
The Inflection Point Hypothesis: A Principled Debugging
Approach for Locating the Root Cause of a Failure

Yongle Zhang
University of Toronto

yongle.zhang@mail.utoronto.ca

Kirk Rodrigues
University of Toronto

kirk.rodrigues@mail.utoronto.ca

Yu Luo
University of Toronto

jack.luo@mail.utoronto.ca

Michael Stumm
University of Toronto

stumm@ece.utoronto.ca

Ding Yuan
University of Toronto
yuan@ece.utoronto.ca

Abstract
The end goal of failure diagnosis is to locate the root cause.
Prior root cause localization approaches almost all rely on
statistical analysis. This paper proposes taking a different
approach based on the observation that if we model an exe-
cution as a totally ordered sequence of instructions, then the
root cause can be identified by the first instruction where
the failure execution deviates from the non-failure execution
that has the longest instruction sequence prefix in common
with that of the failure execution. Thus, root cause analysis
is transformed into a principled search problem to identify
the non-failure execution with the longest common prefix.
We present Kairux, a tool that does just that. It is, in most
cases, capable of pinpointing the root cause of a failure in
a distributed system, in a fully automated way. Kairux uses
tests from the system’s rich unit test suite as building blocks
to construct the non-failure execution that has the longest
common prefix with the failure execution in order to lo-
cate the root cause. By evaluating Kairux on some of the
most complex, real-world failures from HBase, HDFS, and
ZooKeeper, we show that Kairux can accurately pinpoint
each failure’s respective root cause.

CCSConcepts •Computer systems organization→Re-
liability; • Software and its engineering → Software
testing and debugging.

Keywords Failure diagnosis, distributed systems, root cause,
debugging

ACM Reference Format:
Yongle Zhang, Kirk Rodrigues, Yu Luo, Michael Stumm, and Ding
Yuan. 2019. The Inflection Point Hypothesis: A Principled Debug-
ging Approach for Locating the Root Cause of a Failure. In ACM

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6873-5/19/10.
https://doi.org/10.1145/3341301.3359650

SIGOPS 27th Symposium on Operating Systems Principles (SOSP ’19),
October 27–30, 2019, Huntsville, ON, Canada. ACM, New York, NY,
USA, 16 pages. https://doi.org/10.1145/3341301.3359650

1 Introduction
Postmortem failure diagnosis is possibly the most critical yet
time consuming software engineering task today. Studies
have shown that the software industry is spending more
than $100 billion on failure diagnosis [41], and programmers
are spending over 50% of their time debugging [32]. The end
goal for postmortem debugging is to locate the root cause
of the failure, or the fault [26]. The root cause is the most
basic reason for a failure which, if corrected, would have
prevented the failure from occurring [47].

There are two major tasks towards locating the root cause:
the first is to reconstruct a failure execution, and the second
is to then find the actual cause of the failure. Reconstruction
of failure executions has been well studied, and the trade-
offs between comprehensiveness and intrusiveness are well
understood. For example, deterministic replay tools [2, 3, 12,
14, 15, 29, 35, 36, 40, 42, 44] provide comprehensive execu-
tion traces, yet are heavily intrusive; tracing [5, 6, 17, 30] is
less intrusive but provides a less comprehensive trace; non-
intrusive approaches reconstruct partial execution traces
from logs [50, 56–58], the core-dump [31, 52], and hardware
support such as Intel PT [13, 25].

Reconstructing a failure execution path provides a critical
first step towards identifying the root cause. However, identi-
fying the cause for the failure from the failure execution path
still often needs to be done manually today. It is a daunting
task, as the number of events involved in the failure path
is beyond the processing power of humans given the speed
of today’s processors and the scale of today’s distributed
systems. Even with tools that aim to reconstruct a minimal
partial trace, the number of events involved is still large. For
example, Pensieve [56] is able to reconstruct a minimal event
chain that contains only the events that must have occurred
to lead to the failure, yet this chain can still contain hundreds
of events for a typical failure on today’s distributed systems.

Almost all existing approaches for fault localization use a
probabilistic approach [7, 16, 24, 25, 27, 28]. They infer the

https://doi.org/10.1145/3341301.3359650
https://doi.org/10.1145/3341301.3359650

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Y. Zhang et al.

Thread 0 Thread 1

a=0;

a=-1;

if(a!=0)
FAIL;

"#

Failure exe.

a=0;

a=-1;

if(a!=0)
FAIL;

Root cause

$#

Non-failure exe.

a=0;

a=-1;

if(a!=0)…

$%

Common
prefix

Figure 1. An abstract failure example. § 2 shows a real-world data
race on HDFS that has a similar pattern.

predicates (e.g., branch conditions or whether a function re-
turn value is 0) that have the strongest statistical correlation
with the failure execution. While such approaches can be
effective, the outcome is also fundamentally probabilistic.
It also does not include the execution context that explains
why the predicate has occurred, which is typically needed by
developers to understand the root cause. In addition, certain
bugs are notoriously difficult to track down using statistical
approaches; in particular, recording the ordering of events
that may lead to data races can become a combinatorial prob-
lem.
We propose a new approach towards identifying failure

causes which is substantially different from previous ap-
proaches. It is based on the Inflection Point Hypothesis we
introduce in this paper. Suppose we have a failure execu-
tion from which we extract an instruction sequence, σf , that
leads to the failure. We compare σf against every instruction
sequence belonging to the set Σv of all failure-free instruc-
tion sequences that produce the correct result. We select the
instruction sequence σp in Σv that has the longest common
prefix with σf . We define the inflection point of σf to be
the earliest position in σf where σf and σp deviate. The hy-
pothesis states that the instruction at the inflection point is
the root cause of the failure. That point in σf is called an
inflection point because from that point on, any subsequent
execution path cannot possibly not fail.

As an abstract example, consider a failure caused by a read-
after-write data race. Figure 1 depicts an execution ef , where
thread 1 modifies a to be -1, ultimately triggering a failure
in thread 0. Bugs like these are often notoriously difficult
to debug, especially when there is a long propagation from
the write (a=-1) to the read (if(a!=0)). The middle of the
figure shows a possible instruction sequence, σf , obtained
from ef , that contains instructions from both threads. If
we enumerate all possible instruction sequences obtained
from all possible non-failure executions that produce correct
results, and we compare each such sequence against σf , then
we should find one, σp (shown on the right of the figure), that
has the longest common prefix with σf . According to the

Inflection Point Hypothesis, the inflection point of the failure
is located at the first instruction in σf that differs from σp ,
namely a=-1 in thread 1. Intuitively, it is clear there can be no
valid, failure-free instruction sequence σv that has a longer
common prefix with σf : any sequence that includes a=-1
as the next instruction will form the same read-after-write
dependency that leads to the failure, and any instruction
sequence that has if(a!=0) before a=-1will have a shorter
prefix in common with σf .
This simple hypothesis is powerful. It transforms root

cause analysis into a principled search problem. The root
cause of the failure is identified by systematically searching
for the valid non-failure instruction sequence σp that has
the longest common prefix with the failure instruction se-
quence. This is a fundamentally different approach to root
cause analysis as it suggests that the search for the root cause
should start from the beginning of the execution. Conven-
tional wisdom has it that the root cause is likely close to the
failure, and as a result, many tools use a backward search
strategy [13, 25, 43]. While these techniques can be effective
in diagnosing many failures, their effectiveness is limited
when the propagation from fault to the failure is long. Such
failures are also the most difficult to debug.
The search for the inflection point (and hence the root

cause), as described above, is clearly impractical since any
real distributed system would have infinitely many valid
instruction sequences that do not lead to failure. However,
by carefully selecting non-failing instruction sequences, it is
possible to heuristically search for the non-failing instruction
sequence that has the longest prefix in common with the
failed instruction sequence in a tractable way with a high
success rate. We have designed and implemented a tool,
Kairux, capable of locating the root causes ofmost distributed
system failures in a fully automated manner. Kairux takes
three inputs: (1) the steps to reproduce the failure, typically
packaged in a unit test [56]; (2) the failure symptom; and
(3) all the code’s unit tests. Kairux outputs: (1) the inflection
point; (2) the non-failure instruction sequence σp having the
longest common prefix with σf ; and (3) the steps needed to
reproduce σp in the form of a unit test.
Following the Inflection Point Hypothesis, Kairux’s cen-

tral task is to find σp , the non-failure instruction sequence
that has the longest common prefix. However, instead of try-
ing to enumerate all possible failure-free sequences, Kairux
only considers failure-free sequences obtained from the sys-
tem’s existing unit tests1 and quickly discards all instruction
sequences unrelated to the failure sequence. Real systems
typically have a rich unit test suite [49]—many enforce a
code commit policy whereby every code change must be
accompanied either by a new unit test or by a change to an

1We use the term “unit test” as used in many open source projects even
though they include function tests, component tests, integration tests, etc.
as well.

The Inflection Point Hypothesis SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

ei , ef , ...: executions
σx ,σy , ...: instruction sequences
σf : instruction sequence leading to failure
σp : non-failure instruction sequence with longest prefix
Σx , Σy , ...: set of instruction sequences

Table 1. Notation used in paper

System # tests class cov. func. cov. stmt. cov.
Cassandra 3.11.4 3,229 88.2% 76.8% 73.6%
HDFS 3.1.2 7,846 87.7% 90.4% 90.1%
ZooKeeper 3.4.11 554 90.6% 90.3% 88.4%

Table 2. Number of unit tests and their coverage on three
popular distributed systems.

existing one. Consequently, as shown in Table 2, unit tests
achieve high coverage. On average, 86% of the functions are
covered by unit tests.
Kairux applies a number of techniques in its attempt to

construct σp in a tractable way. First, it removes instruc-
tions from the sequences causally unrelated to the failure
symptom. Therefore, it only operates on partially ordered
sequences of instructions instead of totally ordered ones. It
then separates target instruction sequences into separate
subsequences belonging to different threads and initially
processes each one independently. Kairux does this because
(1) failures in real distributed systems typically require that
multiple operations be triggered [49]; (2) each operation is
typically processed by its own independent thread; and (3) in
most cases, each unit test only exercises a few operations.
Further, Kairux uses a heuristic to prioritize the unit tests
most likely to have instruction sequences in common with
the failure execution. When a test instruction sequence di-
verges from the failure sequence, Kairux attempts to modify
the target unit test’s input parameters in an attempt to reduce
the divergence. Finally, it splices together subsequences from
multiple threads and multiple tests to construct σp . Details
on Kairux’s design are provided in § 4.

