
Hector: A Hierarchically
Structured S hared-Memory

Multiprocessor

Zvonko G. Vranesic, Michael Stumm, David M. Lewis, and Ron White

University of Toronto

he architecture of the Hector
multiprocessor exploits current
microprocessor technology t o

produce a machine with a good costlper-
formance trade-off. A key design feature
of Hector is its interconnection backplane,
which can accommodate future technolo-
gy because it uses simple hardware with
short critical paths in logic circuits and
short lines in the interconnection network.
The system is reliable and flexible, and can
be realized at a relatively low cost.

An important aim of the Hector project
is to develop an architecture suitable for a
general-purpose multiprocessor whose cost
is directly proportional to size. Thus, an
entry-level machine would be inexpen-
sive, but can scale to larger sizes. To ac-
commodate configurations with varying
numbers of processors, Hector has a hier-
archical structure. Bit-parallel rings inter-
connect small bus sections. The buses and
rings can transfer data independently of
each other, so aggregate bandwidth in-
creases proportionally with the number of
these units.

Hector is suitable for single jobs with
many parallel tasks, as well as for concur-
rent execution of multiple jobs consisting

12

Hierarchical structure
results in a fast

backplane and a
bandwidth that

increases linearly with
the number of

processors. Hector
scales efficiently to

larger sizes and faster
processors.

of predominantly serial tasks. In other
words, it is effective in a Unix environ-
ment, as well as in such highly parallel
commercial and scientific applications as

00lR-9162/91/0100-007~$0l 00 0 1991 IEEE

transaction systems, finite-element analy-
sis, and computer-aided design.

Hector in the
multiprocessor picture

Our goal in the Hector project is to ex-
plore a design region where the most cost-
effective multiprocessor solutions are likely
to lie. Figure 1 shows where the Hector
architecture fits with existing machines
and well-known research projects. The
figure indicates the relative characteristics
of different machines configured to have
approximately the same computational
power - 0.5 to 1 Gflops.

The two axes in the figure represent two
important design options. The horizontal
axis represents the power of the individual
processors used, with very simple proces-
sors at the origin. The less powerful the
processors, the larger the number needed
to achieve the desired aggregate system
power.

The vertical axis represents the degree
of coupling between the processing mod-
ules. In loosely coupled systems, proces-
sors can directly access only their local

COMPUTER

memories, but use data passing to commu-
nicate with other processors over the inter-
connection network. In tightly coupled
systems, processors communicate through
shared memory at speeds normally associ-
ated with local (cached) memory access.
Between these two possibilities are distrib-
uted memory systems that allow proces-
sors to access shared memory directly, but
with reduced access times to some memory
locations.

Loosely coupled systems are easier to
build and less expensive, but shared-
memory systems are considered by many
to be easier to program.’ Given two sys-
tems with processors of equivalent power,
the more tightly coupled one is considered
to be more general. Typically, it can exe-
cute more efficiently all applications that
its more loosely coupled counterpart can.
It can also execute some applications not
suitable for more loosely coupled systems
where sharing occurs at a finer granular-
ity. Hence, any system represented by a
point in the figure is more general than all
systems represented by points directly
above it.

Two extremes in the figure are immedi-
ately apparent. On the left side are ma-
chines with many simple processors, such
as the Connection Machine, which has many
I-bit processors. With such machines, in-
terconnection requires a data-passing or-
ganization. On the right side are machines
that comprise only a few exceptionally
powerful processors, such as the Cray Y-
MP/4. These machines can make full use of
the shared-memory concept.

Computational power is not simply a
function of the architecture: An entry us-
ing the Connection Machine (running an
application executing at 6 Gflops) won
the Gordon Bell prize for supercomputing
for 1989, while an entry using the Cray Y-
MP/8 (running at 1 Gflops) won it for
1988.’

Multiprocessors that rely heavily on ad-
vanced microprocessors lie between the
extremes. These machines fall into three
categories, according to the coupling
scheme used. A data-passing organi~at ion
has been the natural choice in multiproces-
sors based on hypercube interconnection
backplanes. Well-known examples are the
Intel iPSC, the Floating Point Systems T
Series (FPS-T), and the NCube machines.

