
Log20: Fully Automated Optimal Placement of Log Printing
Statements under Specified Overhead Threshold

Xu Zhao

University of Toronto

Kirk Rodrigues

University of Toronto

Yu Luo

University of Toronto

Michael Stumm

University of Toronto

Ding Yuan

University of Toronto

Yuanyuan Zhou

University of California, San Diego

ABSTRACT
When systems fail in production environments, log data is

often the only information available to programmers for

postmortem debugging. Consequently, programmers’ deci-

sion on where to place a log printing statement is of crucial

importance, as it directly affects how effective and efficient

postmortem debugging can be. This paper presents Log20, a

tool that determines a near optimal placement of log printing

statements under the constraint of adding less than a spec-

ified amount of performance overhead. Log20 does this in

an automated way without any human involvement. Guided

by information theory, the core of our algorithm measures

how effective each log printing statement is in disambiguat-

ing code paths. To do so, it uses the frequencies of different

execution paths that are collected from a production environ-

ment by a low-overhead tracing library. We evaluated Log20

on HDFS, HBase, Cassandra, and ZooKeeper, and observed

that Log20 is substantially more efficient in code path disam-

biguation compared to the developers’ manually placed log

printing statements. Log20 can also output a curve showing

the trade-off between the informativeness of the logs and

the performance slowdown, so that a developer can choose

the right balance.

CCS CONCEPTS
•Computer systems organization→Reliability; • Soft-
ware and its engineering → System administration;

KEYWORDS
Log placement, distributed systems, information theory

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

SOSP ’17, October 28, 2017, Shanghai, China
© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5085-3/17/10.

https://doi.org/10.1145/3132747.3132778

ACM Reference Format:
Xu Zhao, Kirk Rodrigues, Yu Luo, Michael Stumm, Ding Yuan,

and Yuanyuan Zhou. 2017. Log20: Fully Automated Optimal Place-

ment of Log Printing Statements under Specified Overhead Thresh-

old . In Proceedings of SOSP ’17 . ACM, New York, NY, USA, 17 pages.

https://doi.org/10.1145/3132747.3132778

1 INTRODUCTION
When systems fail in a production environment, log data is

often the only information available for postmortem debug-

ging. Consequently, developers’ decision on where and what

to log is of crucial importance, as the informativeness of logs

directly affects the time it takes for postmortem debugging.

Prior work mostly focused on automating what to log so

as to improve the quality of existing log printing statements

(LPS) either by including additional variable values [37] or

by adjusting verbosity [36]. However, where to place an LPS

– a more fundamental and challenging problem – has not

been adequately addressed. The only prior work on plac-

ing LPSes was Errlog [35] that automatically places error
LPSes at locations where error conditions may occur (e.g.,

non-zero system call return values). While error LPS place-

ment is a crucial first step towards automated placement of

LPSes, many failures, especially complicated ones with long

fault-propagation paths, require additional log outputs that

capture non-erroneous but still important execution paths.

As evidence, many LPSes of existing systems record non-

erroneous execution states, typically at Info verbosity, that

are enabled by default as shown in Table 1.

Enabled by default Non-default

System Fatal Error Warn Info Debug Trace

Cassandra 0 184 254 325 240 431

Hadoop 89 1131 1727 2862 2477 288

HBase* 52 817 1137 1043 1052 351

ZooKeeper 0 205 313 239 201 42

Total 141 2337 3431 4469 3970 1112

Table 1: Number of log printing statements under different
verbosity levels in the source code, excluding testing code.
*HBase used Debug as default log verbosity from 2008-2015.

https://doi.org/10.1145/3132747.3132778
https://doi.org/10.1145/3132747.3132778

SOSP ’17, October 28, 2017, Shanghai, China X. Zhao, K. Rodrigues et al.

The placement of LPSes to record non-erroneous events is

a much more difficult problem than placing LPSes to record

errors. First, it is difficult to know which program locations

are more “log-worthy” than others, because it is often hard

to predict the usefulness of an LPS prior to the software’s

release and the occurrence of unexpected failures. Thus, de-

ciding where to insert an Info LPS is a black art. Second,

because Info log entries are output during normal execution,

developers worry about LPS performance overhead. In con-

trast, placing Error LPSes is more straightforward. They can

be placed where error conditions may occur. Languages with

built-in exception support, such as Java or Scala, make the

identification of such locations even easier. Overhead is less

of a concern as these error conditions do not typically occur

during normal execution.

Alternative approaches proposed by other researchers can

deterministically replay a prior execution path by recording

all events that might result in non-deterministic control-flow

changes [1, 5–7, 12, 20, 23, 25, 29, 31, 33]. They typically

incur a high performance overhead or can be impractical

due to privacy concerns over the recorded information. Ball

and Larus [2] proposed an efficient path profiling algorithm.

Unlike LPSes, it does not allow developers to balance the

trade-off between informativeness and slowdown. Instead,

it disambiguates every path while introducing an average

slowdown of 31%.

Overall, the state of the art of LPS placement is poor. Prior

work has shown that the change rate of log printing code is

1.8 times higher than the rest of the code [36]. We studied

the revision history of Hadoop, HBase, and ZooKeeper, and

discovered three fundamental problems with current LPS

placement practices:

• Reactive instead of proactive: the sole purpose of 21,642 revi-
sions was to add LPSes, indicating that they are added only

as after-thoughts — we assume after a failure occurred.

• Difficult to predict the informativeness and overhead: 2,105
revisions only modify LPS verbosity levels. Analyzing

them, we found developers struggled to predict the in-

formativeness of an LPS and the overhead it causes. More-

over, we found that the static nature of LPS placement is

not ideal – e.g., a statement that is rarely executed in one

workload may be on the hot path of another workload.

• Scalar design of verbosity is difficult to use: developers often
have difficulties in setting the right verbosity level of each

LPS. Whether an LPS should be categorized as Error or

Info can be highly subjective, and again, may depend on

the particular workload.