We evaluated Kairux on 10 randomly sampled real-world
failures reported in Hadoop, HBase, and ZooKeeper. Kairux
can accurately locate the root cause in 7 of them. Some of
these failures are among the ones that are the most difficult
to debug, such as data races.
This work has a number of limitations. First, Kairux can

only locate the root cause if there is a deviation in the in-
struction sequence between the failure and non-failure exe-
cutions. For some failures, a failure execution may produce
the wrong output using the same sequence of instructions as
a non-failure execution, and in that case Kairux will not be
able to detect the root cause. However, we should point out
that this does not mean that Kairux cannot detect failures
caused by incorrect data-flow. Incorrect data-flow typically

results in control-flow deviation as the data is used in branch
conditions. In fact, the data race example in Figure 1 is caused
by an incorrect data-flow. Second, Kairux only locates the
root cause. It is still the developers’ responsibility to find a
fix for the bug, which can be time-consuming in and of itself
even after the failure has been diagnosed. Finally, Kairux re-
quires the failure to be reproducible. However, as mentioned
earlier, failure reproduction is well explored. For example,
Pensieve [56] is capable of inferring the sequence of com-
mands, packaged in a unit test, that can reproduce the failure
by analyzing the log and program code. Many bug reporting
systems such as the ones for Firefox and Chrome require the
reporter to provide steps to reproduce the bug.

2 Motivating Real-world Example
We use a real-world failure as a motivating example to ex-
plain the Inflection Point Hypothesis and how Kairux works.
The specific real-world failure we consider is from HDFS:
HDFS-10453 [22]. A user frequently observed that after a
data node is decommissioned, (i) HDFS fails to replicate any
data blocks that are under-replicated, (ii) HDFS outputs an
exception log statement that complains there is not enough
capacity on any data node, and (iii) the thread that is respon-
sible for block replication, ReplicationMonitor, freezes.
This failure was extremely difficult to debug, taking the user
a month to track down the root cause [20, 21]; the user had
to do multiple rounds of “printf-debugging”: instrumenting
the system with new log-printing statements, waiting for
the failure to occur, and then reading the log only to find it
is necessary to add new log printing statements. When the
user finally identified the root cause, he wrote a detailed blog
post describing this frustrating debugging experience [21].

Figure 2 shows the simplified code snippet for HDFS-10453.
The symptom is at line 28, where the exception occurs and
leads to the printing of an error log message (not shown in
the figure). The loop above it at line 19 attempts to replicate
an under-replicated block numNeeded times. It does so by
randomly selecting a data node and replicating the block
if the node’s capacity is larger than the size of the block.
The exception occurs because the loop failed to replicate
the block. Because this loop checks every data node in the
system, it takes a long time to complete. In the meantime,
the neededReplications queue quickly grows large, and it
appears that the ReplicationMonitor thread freezes and
stops replicating any under-replicated blocks.

Figure 3 shows part of the failure execution’s instruction
sequence. Kairux is able to automatically identify the inflec-
tion point of this failure as line 5 according to the Inflection
Point Hypothesis (and it would be able to do so whenever
lines 33 and 34 are interleaved by line 5 in the execution
sequence). The inflection point (line 5), its cause (data-flow
from line 33), and its consequences (the branch condition
at line 22 is not satisfied) are included in Kairux’s analysis

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Y. Zhang et al.

1 /****** ReplicationMonitor thread ******/
2 void replicateBlocks () {
3 while(namesystem.isRunning ()) {
4 for (Block b : neededReplications)
5 chooseTarget(b.numReplicas ,b.size);
6 Thread.sleep (...);
7 }
8 }
9
10 void chooseTarget(int nReplicas ,long bSize){
11 if (nReplicas <= 1)
12 chooseRemoteRack(nReplicas , bSize);
13 else
14 chooseRandom(nReplicas , bSize);
15 }
16
17 void chooseRandom(int nReplica ,long blkSize){
18 int numNeeded=REPLICATION_FACTOR -nReplica;
19 while(numNeeded > 0) { // replicas needed
20 node = chooseNextRandomNode (..);
21 if (node==NULL) break;// Checked all
22 if (blkSize <= node.capacity) {
23 ... // replicate the block to this node
24 numNeeded --;
25 }
26 }
27 if (numNeeded > 0)
28 throw new NotEnoughReplicasException ();
29 }
30
31 /* ******* DeleteBlock thread ******** */
32 void deleteBlock(Block blk) {
33 blk.size = Long.MAX_VALUE; // modified!
34 neededReplications.remove(blk);
35 }

Figure 2. Simplified code snippet for HDFS-10453.

Thread 1: ReplicationMonitor Thread 2: DeleteBlock

33 blk.size = Long.MAX_VALUE;

28 throw new NotEnoughReplicasException(); // Symptom

22 if (blkSize <= node.capacity)
...

5 chooseTarget(b.numReplicas, b.size)

...

Figure 3. The root cause, highlighted in red, inferred by Kairux
for the HDFS failure.

report. This clearly explains this bug. It is a data race sim-
ilar to the abstract failure example we showed in Figure 1:
decommissioning a data node triggers a delete operation on
a block that in this case is under-replicated (line 32). The
data node sets the block’s size to Long.MAX_VALUE (line 33)
because HDFS uses the value Long.MAX_VALUE to indicate
that the block is being deleted. At the same time, a back-
ground ReplicationMonitor thread is trying to replicate
this block. It attempts to find a data node whose capacity

is larger than the size of the block (line 22), but since the
block’s size is set to Long.MAX_VALUE, it can never find a
data node with enough capacity.

3 The Inflection Point Hypothesis
3.1 Definitions and Assumptions
We consider an execution of a software system by a series of
(API) input commands. We model the execution as a totally
ordered instruction sequence obtained by interleaving the
instructions executed by each thread, process, and node in
the system, taking constraints from existing synchroniza-
tion into account. We use total order of instructions in this
section to simplify the definitions and explanations. Our
tool, Kairux, operates only on a partially ordered instruction
sequence obtained by dynamic slicing (§ 4.2). We say two ex-
ecutions are the same if they have the exact same instruction
sequence. For a (reproduced) failure execution, we consider
any instruction sequence obtained from the failed execution.
For each non-failure execution, we consider (in theory) every
possible interleaving as a separate instruction sequence.
We refer to an execution as being correct when, given a

series of input commands, the execution produces results
according to the system’s specification. When referring to
“non-failure executions,” we always assume these executions
are correct. The term “correct execution” is usedmoreweakly
in practice; for example, after fixing a bug having caused a
failure, the term may be used to say that the execution no
longer fails and still passes all of the unit tests. We generally
assume the system under consideration has been reasonably
well tested and that there exist non-failing unit tests for the
system. We do so to avoid having to consider pathological
cases that have no non-failure executions (such as programs
that fail on the first instruction regardless of input).
The root cause of a failure is, intuitively, the condition

that developers should correct. A number of studies have
provided definitions for root cause [47, 51]. We adopt the
one from Wilson et al. [47] as it is one of the most precise
and widely adopted definitions [46]: “Root cause is that most
basic reason for an undesirable condition or problem which, if
eliminated or corrected, would have prevented it from existing
or occurring.”

We now refine the definition to relate it to the context of
computer systems. We first define root cause candidate:

Definition 1. A root cause candidate is the location of an
instruction in the failure execution sequence where changing
this instruction results in correct executions that avoid the
associated failure.

A failure could have multiple root cause candidates. For ex-
ample, a failure can be prevented by either disabling the soft-
ware component that contains the underlying bug through
a configuration change or fixing the bug itself. Therefore,
the location of the first instruction that is executed in the

The Inflection Point Hypothesis SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

true branch of if (ENABLED(X)) and the location of the
instruction that corresponds to the bug are both root cause
candidates of the failure.

The original definition of root cause further constrains the
root cause to be the one that is themost basic. Fixing the bug
is more basic than changing the configuration. Less formally,
the root cause candidate that is located further down in the
failure execution is more basic because if changed it affects a
smaller portion of the execution. This leads to our definition
of ρ-cause:

Definition 2. The ρ-cause of a failure is the root cause can-
didate that has the longest distance from the first instruction
of the failure execution.

Note that the ρ-cause of a failure may or may not be the
root cause. Identifying the root cause is fundamentally a sub-
jective exercise and it may even be ambiguous. For example,
a system administrator or support engineer may argue that
identifying the high-level configuration that can be used to
disable the buggy software component is more meaningful.
In comparison, ρ-cause is well-defined and unambiguous.
In our experiment, we found that for all of the real-world
failures where Kairux successfully identified the ρ-causes,
the ρ-cause was the same as the root cause. However, in
theory there can be cases where the root cause is not the
ρ-cause. We discuss them in § 3.4 and show that even for the
cases where the ρ-causes are not the root causes, the root
cause can be easily identified once the ρ-cause is located.

We also assume Σv , ∅ is the set of all possible non-failure
instruction sequences that could be executed by the target
system. Obviously Σv includes all the test run executions if
the system has a perfectly thorough test suite (i.e., achieving
100% coverage in any testing coverage criteria).

Finally, we define inflection point:

Definition 3. The inflection point in execution σx when
compared to execution σy is the location of the first instruction
in σx that differs from the instruction at the same point in σy .

3.2 Inflection Point Hypothesis
We can now formally introduce the Inflection Point Hypoth-
esis. We first introduce a theorem.

Theorem 1. The ρ-cause of a failure execution σf is located
at its inflection point when compared to the executionσp , where
σp is the execution in Σv that has the longest common prefix
with σf .