The shared-memory model with full
cache consistency is the goal of the re-
cently proposed MIT A l e ~ i f e , ~ Wisconsin
M ~ l t i c u b e , ~ and Stanford Dash.5 Several
machines have been built with shared-
memory capability but without hardware-

Data
passing

0,

Q

0
0

.- -

Shared
memory

0
Intel iPSC

Connection Machine CM-2
3 Maspar MP-1

0
BBN Monarch

NCube
FPS-T

..*. BBN TC2000 .-.. IBM RP3 .-. Hector

Wisconsin Multicube
Stanford Dash
MITAlewife

Workstation
technology
line

0 Cedar

Processor power

..-. Cray Y-MPl4

>
‘*..U

Figure 1. Coupling and processor power in multiprocessors.

supported cache consistency. The BBN
TC2000, the IBM RP3,‘ and our Hector
multiprocessor are of this type. These sys-
tems cache read-only code and data, as
well as local data, but not all shared modi-
fiable data. The Cm* multiprocessor, de-
signed and built at Carnegie Mellon Uni-
versity in the late 1970s, would probably
also belong to this class if it were imple-
mented with today’s technology. When
implemented, the BBN Monarch’ will in-
corporate in a shared-memory organiza-
tion many somewhat simpler processors
with no caches.

In Figure 1 , a line joins the Connection
Machine and Cray extremes. The machines
above this line are economically feasible
with today’s technology. Indeed, all of the
machines shown in that region have been
built, although not necessarily in full size.
On the other hand, machines that lie below
the line are more difficult to build; none of
those shown in the figure have been i n -
plemented. With these systems, the chal-
lenge is to provide coherent cached shared
data with good performance, without in-
troducing excessive interprocessor traffic.

The systems at both ends of the diagonal
are expensive. The most cost-effective so-
lutions may lie along a line in the region
where workstation technology is used, in-
dicated by the vertical line. The point at the
top end of the line probably represents the
most inexpensive solution: processors with
the best price-performance ratio in a sim-
ple interconnection structure. The work-
station technology line is rapidly moving

to the right; 100-M1PS microprocessors
may soon be available. Increasing the speed
of the interconnection network is more
difficult than increasing the speed of the
processor chips. Thus, i t will be a chal-
lenge to build systems at the point where
the workstation technology line intersects
the diagonal. To address this challenge,
Hector incorporates a novel hierarchical
pipelined backplane that will scale to future
technologies.

Organization of Hector

Although it is the simplest structure for
interconnecting several processing mod-
ules, the bus does not scale well in size and
saturates quickly if too many modules are
connected. With high-speed processors,
typically two to six processors can be con-
nected to a bus without significant perfor-
mance degradation. Connecting a larger
number of processors to a single bus is
feasible only if the processors’ request rate
for bus transfers is low.

Hector exploits the natural advantages
of the bus by using relatively small bus
sections tied together through hierarchical
bit-parallel rings. Figure 2 shows the
overall organization. A bus section, with
the associated processing modules, is called
a starion. Several stations are intercon-
nected by a bit-parallel local ring. Local
rings are, in turn, interconnected by aglobal
ring.

This hierarchical structure is similar to

January 199 1 73

I
I
I
I

PM PM * * a PM

Local ring I,
Global ring -+

n * a *

L PM

BUS

Figure 2. Structure of Hector.

those of Cm4: and Cedar. In Cm*,8 multiple
processor-memory pairs are connected by
a “map-bus” to form a cluster, and mul-
tiple clusters are interconnected via
“intercluster” buses. Rings at higher lev-
els of the hierarchy, as used in Hector,
have the advantage that they can be con-
structed using only short point-to-point
transmission links, allowing for faster
signaling. Moreover, the overall bandwidth
of the ring increases proportionally with
the number of ring segments (although
increasing the number of ring segments
also increases latency by a corresponding
amount). A second difference between
Hector and Cm* is in how communication
is controlled. In Cm*, a relatively power-
f u l , horizontally microcoded processor
controls communication, whereas in Hec-
tor, control is by simple discrete logic (im-
plemented in PALS in our prototype). This
simplicity allows for faster switching and
higher throughput.

In Cedar,’ the lowest level consists of
several Alliant FX/8 systems, each com-
prising eight processing elements (with

vector units) connected by a crossbar
switch to a cache and higher level commu-
nication structures. These, in turn, are con-
nected by another crossbar switch to
memory. We believe that the relative sim-
plicity of Hector’s rings allows Hector to
be more easily scaled to larger sizes and
faster technology.

Basic Hector architecture. A station
consists of a number of processing mod-
ules (PMs), connected by a bus. A typical
PM comprises a microprocessor, cache
memory, on-board memory, and various I/
0 interfaces. While we use the term PM to
refer to a module (board) plugged into a
slot in the backplane, a PM need not have
any processing capability. Some may be
just memory modules; other specialized
PMs provide interfaces to various U0 de-
vices.