This paper proposes Log20, a tool that automates LPS

placement without requiring any domain knowledge.
1
Log20

1
The name of the tool, Log20, comes from the game of twenty questions,

where a player’s goal is to identify an object in twenty yes/no questions or

is also able to automatically collect variable values for each

LPS. It thus automates all aspects of software logging except

for generating the static text included in developer-written

logs (it outputs an ID in each LPS together with the variable

values).

Users of Log20 simply specify a performance overhead

threshold (e.g., 2% of slowdown, or no more than an average

of three log messages per request), and Log20 is capable of

computing a near optimal placement of LPSes whose over-

head is within the specified threshold. We use the term LPS
placement to refer to both the placement and variable value

logging, unless otherwise specified. Log20 is also capable

of outputting a curve showing the trade-off between the

informativeness of LPS placements and their performance

overhead, so that a developer or system administrator can

choose the right balance.

We measure the informativeness of a particular LPS place-

ment by measuring its ability to differentiate between dif-

ferent execution paths taken by a program. For a partic-

ular placement, two different paths may output the same

sequence of log entries, making it impossible to determine

which path was executed using logs alone. Thus, we formally

reason about the informativeness of a placement first by con-

sidering how fine grained it is in disambiguating paths.

To further compare the informativeness of two LPS place-

ments when they can disambiguate different sets of paths,

we use Shannon’s information theory to measure the en-

tropy [27] of a program, specifically by considering all pos-

sible execution paths and the probability of each execution

path occurring at runtime. Intuitively, a program with a

larger number of paths has a higher entropy, and if its paths

are more unpredictable, it also has a higher entropy. Because

an LPS placement can disambiguate these execution paths, it

reduces entropy. Therefore, given a placement, the remain-

ing entropy of a program indicates the informativeness of

the placement. A placement that reduces the entropy to zero

is one that can disambiguate every possible execution path.

We designed an algorithm that computes a near optimal

LPS placement under a given overhead threshold. An op-

timal placement is one that results in the smallest entropy

among all the placements that respect the threshold. How-

ever, computing the optimal placement hasO(2n) complexity.

of where n is the total number of basic blocks. Therefore, we

designed an efficient dynamic programming algorithm that

approximates the optimal placement.

To collect a system’s runtime execution paths and their

frequencies, we also designed and implemented a JVM-based

tracing library that is suitable for continuous profiling of

production systems. The instrumentation incurs very low

less. Similar to the game, placing an LPS is like asking a yes/no question

whose answer depends on whether the LPS gets executed or not.

Log20: Automated Log Placement under Specified Overhead Threshold SOSP ’17, October 28, 2017, Shanghai, China

overhead (24 ns per trace point). The tracing system can also

be used as an alternative to existing logging libraries like

Log4j 2 [21] to collect log data.

One fundamental difference between Log20 and other

existing logging approaches is that Log20’s placement is

not static, but instead reacts to the workload. Using our

tracing library, Log20 is able to incrementally update the

LPS placement, and periodically patch the system’s bytecode

at runtime to enable new LPSes or disable existing ones.

Therefore the same system when deployed in two different

environments could have very different placements.

We applied Log20 on four widely used distributed sys-

tems: HBase, HDFS, YARN, and ZooKeeper. Compared to

the LPSes placed by the corresponding developers, Log20 is

substantially more effective. For example, Log20’s placement

outputs only 5% of the number of the log entries, yet is as

informative as developers’ manual LPS placement in HDFS.

We also demonstrate that the LPSes placed by Log20 can

help in the diagnosis of 68% of 41 randomly selected failures.

This paper makes the following three contributions:

• An algorithm for placing LPSes that is near optimal.

• A metric on the informativeness of LPS placement.

• A low-overhead run-time tracing system which can be

used for both continuous profiling and the logging library.

Log20 has several limitations. First, one of the key differ-

ences between Log20 and other logging approaches is that

it does not assign a scalar verbosity level to each LPS. In-

stead, the frequency of a log message can be used to infer

its criticality: an event that occurs only once is likely more

critical than one that occurs many times. This could be in-

convenient in that it makes postmortem debugging more

difficult. Furthermore, if users would like to enable more ver-

bose logs, they can no longer do so by adjusting the logging

verbosity; instead, they will need to set a higher overhead

threshold. Second, Log20’s placement algorithm treats each

path as an unordered rather than ordered collection of basic

blocks in order to avoid costly sequence comparisons. In

practice, order among log entries is often less reliable in the

face of concurrency and is more time-consuming for manual

examination. Consequently, developers typically rely on the

appearance of particular log entries to determine whether

a path was executed, instead of relying on log order. Other

limitations are discussed in §7.

The rest of the paper is organized as follows. §2 describes

our study on the revision history of LPSes. §3 discusses the

informativeness measurement of an LPS. §4 presents our

dynamic programming algorithm to compute a near-optimal

LPS placement under a slowdown threshold. §5 describes

our implementation while §6 describes our tracing library.

§8 discusses the experimental evaluation of Log20. Finally,

we survey related work in §9 before we conclude.

LPSes LPS modifying revisions

total mod. total add rm verb.

Hadoop 9125 42% 12158 9282 1545 1331

HBase 4644 42% 14039 10654 2702 683

ZooKeeper 1094 41% 2624 1706 827 91

Total 14863 42% 28821 21642 5074 2105

Table 2: The number and breakdown of LPS revisions.

2 REVISION HISTORY OF LPSES
To understand the challenges of manual LPS placement, we

analyzed the complete revision history of LPSes in three

systems: Hadoop, HBase, and ZooKeeper. Hadoop includes

HDFS, YARN, and MapReduce. Each addition, removal, or

verbosity change of an LPS suggests a corrective action that

was taken to improve this LPS’ informativeness or decrease

its incurred overhead.

Yuan et al. conducted a similar study [36] in 2012, but

they analyzed systems written in C and did not focus on

LPS placement (e.g., they did not study the revisions that

only added LPSes). We observe newer distributed systems

are increasingly built on JVM languages which are generally

considered to have better logging quality. For example, stud-

ies [34, 35] have shown that 57% of failures in C/C++-based

servers do not even output error messages, whereas only

24% of failures in HDFS, Hadoop, Cassandra, and HBase do

not output error messages. Thus, we repeat the study with

the new focus and new systems while using much of the

same methodology from Yuan et al.’s work.
The study is designed to find and categorize changes to

LPSes that have to do with the LPSes themselves, rather than

being associated with other functional changes. We first

analyze each patch made to the master branch, collecting

those that contain LPSes. To filter functionality-associated

logging changes, we discard any LPS modification where the

branch condition that dominates the LPS was changed [36].