This theorem follows naturally from the definitions above.
Consider an instruction sequence that leads to a failure, σf ,
and its associated σp ∈ Σv which has the longest common
prefix with σf . We first note that by definition, there can be
only one inflection point for the failure execution σf . Let r
be the inflection point and s be the ρ-cause. Clearly, r is a
root cause candidate because we can change r in σf to be

Failure exe.

a=0;

a=-1;

if(a!=0)
FAIL;

#"

Non-failure exe.

a=0;

a=-1;

if(a!=0)
FAIL;

#$

a=0;

Figure 4. An example showing that the root cause may not be the
root cause candidate. The same failure execution as in Figure 1 is on
the left. The right non-failure sequence further overwrites a with
0. The circled instruction is the inflection point that is identified as
the root cause candidate by our definition.

the instruction in σp so that it leads to a correct execution
σp that avoids the failure. Then by Definition 2, the root
cause candidate s must occur after or be equal to r . How-
ever, it cannot be after because otherwise we would have
found an instruction sequence with a longer common prefix.
Therefore, r = s .

Inflection Point Hypothesis. The root cause of a failure is
located at its inflection point identified in Theorem 1.

In other words, the hypothesis states that the ρ-cause of a
failure is the root cause. This is because Theorem 1 already
states that the ρ-cause is located at the inflection point.

3.3 HDFS Failure Example Revisited
Referring back to Figures 2 and 3, the Inflection Point Hy-
pothesis captures the root cause as line 5 because we will be
able to find non-failure executions that overlap with the fail-
ure instruction sequence σf = (..., 33, 5, ..., 22, ..., 28...) up to
line 33, but not beyond. For example, there is a non-failure
execution sequence σi = (..., 33, 34, 5, ...), which avoids a
failure, because with line 34 ahead of line 5, the block will be
removed from the shared neededReplications queue and
line 5 does not lead to failure. Hence, line 5 is the point of
inflection: there is no non-failure execution that has a longer
overlap, because once line 5 is scheduled after line 33 (and
before line 34), the failure is inevitable.

3.4 Caveats
For many failures, there are multiple root cause candidates.
Picking the one root cause can be fundamentally subjective.
Our definition of ρ-cause picks the one that comes last and
that is what the Inflection Point Hypothesis identifies as the
root cause. However, cases can be made that the other causes
are better choices.

As an example, our hypothesis locates the root cause in the
instruction sequence while, in some cases, one could argue
that the root cause is a failure-inducing input. For example,

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Y. Zhang et al.

for failures that are caused by misconfigurations, the root
cause should be the wrong configuration value. We note,
however, that in this case, as long as the wrong configuration
value is used in a branch condition, our methodology will
identify the first instruction that is executed after this branch
instruction as the location of the ρ-cause. The user can still
pinpoint the wrong configuration from the variable used in
the branch condition that resulted in the point of inflection.
Figure 4 shows a more subtle, contrived example that

demonstrates ρ-cause may not always capture the underly-
ing root cause. In this example, the failure execution is the
same as the one in Figure 1. However, the difference is that
now there can be a non-failure execution that overwrites a
with 0 in thread 0 after thread 1 (the red thread) writes -1
to a. This non-failure execution will have a longer common
prefix with the failure execution, so according to our defini-
tion, the ρ-cause is not the data race from the red thread that
writes a=-1. Instead, the ρ-cause is at the instruction that
took the place of the instruction that overwrites a back to 0.
While one could argue that this indeed can be the root cause
since the failure can be avoided by forcing the overwrite to
occur in the original failure execution, it does not fix the
underlying data race bug. However, the data race that is the
root cause can be easily identified from understanding the
inflection point (where a is not overwritten to 0 in the failure
execution) and examining the data-flow of a.
Finally, a failure can have multiple underlying causes. A

common example is a bug or a user misconfiguration that
triggers an exception, and the exception handling logic has
another bug. Many of the most catastrophic software failures
had this pattern [37, 39]. Fixing any of the bugs could prevent
the failure from occurring, but ideally all should be fixed.
However, in these cases, our definition and hypothesis will
only identify the last bug as the root cause, i.e., the bug in
the error handling logic.

4 Design of Kairux
This section explains how Kairux works in general as well
as how it works when applied to the HDFS failure (§ 2) in
particular. We start by describing some of the challenges in
turning the Inflection Point Hypothesis into a practical and
tractable solution.

4.1 Challenges and Ideas
If the set of all possible non-failure instruction sequences
Σv is available, then theoretically we could search for the
sequence σp that has the longest common prefix with the
failure sequence σf and locate the point of divergence as
the root cause candidate. In practice, it is not possible to
obtain Σv for any reasonably complex system as there will
be infinitely many non-failure executions. One approach we
considered was symbolic execution which, in principle, can
explore all possible execution paths [9, 52]; but we rejected

this approach due to its difficulties in scaling to complex
distributed systems [56].
Instead, Kairux uses the rich unit test suite that is an in-

tegral part of any real system to obtain a set of non-failure
executions, and then uses the instruction sequences from
test executions as building blocks to construct σp . As shown
in Table 2 in § 1, unit tests for distributed systems cover over
86% of the functions, so the functions in σf are likely to be
exercised by the tests. In addition, Kairux uses only partial
order instead of total order when comparing the common
prefix between failure and non-failure instruction sequences;
this is to eliminate the large number of possible instruction
sequences caused by non-determinism.

However, in most cases, we will not be able to find a unit
test with an instruction sequence that closely matches σf .
For example, σf may involve multiple operations (like in the
HDFS example), yet each unit test typically only exercises a
few operations that are likely to be a subset of the required
operations. Hence, it may be necessary to combine instruc-
tion sequences from multiple tests in order to construct σp .

As another example, a test execution σt may deviate from
σf , yet the deviation could be oblivious to the root cause.
Such a deviation may be caused by a configuration value, a
different thread scheduling, or a different branch direction
that is not related to the root cause. Hence, when σt deviates
from σf at a point d , Kairux checks if the deviation is failure
oblivious. It does so by modifying the test execution to make
it take the same execution path as σf at d . If the modified test
execution, σt ′ , still does not lead to the failure, the deviation
at d is failure oblivious, and we have constructed a non-
failure execution σt ′ that is closer to σf than σt . On the other
hand, if after the modification σt ′ results in failure, then d
could be a root cause candidate.

4.2 Kairux Algorithm Overview
Algorithm 1 shows the algorithm used by Kairux to identify
the root cause candidate. The inputs to Kairux are: (1) the
failure execution σf ; (2) the unit test suite, and (3) the failure
symptom, which is a point in the program execution. The
symptom can be further associated with constraints, e.g.,
variable a must be less than 0 at this point. Only when the
failure program point is reached, and the constraints are sat-
isfied, will Kairux conclude that the failure has occurred. The
output is the inflection point P and the non-failure execu-
tion’s instruction sequence sp that has the longest common
prefix with σf . (sp is a subsequence of the instruction se-
quence σp .) Kairux also packages steps to reproduce sp and
σp into a unit test. Initially, P is set to the location of the
symptom and sp is set to empty.
Kairux first obtains the dynamic program slice sf of the

failure symptom from σf on lines 2–4. A dynamic program
slice of the symptom consists of the subsequence of instruc-
tions in σf on which the symptom is causally dependent [1,
45]. In other words, if the symptom occurs regardless of

The Inflection Point Hypothesis SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

Algorithm 1: Design of Kairux.
Input :σf : failure execution; unit tests; symptom
Output :P: inflection point; sp : instruction sequence

with longest prefix
1 sp = [], P = symptom;
2 locations = static_slicing(symptom);
3 sf = run_and_record(σf , locations);
4 sf = dynamic_slicing(sf , symptom);
5 ⟨sf |t0, sf |t1, .., sf |ts ⟩ = group_by_thread(sf);
6 thread_queue = [⟨sf |ts , symptom⟩];
7 while thread_queue, ∅ do
8 ⟨sf |t,pt⟩ =thread_queue.dequeue();
9 sp |t = ∅;

10 sorted_tests = sort_tests(sf |t,pt);
11 foreach u in the first N tests of sorted_tests do
12 su = run_and_record(u, locations);
13 ⟨su′ |t, prefix⟩ =

compare_and_modify(sf |t, su |t, u);
14 if prefix.length > sp |t .length then
15 sp |t = su′ |t ;
16 end
17 end
18 sp = merge(sp, sp |t);
19 foreach read-after-write dependencyw |t ′ → r |t

do
20 thread_queue.enqueue(⟨sf |t ′,w |t ′⟩);
21 end
22 end
23 P = find_deviation(sf ,sp);

sf : subsequence of σf recorded at static slice locations
sf : dynamic slice of the failure execution
sf |t : subsequence of sf that is from thread t
u: a unit test
su : subsequence of σu recorded at static slice locations
su |t : subsequence of su that is from thread t
ts : the thread that contains the symptom
sp |t : subsequence of sp that is from thread t

Table 3. Symbols used in Algorithm 1.

