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Large, production-quality distributed systems still fail periodically, 
sometimes catastrophically where most or all users experience an 
outage or data loss. Conventional wisdom has it that these failures 

can only manifest themselves on large production clusters and are extremely 
difficult to prevent a priori, because these systems are designed to be fault 
tolerant and are well-tested. By investigating 198 user-reported failures that 
occurred on production-quality distributed systems, we found that almost all 
(92%) of the catastrophic system failures are the result of incorrect handling 
of non-fatal errors, and, surprisingly, many of them are caused by trivial 
mistakes such as error handlers that are empty or that contain expressions 
like “FIXME” or “TODO” in the comments. We therefore developed a simple 
static checker, Aspirator, capable of locating trivial bugs in error handlers; it 
found 143 new bugs and bad practices that have been fixed or confirmed by 
the developers. 

Our study also includes a number of additional observations that may be helpful in improv-
ing testing and debugging strategies. We found that from a testing point of view, almost 
all failures require only three or fewer nodes to reproduce, which is good news considering 
that these services typically run on a very large number of nodes. In addition, we found that 
a majority of the failures can simply be reproduced by unit tests even though conventional 
wisdom has it that failures that occur on a distributed system in production are extremely 
hard to reproduce offline. Nevertheless, we found the failure manifestations are generally 
complex, typically requiring multiple input events occurring in a specific order. 

The 198 randomly sampled, real world, user-reported failures we studied are from the issue 
tracking databases of five popular distributed data-analytic and storage systems: Cassandra, 
HBase, HDFS, Hadoop MapReduce, and Redis. We focused on distributed, data-intensive sys-
tems because they are the building blocks of many Internet software services, and we selected 
the five systems because they are widely used and are considered production quality. 

Software Language Failures
Total Sampled Catastrophic

Cassandra Java 3,923 40 2

HBase Java 5,804 41 21

HDFS Java 2,828 41 9

MapReduce Java 3,469 38 8

Redis C 1,192 38 8

Total – 17,216 198 48

Table 1: Number of reported and sampled failures for the systems we studied, and the catastrophic ones 
from the sample set 
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Table 1 shows the distribution of the failure sets. For each sampled failure ticket, we care-
fully studied the failure report, the discussion between users and developers, related error 
logs, the source code, and patches to understand the root cause and its propagation leading to 
the failure. 

We further studied the characteristics of a specific subset of failures—the catastrophic 
failures, which we define as those failures that affect all or a majority of users instead of only 
a subset of users. Catastrophic failures are of particular interest because they are the most 
costly ones for the service providers, and they are not supposed to occur, considering these 
distributed systems are designed to withstand and automatically recover from component 
failures. 

General Findings
What follows is a list of all of our general findings. Overall, our findings indicate that the fail-
ures are relatively complex, but they identify a number of opportunities for improved testing 
and diagnosis. Note that we only discuss the first five of the general findings in this article. 
Our OSDI paper [6] contains detailed discussions on the other general findings, and findings 
for catastrophic failures are discussed below (Findings 11-13).

1. A majority (77%) of the failures require more than one input event to manifest. 
2. A significant number (38%) of failures require input events that typically occur only on long 

running systems. 
3. The specific order of events is important in 88% of the failures that require multiple input 

events. 
4. Twenty-six percent of the failures are non-deterministic—they are not guaranteed to mani-

fest given the right input event sequences. 
5. Almost all (98%) of the failures are guaranteed to manifest on no more than three nodes. 
6. Among the non-deterministic failures, 53% have timing constraints only on the input 

events. 
7. Seventy-six percent of the failures print explicit failure-related error messages. 
8. For a majority (84%) of the failures, all of their triggering events are logged. 
9. Logs are noisy: the median of the number of log messages printed by each failure is 824. 
10. A majority (77%) of the production failures can simply be reproduced by a unit test. 

Finding 1: A majority (77%) of the failures require more than one input event to manifest, but 
most of the failures (90%) require no more than three. 