To do so, we obtain the abstract syntax tree (AST) of the old

and new versions using JavaParser [15]. For each tree, we

then extract the paths leading from the AST root (i.e., the

entry of the function) to the basic block that contains the

modified LPS. This path contains all of the branch conditions

dominating the LPS. If the path is the same in both trees,

we assume this patch’s only purpose was to modify the LPS.

We use the term revision to refer to these singularly LPS-

modifying patches.

For each revision, we further categorize the change as an

addition, removal, verbosity change, variable value change,

or static text modification. An add-remove pair (in the re-

vision’s diff) is considered a static text modification if the

Levenshtein [17] distance ratio between the two is less than

0.5. Otherwise it is categorized as an addition and a removal.

SOSP ’17, October 28, 2017, Shanghai, China X. Zhao, K. Rodrigues et al.

Table 2 summarizes the results of our analysis. We find

that there are 28,821 revisions to LPSes alone, meaning on

average, each LPS is modified 1.93 times. Note that the to-

tal number of LPS modifying revisions includes those that

change variable values or static text, but their specific num-

bers are not shown as they are irrelevant to LPS placement.

The third column of the table further shows that 42% of

the LPSes were modified at least once since they were first

introduced.

We observe a total of 21,642 revisions that add LPSes. This

suggests that developers often add LPSes as after-thoughts,

i.e., after a failure has occurred, or they are adding debugging

support after developing functionality code. For example, the

sole purpose of YARN-2627 is to add Info LPSes to aid the

debugging of a feature (YARN-611) that was added weeks

prior. As another example, the only purpose of HBase-6004

is to add 14 Info LPSes to “help debugging MR jobs”.

We observe a large number (2,105) of revisions onlymodify

the verbosity level. In many of them, developers are recon-

sidering the trade-off between the LPS’ overhead and infor-

mativeness. For example, HDFS-6836 reduces the verbosity

of datanode Info logs to Debug because they are “present

within the inner loops”. However, HDFS-8315 strives to re-

vert this change since the reporter does not observe the same

bottleneck under HBase workloads, and they would like to

have the information back because “. . . There is a good reason
why it was at INFO for so many years. This is very useful
in debugging load issues.” Such debate is common, and it

highlights the difficulty in balancing the trade-off between

informativeness and performance overhead under different

workloads.

The rest of the verbosity changes are made as developers

reconsider the criticality of an event. For example, the re-

porter of HDFS-4048 wanted to increase the verbosity of a

failed directory access log from Info to Error since he could

not detect a permission error by only grep’ping for Error mes-

sages. However, his code reviewer suggests that the message

only be increased to Warn, as the logged situation may arise

due to expected disk failures. In another example, HDFS-1054,

we also observe the verbosity being increased from Debug

to Info since the developer feels the information is worth

having under normal operating conditions. However, the

change does not stop there – 6 years later, HDFS-10381 again

increases the verbosity to Warn for the same LPSes. Both

examples highlight the difficulty in setting verbosity levels,

especially as different scenarios suggest different semantics.

3 INFORMATIVENESS OF LOGGING
In this section, we discuss how we measure an LPS place-

ment’s power in disambiguating execution paths. We first

discuss how log output is used to disambiguate paths, and

1 int max3 (int a[]) {

2 if (a.length != 3)

3 return ERROR;
4 int max = 0, i = 0;

5 while (i < 3) {

6 if (a[i] > max)

7 max = a[i];

8 i++;

9 }

10 return max;

11 }

10

2

3 4

5

6

7

8

Entry

Exit

Figure 1: An example program, and its control flow graph,
that selects the maximum value of a three-element array.

then how different placements can be compared. This even-

tually leads us to the design of a single metric, entropy, that

measures the informativeness of an LPS placement.

3.1 Disambiguating Paths with Log Output
The informativeness of an LPS placement directly affects a

developer’s ability to disambiguate execution paths using

log output from the placement. The most informative LPS

placement is one where each unique path outputs a unique

log sequence. Accordingly, a less informative placement is

one where multiple unique paths output the same unique

log sequence. For example, consider the program in Figure 1.

Table 3 shows every possible path that the program could

take. An obvious placement that is the most informative is

one where an LPS is placed in every basic block. However,

if we place an LPS, “l7”, in block 7, then P2 will output the
log sequence [l7, l7, l7]; P3, P5, and P6 will output [l7, l7]; P4,
P7, and P8 will output [l7]; and finally, P1 and P9 will output
[]. Therefore, each unique log sequence could be printed

by multiple unique paths. This means that if, for example,

developers see the log sequence [l7], they will know that one

of P4, P7, and P8 was taken, but not which one exactly.

Before discussing how to compare the informativeness of

placements, we first define the previous concepts.

• A program consists of a set of basic blocks, BB = {bb1,
bb2, ..,bbn}.

• EP = {P1, P2, .., Pm} is the set of all possible execution

paths of a program, where each path Pi is a sequence of
basic blocks.

• An LPS placement, S , is a subset of BB where a unique LPS

is placed in each block. For simplicity, we postpone the

consideration of logging variables until §4.3.

• Under placement S , Li is the log sequence output by execu-
tion path, Pi (e.g., in the previous example L2 = [l7, l7, l7]).

• O(S) = {L1, ..,Lk } is the set of all possible log sequences
under placement S . In the previous example, O(S) = {[],

[l7], [l7, l7], [l7, l7, l7]}.