whether an instruction i executes or executes differently,
then i is not in the program slice. Moreover, only instruc-
tions that occur before the symptom can be in sf . A slice
is called dynamic because it only contains instructions that
actually occurred in the execution. For example, line 24 in
Figure 2 is not in the dynamic slice for the HDFS failure be-
cause it is not executed in the failure execution, even though
the symptom would be causally dependent on it if it were
executed. Kairux only operates on sf instead of the complete

instruction sequence in σf so that it can ignore the parts that
are oblivious to the failure, e.g., failure-irrelevant threads.
In theory, we can obtain the dynamic program slice by

recording a trace of every instruction that is executed and
then inferring the slice from this trace. In practice, however,
doing so has high overhead that can be prohibitive. Therefore,
Kairux first uses static analysis to obtain the static program
slice of the symptom, which includes only those instructions
that may have a causal dependency on the program location
of the symptom [45]. Obtaining the static slice is an iterative
process. At the start, only the symptom’s instruction is in
the slice. We then work backwards, iteratively analyzing the
control- and data-flow of each instruction in the slice to add
more instructions into the slice. For theHDFS failure example
in Figure 2, starting from the symptom at line 28, Kairux
follows the control-flow to infer that line 27 is part of the
slice; Kairux further analyzes the data-flow of numNeeded,
because it is used as a branch condition variable at line 27,
and adds line 24 to the slice. By repeating this process, every
statement in Figure 2 will be included in the static slice. The
static slice will be a super-set of the instructions that belong
in the dynamic slice of any failure execution.
Kairux then sets a breakpoint at each program location

in the static slice and reproduces the failure. It records each
breakpoint that was hit to obtain a trace sf (line 3 in Algo-
rithm 1) and then performs a similar dependency analysis on
sf to obtain the dynamic slice. Kairux acquires the dynamic
slice across the network by annotating network communi-
cation libraries, such as Google Protocol Buffers [23] and
Apache Thrift [18], in a manner similar to Pensieve [56]. We
use the bar in sf to indicate that it is a dynamic slice of sf .
Kairux further separates sf into different subsequences,

each belonging to a separate thread (line 5). We use sf |t to
represent the instruction subsequence in sf that belongs to
thread t . Breaking sf into subsequences by thread allows us
to effectively use unit test executions to compose sp . Each
unit test typically only exercises a few operations, each of
which is often processed by one thread; yet sp typically re-
quires a specific set of operations. It is unlikely that there
exists a unit test that contains all of the required operations,
but it is likely that each required operation is processed by
at least one unit test.
Kairux uses a thread_queue to iteratively analyze each

thread in sf . Each element in the queue is a tuple ⟨sf |t,pt⟩,
where pt is the location of an instruction in sf |t . At the start,
thread_queue only contains ⟨sf |ts , symptom⟩ where ts is
the thread that contains the failure symptom.
Each iteration of the loop at line 7 processes the subse-

quence sf |t belonging to thread t . It attempts to construct the
part of sp , sp |t (initialized to empty at line 9), that matches
the longest prefix in sf |t up to the instruction at pt . To do
so, it first ranks all of the unit tests by their similarity to sf |t
in sort_tests() at line 10. The sort uses a simple ranking
algorithm where each unit test is ranked by the number of

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Y. Zhang et al.

executed functions it has in common with the functions on
the stack when the failure execution sf |t reaches pt . In the
HDFS failure example, three functions are on the stack when
the symptom occurs: chooseRandom(), chooseTarget(),
and replicateBlocks(). A unit test will be ranked highest
if it executes all three functions.

We have found this simple ranking algorithm to be quite
effective. It focuses on the most important functions leading
to the symptom, yet allows tests with small deviations to still
achieve a high rank. Kairux only analyzes the top N ranked
tests for performance reasons (N = 100 in our experiment).
For each highly ranked unit test, Kairux first runs it to

obtain a trace su (line 12), recording only those instructions
that are in the failure’s static slice (obtained at line 2). Record-
ing only the same instructions allows Kairux to compare the
two instruction sequences sf |t and su |t , where su |t is the
instruction subsequence in su that belongs to thread t (as su
might also contain multiple threads).
Given sf |t and su |t , compare_and_modify() at line 13

compares the two instruction sequences to find their com-
mon prefix. It also tries to modify the test u to produce a
non-failure execution that has longer common prefix to sf |t
than su |t . We explain in § 4.3 how this function works in
detail. compare_and_modify() returns a tuple: a new in-
struction subsequence su′ |t obtained by modifying u, and
the common prefix between su′ |t and sf |t . It also returns
the modified unit test u ′ that can reproduce su′ |t so that u ′

can be used to compose the unit test that produces sp . If the
common prefix obtained by modifyingu is the longest at this
point (line 14), Kairux then updates sp |t to be this prefix.

After analyzing the top N unit tests, sp |t contains the non-
failure instruction subsequence found with the longest prefix
common with sf |t . Kairux then merges sp |t into sp to form
a longer sp (line 18 in Algorithm 1). At the start, when sp is
empty, sp simply becomes sp |t . If sp already has instruction
sequences from other threads, then Kairux merges the two
instruction sequences by trying to follow the same inter-
leaving as in the failure execution sf . Note that sometimes
enforcing a particular interleaving will result in a failure,
and Kairux then has to change the interleaving to produce a
non-failure execution in sp . In the HDFS example, after the
first iteration of the while loop of Algorithm 1, sp will have
the instruction sequence from the ReplicationMonitor
thread (the sequence shown on the left in Figure 3). In the
second iteration Kairux will further construct sp |t from the
DeleteBlock thread.Whenmerging this sp |t into sp , Kairux
finds that if it enforces the same interleaving from line 33 to
line 5 as shown in Figure 3, the failure will occur, so that it
has to schedule line 33 after line 5 to produce a non-failure
execution sp .

After analyzing thread t ’s instruction subsequence, Kairux
checks to see if there is any data-flow dependency between
sf |t and another thread t ′. If so, then the source write instruc-
tion of the data-floww |t ′ is already in the dynamic slice sf .

Kairux then adds the tuple ⟨sf |t
′,w |t ′⟩ to thread_queue,

and repeats the same analysis again on sf |t
′. Eventually,

Kairux will construct a non-failure execution sp , and the
inflection point P will simply be the first point where sf
deviates from sp .
Applying the algorithm on theHDFS example.We now
explain how Kairux works on the HDFS example in Fig-
ure 2. Kairux first constructs the dynamic slice sf . There
are two threads, ReplicationMonitor and DeleteBlock,
in sf , and Kairux separates sf into two instruction subse-
quences. It first analyzes the sf |t for ReplicationMonitor,
because it contains the symptom, and finds there is a unit
test testChangeColdRep that is ranked highest since it ex-
ecutes every function that is on the stack when the symptom
occurs. The simplified code of the test is as follows:

short replication_factor = 3;
createFile("/foo" replication_factor);
setReplication("/foo", 5);
/* Wait for the replication */

It first creates a file with replication factor set to 3. It then in-
creases the factor to 5, which triggers the ReplicationMoni-
tor thread to replicate this block. The test then waits for the
replication to complete and asserts that there are indeed 5
replicas of this block.
Kairux’s compare_and_modify() finds that the su |t of

this unit test has a common prefix with sf |t from the be-
ginning to the branch at line 22 in Figure 2, where the two
executions deviate. It cannot find a modification to this unit
test to obtain a non-failure execution that has a longer com-
mon prefix, so the s ′u |t is the same as su |t .
Kairux then identifies a data-flow dependency between

thread ReplicationMonitor and another thread (Delete-
Block): line 33 → line 5. It thus adds a new tuple ⟨sf |t

′,
line 33⟩ into thread_queue, where t ′ is DeleteBlock. This
time Kairux finds another test, testRemove, that executes
DeleteBlock and matches every instruction in sf |t

′, with-
out the need for modification. When Kairux tries to merge
sp |t

′, which contains instructions from DeleteBlock, with
sp , which contains instructions from ReplicationMonitor,
it finds that enforcing the same interleaving from line 33 to
line 5 will lead to failure. Therefore, the sp it produces has
line 33 scheduled to be after line 5. Thus, the point where sp
and sf deviate is at line 5, which Kairux declares to be the
inflection point and hence the root cause candidate. Kairux
also produces a unit test:

short replication_factor = 3;
createFile("/foo" replication_factor);
setReplication("/foo", 5);
deleteFile("/foo");

that can be used to reproduce the non-failure execution sp .
Note that sp also requires a particular interleaving among
threads; such timing is further enforced by executing the unit

The Inflection Point Hypothesis SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

Algorithm 2: compare_and_modify.
Input :sf |t, su |t,u
Output :su′ |t , prefix, u ′: modified unit test

1 while true do
2 ⟨Pt ,pre f ix⟩ = compare(sf |t, su |t);
3 u ′ = modify(Pt ,u);
4 if u ′ , ∅ AND σu′ ∈ Σv then
5 su |t = su′ |t ;
6 u = u ′;
7 end
8 else
9 break;

10 end
11 end

1 int a[3]={1 ,2 ,3};
2 void f(int n) {
3 g(1);
4 if (g(n) != 0)
5 FAILURE;
6 }
7 int g(int n) {
8 int i = 0;

9 while (i<n && i<3) {
10 sum += a[i];
11 i++;
12 }
13 if (sum < 3)
14 return -1;
15 return 0;
16 } // end of f1()

Figure 5. A code example to help explain compare().

test on Kairux. Kairux will set breakpoints at correspond-
ing instructions to control which instruction is scheduled
first [56].

4.3 Compare and Modify
Algorithm 2 shows the logic of compare_and_modify(). It
performs two tasks. First, it compares sf |t and su |t to find
the common prefix and identify the point Pt where they
diverge. It then attempts to modify the unit test u to u ′, so
that u ′ takes the same path as sf |t at Pt but still represents
a non-failure execution (i.e., σu′ ∈ Σv). If it is successful,
then Pt is failure oblivious and Kairux has constructed a new
non-failure execution that has a longer common prefix. It
continues to compare sf |t with this new execution until it
finds a divergence point that is not failure oblivious or the
two sequences match.

Compare Comparing sf |t and su |t is complicated by the fact
that sf |t is a dynamic slice while su |t is a trace obtained by
recording at every instruction in the static slice. We cannot
perform dynamic slicing on su because it does not include the
symptom. In addition, as we will explain later, the dynamic
slice sf may not actually contain the instruction that is the
actual inflection point; but we can remedy this by using su .