Hector provides a flat, global (physical)
address space, where each PM is assigned
a unique range of addresses. All processors
can transparently access all memory loca-
tions. Information transfer takes place in a

packet format using a synchronized pack-
et-transfer scheme. The traffic is controlled
by three types of interface circuits. A stu-
tion bus interface in each PM handles the
communication requirements of the PM. A
s tu t ion con tro 1 le r con t ro 1 s on - station
transfers as well as the local ring traffic at
the station. It contains a set of latches that
hold an entire packet and a set of transceiv-
ers that isolate the station bus from the
local ring. A packet traverses the ring by
being transferred from the latches of one
station into the latches of the next station.
An infer-ring interfiice connects a local ring
to the global ring. Within one clock cycle,
a packet can be transferred

between two PMs within a station,
between the latches of two adjacent
station controllers or inter-ring inter-
faces.
from a PM in a station into the latches
of the next station controller on the
ring, or
from the latches of a station controller
to a PM in the station it controls.

An on-station transfer and a transfer from
the latches of that station controller to the
latches of the next station can occur si-
multaneously. The low complexity of each
operation makes the backplane scalable.

By controlling both the station bus and
the corresponding ring segment, the sta-
tion controller can give priority to packets
being transferred on the ring. It does not
allow a local PM to access the bus when
there is a packet in the ring latches ad-
dressed to this station (thus allowing the
packet to be latched onto the station bus).
Also, i t allows only on-station transfers
whenever a valid packet in its latches is to
be transferred to the next station. This
strategy prevents packets from having to
be dropped or queued at the station and
local ring levels.

The inter-ring interface, which is essen-
tially a2x2c rossba r switch,requiresFIFO
buffers to store packets when collisions
occur- that is, when packets coming from
both the local and global rings in a given
clock cycle have to be routed to the same
output.

The addressing scheme is simple, so
packets can be routed with minimal over-
head in a fraction of a clock cycle. Each
ring is identified by the most significant r
bits of the (memory) address, the station is
identified by the next s bits, and the slot in
the station is identified by the least signif-
icant p bits. This allows simple and fast
address decoding.

74 COMPUTER

Memory access and communication
protocol. Accesses to remote memory
modules are transparent to the processors.
A nonlocal memory request is recognized
by the control circuitry at the station bus
interface, which forms a request packet.
The request packet includes a 32-bit desti-
nation memory address and a source PM
address. In the case of a write, the packet
also contains 32 bits of data. When the
packet arrives at the destination, the desti-
nation station bus interface performs the
action requested (read or write) and returns
a response packet to the source. For a read,
the response packet contains up to 64 bits
of data. For a write, the response packet is
just the acknowledgment that the write
operation has been completed. The response
packet is sent to the PM identified by the
source address in the request packet.

If the source PM receives no response
packet within a time-out period, it retrans-
mits the request. If it receives no response
after multiple retries, the operation fails.
The requesting PM also retransmits the
request if it receives a negative acknowl-
edgment response, which happens, for
example, when a remote PM recognizes a
request but cannot service it. T o allow a
PM to have multiple outstanding requests,
a tag is included in each request packet and
returned with the response packet so that
the response can be matched to the correct
request. (Our prototype implementation
allows only one outstanding request.)

Considerable flexibility is permitted in
the memory-access requests, which can
involve 8-, 16-, 32-, or 64-bit data. A burst
read of 128 bits can be used to load cache
lines. For burst reads, the responding PM
automatically generates multiple response
packets, each containing 64 bits of data.
The entire operation is retried if any response
packet does not arrive within the time-out
period.

Atomic operations. Packet transfer is
usually reliable. Therefore, to reduce hard-
ware complexity and cycle time and hence
increase performance for the common case,
we believe that individual packet transfers
can be aborted without specifically sig-
nalling an error condition. For example, a
packet may be dropped when a transmis-
sion error is detected (by parity bits) or
when a buffer overflows. Requiring the
hardware to generate negative acknowl-
edgment packets in these cases would add
to its complexity. Hector’s communication
protocol allows source PMs to detect aborted
transfers by timing out, at which time they
can retransmit the request packets.

Source PM Destination PM

Response lost

Negative acknowledgment

Time

set
lock

Lock
already
set

Figure 3. The problem with nonidem-
potent requests.

For read and write operations, the re-
quest-response protocol with time-out
works correctly because of the idempotent
nature of the operations. (Strictly speak-
ing, the write operation is not idempotent:
A retransmission of a write request may
result in the write operation occurring twice.
This is acceptable for most applications;
for the others, the write must be made part
of a critical region.)