Log20: Automated Log Placement under Specified Overhead Threshold SOSP ’17, October 28, 2017, Shanghai, China

ID Basic block sequence Input

P1 <2, 3> []

P2 <2, 4, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 5, 10> [1,2,3]

P3 <2, 4, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 8, 5, 10> [1,3,2]

P4 <2, 4, 5, 6, 7, 8, 5, 6, 8, 5, 6, 8, 5, 10> [3,2,1]

P5 <2, 4, 5, 6, 7, 8, 5, 6, 8, 5, 6, 7, 8, 5, 10> [2,1,3]

P6 <2, 4, 5, 6, 8, 5, 6, 7, 8, 5, 6, 7, 8, 5, 10> [0,1,2]

P7 <2, 4, 5, 6, 8, 5, 6, 7, 8, 5, 6, 8, 5, 10> [0,2,1]

P8 <2, 4, 5, 6, 8, 5, 6, 8, 5, 6, 7, 8, 5, 10> [0,0,1]

P9 <2, 4, 5, 6, 8, 5, 6, 8, 5, 6, 8, 5, 10> [0,0,0]

Table 3: Possible execution paths of the code snippet in Fig-
ure 1. Each row shows a path with its ID, the sequence of
basic blocks it traversed, and an example input that results
in this path. A blank space indicates that a block is not tra-
versed in this path but is in others.

• The Possible Paths set of a log sequence Li , PP(Li) =
{Pi , .., Pj }, is the set of paths that would output Li when
executed (e.g., PP([l7, l7]) = {P3, P5, P6}).

• Disambiguated Paths, DP(S) = {PP(L) | L ∈ O(S)}, is
the set of all possible PP sets. In the previous example,

DP(S) = {{P2}, {P3, P5, P6}, {P4, P7, P8}, {P1, P9}}.

It should be clear that DP(S) is a partition of EP into dis-

joint subsets of possible path sets (PP), i.e., for any PP1, PP2 ∈
DP(S), PP1 ∩ PP2 = ∅, and ∪PP ∈DP (S)PP = EP .

3.2 Disambiguated Paths of LPS Placement
Now we can consider the path disambiguating capability of

an LPS placement. We say placement S1 subsumes placement

S2, represented as:

S1 ⪰ S2, if and only if DP(S1) is a refinement of DP(S2).

That is, every PP ∈ DP(S1) is a subset of some PP ′ ∈ DP(S2).
Intuitively, this means that S1 is more disambiguating than

S2, since for any log output L ∈ O(S1) and L
′ ∈ O(S2) where

L and L′ are the outputs of the same execution path under

the two placements, PP(L) is a subset of PP(L′); this in turn

means that developers have less possible paths to disam-

biguate. If S1 ⪰ S2 and DP(S1) , DP(S2), we say S1 ≻ S2.
Consider two placements: S = {6, 7} and S ′ = {3, 7}.

We have S ≻ S ′, because DP(S) = {{P1}, {P2}, {P3}, {P4},
{P5}, {P6}, {P7}, {P8}, {P9}}, and DP(S ′) = {{P1}, {P2},
{P3, P5, P6}, {P4, P7, P8}, {P9}}. In fact, {6, 7} is one of the
most disambiguating placement because different paths will

output different log output.

Note that S ∪ S ′ ⪰ S , i.e., adding more LPSes to a place-

ment, S , will result in a more disambiguating placement.

However, the reverse it not true, i.e., a placement, S , that is
more disambiguating than S ′ does not necessarily imply that

S is a superset of S ′. More formally, S ⪰ S ′ ≠⇒ S ⊇ S ′. For
example, consider S = {6, 7} and S ′ = {3, 7}, we have S ≻ S ′,
but S ⊉ S ′.

3.3 Entropy of LPS Placement
The ≻ relation does not allow us to compare the informative-

ness of two placements, S1, S2 when one does not subsume

the other.We use Shannon’s entropy from information theory

to further compare different placements. Shannon’s entropy

measures the uncertainty, or unpredictability, of a system. It

is defined as:

H (X) = −
∑
x ∈X

p(x) log
2
p(x) (1)

where, in the context of a program, we use p(x) to represent

the probability of observing the execution path, x . We use

X to represent all of the possible paths of a program. For

any real system, there may be an infinite number of paths,

but since Log20 relies on sampling the production system

to collect path profiles, they are a finite number for our

purposes. Accordingly, we calculate p(x) as the number of

occurrences of path x divided by the total number of paths

sampled in the production system.

Intuitively, a program with an entropy value H means

programmers have 2
H
possible paths to disambiguate during

postmortem analysis. A program with a lower number of

possible paths has a lower entropy, and thus a lower degree

of uncertainty. Similarly, for programs with the same number

of paths, the more predictable which path will be taken, the

lower the entropy. For example, if two programs both have

2 paths, but in the first program each path has a 50% of

probability of being taken whereas in the second program

one particular path has a 99% chance of being taken, then

the second program is more predictable as it has a lower

entropy value. A program with entropy 0 means that there

is no uncertainty, i.e., there is only one path.

We can now use entropy to measure the informativeness

of an LPS placement. Given a placement, S , we measure

its entropy in two steps. First, we consider a particular log

output L that is produced by S , and measure HL :

HL(X) = −
∑

x ∈PP (L)

p(x)

p(L)
loд2

p(x)

p(L)
(2)

where p(L) is the probability of the program taking a path

that outputs L.
p(x)
p(L) is the probability of the software tak-

ing path x among all possible paths in PP(L). For example,

consider the LPS placement S = {3, 7} and log output [l3].
H[l3] = 0 because only one path, P1, produces this output.

Next, we can measure the entropy of placement S, HS , by

considering all possible log outputs produced by S:

HS (X) =
∑

L∈O (S)

p(L)HL

= −
∑
x ∈X

p(x)loд2
p(x)

p(Lx)

(3)

SOSP ’17, October 28, 2017, Shanghai, China X. Zhao, K. Rodrigues et al.

bb P1 P2 P3 P4 P5 P6 P7 P8 P9 w

2 1 1 1 1 1 1 1 1 1 1.00

3 1 0 0 0 0 0 0 0 0 0.11

4 0 1 1 1 1 1 1 1 1 0.89

5 0 4 4 4 4 4 4 4 4 3.56

6 0 3 3 3 3 3 3 3 3 2.67

7 0 3 2 1 2 2 1 1 0 1.33

8 0 3 3 3 3 3 3 3 3 2.67

10 0 1 1 1 1 1 1 1 1 0.89

Table 4: Basic block count matrix of the example program.
Each row represents a basic block. Weight w is the number
of times the basic block is expected to be traversed by a path
if we assume each path has equal probability.