We explain the compare algorithm using the code example
in Figure 5. The failure symptom is at line 5. Figure 6 shows
two instruction sequences: sf , which is the dynamic slice

sf

f(2): 2 7 8 9 10 11 9 13 14 4 7 8 9 10 11 9 10 11 9 13

f(1): 2 4 7 8 9 10 11 9 13 14 5

su

_

Figure 6. sf and su for the example in Figure 5. Each instruction is
represented by its line number. An arrow between two instructions
ix → iy indicates that the context of iy is ix . The highlighted sub-
sequences are the common prefix between the two as determined
by compare().

obtained by issuing the API command f(1) and su , which
is the static slice obtained by issuing the command f(2). In
this example, g() is invoked twice (lines 3 and 4); however,
the symptom is only causally dependent on g()’s return
value in its second invocation. Therefore, the instructions
from g()’s first invocation are not in sf as they are pruned
out during dynamic slicing. In sf , the subsequence (7, 8, ..13)
stems from the second invocation of g() at line 4. In su ,
however, subsequence (7, 8, ..13) can be found twice; the
first instance stems from the first invocation of g() and is
included because su is obtained by recording the execution
of every instruction in the static slice. Because of this, a
naive lockstep comparison would conclude that the two
sequences deviate at the second instruction, when in fact,
the second instruction in sf should be matched with su ’s
tenth instruction.
To address this, Kairux assigns each instruction in sf |t

and su |t to a context (Figure 6 shows the context of each
instruction in sf and su). The context of an instruction i is
another instruction i ′ that occurred before i and is defined as
follows. (1) If i is a function entry, then its context i ′ is the in-
struction that invoked the function. For example, the context
of the instruction at line 7 in sf is its invocation instruction
at line 4. (2) If i is inside of a loop body, then its context i ′ is
the loop guard instruction, i.e., the conditional jump instruc-
tion that controls whether to enter the loop. The context of
the loop guard instruction itself, starting from the second
iteration of the loop, is defined to be the same loop guard
instruction from the previous loop iteration. This allows us
to use context to precisely follow different iterations of the
loop. For example, the context of the instruction at line 9 in
sf during the second iteration is line 9 in the first iteration.
(3) Otherwise, i’s context is the function entry instruction
of the function that contains i . Note that in Figure 6, the
second instruction in su , 7, does not have a context because
its invocation instruction at line 3 is not part of the static
slice, thus it is not recorded in su .
Given contexts, Kairux compares sf |t and su |t as follows.

At the beginning, the first instructions from sf |t and su |t
will be treated as matched (i.e., they are the function entry
instruction of the thread t ’s entry function, which is typically

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Y. Zhang et al.

run() for Java). Kairux then iterates through each instruc-
tion in sf |t and tries to find the next matching instruction
in su |t . Two instructions are treated as a match if and only
if (1) they are from the same location in the program’s byte
code, and thus have the same opcode, and (2) their contexts
match. This process stops when Kairux cannot find a match-
ing instruction for i from sf |t . For the example in Figure 6,
the first 8 highlighted instructions in sf are matched with
the 8 highlighted instructions from su .
Kairux makes an exception to this algorithm when it

comes to the handling of map loops [56]. Intuitively, a map
loop is a loop where Kairux need not enforce that the num-
ber of iterations match when comparing sf |t and su |t . For
example, consider the while loop at line 3 in the HDFS ex-
ample in Figure 2. The chooseTarget() within this loop
gets called in different numbered iterations of this loop in
σf and σu . If we use the algorithm described above, Kairux
would stop after detecting that the number of iterations of
this while loop in sf |t and su |t are different. However, we
should not be concerned with how many iterations of this
loop have occurred before chooseTarget() is called.

More precisely, a loop L is considered a map loop if it does
not have any instruction in its body that uses a variable
value that has a loop-carried data dependency other than the
loop index variable [56]. (With containers in Java, the loop
index variable is the container index.) The while loop at
line 3 in Figure 2 is a map loop because it does not have
any instruction which uses a value that depends on previous
iterations of this loop. Similarly, the for loop at line 4 is
also a map loop because b has a loop-carried dependency
only with the container index. However, the while loop in
Figure 5 at line 9 is not a map loop because sum has a loop
carried dependency of its value from the previous iteration.

During dynamic slicing, Kairux checks whether a loop is a
map loop. If so, it only includes a single iteration of this loop
(which is the one eventually leading to the failure). For the
HDFS example in Figure 2, Kairux keeps only one iteration
for both the while loop at line 3 and the for loop at line 4
that leads to the failure symptom. However, su |t includes
instructions from each iteration of the map loops because
we do not perform dynamic slicing on it. For each iteration
of the map loop, Kairux will assign the context of its loop
guard instruction to be the same as the context of the first
loop guard, instead of the loop guard instruction from the
previous iteration. This allows the instructions of the map
loop in sf |t to match the instructions from any of the loop’s
iterations in su |t .

Finally, it is possible the dynamic slice sf does not include
the actual inflection point. Consider the HDFS example in
Figure 2. The dynamic program slice of the failure execution
will not include the branch instruction at line 22, even though
line 22 is executed and is included in the static slice. This
is because in σf , the symptom has a control dependency
on if (numNeeded>0) on line 27, but numNeeded is never

decremented at line 24, so the dynamic slice will not include
line 22 (i.e., line 22 is only included in the dynamic slice if
line 24 is executed). Consequently, the comparison concludes
that line 28, the symptom, is the point where sf |t and su |t
deviate, as every instruction up to line 27 can be matched.
Kairux solves this problem by noting that the missing

instruction is included in su |t , as it is just a static slice. Af-
ter it finds the deviation point Pt when comparing sf |t and
su |t , it performs dynamic slicing on su |t (from the test ex-
ecution) starting from the instruction before Pt to obtain
its dynamic program slice su |t . Then Kairux compares su |t
with sf |t using the same algorithm. (Recall that sf |t is the
static slice before dynamic slicing was performed.) Only, this
time the comparison switches the roles of the failure and test
instruction sequence: for each instruction in su |t , it matches
it to an instruction in sf |t . This comparison will return the
point where the two subsequences deviate, P ′

t , along with
the common prefix pre f ix ′. Kairux then compares pre f ix ′

with pre f ix , the common prefix from the initial compari-
son, and checks if they are the same. If they are not, Kairux
knows that the instructions in pre f ix ′ that are not in pre f ix
are the ones that were pruned by dynamic slicing, and adds
these instructions into sf |t . This process may need to be
repeated again because su |t may also be missing important
instructions. It stops when the common prefix no longer
changes.

For the HDFS example, after the first round of comparison
between sf |t with su |t , Kairux finds Pt to be at line 28. It
takes the instruction before Pt , which is the if statement
at line 27, and performs dynamic slicing on su |t from this
instruction to obtain su |t . su |t will include lines 24 and 22.
Kairux then compares su |t with sf |t . The common prefix,
pre f ix ′, includes line 22, and the inflection point is the in-
struction after line 22. Kairux adds the new instructions in
pre f ix ′, including line 22, into sf |t , and concludes that the
two subsequences deviate at the instruction after line 22.

Modify. After compare() identifies that sf |t and su |t devi-
ate at Pt , modify() checks whether Pt is failure oblivious. It
does so by attempting to modify the unit test u to u ′, so that
su′ |t has the same common prefix as su |t but takes the same
path as sf |t at Pt . Ifu ′ produces a non-failure execution, then
we have constructed a new non-failure sequence that has a
longer common prefix with sf |t .

Consider the HDFS example again. If we do not consider
the highest ranked unit test testChangeColdRep, the sec-
ond highest ranked unit test is testReplication. This unit
test can also be used to construct the same sp |t as the one us-
ing testChangeColdRep. However, it needs to be modified.
Its simplified code is as follows:

short replication_factor = (short)1;
createFile ("/f", replication_factor);
setReplication ("/f", replication_factor +1);
/* Wait for the replication */

The Inflection Point Hypothesis SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

It first creates a file with replication factor set to 1. It then in-
creases the replication factor to 2, which triggers replication
of this block.
When comparing testReplication’s su |t with sf |t , it

returns the point of deviation as the instruction after the
branch at line 11 in Figure 2. The variable nReplicas stores
the number of replicas of this block. In su |t , it has the value
1 because only 1 replica is created, therefore it invokes
chooseRemoteRack() that replicates the block on a data
node on a different rack. However, in sf |t , the block still has
2 replicas after the data node is decommissioned and they
are located on different racks, therefore sf |t takes the path
at line 14.

In modify(), Kairux first locates the branch condition cf
that su |t should satisfy in order to take the same path as in
sf |t at Pt . In the HDFS example, cf is nReplicas > 1 at
line 11. It then uses the same algorithm as in Pensieve [56]
to modify the unit test u to u ′ so that (1) sf |t still has a
common prefix with su′ |t up to the instruction just before
Pt , and (2) cf is satisfied in su′ |t . Pensieve takes the failure
log as input and constructs a unit test that can be used to
reproduce the failure using a static analysis algorithm called
the event chaining algorithm. However, the first attempt in
the event chaining algorithm may not succeed: it may infer
a unit test upensieve that does not lead to the desired failure.
It refines upensieve by identifying the branch condition ctest
in the unit test that leads to the deviation from the failure,
negates it to ¬ctest , and feeds this to a refinement step (§4 in
[56]). The refinement step takes three inputs: (1) upensieve ,
(2) the condition that should be satisfied (¬ctest), and (3)
the failure log. Kairux then uses the same event chaining
algorithm to search for a modified unit test u ′

pensieve that
now satisfies ¬ctest that also produces the same log output
(so that it reproduces the failure execution).

Kairux uses the same refinement algorithm as in Pen-
sieve. The three inputs now are (1) u (testReplication
in the HDFS example), (2) cf (nReplicas > 1 at line 11 in
HDFS), and (3) the instruction sequence of the common pre-
fix. Because the instruction sequence in the common prefix
provides a finer grained trace compared to the failure log,
Pensieve’s analysis will be more efficient because it benefits
from more detailed runtime information. In the HDFS exam-
ple, we will be able to find that the condition nReplicas >
1 can be satisfied if we increase the replication factor to be
greater than 1 in createFile() of the unit test.

5 Implementation of Kairux
We implemented Kairux with 3,473 lines of Java code. We use
the Chord [34] static analysis framework to perform static
and dynamic slicing. We use the JVM Tool Interface (JVM
TI) [11] to set breakpoints at bytecode locations, allowing
us to record the instruction sequences as well as enforce
different thread schedulings by ordering the breakpoints.

For each dynamic object used in each instruction, Kairux
also assigns a unique tag using JVM TI. This allows Kairux to
differentiate different runtime instances of the same source
code object. The program controlling JVM TI is written in
2,961 lines of C++ code. We also wrote Python programs to
parallelize the execution of unit tests. For HDFS, the system
whose unit tests take the longest to run, we were able to
reduce the time to run all unit tests from over 6 hours, when
running sequentially on a regular file system, to less than 10
minutes, when running in parallel on tmpfs.

6 Experimental Evaluation
We answer the following questions in our experimental eval-
uation: (1) How effective is Kairux in locating the root cause
of real-world failures? (2) Can Kairux locate the root cause
of failures that are difficult to debug? (3) Why does Kairux
fail to locate the root causes in some cases?