Figure 1 provides an example where two input events, a load balance event and a node crash, 
are required to take down the cluster. Note that we consider the events to be “input events” 
from a testing and diagnostic point of view—some of the events (e.g., “load balance” and 
“node crash”) are not strictly user inputs but can easily be emulated in testing. 

Finding 2: A significant number (38%) of failures require input events that typically occur 
only on long running systems. 

The load balance event in Figure 1 is such an example. This finding suggests that many of 
these failures can be hard to expose during normal testing unless such events are intention-
ally exercised by testing tools. 

Finding 3: The specific order of events is important in 88% of the failures that require multiple 
input events. 

Consider again the example shown in Figure 1. The failure only manifests when the load bal-
ance event occurs before the crash of slave B. A different event order will not lead to failure. 
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In many cases, even with the right combination and sequence of 
input events the failure is not guaranteed to manifest: 

Finding 4: Twenty-six percent of the failures are non-determin-
istic—they are not guaranteed to manifest given the right input 
event sequences. 

In these cases, additional timing relationships are required for 
the failures to manifest. For example, the failure in Figure 1 can 
only manifest when slave B crashes after the znode is deleted. 
If it crashes before the HMaster deletes the znode, the failure 
would not be triggered. 

Findings 1–4 show the complexity of failures in large distrib-
uted systems. To expose the failures in testing, we need to not 
only explore the combination of multiple input events from an 
exceedingly large event space with many only occurring on long 
running systems, we also need to explore different permutations. 
Some further require additional timing relationships. 

The production failures we studied typically manifested them-
selves on configurations with a large number of nodes. This 
raises the question of how many nodes are required for an effec-
tive testing and debugging system. 

Finding 5: Almost all (98%) of the failures are guaranteed to 
manifest on no more than three nodes. 

The number is similar for catastrophic failures, where 98% of 
them manifest on no more than three nodes. Finding 5 implies 
that it is not necessary to have a large cluster to 
test for and reproduce failures. 

Note that Finding 5 does not contradict the 
conventional wisdom that distributed system 
failures are more likely to manifest on large clus-
ters. In the end, testing is a probabilistic exercise. 
A large cluster usually involves more diverse 
workloads and fault modes, thus increasing the 
chances for failures to manifest. However, what 

our finding suggests is that it is not necessary 
to have a large cluster of machines to expose 
bugs, as long as the specific sequence of input 
events occurs. 

Catastrophic Failures
Table 1 shows that 48 failures in our failure set 
have catastrophic consequences. We classify 
a failure to be catastrophic when it prevents 
all or a majority of the users from their normal 
access to the system. In practice, these fail-
ures result in a cluster-wide outage, a hung 
cluster, or a loss to all or to a majority of the 
user data. 

The fact that there are so many catastrophic failures is per-
haps surprising given that the systems considered all have high 
availability (HA) mechanisms designed to prevent component 
failures from taking down the entire service. For example, all of 
the four systems with a master-slave design—namely, HBase, 
HDFS, MapReduce, and Redis—are designed to, on a master 
node failure, automatically elect a new master node and fail 
over to it. Cassandra is a peer-to-peer system and thus by design 
avoids single points of failure. Then why do catastrophic failures 
still occur? 

Finding 11: Almost all catastrophic failures (92%) are the result 
of incorrect handling of non-fatal errors explicitly signaled in 
software (see Figure 2). 

These catastrophic failures are the result of more than one fault 
triggering, where the initial fault, whether due to hardware, 
misconfiguration, or bug, first manifests itself explicitly as a 
non-fatal error—for example, by throwing an exception or hav-
ing a system call return an error. This error need not be cata-
strophic; however, in the vast majority of cases, the handling of 
the explicit error was faulty, resulting in an error manifesting 
itself as a catastrophic failure. 

Overall, we found that the developers are good at anticipating 
possible errors. In all but one case, the errors were properly 
checked for in the software. However, we found the developers 
were often negligent in handling these errors. This is further 

Figure 1: A failure in HBase that requires two input events to trigger. A load balance event first 
causes a region R to be transferred from an overloaded slave A to a more idle slave B. After B 
opens R, HMaster deletes the ZooKeeper znode that is used to indicate R is being opened. If 
slave B crashes at this moment, another slave C is assigned to serve the region. After C opens R, 
HMaster tries to delete the same ZooKeeper znode again, but deleteOpenedZNode() throws an 
exception because the znode is already deleted. This exception takes down the entire cluster. 

Figure 2: Breakdown of all catastrophic failures by their error handling 
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corroborated in Findings 12 and 13, below. To be fair, we should 
point out that our findings are skewed in the sense that our study 
did not expose the many errors that are correctly caught and 
handled (as evidenced by the long uptime of these systems). 

Nevertheless, the correctness of error handling code is particu-
larly important given their impact. Previous studies [4, 5] show 
that the initial faults in distributed system failures are highly 
diversified (e.g., bugs, misconfigurations, node crashes, hard-
ware faults), and in practice it is simply impossible to eliminate 
all of them [1]. It is therefore unavoidable that some of these 
faults will manifest themselves into errors, and error handling 
then becomes the last line of defense [3]. 

Trivial Mistakes in Error Handlers
Finding 12: Thirty-five percent of the catastrophic failures are 
caused by trivial mistakes in error handling logic—ones that sim-
ply violate best programming practices, and that can be detected 
without system-specific knowledge. 

Figure 2 breaks down the trivial mistakes into three categories: 
(1) the error handler ignores explicit errors; (2) the error handler 
over-catches an exception and aborts the system; and (3) the 
error handler contains “TODO” or “FIXME” comments. 

Twenty-five percent of the catastrophic failures were caused by 
ignoring explicit errors. (An error handler that only logs the error 
is also considered to be ignoring the error.) For systems written 
in Java, the exceptions were all explicitly thrown, whereas in 
Redis they were system call error returns. 

Another 8% of the catastrophic failures were caused by devel-
opers prematurely aborting the entire cluster on a non-fatal 
exception. While in principle one would need system-specific 
knowledge to determine when to bring down the entire cluster, 
the aborts we observed were all within exception over-catches, 
where a higher level exception is used to catch multiple differ-
ent lower-level exceptions. Figure 3 shows such an example. 
The exit() was intended only for IncorrectVersionException. 
However, the developers catch a high-level exception: Throw-
able. Consequently, when a glitch in the namenode caused reg-

isterDatanode() to throw RemoteException, it was over-caught 
by Throwable and brought down every datanode. The fix is to 
handle RemoteException explicitly. 

Figure 4 shows an even more obvious mistake, where the devel-
opers only left a “TODO” comment in the handler in addition to 
a logging statement. While this error would only occur rarely, it 
took down a production cluster of 4,000 nodes. 

System-Specific Bugs
Fifty-seven percent of catastrophic failures are caused by incor-
rect error handling where system-specific knowledge is required 
to detect the bugs (see Figure 2). 

Finding 13: In 23% of the catastrophic failures, the mistakes in 
error handling were system specific, but were still easily detect-
able. More formally, the incorrect error handling in these cases 
would be exposed by 100% statement coverage testing on the error 
handling logic. 

In other words, once the problematic basic block in the error 
handling code is triggered, the failure is guaranteed to be 
exposed. This suggests that these basic blocks were faulty and 
simply never tested. The failure shown in Figure 1 belongs to 
this category. Once a test case can deterministically trigger the 
catch block, the failure will manifest with 100% certainty. 

Hence, a good strategy to prevent these failures is to start from 
existing error handling logic and try to reverse-engineer test 
cases that trigger them. While high statement coverage on error 
handling code might seem difficult to achieve, aiming for higher 
statement coverage in testing might still be a better strategy 
than a strategy of applying random fault injections. Our finding 
suggests that a “bottom-up” approach could be more effective: 
start from the error handling logic and reverse-engineer a test 
case to expose errors there. 