.

where Lx is the log output produced by path x under S .
Consider the two placements S1 = {3} and S2 = {7}

from the above example. DP({3}) = {{P1}, {P2 − P9}} and
DP({7}) = {{P1, P9}, {P2}, {P3, P5, P6}, {P4, P7, P8}}. There-
fore S1 ⪰̸ S2 and S2 ⪰̸ S1. To measure their entropy, we need

to know the probability of each path. If we assume each path

shown in Table 3 has equal probability, then we will have

H ({3}) = 2.67 whereas H ({7}) = 1.28, indicating {7} is a

more informative placement compared to {3}.

We have the following property:

Theorem 1. If S ⪰ S ′, then HS ≤ HS ′ regardless of the
paths’ probability distribution.

Proof. For each execution path x ∈ X , its contributions to

HS andHS ′ are−p(x)loд2
p(x)
p(Lx)

= −p(x)loд2p(x)+p(x)loд2p(Lx)

and −p(x)loд2
p(x)
p(L′x)

= −p(x)loд2p(x) + p(x)loд2p(L
′
x), respec-

tively, where Lx and L′x are the log outputs of x under place-

ment S and S’, respectively. Since S ⪰ S ′, PP(Lx) ⊆ PP(L′x),
so p(Lx) ≤ p(L′x), and thus loд2p(Lx) ≤ loд2p(L

′
x). Hence we

have −p(x)loд2
p(x)
p(Lx)

≤ −p(x)loд2
p(x)
p(L′x)

, and HS ≤ HS ′ . □

4 THE LPS PLACEMENT ALGORITHM
In this section, we discuss the design and implementation of

a placement algorithm. The inputs are: (1) runtime execution

paths and their frequencies, (2) the system’s Java bytecode

(used to determine the effect of logging variable values in

each basic block and to identify the start and end of a request),

and (3) a slowdown threshold. The algorithm will compute a

near optimal placement – i.e., where to place a log printing

statement and what variable values to include – that incurs

less overhead than the specified threshold.

4.1 Estimating Slowdown
One approach to consider the slowdown of a placement is

to run the system and measure the actual slowdown. While

this is accurate, we cannot afford to benchmark the system

with each LPS placement being considered by our algorithm.

Instead, we opt to estimate the slowdown by considering

the number of times the placed LPSes will get executed in

a path. If this number isw , then we assume the slowdown

will be w × t , where t is the latency of executing a single

LPS. The performance threshold is thus being considered as

a threshold on the number of expected log output entries

per run, e.g., no more than 3 log entries per request.

We compute the number of expected log output entries

by considering the frequency of each path. For each basic

block, bb, that appears in the path profile, we compute its

weight,w , which is the expected number of times it will be

traversed in a path as follows:

w =
∑
x ∈X

p(x)count(x ,bb)

Recall that x is an execution path, and p(x) is the probability
of observing path x . count(x ,bb) is the number of times x
traverses basic block bb. Table 4 shows the number of times

each basic block appears in each path for the example in

Figure 1. At line 3, the weight of the basic block is 0.11,

indicating that if we place an LPS there, it will be printed

0.11 times on average in an execution path, or 11 times per

100 execution paths. For an LPS placement, S , the number

of expected log output entries per execution path under this

placement is simply the sum of the weights of all basic blocks

in S . For example, if S = {6, 7} in our example, there will be

an average of 4 log entries printed by an execution path.

4.2 The Placement Problem and Algorithm
Now we can define the problem of LPS placement. Given a

set of basic blocks, BB, where each block has a weight, w ,

the problem of placement is to find a subset of BB, S ⊆ BB,
such that the sum of the weights of all basic blocks in S is

under a threshold,WT , and entropyHS is minimized. We call

this minimum entropy the optimal placement. Note that this
does not yet take into account the use of logging variable

values. We consider this in §4.3.

Computing the optimal placement using a brute force

search requires enumerating every combination of basic

blocks, and then selecting the one that offers the lowest

entropy with a total weight that is under the threshold. The

complexity of this brute force algorithm is 2
N
, where N is

the number of basic blocks. In practice, this algorithm is

computationally infeasible; e.g., 1,402 unique basic blocks

are traversed in a single HDFS write request on average.

Log20 solves this combinatorial optimization problem us-

ing a dynamic programming algorithm that approximates

the optimal solution. Given all basic blocks, [bb1,bb2, ..,bbN],
the algorithm first sorts them by their weights such that

wi ≤ wi+1, wherewi is the weight of bbi . Let S(i − 1,w) be a

near optimal placement of LPSes in [bb1,bb2, ..,bbi−1]within
a total weight ofw . For each basic block in [bbi ,bbi+1, ..,bbN],

Log20: Automated Log Placement under Specified Overhead Threshold SOSP ’17, October 28, 2017, Shanghai, China

row bb

w=0.00 w=0.11 - 1.11 w=1.33 w=1.44 - 3.78 w=4.00

S HS S HS S HS S HS S HS
1 3 {} 3.17 {3} 2.67 {3} 2.67 {3} 2.67 {3} 2.67

2 10 {} 3.17 {3} 2.67 {3} 2.67 {3} 2.67 {3} 2.67

3 4 {} 3.17 {3} 2.67 {3} 2.67 {3} 2.67 {3} 2.67

4 2 {} 3.17 {3} 2.67 {3} 2.67 {3} 2.67 {3} 2.67

5 7 {} 3.17 {3} 2.67 {7} 1.28 {3,7} 1.06 {3,7} 1.06

6 6 {} 3.17 {3} 2.67 {7} 1.28 {3,7} 1.06 {6,7} 0.00

7 8 {} 3.17 {3} 2.67 {7} 1.28 {3,7} 1.06 {6,7} 0.00

8 5 {} 3.17 {3} 2.67 {7} 1.28 {3,7} 1.06 {6,7} 0.00

Table 5: The entropy-weight matrix for our example. Each entry shows the placement S(i,w) and its entropy HS . We merge
the columns representingw1 andw2 when S(i,w1) = S(i,w2) for any i.