We evaluated Kairux on 10 real-world failures from HBase,
HDFS, and ZooKeeper. One of them is the HDFS failure
shown in Figure 2; we used it as a “training set” to guide the
design of Kairux. The 9 remaining failures were randomly
sampled from the benchmark used in Pensieve [56] and were
not used in designing Kairux. We reproduced each failure
using a series of commands packaged in a unit test. 7 out
of these 10 bugs involve multiple nodes, and their unit test
framework simulates a real environment by using threads
and processes to simulate nodes.

6.1 Overall Result
Table 4 shows how Kairux performed on the 10 real-world
failure cases. Overall, Kairux can successfully locate the root
cause in 70% cases. Note that determining the root cause of
each failure is fundamentally subjective. One idea we had
for objectively evaluating Kairux was to check whether the
developers’ bug fix was indeed applied to the inflection point.
Specifically, if we run the system after the bug fix with the
same input and thread scheduling as in the failure execu-
tion σf to obtain the non-failure execution σc , then we can
compare where σf and σc diverge and check whether this
divergence point is the same as the inflection point. This
approach may be problematic in practice, however, because
the divergence point may not be the actual root cause. For
example, in the motivating HDFS example, at first, the devel-
opers avoided fixing the bug using proper synchronization
(to prevent the data race) because it would incur undue over-
head. Instead, they fixed the bug through a hack that allows
the data race to occur but undoes its effect later. Only two
years later did they change the fix to avoid the data race by
using a copy of the block’s original size during replication.

Hence, we used our best effort to objectively determine the
root cause of each failure and then examined whether it is
located at the inflection point identified by Kairux. In 5 of the
7 failures where Kairux was successful, the inflection point

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Y. Zhang et al.

Failure Description Success? Static slice sf sf prefix # of tests
H
Ba

se 3403 FSCK detects an error after region split fails Yes 32,647 99,287 657 231 2
3627 Region server crashes during region open operation Yes 15,483 15,691 151 150 1
4078 A column family is lost due to an HDFS error No - - - - -

H
D
FS

1540 Temporary namenode outage brings down all DNs Yes 45,560 3,955 86 85 1
4205 FSCK fails after creating a symbolic link Yes 63,672 14,726 352 336 2
4558 Load balancer fails to start No - - - - -
10453 Fails to replicate block due to a race condition Yes 13,470 85,644 529 94 2

Z.
K.

1434 Checking the status of a non-existent znode fails No - - - - -
1851 Client gets disconnected sending a create request Yes 15,134 1,016,143 131 42 1
1900 Trying to truncate a deleted log file fails Yes 13,221 14,828 257 221 1

Averages 70% 26,894 178,610 309 165 1.43
Table 4. Kairux’s result on real-world failures. The “Success” column shows whether Kairux can successfully locate the root cause. The
next four columns show the number of instructions in the static slice, sf , sf , and the common prefix in sf for each case where Kairux is
successful. The “# of tests” column shows the number of unit tests that is needed to construct σp .

identified by Kairux is indeed the same as the divergence
point; i.e., the fix was applied to the inflection point identified
by Kairux. However, in the other 2 cases, the inflection point
returned by Kairux locates the root cause, but the developers
chose to fix the bug differently, as in the initial fix of the
HDFS example.
Many of the failures in Table 4 are indeed complex. On

average, there are 26,894 instructions in the static slice of
a failure. The developers may need to examine this many
instructions to debug the failure if they try to infer its path
by analyzing the program code [45]. Similarly, sf has an
average of 178,610 instructions. Our dynamic slicing can
significantly reduce the number of instructions from sf . This
is because we only keep one iteration of the map loop. For
these server applications, a vast majority of the loops are
map loops as each iteration processes independent data (e.g.,
a block or a request). Even then, there are still an average
of 309 instructions in sf . Yet in 7 of the cases, Kairux can
pinpoint the single instruction that is the root cause.

Many of the failures have a long propagation, as indicated
by the large difference between the number of instructions
in sf and the common prefix. This difference is the length
of the fault propagation path from the root cause to the
symptom. Furthermore, the propagation may span multiple
threads in sf : for 3 failures, Kairux needed multiple unit tests
to construct σp .
There are 3 cases where Kairux failed to locate the root

cause. For ZooKeeper-1434, Kairux failed because of the
lack of unit tests. The failure occurred in a command line
utility (zkCli) that crashed when a user tried to stat a non-
existent znode. Although the failure is caused by a bug in the
ZooKeeper server, there is no unit test for zkCli, so Kairux
does not have a unit test to start its analysis. HDFS-4558 is
similar. In the last case, HBase-4078, the symptom is outside
of the HBase system (error state is on disk), so we cannot
run Kairux with a symptom as starting point.

Kairux was able to finish the analysis in less than 32 min-
utes for each case. Obtaining the trace with JVM TI break-
points takes about 3 minutes. Static analysis to obtain the
static slice takes less than 1 minute. The rest is the time taken
to run the inflection point detection algorithm.
Discussions.We observe two reasons for Kairux’s high ac-
curacy on these real-world failures. First, the target systems
are well tested. This is shown in Table 2. For example, HDFS’
tests achieve over 90% statement coverage. This means it is
likely that there is a unit test that exercises the same path as
the failure execution and only deviates at the root cause.
Second, the server systems we evaluated often do not

have complex computation loops that contain complex loop-
carried dependencies. This is evidenced by the relatively
short length of Kairux’s dynamic slice. Loops with a com-
plex loop-carried dependency could be difficult for Kairux
to handle because its comparison would need to follow the
precise number of iterations. Unless there is a unit test exe-
cution that deviates from the failure execution exactly at the
root cause location, it would likely be difficult for Kairux to
successfully modify the execution of such loops.
The unit test we used to reproduce each failure only in-

cludes operations that are causally related to the failure;
there was no noise from operations unrelated to the failure.
However, these causally-unrelated executions will not be
considered by Kairux since it operates on the dynamic slice.
Therefore, they will not affect the efficacy of Kairux.

To validate this, we reproduced the HDFS failure in § 2
using a realistic workload. We performed the reproduction
on a cluster of 10 datanodes and introduced noise by running
a client that generated a random write workload. We also
intentionally introduced additional failure-related operations
to modify the block that triggered the data race three times
before the failure occurred. The result validates our analysis
above. The failure-unrelated operations (i.e., the random
writes on other blocks) do not affect Kairux’s analysis as they
are pruned by dynamic slicing. The three additional write
operations to the raced block were included in the dynamic

The Inflection Point Hypothesis SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

1 split(A) // split region A into B and C

2 write B to HDFS

3 write B to META table

4 write C to HDFS

5 write C to META table
Crash

6 fsck()

7 regionInfo = read C from HDFS

8 if (regionInfo != NULL)

9 inMeta = read C from META

10 if (inMeta == NULL)

11 FAILURE

Figure 7. The HBase-3403 failure.

slice, increasing the length of sf from 529 as reported in
Table 4 to 786. Nonetheless, Kairux is still able to locate the
root cause accurately.

6.2 Case Study
We discuss another interesting failure example: HBase-3403.
This failure represents a class of failures that are caused by a
“missing event,” i.e., an event that should have taken place but
did not, in contrast to failures caused by the occurrence of an
anomalous event. Such failures are particularly difficult to
debug because one cannot simply find the bug by searching
through the failure’s execution path. For the same reason,
missing events are difficult to detect using existing fault
localization techniques.

Figure 7 shows this failure. It involves two threads: split
and fsck. First, split() starts to split a region A into B
and C. It does so in four steps: write B to HDFS, write B’s
information to a META table, and then the same for C. How-
ever, the system crashes right after C is written to HDFS.
When restarted, HBase performs fsck(). Because it finds
C in HDFS (step 7 in Figure 7), it checks if C’s information
is in the META table. However, because the system crashed
before C’s information was written to META, fsck() can-
not find it and therefore throws an exception at step 11. The
failure is because step 5 did not occur.
Kairux infers that the inflection point is located after

step 4. By inspecting σp constructed by Kairux which con-
tains step 5, a developer can clearly see that the root cause
is that step 5 should have occurred. Kairux starts its analysis
of the fsck thread, and by comparing with a unit test that
performs fsck successfully, it finds the deviation point in the
fsck thread to be at step 11. Kairux then follows the data-
flow on regionInfo into the split() thread, and starts
to compare with another unit test that splits a region. Ini-
tially Kairux will conclude that there is no deviation point
when comparing sf |split with su |split, because step 5 is not
in sf |split. However, Kairux will further attempt to patch the
dynamic slice with the missing instructions. By performing
dynamic slicing on su from step 10, Kairux is able to locate
step 5 in su , and in another round of comparison it deter-
mines the inflection point is after step 4. Not only did Kairux
accurately identify the root cause, it also provides the non-
failure execution σp , which clearly tells the user the cause is

because step 5 on C is missing. In fact, the HDFS example
in Figure 2 is also an example of a missing event. Kairux
infers that the deviation point in the ReplicationMonitor
thread is the instruction after line 22, and when compared
with σp , a user would understand that line 24 should have
occurred but did not.

7 Related Work
Statistical fault localization:A large portion of fault local-
ization research uses statistical debugging [7, 16, 24, 25, 27,
28, 33, 48]. For example, Liblit et al. [27] record branch condi-
tions, function return values, and whether two variables are
equal, and consider each predicate’s statistical correlation
with the failure runs. Failure sketching [25] uses Intel-PT
and hardware watchpoints to record control and data-flow. It
uses a statistical method to rank the recorded predicates and
presents the result to a user to decide whether the root cause
was identified. Others use statistical approaches to learn the
program invariant [8, 16, 38]; i.e., the predicates that should
hold in a non-failure execution. A violation of an invariant
in the failure execution is likely the root cause. Compared
to statistical debugging, Kairux is analytical as it is based on
analyzing a program’s control- and data-flow. As a result, for
both the failure and non-failure executions, Kairux is able to
produce highly simplified execution paths that contain the
key control- and data-flow, as well as how they are matched,
as a reference for developers to better understand the root
cause. On the other hand, statistical debugging does not rely
on the unit test suite and does not require the failure to be
reproduced. Therefore, Kairux and statistical debugging are
complementary to each other.
Delta debugging isolates failure-inducing input [55]. A user
provides a failed unit test and a successful test. Delta debug-
ging then systematically replaces input values of a failed test
with the corresponding values in the successful test to isolate
the smallest set of input values that cause the failure. A vari-
ant of delta debugging [53] uses a similar search algorithm
to isolate the failure-inducing code changes in a program up-
date that caused a failure. Cleve and Zeller further extended
delta debugging [10, 54] to isolate failure-inducing program
memory states. They compare the memory states at each
point of the failure and non-failure executions, and modify
the program states in the non-failure execution to derive the
smallest set of memory states that, when modified, turns the
non-failure execution into a failure one.