The remaining 34% of catastrophic failures involve complex 
bugs in the error handling logic. While our study cannot provide 
constructive suggestions on how to identify such bugs, we found 
they only account for one third of the catastrophic failures. 

Aspirator: A Simple Checker
In the subsection “Trivial Mistakes in Error Handlers,” we 
observed that some of the most catastrophic failures are caused 
by trivial mistakes that fall into three simple categories: (1) error 
handlers that are empty or only contain log printing statements; 

Figure 4: A catastrophic failure in MapReduce where developers left a 
“TODO” in the error handler 

Figure 3: An entire HDFS cluster brought down by an over-catch 
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(2) error handlers that over-catch exceptions and abort; and (3) 
error handlers that contain phrases like “TODO” and “FIXME.” 
We built a rule-based static checker, Aspirator, capable of locat-
ing these bug patterns. We provided two implementations of 
Aspirator: one as a stand-alone tool that analyzes Java bytecode, 
and another version that can be integrated with the Java build 
system to catch these bugs at compile-time. The implementation 
details of Aspirator can be found in our OSDI paper [6]. 

Checking Real-World Systems
We first evaluated Aspirator on the set of catastrophic failures 
used in our study. If Aspirator had been used and the identi-
fied bugs fixed, 33% of the Cassandra, HBase, HDFS, and 
MapReduce’s catastrophic failures we studied would have been 
prevented. We then used Aspirator to check the latest stable ver-
sions of these four systems plus five other systems: Cloudstack, 
Hive, Tomcat, Spark, and ZooKeeper. 

We categorized each warning generated by Aspirator into one of 
three categories: bug, bad practice, and false positive. Bugs are 
the cases where the error handling logic will clearly lead to unex-
pected failures. False positives are those that clearly would not 
lead to a failure. Bad practices are cases that the error handling 
logic is suspicious of, but we could not definitively infer the con-
sequences without domain knowledge. For example, if deleting a 
temporary file throws an exception and is subsequently ignored, 
it may be inconsequential. However, it is nevertheless considered 
a bad practice because it may indicate a more serious problem in 
the file system. 

Overall, Aspirator detected 121 new bugs and 379 bad practices 
along with 115 false positives. Aspirator found new bugs in every 
system we checked. 

Many bugs detected by Aspirator could indeed lead to cata-
strophic failures. For example, all four bugs caught by the 
abort-in-over-catch checker could bring down the cluster on an 
unexpected exception similar to the one in Figure 3. They have 
all been fixed by the developers of the respective systems. 

Some bugs can also cause the cluster to hang. Aspirator detected 
five bugs in HBase and Hive that have a pattern similar to the 
one depicted in Figure 5(a). In this example, when tableLock 
cannot be released, HBase only outputs an error message and 
continues executing, which can deadlock all servers accessing 

the table. The developers fixed this bug by immediately cleaning 
up the states and aborting the problematic server. 

Figure 5(b) shows a bug that could lead to data loss. An IOExcep-
tion could be thrown when HDFS is recovering the updates from 
the edit log. Ignoring this exception could cause a silent data loss. 

Experience
Interaction with developers: We reported 171 bugs and bad 
practices to the developers of the respective systems: 143 have 
already been confirmed or fixed by the developers, 17 were 
rejected, and developers never responded to the other 11 reports. 

We received mixed feedback from developers. On the one hand, 
positive comments include: “I really want to fix issues in this 
line, because I really want us to use exceptions properly and never 
ignore them”; “No one would have looked at this hidden feature; 
ignoring exceptions is bad precisely for this reason”; and “Catch-
ing Throwable [i.e., exception over-catch] is bad; we should fix 
these.” On the other hand, we received negative comments like:  
“I fail to see the reason to handle every exception.”

There are a few reasons why developers may be oblivious to the 
handling of errors. First, some errors are ignored because they 
are not regarded as critical at the time, and the importance of the 
error handling is realized only when the system suffers a serious 
failure. We hope to raise developers’ awareness by showing that 
many of the most catastrophic failures today are caused precisely 
by such obliviousness to the correctness of error handling logic. 

Second, developers may believe the errors would never (or only 
very rarely) occur. Consider the following code snippet detected 
by Aspirator from HBase: 

 try { 

   t = new TimeRange(timestamp, timestamp+1); 

 } catch (IOException e) { 

   // Will never happen 

 } 

In this case, the developers thought the constructor could never 
throw an exception, so they ignored it (as per the comment in the 
code). We observed many empty error handlers containing simi-
lar comments in the systems we checked. We argue that errors 
that “can never happen” should be handled defensively to prevent 
them from propagating. This is because developers’ judgment 
could be wrong, later code evolutions may enable the error, and 
allowing such unexpected errors to propagate can be deadly. 
In the HBase example above, developers’ judgment was indeed 
wrong. The constructor is implemented as follows: 

 public TimeRange (long min, long max) 

 throws IOException { 

   if (max < min) 

     throw new IOException(“max < min”); 

 } 
Figure 5: Two new bugs found by Aspirator 
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where an IOException is thrown on an integer overflow; yet 
swallowing this exception could lead to a data loss. The develop-
ers later fixed this by handling the IOException properly. 

Third, proper handling of the errors can be difficult. It is often 
much harder to reason about the correctness of a system’s abnor-
mal execution path than its normal execution path. The problem 
is further exacerbated by the reality that many of the exceptions 
are thrown by poorly documented third-party components. We 
surmise that in many cases, even the developers may not fully 
understand the possible causes or the potential consequences 
of an exception. This is evidenced by the following code snippet 
from Cloudstack: 

 } catch (NoTransitionException ne) { 

   /  Why this can happen? Ask God not me.  / 

 } 

We observed similar comments from empty exception handlers 
in other systems as well. 

Finally, feature development is often prioritized over exception 
handler coding when release deadlines loom. We embarrassingly 
experienced this ourselves when we ran Aspirator on Aspirator’s 
code: We found five empty exception handlers, all of them for the 
purpose of catching exceptions thrown by the underlying librar-
ies and put there only so that the code would compile. 

Good practice in Cassandra: Among the nine systems we 
checked, Cassandra has the lowest bug-to-handler-block ratio, 
indicating that Cassandra developers are careful in following 
good programming practices in exception handling. In particu-
lar, the vast majority of the exceptions are handled by recursively 
propagating them to the callers, and are handled by top level 
methods in the call graphs. Interestingly, among the five systems 
we studied, Cassandra also has the lowest rate of catastrophic 
failures in its randomly sampled failure set (see Table 1). 

Reactions from HBase developers: Our OSDI paper 
prompted HBase developers to start the initiative to fix all the 
existing bad practices. They intend to use Aspirator as their 
compile-time checker [2]. 

Conclusions
We presented an in-depth analysis of 198 user-reported failures 
in five widely used, data-intensive distributed systems. We 
found that the error-manifestation sequences leading to the fail-
ures to be relatively complex. However, we also found that almost 
all of the most catastrophic failures are caused by incorrect error 
handling, and more than half of them are trivial mistakes or can 
be exposed by statement coverage testing. 

Existing testing techniques will find it difficult to  successfully 
uncover many of these error-handling bugs. They all use a “top-
down” approach: start the system using generic inputs and actively 

inject errors at different stages. However, the size of the input and 
state space makes the problem of exposing these bugs intractable. 

Instead, we suggest a three-pronged approach to expose these 
bugs: (1) use a tool similar to the Aspirator that is capable of 
identifying a number of trivial bugs; (2) enforce code reviews 
on error-handling code, since the error-handling logic is often 
simply wrong; and (3) purposefully construct test cases that can 
reach each error-handling code block. 

Our detailed analysis of the failures and the source code of 
 Aspirator are publicly available at: http://www.eecg.toronto 
.edu/failureAnalysis/. 
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