S P1 P2 P3 P4 P5 P6 W H

1 0 0 1 2 2 3 1.33 0.67

2 0 0 2 2 3 3 1.67 1.00

3 3 2 2 1 1 3 2.00 1.00

1,2 0,0 0,0 1,2 2,2 2,3 3,3 3.00 0.33

1,3 0,3 0,2 1,2 2,1 2,1 3,3 3.33 0.33

2,3 0,3 0,2 2,2 2,1 3,1 3,3 3.67 0.00

Table 6: An example that shows our dynamic program-
ming algorithm is not optimal. The program has three ba-
sic blocks (1, 2, and 3), and a total of 6 execution paths P1-
P6. Each row shows a placement. Columns P1-P6 show the
log output, represented as the number of appearances of the
LPS that is placed at each basic block, produced by each path.
We assume that the order of log entries cannot further dis-
tinguish different paths; i.e., if two paths produce the same
type and number of log entries, then they also have the same
sequence. W shows the total weight of each placement as-
suming each path has the same probability. The last column
shows the entropy of each placement.

the algorithm adds it to the current placement, S(i − 1,w),

if and only if it reduces the entropy of S(i − 1,w) while re-

specting the weight threshold. Formally,

S(i,w) =

S(i − 1,w) if H (S(i − 1,w)) ≤

H (S(i − 1,w −wi) ∪ {bbi })

S(i − 1,w −wi) ∪ {bbi } otherwise

Log20 implements this algorithm bymaintaining an entropy-

weight (EW) matrix, where EW (i,w) shows the entropy

of S(i,w). Table 5 shows the EW matrix for our example.

Given a weight thresholdWT , EW (8,WT) shows the com-

puted near-optimal placement and entropy. For example,

when the weight threshold is 1.00, indicating that the user

expects that on average there are no more than 1.00 log en-

tries being printed by an execution path, she should place

an LPS at line 3 that leads to an entropy of 2.67. When the

threshold is set to 2 log entries per execution she should log

at line 3 and line 7. To achieve entropy 0.00, she should log

at line 6 and 7 that results in 4 log entries per execution.

Note that this algorithm may not compute the optimal

placement because such a placement of [bb1,bb2, ..,bbi]may

be a combination of a non-optimal placement of [bb1, bb2,
.., bbi−1] and bbi . In other words, the optimal placement

Sopt (i,w) could be S ′(i − 1,w − wi) ∪ {bbi }, even though

H (S ′(i−1,w−wi)) > H (S(i−1,w−wi)). Consider the example

shown in Table 6. If we assume the weight threshold is 3.67,

i.e., on average we allow no more than 3.67 log entries to be

printed on an execution path, then the optimal placement

will be {2, 3}. However, using our dynamic algorithm we

will compute S(N ,WT) to be {1, 2}, because when we are

computing S(3, 3.67), we only consider S(2, 3.67) = {1, 2}
and S(2, 1.67) ∪ {3} = {1, 3}.

The complexity of this algorithm is N ×[W], where [W] is

the total number of possible weight values that could occur

from a selection of basic blocks. In the worst case, [W] is still

2
N
since the basic block weights are not integers and there

are 2
N
possible selections. We solve this by scaling-up and

rounding the block weights and weight threshold to make

them integers. The choice of scale factor, C , allows us to
trade the precision of the algorithm with its efficiency. This

implementation has complexity of N ×Wmax , whereWmax
is given by,

Wmax = ⌊C ×min(WT ,

N∑
i=1

wi)⌋

Themin(WT ,
∑N

i=1wi) term is used to check if weight thresh-

oldWT is greater than the sum of all basic blocks’ weights.

An optimization we made in the implementation is to

differentiate execution paths by the count of basic blocks

instead of their sequences. This means that as long as two

paths have the same number of basic blocks, and each block

appears the same number of times, we consider them as

the same path regardless of their ordering. Operations on

sequences are expensive, and to compute HS for each place-

ment, S , we would need to compare the sequence of basic

blocks in each path. Comparing paths by basic block count

allows us to simply compare their columns in the basic block

SOSP ’17, October 28, 2017, Shanghai, China X. Zhao, K. Rodrigues et al.

count matrix, as shown in Table 4. For example, P3, P5, and
P6 are now considered as the same path because their corre-

sponding columns in Table 4 are the same.When considering

the different log outputs of a placement, S , we simply select

the rows corresponding to the basic blocks in S .
In real systems, the utility of a log would not be signifi-

cantly reduced by ignoring the order of log entries. Devel-

opers or administrators typically use three properties of log

entries: the existence of particular log entries, their counts,

and their sequence, ordered in decreasing usefulness for post-

mortem debugging. The sequence of log entries, in particular,

is often not reliable as real systems have high degrees of con-

currency. Furthermore, as we show in §8, even basic block

count is not as useful when it comes to path differentiation,

since in most debugging tasks, one merely searches for the

existence of log entries.

4.3 Placement with Variable Values
By additionally logging variable values, a single LPS can

record the direction of multiple branches in a function, thus

having the same power to disambiguate paths as placing

multiple LPSes in multiple basic blocks. We refer to these

variable-containing LPSes as dynamic LPSes and the previ-

ously discussed variable-lacking statements as static LPSes.

In each LPS, we simply try to include all the variable values

used in the branch conditions from the same method.

An LPS placed in a basic block can only record those

branch variable values that are live, i.e., they still hold the

value they had when used in the branch condition. We per-

form variable liveness analysis by transforming the code

into a static single assignment (SSA) form and then perform

a dataflow analysis. SSA form gives every variable value a

single definition point and a unique variable name; thus we

know exactly which value is live at each instruction. For vari-

ables that are out-of-scope, such as a function return value,

we rewrite the bytecode to introduce a new temporary vari-

able that holds the value so that it can be recorded at the

basic block where an LPS is placed. Note that this can only

be done if the LPS is after the function is called on a path;

if the LPS is before the function call, we cannot know the

function’s return value and thus the value is treated as dead

(unrecordable). The logged value is guaranteed to be a scalar

since Java bytecode does not allow comparisons between

non-scalars.