An important operation for which the
request-response protocol will not work
directly is read-modify-write, which is
needed to implement a processor’s test-
and-set or swap instructions. Here, a diffi-
culty arises if a PM does not receive a
response to a read-modify-write request
within a time-out period. The source sta-
tion bus interface does not know whether
its request packet was dropped or whether
the corresponding response packet was
dropped (in which case all further retries
may fail). This situation is shown in Figure
3, where the response to a test-and-set
request is dropped. When the destination
PM receives the retransmission of the test-
and-set request, i t returns a negative ac-
knowledgment because the lock is already
set. The source PM cannot determine
whether the lock was set by its initial re-
quest or whether it was set by another
processor in the meantime.

To handle this situation, the read-mod-
ify-write operation is performed in two

separate stages. In the first stage, the PM
sends a read-and-lock request, which caus-
es the responding PM to read the addressed
memory location and return its contents in
a response packet. When the requester re-
ceives the data requested in its read-and-
lock packet, it starts the second part of the
read-modify-write by sending the data to
be written to the destination memory in a
write-and-unlock packet. To guarantee
atomicity, the responding PM must pre-
vent other processors from performing a
read-and-lock at the same memory loca-
tion between these two operations. Each
station bus interface maintains a set of
<proc, addr> pairs for this purpose, so an
entry is recorded during the read-and-lock
operation and cleared during the write-
and-unlock operation. The station bus in-
terface also uses these <proc, addr> pairs
to detect and appropriately handle dupli-
cate requests resulting from retransmis-
sions.

This protocol allows atomic operations
on any memory location and can survive
losses of packets, regardless of the packet
lost. If either the read-and-lock or its re-
sponse is lost, the requester will time out
and retransmit the request. If the destina-
tion PM received the original request, it
will recognize the retransmission (since it
stored the requester’s identifier) and re-
spond with an acknowledgment. If either
the write-and-unlock or its response is lost,
the requester will also time out and re-
transmit the request. If the original write-
and-unlock packet was lost, this will result
in a write-and-unlock action. Otherwise,
the destination PM will send an acknowl-
edgment.

Hector’s backplane compared with
other interconnection structures. As a
hierarchical system, Hector provides for
fast local operations over a bus. Most sys-
tems with nonuniform memory-access times
support memory accesses at only two time-
cost levels - namely, local on-board ac-
cesses and remote accesses. For example,
in a 16-processor BBN TC2000, the ac-
cess-time differential between local memory
and remote memory is 1.4. In contrast,
Hector has multiple levels in its hierarchy,
so the cost of accessing data increases
incrementally with the distance. In our
prototype implementation, the access time
differentials between local, on-station, on-
ring, and off-ring memory are 1:1.2:2:4.
The advantage of a hierarchical structure
is that much of the communication re-
mains within the lower levels of the hier-
archy because of the locality in data ac-

January 199 1 75

Table 1. The cost and complexity of interconnection structures (n 5 256 is the
number of processors).

Parameter Hector Banyan Crossbar Hypercube

Longest wire length 0 (1) 0 (n) 0 (n 1 0 (n 1
Gates in switch path 0 (log n) 0 (log n) 0 (log n) 0 (log n)
Total switch cost O (n) O (n I o g n) O (n 2) O (n l o g n)

Switch data bits 0 (1) 0 (1) 0 (n 1 0 (log n 1
Switch control bits 0 (1) 0 (1) 0 (n log n) 0 (log n)
Switch complexity 0 (1) 0 (1) O (n ’) o (log n)

Fan-out 0 (1) 0 (1) 0 (n 1 0 (log n)

cesses, resulting in relatively low average
memory-access times. Moreover, since a
bus is used at the hierarchy’s lowest level,
a simple snoopy protocol can provide cache
consistency among the PMs attached to the
bus.

Other important and distinctive advan-
tages of the Hector backplane are its sim-
plicity, low cost, and scalability to higher
clock rates. Direct comparisons with other
systems are difficult. Nevertheless, Table
1 summarizes our attempt to compare met-
rics that affect the cost and speed of several
interconnection structures. Besides Hec-
tor, we considered Banyan networks,
crossbars, and hypercubes.

The ability to scale an interconnection
network to higher speeds depends largely
on the longest wire length needed to con-
nect system parts. Signal quality degrades
over long wires at higher clock rates, and
skew between signals in a cable makes it
difficult to reduce the clock cycle time.
The first line in Table 1 gives the length of
the longest wire required by each type of
network. We assume that these systems
can be implemented to fit in a single rack,
since a system within a single rack has a
maximum wire length that is a linear func-
tion of processor distance, while i n a larger
system the wire length might be the square
root of the distance. Hector has a constant-
length wire, since each ring connects only
to its immediate neighbor. In our proto-
type, with two levels of rings, the longest
wire is only seven inches. All the other
systems require a wire length proportional
to the size of the system, because they
require connections to processors at least
halfway across the entire set of processors.
This makes i t difficult to scale to high
clock speeds.

