
USENIX reaffirms its commitment to diversity, equity, and inclusion.
Black Lives Matter | Stop Asian Hate

About Conferences Publications Membership Students

Kairux: Distributed System Fault
Localization based on The

Inflection Point Hypothesis

W

January 1, 2023

ARTICLE: RESEARCH

Authors: Yongle Zhang, Kirk Rodrigues, Yu Luo, Michael Stumm, Ding Yuan

Article shepherded by: Rik Farrow

e have built a tool that performs fault localization for Java-based
distributed systems. Using the Inflection Point Hypotheses, that is, finding
the last point in the failure execution where the failure can still be

avoided, our tool can uncover fault locations reliably for distributed system failures
and provide a better explanation compared to current approaches. In this article, we
explain how this is done.

Introduction
Fault localization (i.e., identifying the root cause of a failure) in distributed systems is
a daunting task, as the failure execution trace on real-world distributed systems
could contain millions to billions of instructions, and locating the instruction that is
the root cause is like finding a needle in a haystack. Most existing approaches for
fault localization use a probabilistic approach [4]. They infer the predicates (e.g.,
branch conditions or whether a function return value is 0) that have the strongest
statistical correlation with the failure execution. While such approaches can be
effective, the outcome falls short of providing an effective explanation – the
execution context leading to the root cause and the propagation from the root cause
to the failure, which is typically needed by developers to understand the root cause
and develop a fix. In our paper, we propose the Inflection Point Hypothesis – a
principle that captures both a potential root cause of a failure and its explanation,
and we introduce Kairux, a tool that automatically pinpoints the root cause of a
failure in a distributed system based on the Inflection Point Hypothesis. We show
Kairux’s effectiveness on failures from widely-deployed, real-world distributed

Donate Today

Join the conversation

Back to ;login: Online

https://www.usenix.org/
https://www.usenix.org/about
https://www.usenix.org/conferences
https://www.usenix.org/publications
https://www.usenix.org/membership
https://www.usenix.org/students
https://www.usenix.org/conferences/diversity-and-inclusion
https://www.usenix.org/blog/usenix-statement-racism-and-black-african-american-and-african-diaspora-inclusion
https://www.usenix.org/blog/usenix-statement-racism-and-anti-api-hate
https://www.usenix.org/publications/loginonline/kairux-distributed-system-fault-localization-based-inflection-point#Yongle%20Zhang
https://www.usenix.org/publications/loginonline/kairux-distributed-system-fault-localization-based-inflection-point#Kirk%20Rodrigues
https://www.usenix.org/publications/loginonline/kairux-distributed-system-fault-localization-based-inflection-point#Yu%20Luo
https://www.usenix.org/publications/loginonline/kairux-distributed-system-fault-localization-based-inflection-point#Michael%20Stumm
https://www.usenix.org/publications/loginonline/kairux-distributed-system-fault-localization-based-inflection-point#Ding%20Yuan
https://connect.clickandpledge.com/w/Form/a9f96acc-aa05-4c52-a9b4-e12ab505abdf
https://www.usenix.org/user/login
https://www.usenix.org/search/site
https://www.usenix.org/publications/loginonline

systems, namely, HBase, HDFS, and ZooKeeper.

The Inflection Point Hypothesis
Inflection Point Hypothesis. If we model an execution as a totally ordered sequence
of instructions, then the root cause can be identified by the first instruction
(inflection point) where the failure execution deviates from the non-failure execution
that has the longest instruction sequence prefix in common with that of the failure
execution.

Figure 1: An abstract failure example simplified from a real-world data race on HDFS.

As an abstract example, consider a failure caused by a read-after-write data race.
Figure 1 depicts an execution example-failure, where thread 1 modifies a to be -1,
ultimately triggering a failure in thread 0. Bugs like these are often notoriously
difficult to debug, especially when there is a long propagation from the write (a=-1)
to the read (if(a!=0)). The middle of the figure shows a possible instruction sequence,
failure-instr-seq, obtained from example-failure, that contains instructions from both
threads. If we enumerate all possible instruction sequences obtained from all
possible non-failure executions that produce correct results, and we compare each
such sequence against failure-instr-seq, then we should find one, instr-seq-n
(shown on the right of the figure), that has the longest common prefix with failure-
instr-seq. According to the Inflection Point Hypothesis, the inflection point of the
failure is located at the first instruction in failure-instr-seq that differs from instr-seq-
n, namely a=-1 in thread 1. Intuitively, it is clear there can be no valid, failure-free
instruction sequence that has a longer common prefix with failure-instr-seq: any
sequence that includes a=-1 as the next instruction will form the same read-after-
write dependency that leads to the failure, and any instruction sequence that has
if(a!=0) before a=-1 will have a shorter prefix in common with failure-instr-seq.

Intuitively, the inflection point is the last point in the failure execution where the
failure can still be avoided. It is effective to capture the root cause of a failure in
distributed systems because: (1) Our study [5] reveals that most (77%) distributed
system failures happen due to interaction of executions triggered by multiple input

events. (2) As shown by the example, the Inflection Point Hypothesis naturally
captures the last interaction point that made the failure inevitable. The Inflection
Point Hypothesis transforms root cause analysis into a principled search problem to
identify the valid non-failure execution that has the longest common prefix with the
failure execution.

Design of Kairux
Based on the Inflection Point Hypothesis, we have designed and implemented a
tool, Kairux, capable of locating the root causes of most distributed system failures
and providing an explanation automatically. Kairux takes three inputs: (1) the steps
to reproduce the failure, typically packaged in a unit test; (2) the failure symptom; (3)
source code; and (4) all the code’s unit tests. Kairux outputs: (1) the inflection point;
(2) the non-failure instruction sequence instr-seq-n having the longest common
prefix with failure-instr-seq; and (3) the steps needed to reproduce instr-seq-n in the
form of a unit test. The comparison between instr-seq-n and failure-instr-seq
provides an explanation for the root cause (inflection point).

The search for the inflection point, as described above, is impractical since any real
distributed system would have infinitely many valid instruction sequences that do
not lead to failure. However, by carefully selecting non-failing instruction sequences,
it is possible to heuristically search for the non-failing instruction sequence that has
the longest prefix in common with the failed instruction sequence in a tractable way
with a high success rate. Kairux utilizes the following key ideas:

Adaptive Dynamic Slicing. Kairux removes instructions from the
sequences causally unrelated to the failure symptom. Therefore, it only
operates on partially ordered sequences of instructions instead of totally
ordered ones. It then separates target instruction sequences into separate
subsequences belonging to different threads. It initially processes the
thread containing the failure symptom and adaptively extends its analysis
to other threads.

Utilizing Unit Tests. Instead of trying to enumerate all possible failure-free
sequences, Kairux only considers failure-free sequences obtained from the
system’s existing unit tests, as we observed real-world distributed
systems’ unit tests achieve high coverage (86%). Kairux uses a heuristic to
prioritize the unit tests most likely to have instruction sequences in
common with the failure execution. Kairux also stitches multiple tests
together when needed.

Valid Execution Modification. When a test instruction sequence diverges
from the failure sequence, Kairux attempts to modify the target unit test’s
input parameters in an attempt to reduce the divergence. The
modifications include modifying parameters and scheduling. It ensures
that the modifications will always result in a valid execution that can be
reproduced by a unit test. The modification attempt stops when any longer
common prefix would end up in failure.

Descriptions of Kairux’s algorithms performing adaptive dynamic slicing,
comparison between failure execution trace and unit test traces, execution
modification, and more details of our design can be found in our paper [6].

Figure 2: Architecture of Kairux.

Architecture and Implementation of
Kairux
In theory, we can obtain dynamic program slices by recording a trace of every
instruction that is executed and then inferring the slice from this trace. In practice,
however, doing so has a high overhead that can be prohibitive. Therefore, as shown
in Figure 2, Kairux first uses static analysis to obtain the static program slice of the
symptom, which includes only those instructions that may have a causal
dependency on the program location of the symptom [3]. The static slice will be a
super-set of the instructions that belong in the dynamic slice of any failure
execution. Kairux uses the Chord [2] static analysis framework to perform static
slicing.

Kairux then uses the JVM Tool Interface (JVM TI) [1] to set a breakpoint at each
program location in the static slice and reproduces the failure. It records each
breakpoint that was hit to obtain a trace and then performs a similar dependency
analysis on it to obtain the dynamic slice. Kairux acquires the dynamic slice across
the network by annotating network communication libraries. During execution
modification, Kairux also uses JVM TI to enforce different thread schedulings by
ordering the breakpoints. For each dynamic object used in each instruction, Kairux
assigns a unique tag using JVM TI to differentiate different runtime instances of the
same source code object and track data flow.

Kairux also includes Python programs to parallelize and accelerate the execution of
unit tests. For HDFS, the system whose unit tests take the longest to run, we were
able to reduce the time to run all unit tests from over 6 hours, when running
sequentially on a regular file system, to less than 10 minutes, when running in
parallel on tmpfs.

Evaluating Kairux
We evaluated Kairux on randomly sampled, real-world failures from HBase, HDFS,
and ZooKeeper. We reproduced each failure using a series of commands packaged
in a unit test. These systems’ unit test framework simulates a real environment by
using threads and processes to simulate nodes. Overall, Kairux can successfully
locate the root cause in 70% of cases. Kairux effectively reduces the number of
instructions to be examined to understand the root cause: 0.2% of the instructions in
the failure execution. In addition, Kairux is effective in identifying and explaining

Tags: distributed systems, failure diagnosis, debugging

Last updated January 25, 2023

AUTHORS: AUTHORS:

failures caused by “missing events”, i.e., events that should have taken place but did
not, in contrast to failures caused by the occurrence of an anomalous event. Kairux
is able to identify such missing events by comparing the failure execution against
unit test executions. A full set of statistics and a case study can be found in the
paper [6].