We do not perform dataflow analysis across threads, ef-

fectively making the assumption that a class member vari-

able is not modified by other threads concurrently. We also

cannot analyze the liveness of a variable from a try block

into a catch block because we often do not know the exact

program location that throws the exception. Therefore, we

(A) (B)

bblog

bbnolog

9

1

5 6

7

3

4

2

8

bbnolog

9

1

5 6

7

3

bbd

4

2

bblog 8

Figure 2: Two control-flow-graphs showing bbloд is either a
dominator (A) or post-dominator (B) of bbnoloд . The green
nodes show the branch conditions that must be disam-
biguated via logged variable values in bbloд for it to replace
an LPS in bbnoloд .

conservatively assume a variable value from try is not live

in the catch block.

A dynamic LPS placed in basic block bbloд can replace a

static LPS in basic block bbnoloд when two constraints are

satisfied: (1) bbloд must dominate or post-dominate bbnoloд ;
and (2) the variable values logged must unambiguously indi-

cate whether a path from the entry block to bbnoloд is taken.

Recall a node, Na , dominates a node, Nb , if every path from

the entry node to Nb goes through Na . Similarly, Na post-

dominates Nb if every path from Nb to the exit node goes

through Na . Constraint (1) ensures that every path that exer-

cises bbnoloд also exercises bbloд , so that the placed log will

be printed. And if bbloд is not traversed, one can infer that

bbnoloд is not traversed either. A limitation of this approach

(compared to purely static LPSes) is that if the path between

bbloд and bbnoloд is interrupted by an exception, the user can
no longer determine if bbnoloд was executed. In these cases,

we assume that the exception handler has logging sufficient

enough to identify the source of the exception, implying

whether bbnoloд was executed or not.

To check the second constraint, we first check whether

bbloд dominates or post-dominates bbnoloд . If it dominates

bbnoloд , bbloд must be able to disambiguate all branch condi-

tions between it and bbnoloд . Figure 2 (A) shows this case. If
any of the branch conditions cannot be disambiguated from

variable values, then one cannot unambiguously determine

whether bbnoloд is executed. If bbloд post-dominates bbnoloд
(Figure 2 (B)), we first need to locate bbd that is a dominator

of both bbloд and bbnoloд . Then to satisfy the second con-

straint, the LPS in bbloд must record all branches between

bbd and bbnoloд . This guarantees that the dynamic LPS re-

places the static LPS in bbnoloд because when the dynamic

log is printed, we know bbd must have occurred (as it domi-

nates bbloд), and we can further infer whether the path from

bbd to bbnoloд is taken via the logged variable values.

Log20: Automated Log Placement under Specified Overhead Threshold SOSP ’17, October 28, 2017, Shanghai, China

We extend the placement algorithm to use these properties

as follows: When considering a placement S = {bb1, bb2, ..,
bbn}, for each bbi , we determine whether the block and the

logged variable values satisfy the constraints necessary to

replace a static LPS in block, bb ′j . If so, the placement with

variables has the same effect as if additional LPSes were

placed in basic blocks S ′ = {bb ′
1
,bb ′

2
, ..,bb ′m}. This allows us

to use the same dynamic programming algorithm to compute

the entropy of this placement using S ∪ S ′ while the weight
is that of S , since we observe that the additional overhead
of outputting variable values is negligible compared to the

overhead of outputting even a simple log entry.

When the two constraints are not satisfied, a dynamic

LPS in bbloд may still replace a static LPS in bbnoloд when

differentiating a subset of paths. For example, in Figure 2 (A),

assume the dynamic LPS in bbloд cannot record the variable

values in the branch condition at basic block 2, but it can

record the branch conditions at blocks 1 and 3. If we are

differentiating between paths that went through basic block

2 (e.g., {1, 2, 3, 4} and {1, 2, 3, 5}), the LPS still has the same

effect as if bbnoloд is logged. Therefore, we further consider

the changes to the disambiguated paths set, DP(S), caused
by additional variable values, and recalculate the entropy.

5 IMPLEMENTATION
The Log20 system consists of three major components: the

instrumentation library, the tracing library that is used for

both request tracing and logging, and the LPS placement

generator. The systems we evaluate in §8 are all distributed

systems used for processing user requests. Thus, we limit our

consideration of execution paths to request processing code.

In a typical use case, first the instrumentation library stati-

cally instruments the application’s bytecode in every basic

block of the request processing code so it invokes the tracing

library. Then, at runtime, the tracing library (§6) collects

traces for each request, feeding them to the LPS placement

generator. The LPS placement generator applies the algo-

rithm from §4 to generate the LPS placement strategies for

the user to choose from. Finally, the instrumentation library

instruments the application’s bytecode again to place an

LPS in each basic block from the chosen placement that in-

vokes our tracing library to perform the actual event logging.

Alternatively, developers can manually insert the LPS into

the code. This process is repeated periodically to ensure the

placement remains effective should the workload change.

The instrumentation library identifies entry and exit points

of request processing code in a semi-automatic manner. It

uses the Soot [32] static analysis framework to first stati-

cally identify event processing loops by searching for infinite

loops or loops controlled by member variables within every

thread’s run() method; every method called from such a

loop is identified as a request entry-point. In case this heuris-

tic fails, e.g., requests that are processed by the Java main

thread which does not have a run() method, we rely on

the user to determine the request entry and exit points – a

mostly one-time effort for mature applications. We also use

Soot to instrument the bytecode.

The LPS placement generator aggregates the request traces

before applying the algorithm from §4 with a few practical

optimizations. In order to aggregate each sampled path into a

set of unique paths and their probabilities, we must compare

each sampled path with every other path. If the average path

length is large, this process can be prohibitively expensive.