While Kairux uses a similar approach to modify execution
states, the difference is substantial. First, delta debugging
requires the user to provide a unit test that is similar to the
failure, otherwise the result will not be meaningful, whereas
Kairux automatically searches for it. In addition, failures
on complex distributed systems require combining multiple
unit tests. Third, Cleve and Zeller do not check whether the
modified execution can indeed be reproduced by a series

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Y. Zhang et al.

of commands. Finally, Cleve and Zeller return a chain of
multiple memory states as possible root causes, whereas
Kairux only returns one inflection point.
Other approaches that compare execution traces.
Triage [43] is able to record and replay executions using
lightweight checkpointing. During replay, it builds a basic
block vector that counts the number of appearances of each
basic block for each failure and non-failure execution. Triage
then finds the non-failure execution that has the most sim-
ilar vector when compared against the vector of the failed
execution. It returns the edit distance between two to help
identify the root cause.

Given a set of non-failure executions, Guo et al. [19] find
the one most similar to a failure execution. They report all
the points where the two executions deviate as possible root
causes. In contrast, Kairux is able to infer a single root cause.
In addition, Kairux’s goal is not to find the most similar test
execution, but instead to construct one. The search for the
similar test execution is also different. Whenever there is a
deviation, Kairux checks if the non-failure execution can be
modified to take the same path as the failure execution, while
Guo et al. [19] merely check whether there is a program point
in the future where the two executions merge back.
X-ray [4] is a tool that diagnoses performance bugs. It

compares a pair of slow and normal execution paths by ex-
tracting the longest common subsequence (LCS) from basic
block traces. The basic blocks that are not in the LCS are
considered diverging basic blocks. X-ray then attributes a per-
formance cost to each diverging basic block and ranks them
based on this performance cost. It is difficult to apply X-ray
to correctness bugs because X-ray prunes failure-unrelated
basic blocks by ranking their performance costs, which is
unavailable in correctness bugs, whereas Kairux does so by
using dynamic slicing. Similarly, it is also difficult to apply
Kairux on performance bugs.
Pensieve. Pensieve [56] can construct a unit test that can
be used to reproduce the production failure from the log.
Pensieve and Kairux solve different problems, and they use
fundamentally different techniques. Pensieve uses static pro-
gram analysis to analyze the system’s byte code to recon-
struct the failure path leading to the printing of the logs,
whereas Kairux reconstructs the non-failure path σp using
dynamic analysis on the execution traces. Kairux uses unit
tests whereas Pensieve does not.

8 Concluding Remarks
This paper proposes Kairux, a tool that adopts a new ap-
proach to root cause localization. It is based on the Inflection
Point Hypothesis, which states that the root cause is located
at the first instruction where the failure execution deviates
from the non-failure execution that has the longest instruc-
tion sequence prefix in common with that of the failure exe-
cution. This transforms root cause analysis into a principled

search to identify the non-failure execution with the longest
common prefix. By evaluating Kairux on real-world failures
from distributed systems, we show that it can successfully
pinpoint the root cause in 70% of the cases.

Acknowledgements
We greatly appreciate the insightful feedback from our shep-
herd Baris Kasikci and the anonymous reviewers. We thank
David Lion, Xiang (Jenny) Ren, and Adrian Chiu for use-
ful discussions and support. The discussion of failures that
are caused by a “missing event” in § 6.2 was inspired by a
conversation with Jason Flinn during SOSP 2017. This re-
search is supported by an NSERC Discovery grant, a NetApp
Faculty Fellowship, a VMware gift, a Connaught Innovation
Award, and a Huawei grant. Yongle Zhang, Kirk Rodrigues,
and Yu Luo are supported by an SOSP 2019 student schol-
arship from the ACM Special Interest Group in Operating
Systems to attend the SOSP’19 conference.

References
[1] Hiralal Agrawal and Joseph R. Horgan. 1990. Dynamic Program Slicing.

In Proceedings of the 1990 Conference on Programming Language Design
and Implementation (PLDI ’90). ACM, 246–256.

[2] Gautam Altekar and Ion Stoica. 2009. ODR: Output-deterministic
Replay for Multicore Debugging. In Proceedings of the 22nd Symposium
on Operating Systems Principles (SOSP ’09). ACM, 193–206.

[3] Joy Arulraj, Guoliang Jin, and Shan Lu. 2014. Leveraging the Short-
term Memory of Hardware to Diagnose Production-run Software
Failures. In Proceedings of the 19th Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’14). ACM,
207–222.

[4] Mona Attariyan, Michael Chow, and Jason Flinn. 2012. X-ray: Automat-
ing Root-Cause Diagnosis of Performance Anomalies in Production
Software. In Proceedings of the 10th Conference on Operating Systems
Design and Implementation (OSDI ’12). USENIX, 307–320.

[5] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier.
2004. Using Magpie for Request Extraction and Workload Modelling.
In Proceedings of the 6th Conference on Operating Systems Design and
Implementation (OSDI ’04). USENIX, 259–272.

[6] Benjamin H. Sigelman and Luiz André Barroso and Mike Burrows
and Pat Stephenson and Manoj Plakal and Donald Beaver and Saul
Jaspan and Chandan Shanbhag. 2010. Dapper, a Large-Scale Distributed
Systems Tracing Infrastructure. Technical Report. Google Incorporated.
https://research.google.com/archive/papers/dapper-2010-1.pdf

[7] Lionel C. Briand, Yvan Labiche, and Xuetao Liu. 2007. Using Machine
Learning to Support Debugging with Tarantula. In Proceedings of the
18th IEEE International Symposium on Software Reliability (ISSRE ’07).
IEEE Computer Society, 137–146.

[8] Yuriy Brun and Michael D. Ernst. 2004. Finding Latent Code Errors
via Machine Learning over Program Executions. In Proceedings of the
26th International Conference on Software Engineering (ICSE ’04). IEEE
Computer Society, 480–490.

[9] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. KLEE:
Unassisted and Automatic Generation of High-Coverage Tests for
Complex Systems Programs. In Proceedings of the 8th Conference on
Operating Systems Design and Implementation (OSDI ’08). USENIX,
209–224.

[10] Holger Cleve and Andreas Zeller. 2005. Locating Causes of Program
Failures. In Proceedings of the 27th International Conference on Software
Engineering (ICSE ’05). ACM, 342–351.

https://research.google.com/archive/papers/dapper-2010-1.pdf

The Inflection Point Hypothesis SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada

[11] Oracle Corporation. 2018. JavaTM Virtual Machine Tool Interface (JVM
TI). http://docs.oracle.com/javase/7/docs/technotes/guides/jvmti/.

[12] Heming Cui, Jiri Simsa, Yi-Hong Lin, Hao Li, Ben Blum, Xinan Xu,
Junfeng Yang, Garth A. Gibson, and Randal E. Bryant. 2013. Parrot:
A Practical Runtime for Deterministic, Stable, and Reliable Threads.
In Proceedings of the 24th Symposium on Operating Systems Principles
(SOSP ’13). ACM, 388–405.

[13] Weidong Cui, Xinyang Ge, Baris Kasikci, Ben Niu, Upamanyu Sharma,
Ruoyu Wang, and Insu Yun. 2018. REPT: Reverse Debugging of Fail-
ures in Deployed Software. In Proceedings of the 12th Conference on
Operating Systems Design and Implementation (OSDI ’18). USENIX,
17–32.

[14] David Devecsery, Michael Chow, Xianzheng Dou, Jason Flinn, and
Peter M. Chen. 2014. Eidetic Systems. In Proceedings of the 11th Con-
ference on Operating Systems Design and Implementation (OSDI ’14).
USENIX, 525–540.

[15] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai,
and Peter M. Chen. 2002. ReVirt: Enabling Intrusion Analysis Through
Virtual-machine Logging and Replay. In Proceedings of the 5th Con-
ference on Operating Systems Design and implementation (OSDI ’02).
USENIX, 211–224.

[16] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David
Notkin. 1999. Dynamically Discovering Likely Program Invariants to
Support Program Evolution. In Proceedings of the 21st International
Conference on Software Engineering (ICSE ’99). ACM, 213–224.

[17] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott Shenker, and
Ion Stoica. 2007. X-Trace: A Pervasive Network Tracing Framework.
In Proceedings of the 4th Conference on Networked Systems Design and
Implementation (NSDI ’07). USENIX, 271–284.

[18] Apache Software Foundation. 2017. Apache Thrift. https://thrift.
apache.org/lib/

[19] Liang Guo, Abhik Roychoudhury, and Tao Wang. 2006. Accurately
Choosing Execution Runs for Software Fault Localization. In Proceed-
ings of the 15th International Conference on Compiler Construction
(CC ’06). Springer-Verlag, 80–95. https://doi.org/10.1007/11688839_7

[20] Xiaoqiao He. 2019. NameNode RepicationMonitor Failure Diagnosis
(Chinese). https://hexiaoqiao.github.io/blog/2016/09/13/namenode-
repicationmonitor-exception-trace/

[21] Xiaoqiao He. 2019. NameNode RepicationMonitor Failure Diagnosis
(English Translation). https://bit.ly/2UA9q5v

[22] Xiaoqiao He. 2019. ReplicationMonitor Thread Could Stuck for Long
Time Due to the Race Between Replication and Delete of Same File in a
Large Cluster. https://issues.apache.org/jira/browse/HDFS-10453

[23] Google Incorporated. 2019. Protocol Buffers. https://developers.google.
com/protocol-buffers/

[24] James A. Jones and Mary Jean Harrold. 2005. Empirical Evaluation of
the Tarantula Automatic Fault-localization Technique. In Proceedings
of the 20th Conference on Automated Software Engineering (ASE ’05).
ACM, 273–282.

[25] Baris Kasikci, Benjamin Schubert, Cristiano Pereira, Gilles Pokam, and
George Candea. 2015. Failure Sketching: A Technique for Automated
Root Cause Diagnosis of In-production Failures. In Proceedings of the
25th Symposium on Operating Systems Principles (SOSP ’15). ACM,
344–360.

[26] Jean-Claude Laprie. 1995. Dependable Computing: Concepts, Limits,
Challenges. In Proceedings of the 25th International Conference on Fault-
tolerant Computing (FTCS ’95). IEEE Computer Society, 42–54.

[27] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael I.
Jordan. 2005. Scalable Statistical Bug Isolation. In Proceedings of the
2005 Conference on Programming Language Design and Implementation
(PLDI ’05). ACM, 15–26.

[28] Chao Liu, Long Fei, Xifeng Yan, Jiawei Han, and Samuel P. Midkiff.
2006. Statistical Debugging: A Hypothesis Testing-based Approach.
IEEE Transactions on Software Engineering 32, 10 (Oct. 2006), 831–848.

[29] Tongping Liu, Charlie Curtsinger, and Emery D. Berger. 2011.
DTHREADS: Efficient Deterministic Multithreading. In Proceedings of
the 23rd Symposium on Operating Systems Principles (SOSP ’11). ACM,
327–336.

[30] JonathanMace, Ryan Roelke, and Rodrigo Fonseca. 2015. Pivot Tracing:
Dynamic Causal Monitoring for Distributed Systems. In Proceedings of
the 25th Symposium on Operating Systems Principles (SOSP ’15). ACM,
378–393.

[31] Roman Manevich, Manu Sridharan, Stephen Adams, Manuvir Das, and
Zhe Yang. 2004. PSE: Explaining Program Failures via Postmortem
Static Analysis. In Proceedings of the 12th Symposium on Foundations
of Software Engineering (SIGSOFT ’04/FSE-12). ACM, 63–72.

[32] Steve McConnell. 2004. Code Complete. Pearson Education.
[33] Karthik Nagaraj, Charles Killian, and Jennifer Neville. 2012. Structured

Comparative Analysis of Systems Logs to Diagnose Performance Prob-
lems. In Proceedings of the 9th Conference on Networked Systems Design
and Implementation (NSDI ’12). USENIX, 353–366.

[34] Mayur Naik. 2015. Chord: Java Bytecode Analysis. https://bitbucket.
org/psl-lab/jchord/.

[35] Satish Narayanasamy, Gilles Pokam, and Brad Calder. 2005. BugNet:
Continuously Recording Program Execution for Deterministic Replay
Debugging. In Proceedings of the 32nd International Symposium on
Computer Architecture (ISCA ’05). IEEE Computer Society, 284–295.

[36] Soyeon Park, Yuanyuan Zhou, Weiwei Xiong, Zuoning Yin, Rini
Kaushik, Kyu H. Lee, and Shan Lu. 2009. PRES: Probabilistic Replay
with Execution Sketching on Multiprocessors. In Proceedings of the
22nd Symposium on Operating Systems Principles (SOSP ’09). ACM,
177–192.

[37] Google Cloud Platform. 2016. Google App Engine Incident 16008. https:
//status.cloud.google.com/incident/appengine/16008

[38] Swarup Kumar Sahoo, John Criswell, Chase Geigle, and Vikram Adve.
2013. Using Likely Invariants for Automated Software Fault Localiza-
tion. In Proceedings of the 18th Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’13). ACM,
139–152.

[39] AmazonWeb Services. 2011. Summary of the Amazon EC2 and Amazon
RDS Service Disruption in the US East Region. https://aws.amazon.com/
message/65648/

[40] Dinesh Subhraveti and Jason Nieh. 2011. Record and Transplay: Partial
Checkpointing for Replay Debugging Across Heterogeneous Systems.
In Proceedings of the SIGMETRICS Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS ’11). ACM, 109–120.

[41] Gregory Tassey. 2002. The Economic Impacts of Inadequate Infrastruc-
ture for Software Testing. Technical Report 7007.011. National Institute
of Standards and Technology.

[42] H. Thane and H. Hansson. 2000. Using Deterministic Replay for
Debugging of Distributed Real-time Systems. In Proceedings of the
12th Euromicro Conference on Real-Time Systems (ECRTS ’00). IEEE
Computer Society, 265–272.

[43] Joseph Tucek, Shan Lu, Chengdu Huang, Spiros Xanthos, and
Yuanyuan Zhou. 2007. Triage: Diagnosing Production Run Failures at
the User’s Site. In Proceedings of 21st Symposium on Operating Systems
Principles (SOSP ’07). ACM, 131–144.

[44] Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester, Jessica
Ouyang, Peter M. Chen, Jason Flinn, and Satish Narayanasamy. 2011.
DoublePlay: Parallelizing Sequential Logging and Replay. In Proceed-
ings of the 16th Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS XVI). ACM, 15–26.

[45] Mark Weiser. 1981. Program Slicing. In Proceedings of the 5th Inter-
national Conference on Software Engineering (ICSE ’81). IEEE Press,
439–449.

[46] Bill Willson. 2014. Root Cause. http://www.bill-wilson.net/root-cause-
analysis/rca-wiki/root-cause

https://thrift.apache.org/lib/
https://thrift.apache.org/lib/
https://doi.org/10.1007/11688839_7
https://hexiaoqiao.github.io/blog/2016/09/13/namenode-repicationmonitor-exception-trace/
https://hexiaoqiao.github.io/blog/2016/09/13/namenode-repicationmonitor-exception-trace/
https://bit.ly/2UA9q5v
https://issues.apache.org/jira/browse/HDFS-10453
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://bitbucket.org/psl-lab/jchord/
https://bitbucket.org/psl-lab/jchord/
https://status.cloud.google.com/incident/appengine/16008
https://status.cloud.google.com/incident/appengine/16008
https://aws.amazon.com/message/65648/
https://aws.amazon.com/message/65648/
http://www.bill-wilson.net/root-cause-analysis/rca-wiki/root-cause
http://www.bill-wilson.net/root-cause-analysis/rca-wiki/root-cause

SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Y. Zhang et al.

[47] Paul F. Wilson, Larry D. Dell, and Gaylord F. Anderson. 1993. Root
Cause Analysis: A Tool for Total Quality Management. ASQ Quality
Press.

[48] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I.
Jordan. 2009. Detecting Large-scale System Problems by Mining Con-
sole Logs. In Proceedings of the 22nd Symposium on Operating Systems
Principles (SOSP ’09). ACM, 117–132.

[49] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Rodrigues, Xu Zhao, Yon-
gle Zhang, Pranay U. Jain, and Michael Stumm. 2014. Simple Testing
Can Prevent Most Critical Failures: An Analysis of Production Fail-
ures in Distributed Data-intensive Systems. In Proceedings of the 11th
Conference on Operating Systems Design and Implementation (OSDI ’14).
USENIX, 249–265.

[50] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and
Shankar Pasupathy. 2010. SherLog: Error Diagnosis by Connecting
Clues from Run-time Logs. In Proceedings of the 15th Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS ’10). ACM, 143–154.

[51] Cristian Zamfir, Gautam Altekar, George Candea, and Ion Stoica. 2011.
Debug Determinism: The Sweet Spot for Replay-based Debugging. In
Proceedings of the 13th Workshop on Hot Topics in Operating Systems
(HotOS XIII). USENIX, Article 18, 5 pages.

[52] Cristian Zamfir and George Candea. 2010. Execution Synthesis: A
Technique for Automated Software Debugging. In Proceedings of the
5th European Conference on Computer Systems (EuroSys ’10). ACM,
321–334.

[53] Andreas Zeller. 1999. Yesterday, My Program Worked. Today, It Does
Not. Why?. In Proceedings of the 7th European Software Engineering
Conference Held Jointly with the 7th SIGSOFT International Symposium
on Foundations of Software Engineering (ESEC/FSE-7). Springer-Verlag,
253–267.

[54] Andreas Zeller. 2002. Isolating Cause-effect Chains from Computer
Programs. In Proceedings of the 10th Symposium on Foundations of
Software Engineering (SIGSOFT ’02/FSE-10). ACM, 1–10.

[55] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating
Failure-Inducing Input. IEEE Transactions on Software Engineering 28,
2 (Feb. 2002), 183–200.

[56] Yongle Zhang, SergueiMakarov, Xiang Ren, David Lion, andDing Yuan.
2017. Pensieve: Non-intrusive Failure Reproduction for Distributed
Systems Using the Event Chaining Approach. In Proceedings of the 26th
Symposium on Operating Systems Principles (SOSP ’17). ACM, 19–33.

[57] Xu Zhao, Kirk Rodrigues, Yu Luo, Ding Yuan, and Michael Stumm.
2016. Non-intrusive Performance Profiling for Entire Software Stacks
Based on the Flow Reconstruction Principle. In Proceedings of the 12th
Conference on Operating Systems Design and Implementation (OSDI ’16).
USENIX Association, 603–618.

[58] Xu Zhao, Yongle Zhang, David Lion, Muhammad Faizan Ullah, Yu
Luo, Ding Yuan, and Michael Stumm. 2014. Lprof: A Non-intrusive
Request Flow Profiler for Distributed Systems. In Proceedings of the 11th
Conference on Operating Systems Design and Implementation (OSDI ’14).
USENIX, 629–644.

	Abstract
	1 Introduction
	2 Motivating Real-world Example
	3 The Inflection Point Hypothesis
	3.1 Definitions and Assumptions
	3.2 Inflection Point Hypothesis
	3.3 HDFS Failure Example Revisited
	3.4 Caveats

	4 Design of Kairux
	4.1 Challenges and Ideas
	4.2 Kairux Algorithm Overview
	4.3 Compare and Modify

	5 Implementation of Kairux
	6 Experimental Evaluation
	6.1 Overall Result
	6.2 Case Study

	7 Related Work
	8 Concluding Remarks
	References