The number of gates in the path can also
cause significant delays. All of the systems

have identical orders of delay, although
they still may differ by a constant factor
that can be quite large (for example, 50
nanoseconds, the time it takes to transfer a
packet in Hector, as opposed to 7 ns, the
delay through a crossbar multiplexer). The
third line in the table measures the total
cost of the switch for an entire system.
Hector maintains O(n) cost, so the switch
cost is always a small constant fraction of
the total system cost. At the other extreme,
the cost of a crossbar is O(n2), which can
rapidly dominate the total system cost as n
becomes larger.

The remaining lines of Table 1 measure
the complexity of implementing the inter-
connection network using application-
specific integrated circuits (ASICs). The
fourth line measures the amount of data
processed by a switch, and the fifth line
measures the number of bits required to
control data routing at a switch. These
metrics are important because the number
of pins that can be connected to a chip is
limited. The sixth line gives the logic com-
plexity in a single switching unit. All net-
works, with the possible exception of large
crossbars, are simple enough to be imple-
mented with ASICs. The last line gives the
fan-out per wire.

Table 1 supports our claim that Hector
offers a scalable architecture through its
use of short electrical connections, and
does so at a lower cost than other intercon-
nection networks.

Implementation

Figure 4 shows a block diagram of the
PM board. The processor is a Motorola
MC88 100 microprocessor running at 20
MHz. The cache consists of up to four
MotorolaMC88200 16-Kbytecachechips.

The on-board memory comprises up to 16
Mbytes of RAM, implemented as part of
the processor boards rather than as sepa-
rate modules to reduce bus loading and
the average number of bus accesses. The
PM contains two on-board buses called
the processor bus and the memory bus.
They are separated by buffers to isolate
the processor from the memory bus, al-
lowing other PMs to access this memory
while the processor is accessing off-board
memory.

Three main memory activities on a pro-
cessor board are important: processor on-
board requests, processor off-board re-
quests, and requests from the station bus
to the memory. The processor accesses on-
board memory by first obtaining control
of the memory bus and then accessing the
memory. Off-board references from the
processor use the station bus interface
circuitry, as explained earlier. The station
bus interface places arriving memory re-
quests in a two-deep FIFO before re-
questing control ofthe memory bus. Once
control is granted, it performs the mem-
ory operation and returns the acknowl-
edgment together with any data. It signals
a negative acknowledgment on a distinct
bus line if the FIFO is full when a packet
arrives.

The station bus and local ring inter-
face. Station bus operations are pipelined
as follows. A source PM sends a bus re-
quest to the station controller during one
cycle. If there is no contention, the station
controller returns the bus grant at the be-
ginning of the next cycle and the PM places
the packet on the bus during the same cycle
in which it received the grant. In the case of
an on-station transfer, the destination PM
acknowledges reception of the packet in
the next cycle by asserting the Received
line of the bus. A separate acknowledg-
ment packet is therefore not necessary for
on-station write requests. If the Received
line is not asserted, the source PM will
immediately attempt to retransmit the re-
quest. The entire process - from the time
the source module asserts its Request line
to the time it recognizes its Received line
-takes three cycles, but it ties up the bus
for only one. Independent transfers from
different source modules can therefore be
placed on the bus in each cycle, allowing
full use of the bus bandwidth.

The station controller is responsible for
arbitration of the station bus and data trans-
fer between the station bus and the local
ring. It gives the highest priority to packets
on the ring addressed to its station. Lower

76 COMPUTER

priority is given to requests for off-station
transfers by PMs on the station. An off-
station transfer is accommodated whenev-
er the ring segment has an empty slot. The
lowest priority is given to on-station trans-
fers. Within this priority strategy, the bus
is granted in a round-robin fashion when
multiple off-station or multiple on-station
bus requests are outstanding.

The inter-ring interface. The inter-ring
controller has a two-deep FIFO buffer. In
general, it gives priority to packets com-
ing from the global ring; hence, packets
that successfully reach the global ring will
reach their destination (if no transmission
errors occur). Extensive simulations indi-
cate that this strategy provides the best
performance for virtually all data-access
patterns. Simulation results also indicate
that for the type of data-access patterns we
expect to be typical, a globalringconnect-
ing n rings with interfaces containing
two-deep buffers has fewer collisions than
an n x n crossbar with no buffers.

Instrumentation support. We have
implemented an instrumentation facility
that allows nonintrusive hardware moni-
toring. It can operate in anumber of modes.
For example, the address histogram mode
allows generation of histograms based on
address information, conventional mem-
ory-use profiles, or interreference-jump-
distance distributions. The state histogram
mode allows analysis of bus-cycle and
machine-state distributions. Two tracing
modes are also supported. The full trace
mode traces address information and the
timestamp mode is used when references
to a small number of objects may be dis-
tributed over long periods of time. This
experimental facility allows us to monitor
and measure low-level activity on real
workloads.

Scaling for speed. Hector’s intercon-
nection network is designed to be scalable
to higher speeds. The minimum cycle time
is 46 ns in our prototype, as shown in Table
2. The relatively long time to drive the bus
is due to the large capacitive load offered
by the multiple bus drivers and receivers
on each station.

Processor clock speeds will continue to
increase. The clock cycle of the Hector
backplane can be reduced by adding pipe-
line stages in the bus controller. This will
lead to better throughput but increased la-
tency. For example, the bus operations i n
Table 2 can be split into two pipeline stag-
es. In the first stage, a packet is enabled

Buffers

Station bus
interface

Figure 4. Processor board block dia-
gram.

onto the bus fromone bus driver andclocked
into all receivers without being decoded,
reducing the electrical loads on the bus
from the current three to one per PM. The
time needed to accomplish this essentially
dictates the cycle time. The second stage is
decoding: The controller determines in
which buffer the packet should be placed.
If the packet is addressed to a given mod-
ule, the controller selects a multiplexer to
pass the packet into an appropriate set of
latches.

The second way to reduce cycle time is
to use ASIC technology. The top half of
Table 3 shows our timing estimates for the
pipelined implementations using standard
complementary metal-oxide semiconduc-
tor (CMOS) cells with conventional medi-
um-scale integration (MSI) bus drivers and

’able 2. Current 20-MHz bus timing.

Operations Ti me(nano-
seconds)

Clock 4 bus grant 7
Bus grant -+ drive bus 18

7 Drive bus 4 decode address
Decode address 4 controller

output 10
Setup time 2
Skew 2

T o t A I 46

receivers (because of the low drive capa-
bility of CMOS ASICs). The reduced time
to drive the bus is due to decreased loading
on the bus. The bottom half of Table 3
shows timing estimates for an implementa-
tion using an emitter-coupled logic (ECL)
gate array that includes the bus drivers and
receivers on chip.

An implementation using ASICs would
eliminate many constraints that limit per-
formance in our prototype. In particular,
because of the large number of chips re-
quired, the MSI technology we use makes
it difficult to implement buffering or pipe-
lining for data paths. With ASIC technol-
ogy we could implement many such buff-
ers on a small part of a chip. This would
also allow us to reduce memory-access
times significantly by interleaving the
memory system, pipelining the memory
error-correction circuitry to deliver cor-
rected data at full memory bus speed, and
increasing the size of the data path to 64 or
128 bits. In addition, an eight-packet-deep
FIFO in the station bus interface would
dramatically reduce the number of retries
required. Ultimately, VLSI technology will
advance to the point where it may be fea-
sible to implement an entire Hector station
on a single chip.

ector has three important advan-
tages. First, the hierarchical
structure allows short transmis-

sion lines and construction of a simple and
fast backplane. This makes Hector scal-
able to match the needs of future high-
speed microprocessors and leads to in-
creased performance, reliability, and
flexibility, as well as to lower cost. Sec-
ond, the cost and the overall bandwidth of
the structure grow linearly with the num-
ber of processing modules. This makes
Hector expandable to large sizes, yet al-
lows small configurations at a low cost.
Finally, the cost of a memory access grows
incrementally with the distance between
the processor and memory location. This
allows the low cost of localized memory
accesses to be exploited by single threaded
applications, applications with a small de-
gree of parallelism, and applications with a
high degree of locality in their memory
accesses.

A possible shortcoming of our current
design is the lack of cache consistency
across all processing modules. While hard-
ware-based cache consistency mechanisms
for larger systems is an active area of re-
~ e a r c h , ” ~ it appears that their complexity

January 1991

Table 3. Timing estimates for CMOS and ECL ASIC technology.

Technology Stage (time in nanoseconds) Stage (time in nanoseconds)

CMOS Stage 1 Stage 2

Clock + grant 7 Clock + clocked bus data 11
Grant 4 drive bus 14 Clocked bus data -+ ASIC bus 2
Setup time 3 ASIC bus + decoded address 4
Skew 2 Decoded address -+ controller

output 5

output 3
Setup time 1

Controller output -+ multiplexer

Total 26 Total 26

ECL Stage 1

Clock + grant 1

Grant -+ drive bus 5
Bus + ASIC

internal bus 1

Setup time 1
Skew 2

Total I O

Stage 2

Clock -+ clocked bus data
Clocked bus data + decoded

1

address 2

output 2

output 1
Setup time 1
Skew 1

Decoded address + controller

Controller output + multiplexer

Total 8

and cost will be excessive if consistency is
maintained at the granularity of relatively
small cache lines. It is not easy to provide
consistency at this granularity because of
the excessive intermodule traffic and bot-
tlenecks caused by synchronization and
serialization requirements. We expect
consistency will be even more difficult to
maintain as faster processors with multi-
level caches are introduced. Software tech-
niques that keep caches consistent at a
coarser granularity’” may be a workable
solution, although it is not yet clear how
effective they can be for different parallel
applications.

Nonuniform memory-access times im-
pose a challenge in the design of operating
systems and parallel applications. To ex-
ploit the performance potential of a system
like Hector, memory, I/O, and processors
must be managed to minimize the average
memory-access costs by reducing the
number of remote memory accesses. The
memory-management subsystem can rep-

licate or move pages to bring them closer to
the processes accessing them, but must
prevent excessive paging overhead. The
scheduler can place processes close to the
data they are accessing, simultaneously
attempting to balance the load on the pro-
cessors. Hector’s raw I/O capacity is large
because each PM has I/O capabilities, and
110 devices can be attached directly to the
station bus. But this capacity cannot be
exploited if all I/O traffic must traverse the
system. It is, therefore, important to local-
ize I/O accesses.

We are expanding our Hector prototype,
which now consists of several stations
connected by a local ring. Two research
groups at the University of Toronto have
developed operat ing systems to support
Hector and al low i t to run application
software. Hector provides an excellent
experimental testbed for s tudying such
software issues as processor scheduling,
parallel I/O, memory management , and
softwarecacheconsistency.

Acknowledgments
The Hector project has been funded by the

Natural Sciences and Engineering Research
Council of Canada strategic grant STR0032675.
We thank Kennedy Attong, Yonatan Hanna, Jan
Medved, Peter Pereira, and Ron Unrau for their
substantial work in helping us implement the
prototype. We also acknowledge the help of Ben
Bacque, Keith Farkas, Carl Hamacher, Ric Holt,
Roman Kiss, Orran Krieger, Maitreya Makho-
padhyay, Chuck Pilkington, Ken Sevcik, Martin
Snelgrove, and Safwat Zaky, who have partici-
pated in the Hector project.

References
1. A.H. Karp, “Programming for Parallelism,”

Computer, Vol. 20, No. 5,May 1987,pp.43-
57.

2. J . Dongarra et al., “Special Report: 1989
Gordon Bell Prize,” IEEE Softwure, Vol. 7,
No. 3, May 1990, pp. 100-104, 110.

3. A. Agrawal et al., “APRIL: A Processor
Architecture forMultiprocessing,” 17th Int ’I
Svmp. Computer Architectures, 1990, IEEE
Computer Soc. Press, Los Alamitos, Calif.,
Order No. 2047, pp. 104- 1 14.

4. J.R. Goodman and P.J. Woest, “The Wis-
consinMulticube: ANew Large-Scalecache-
Coherent Multiprocessor,” 15th Int’l Symp.
Computer Architectures, 1988, IEEE Com-
puter Soc. Press, Los Alamitos, Calif., Or-
der No. 861, pp. 422-43 1 .

5. D. Lenoski et al.. “The Directory-Based
Cache Coherence Protocol for the Dash
Multiprocessor,” 17th lilt ‘ISymp. Computer
Architectures, 1990, IEEE Computer Soc.
Press, Los Alamitos, Calif., Order No. 2047,
pp. 148-159.

6. G.F. Pfister et al., “The IBM Research Par-
allel Processor Prototype,” Proc. Int’l Conj!
Parallel Processing, 1985, IEEE Computer
Soc. Press, Los Alamitos, Calif., pp. 764-
771.

7. R.D. Rettberg et al., “The Monarch Parallel
Processor Hardware Design,” Computer, Vol.
23, No. 4, Apr. 1990, pp. 18-30.

8. E.F. Gehringer, D.P. Siewiorek, and Z. Se-
gall, Parallel Processing: The Cni* Experi-
ence, Digital Press, Billerica, Mass., 1987.