Instead, we compute a SHA1 hash for each sampled path

and perform the comparison on the hashes. We found any

potential hash collisions negligibly affected the accuracy of

the algorithm. The probability of each path is computed as

the number of occurrences of this path in the trace, divided

by the number total number of paths. When computing a set

of disambiguated paths, we use a simple partition refinement

algorithm instead of naively computing the intersection of

every basic block’s disambiguating paths. Finally, we again

use Soot to statically analyze what variables are log-worthy

and the basic blocks they disambiguate. Note that currently,

we only analyze paths from a single node rather than stitch-

ing them together with paths from other nodes where a

request may be processed by multiple nodes.

6 TRACING LIBRARY
We designed and implemented a JVM-based tracing library

that collects runtime profiling information. It is used for both

sampling-based request profiling and as a logging library

rivaling existing ones such as Log4j 2 [21]. The tracing library

can switch between tracing and logging mode at runtime. In

tracing mode, it records the observed frequency of each basic

block in each sampled request. In logging mode, it prints logs

only in basic blocks that are included in the LPS placement.

6.1 Usage
Upon application initialization, the library will inject the

following instrumentation code to the end of each basic

block when used for request profiling:

log(MethodID#BBID);

Instrumentation of each request is controlled via similar

instrumentation code at the start and end of the request

processing code path:

logRequestBegin(RequestID, MethodID#BBID);

logRequestEnd(RequestID, MethodID#BBID);

MethodID, BBID, and RequestID are integer constants that

are statically computed, uniquely representing a method, a

basic block within that method, and a type of request (e.g., a

SOSP ’17, October 28, 2017, Shanghai, China X. Zhao, K. Rodrigues et al.

Figure 3: Architecture of the tracing library.

read block request). Inside logRequestBegin(), the library

decides whether to turn on a flag to enable tracing of the

current request based on a specified sampling rate. This

sampling rate controls how often Log20 collects and updates

the run-time profile, which in turn affects how quickly Log20

can react to workload changes. The log() method checks

the flag to determine whether to log or not. When used for

logging, the library statically instruments the bytecode at the

target basic blocks as described in §5, with the differences

that (1) it does not check for the flag but always logs the data,

and (2) it uses the MethodID and BBID to index into a table

that indicates which variable values to record.

Users can configure the instrumentation library dynami-

cally via HTTP request, including setting the sampling rate

of each type of request, enabling or disabling the tracing of

a certain type of request, etc. Users can also patch the byte-

code at runtime without restarting the application, to enable,

disable, add or remove instrumentation points. Dynamic

bytecode rewriting is done by reloading a modified class

using a modified version of the Spring-loaded library [28].

6.2 Design
Figure 3 shows the overall architecture of our tracing library.

It consists of a scheduler and multiple logging containers.

Each container is a memory buffer (set to 4MB) that is used to

log the data from one thread. When the application is started,

the tracing library allocates a pool of containers. At the be-

ginning of each request that is being traced, the scheduler is

invoked to select a container from the pool and attaches it to

the thread. The scheduler attempts to select a container that

was last used by a thread executing on the same core as the

current thread. If multiple containers are available, it tries to

select the approximated last-recently-used one because data

might still be in the cache. The scheduler maintains a con-

tainer allocation table that maps a thread ID to the container.

Each log point only writes data to the buffer within the con-

tainer attached to this thread. At the end of the processing

of a request, the scheduler returns the container to the pool.

Since more than one thread can be created to process a

request, we also instrument the thread creation points, such

as Thread.start() in Java. Consequently, any thread that

is created during the processing of a traced request will also

be traced. Note that even if concurrent threads are processing

the same request each one writes to its own container.

This design allows our tracing library to be almost free

from synchronization. Each thread writes to a unique con-

tainer buffer, therefore synchronization is not necessary at

each log point, and a write operation simply increments the

container’s end-of-buffer pointer. There is only one criti-

cal region that is used to protect the scheduler’s container

allocation and reclamation.

Each container operates in one of the two modes: logging

or tracing. When used as logging library, it simply appends a

record to the memory buffer each time that log() is invoked.

A log entry consists of the following fields: a timestamp,

MethodID#BBID, threadID and any variable values.

Tracing mode is only used for request profiling. Since

Log20’s LPS placement algorithm only considers the count

of each basic block rather than the sequence, the container

simply updates a counter for each basic block in a basic block

table. The container on the right in Figure 3 shows such an

example. We maintain a method table that is indexed by the

method ID, and each entry stores the index of the first basic
block of this method in the basic block table. The first time a

method with a particular method ID is invoked, we allocate

Nm entries in the basic block table whereNm is the number of

basic blocks in this method.Whenever a log point is executed,

the index of the counter for this basic block in the basic block

table is computed as method_table[MethodID] + BBID,

and the corresponding counter is incremented.

Containers are flushed to disk when they are nearly full at

the end of a request. Instead of outputting data to a single log

file, each container writes to a different log file. Thus, there is

also no need to synchronize writes to the file. We developed

a post-processing tool capable of stitching log entries from

different log files into a single sequence.

7 LIMITATIONS
Other than those discussed in §1, Log20 has a few other lim-

itations. First, the coverage of the trace is not exhaustive.

Some functions or basic blocks will not be exercised by the

workload, so they are excluded from LPS placement consid-

eration. Currently, Log20 places an LPS in every unexecuted

basic block, with an optimization that if a function is unexe-

cuted, we place an LPS at the beginning of the function and

include all path-disambiguating variables; additional LPSes

are placed in any uncovered paths remaining.

A change of workload can result in undesirable logging

behavior because Log20’s placement is optimized towards

the old workload. For example, when the system suddenly

executes a new path, an excessive amount of log entries

could be printed, incurring large overhead. To mitigate this

problem, LPSes can use an adaptive sampling strategy, where

Log20: Automated Log Placement under Specified Overhead Threshold SOSP ’17, October 28, 2017, Shanghai, China

System

Sampled Unique paths, measured by Static

paths BB count BB appearance BBs

HDFS 2,350 1668 250 1402

HBase 7,429 26 11 50

YARN 1,281 55 34 309

ZooKeeper 38,978 16 15 63

Table 7: Systems and sampled paths used in experiments.

the sampling rate backs off exponentially (e.g., each LPS only

records its 2
n
th dynamic occurrence) [10].

Finally, