a packet 
arrives. 

The station bus and local ring inter- 
face. Station bus operations are pipelined 
as follows. A source PM sends a bus re- 
quest to the station controller during one 
cycle. If there is no contention, the station 
controller returns the bus grant at the be- 
ginning of the next cycle and the PM places 
the packet on the bus during the same cycle 
in which it received the grant. In the case of 
an on-station transfer, the destination PM 
acknowledges reception of the packet in 
the next cycle by asserting the Received 
line of the bus. A separate acknowledg- 
ment packet is therefore not necessary for 
on-station write requests. If the Received 
line is not asserted, the source PM will 
immediately attempt to retransmit the re- 
quest. The entire process - from the time 
the source module asserts its Request line 
to the time it recognizes its Received line 
-takes three cycles, but it ties up the bus 
for only one. Independent transfers from 
different source modules can therefore be 
placed on the bus in each cycle, allowing 
full use of the bus bandwidth. 

The station controller is responsible for 
arbitration of the station bus and data trans- 
fer between the station bus and the local 
ring. It gives the highest priority to packets 
on the ring addressed to its station. Lower 
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priority is given to requests for off-station 
transfers by PMs on the station. An off- 
station transfer is accommodated whenev- 
er the ring segment has an empty slot. The 
lowest priority is given to on-station trans- 
fers. Within this priority strategy, the bus 
is granted in a round-robin fashion when 
multiple off-station or multiple on-station 
bus requests are outstanding. 

The inter-ring interface. The inter-ring 
controller has a two-deep FIFO buffer. In 
general, it gives priority to packets com- 
ing from the global ring; hence, packets 
that successfully reach the global ring will 
reach their destination (if no transmission 
errors occur). Extensive simulations indi- 
cate that this strategy provides the best 
performance for virtually all data-access 
patterns. Simulation results also indicate 
that for the type of data-access patterns we 
expect to be typical, a globalringconnect- 
ing n rings with interfaces containing 
two-deep buffers has fewer collisions than 
an n x n crossbar with no buffers. 

Instrumentation support. We have 
implemented an instrumentation facility 
that allows nonintrusive hardware moni- 
toring. It can operate in anumber of modes. 
For example, the address histogram mode 
allows generation of histograms based on 
address information, conventional mem- 
ory-use profiles, or interreference-jump- 
distance distributions. The state histogram 
mode allows analysis of bus-cycle and 
machine-state distributions. Two tracing 
modes are also supported. The full trace 
mode traces address information and the 
timestamp mode is used when references 
to a small number of objects may be dis- 
tributed over long periods of time. This 
experimental facility allows us to monitor 
and measure low-level activity on real 
workloads. 

Scaling for speed. Hector’s intercon- 
nection network is designed to be scalable 
to higher speeds. The minimum cycle time 
is 46 ns in our prototype, as shown in Table 
2. The relatively long time to drive the bus 
is due to the large capacitive load offered 
by the multiple bus drivers and receivers 
on each station. 

Processor clock speeds will continue to 
increase. The clock cycle of the Hector 
backplane can be reduced by adding pipe- 
line stages in the bus controller. This will 
lead to better throughput but increased la- 
tency. For example, the bus operations i n  
Table 2 can be split into two pipeline stag- 
es. In the first stage, a packet is enabled 

Buffers 

Station bus 
interface 

Figure 4. Processor board block dia- 
gram. 

onto the bus fromone bus driver andclocked 
into all receivers without being decoded, 
reducing the electrical loads on the bus 
from the current three to one per PM. The 
time needed to accomplish this essentially 
dictates the cycle time. The second stage is 
decoding: The controller determines in 
which buffer the packet should be placed. 
If the packet is addressed to a given mod- 
ule, the controller selects a multiplexer to 
pass the packet into an appropriate set of 
latches. 

The second way to reduce cycle time is 
to use ASIC technology. The top half of 
Table 3 shows our timing estimates for the 
pipelined implementations using standard 
complementary metal-oxide semiconduc- 
tor (CMOS) cells with conventional medi- 
um-scale integration (MSI) bus drivers and 

’able 2. Current 20-MHz bus timing. 

Operations Ti me(nano- 
seconds) 

Clock 4 bus grant 7 
Bus grant -+ drive bus 18 

7 Drive bus 4 decode address 
Decode address 4 controller 

output 10 
Setup time 2 
Skew 2 

T o t A I  46 

receivers (because of the low drive capa- 
bility of CMOS ASICs). The reduced time 
to drive the bus is due to decreased loading 
on the bus. The bottom half of Table 3 
shows timing estimates for an implementa- 
tion using an emitter-coupled logic (ECL) 
gate array that includes the bus drivers and 
receivers on chip. 