Caveats
For many failures, there are multiple root cause candidates. Picking the one root
cause can be fundamentally subjective. Our definition of inflection point picks the
one that comes last as the root cause. Our evaluation shows its effectiveness for
fault localization in distributed systems. However, cases can be made that the other
causes are better choices. In addition, a failure can have multiple underlying causes.
A common example is a bug or a user misconfiguration that triggers an exception,
and the exception handling logic has another bug. In these cases, our hypothesis will
only identify the last bug as the root cause, i.e., the bug in the error handling logic.
Removing root causes from the failure execution and applying Kairux repeatedly
could identify multiple failure-inducing causes.

References:

[1] Oracle Corporation. Java™ virtual machine tool interface (JVM TI).
http://docs.oracle.com/javase/7/docs/technotes/guides/jvmti/, 2018.

[2] Mayur Naik. Chord: Java bytecode analysis. https://bitbucket.org/psl-lab/jchord/,
2015.

[3] Mark Weiser. Program slicing. In Proceedings of the 5th International Conference on
Software Engineering (ICSE), 1981.

[4] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. A survey on
software fault localization. IEEE Transactions on Software Engineering, 2016.

[5] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Rodrigues, Xu Zhao, Yongle Zhang,
Pranay U. Jain, and Michael Stumm. Simple testing can prevent most critical failures: An
analysis of production failures in distributed data-intensive systems. In Proceedings of
the 11th Conference on Operating Systems Design and Implementation (OSDI), 2014.

[6] Yongle Zhang, Kirk Rodrigues, Yu Luo, Michael Stumm, and Ding Yuan. The inflection
point hypothesis: a principled debugging approach for locating the root cause of a
failure. In Proceedings of the 27th ACM Symposium on Operating Systems Principles
(SOSP), 2019.

http://docs.oracle.com/javase/7/docs/technotes/guides/jvmti/
https://bitbucket.org/psl-lab/jchord/

Yongle Zhang is an assistant professor in the
Computer Science Department at Purdue
University. His research interests are in
systems software with a focus on improving
the reliability and availability of complex,
real-world systems. Some of his recent
research includes designing tools that help
developers with failure detection and
diagnosis in production cloud systems, as
well as design and implementation of
diagnosable software systems.

yonglezh@purdue.edu

Kirk Rodrigues is a co-founder of YScope
and a 5th-year PhD candidate under the
supervision of Ding Yuan at the University of
Toronto. Our Distributed Systems Research
Group focuses on creating ways to efficiently
diagnose performance and reliability issues
in large-scale distributed systems.

kirk.rodrigues@yscope.com

Yu (Jack) Luo is a co-founder of YScope and
a 5th-year PhD candidate under the
supervision of Ding Yuan at the University of
Toronto. His research interest is in system
software, with a focus on developing
practical solutions to improve the availability
and performance of large software systems.
Many of our research group's pioneer work is
in the field of failure diagnosis in large
distributed systems via log analysis. Our
ultimate goal is to build effective and
practical tools which can triage and help
users perform post-mortem failure analysis
as well as providing non-intrusive
monitoring on full-stack distributed systems.

jack.luo@mail.utoronto.ca

Michael Stumm is a Professor in the
Computer Engineering Department at the
University of Toronto. Dr. Stumm’s research
interests are in the general area of computer
systems software with an emphasis on
operating systems for distributed systems
and multiprocessors. While professor,
Stumm co-founded two companies, SOMA
Networks, and OANDA, a currency trading
company. He ran OANDA from 2001 until
2012.

michael@stumm.ca

Ding Yuan is an associate professor in the
Electrical and Computer Engineering
Department and (by courtesy) Department
of Computer Science, University of Toronto,
as well as a co-founder of YScope. He is a
Canada Research Chair in Systems Software
and a recipient of McCharles Prize for Early
Career Research Distinction. His research
interest is systems software, with a focus on
developing practical solutions to improve the
availability and performance of large
software systems.

yuan@ece.utoronto.ca

Log in or Register to post comments

mailto:yonglezh@purdue.edu
mailto:kirk.rodrigues@yscope.com
mailto:jack.luo@mail.utoronto.ca
mailto:michael@stumm.ca
mailto:yuan@ece.utoronto.ca
https://www.usenix.org/user/login?destination=node/286010%23comment-form
https://www.usenix.org/user/register?destination=node/286010%23comment-form

© USENIX 2022
Website designed and built
by Giant Rabbit LLC

   

Privacy Policy

Contact Us

Sign up for Our Newsletter:

First Name Last Name Email

reCAPTCHA
I'm not a robot

Privacy - Terms

Submit

https://www.facebook.com/pages/USENIX-Association/124487434386
https://twitter.com/usenix
https://www.linkedin.com/company/usenix-association/
https://www.youtube.com/user/USENIXAssociation
https://www.usenix.org/
https://giantrabbit.com/
https://www.usenix.org/privacy-policy
https://www.usenix.org/contact
https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/terms/