9. D.J. Kuck et al., “Parallel Supercomputing
Today and the Cedar Approach, Science, Vol.
23, Feb. 1986, pp. 967-974.

IO. S. Owicki and A. Agrawal, “Evaluating the
Performance of Software Cache Coherence,”
Third Inr ‘ I Conf Architectural Support f iw
Progrumming Languages und Operuting
Systems, 1989, IEEE Computer Soc. Press,
Los Alamitos, Calif., Order No. 1936, pp.
230-242.

78 COMPUTER

Zvonko G. Vranesic is a professor of electrical
engineering and computer science at the Univer-
sity of Toronto. His research interests include
computer architecture, VLSI systems, fault-tol-
erant computing, local area networks, and many-
valued switching systems. He has been a senior
visitor at the Computer Laboratory at Cam-
bridge University, England, and at the Institute
of Programming at the University of Paris,

Vranesic received his BS, MS, and PhD from
the University of Toronto in 1963, 1966, and
1968, respectively. He is a member ofthe Asso-
ciation of Professional Engineers of Ontario and
a senior member of the IEEE.

Ron White is a research associate in the Depart-
ment of Electrical Engineering at the University
of Toronto and is a member of the Hector hard-
ware development team.

White received his BA in electrical engineer-
ing from the University of New Brunswick in
1984 and his MS in electrical engineering from
the University of Toronto in 1988.

Readers may write to the authors at the Uni-
versity ofToronto, Toronto, CanadaMSS I A4.

Michael Stumm is an assistant professor of
electrical engineering and computer science at
the University o f Toronto. His research interests
are in computer systems. He manages the Hector
project.

Stumni received his diploma in mathematics
and PhD in computer science from the Univer-
sity ofZurich in 1980and 1984, respectively. He
is a member of the IEEE Computer Society and
the ACM.

David M. Lewis i a an assistant professor of
electrical engineering at the University of
Toronto. His research interests include logic and
circuit simulation, computer architecture for high-
level languages, logarithmic arithmetic, and VLSI
architecture.

Lewis received his BS and PhD in electrical
engineering from the University of Toronto in
1977 and 1985, respectively. He is a member of
the IEEE and the ACM.

January 1991

IEEE COMPUTER
SOCIETY PRESS

II N E W RELEASE ! 11 SUPERCOMPUTING '9C
II

The proceedings of Supercomputing 90
its third annual conference, documents
efforts to define the value of superrom-
putingcapabilities and to find newways tc
transfer knowledge and technological
awareness for future scientific, commer-
cial, and social benefit.

This book includes over 95 papers thal
explore topics such as the need to enhance
system usability through software, per-
formance tools, user environments. anc
visualization techniques; to develop appli-
cations; and to drive advances in architec-
ture and technology.

I008 pages Nourmber 1990
ISNN 0-8186~2056~0. Catalog No. 2056

$90.00 Member Price $45.00

Call IEEE CS Press at

or in California call

or use order form on page 120A

1 -800-CS-BOOKS

7 14-82 1 -8380

TITLES in
COMPUTER ARCHITECTURE

from IEEE COMPUTER SOCIETY PRESS
REDUCED INSTRUCTION ANALYZING COMPUTER
SET COMPUTERS (RISC), ARCHITECTURES
2nd Edition
by William Stallings

by Jerome C. Huck and
Michael J. Flynn

This tutorial focuses on many important
issues in computer organization and archi-
tecture. It provides a comprehensive intro-
duction into RISC. examines RISC design
issues, and assesses their importance in
relation to other approaches. Among the
most noteworthy additions to this edition is
a complete section on Gallium Arsenide, a
promising new technology in RlSC implem-
entation. new articles on specific example
systems, and an analysis of FUSC versus
ClSC.

This book studies instruction sets and their
effectiveness through discussions of meth-
odologies. data. interpretations, and obser-
vations on a wide range of contemporary
machines. The comparisons in this text
examine the effectiveness of a number of
different designs by analyzing their perfor-
manre on user programs. The three compo-
nents o ra machine: the instruction set, its
storage. and its interpretive mechanism are
explored. Also included is an examination
of the role of the compiler.

441 Pages 1990 Hardbound 202 pages 1989 Hardbound
ISBN 0-8186-8943-9 Catalog #1943 ISBN 0-8186-8857-2 Catalog # 857

$54.50 Member Price $42.00 $42.00 Member Price $31.50

((CALL TOLL-FREE 1 -800-CS-BOOKS))

MAIL YOUR ORDER TO.'

IEEE COMPUTER SOCIETY PRESS, Customer Service Center
10662 Los Vaqueros Circle, Los Alamitos, CA 90720-1264

1951-1991

OR USE ORDER FORM ON PAGE 12oA