An implementation using ASICs would 
eliminate many constraints that limit per- 
formance in our prototype. In particular, 
because of the large number of chips re- 
quired, the MSI technology we use makes 
it difficult to implement buffering or pipe- 
lining for data paths. With ASIC technol- 
ogy we could implement many such buff- 
ers on a small part of a chip. This would 
also allow us to reduce memory-access 
times significantly by interleaving the 
memory system, pipelining the memory 
error-correction circuitry to deliver cor- 
rected data at full memory bus speed, and 
increasing the size of the data path to 64 or 
128 bits. In addition, an eight-packet-deep 
FIFO in the station bus interface would 
dramatically reduce the number of retries 
required. Ultimately, VLSI technology will 
advance to the point where it may be fea- 
sible to implement an entire Hector station 
on a single chip. 

ector has three important advan- 
tages. First, the hierarchical 
structure allows short transmis- 

sion lines and construction of a simple and 
fast backplane. This makes Hector scal- 
able to match the needs of future high- 
speed microprocessors and leads to in- 
creased performance, reliability, and 
flexibility, as well as to lower cost. Sec- 
ond, the cost and the overall bandwidth of 
the structure grow linearly with the num- 
ber of processing modules. This makes 
Hector expandable to large sizes, yet al- 
lows small configurations at a low cost. 
Finally, the cost of a memory access grows 
incrementally with the distance between 
the processor and memory location. This 
allows the low cost of localized memory 
accesses to be exploited by single threaded 
applications, applications with a small de- 
gree of parallelism, and applications with a 
high degree of locality in their memory 
accesses. 

A possible shortcoming of our current 
design is the lack of cache consistency 
across all processing modules. While hard- 
ware-based cache consistency mechanisms 
for larger systems is an active area of re- 
~ e a r c h , ” ~  it appears that their complexity 
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Table 3. Timing estimates for CMOS and ECL ASIC technology. 

Technology Stage (time in nanoseconds) Stage (time in nanoseconds) 

CMOS Stage 1 Stage 2 

Clock + grant 7 Clock + clocked bus data 11 
Grant 4 drive bus 14 Clocked bus data -+ ASIC bus 2 
Setup time 3 ASIC bus + decoded address 4 
Skew 2 Decoded address -+ controller 

output 5 

output 3 
Setup time 1 

Controller output -+ multiplexer 

Total 26 Total 26 

ECL Stage 1 

Clock + grant 1 

Grant -+ drive bus 5 
Bus + ASIC 

internal bus 1 

Setup time 1 
Skew 2 

Total I O  

Stage 2 

Clock -+ clocked bus data 
Clocked bus data + decoded 

1 

address 2 

output 2 

output 1 
Setup time 1 
Skew 1 

Decoded address + controller 

Controller output + multiplexer 

Total 8 

and cost will be excessive if consistency is 
maintained at the granularity of relatively 
small cache lines. It is not easy to provide 
consistency at this granularity because of 
the excessive intermodule traffic and bot- 
tlenecks caused by synchronization and 
serialization requirements. We expect 
consistency will be even more difficult to 
maintain as faster processors with multi- 
level caches are introduced. Software tech- 
niques that keep caches consistent at a 
coarser granularity’” may be a workable 
solution, although it is not yet clear how 
effective they can be for different parallel 
applications. 

Nonuniform memory-access times im- 
pose a challenge in the design of operating 
systems and parallel applications. To ex- 
ploit the performance potential of a system 
like Hector, memory, I/O, and processors 
must be managed to minimize the average 
memory-access costs by reducing the 
number of remote memory accesses. The 
memory-management subsystem can rep- 

licate or move pages to bring them closer to 
the processes accessing them, but must 
prevent excessive paging overhead. The 
scheduler can place processes close to the 
data they are accessing, simultaneously 
attempting to balance the load on the pro- 
cessors. Hector’s raw I/O capacity is large 
because each PM has I/O capabilities, and 
110 devices can be attached directly to the 
station bus. But this capacity cannot be 
exploited if all I/O traffic must traverse the 
system. It is, therefore, important to local- 
ize I/O accesses. 

We are expanding our Hector prototype, 
which now consists of several stations 
connected by a local ring. Two  research 
groups at the University of Toronto have 
developed operat ing systems to support 
Hector  and al low i t  to run application 
software.  Hector  provides  an excellent 
experimental  testbed for s tudying such 
software issues as processor scheduling, 
parallel I/O, memory management ,  and 
softwarecacheconsistency. 
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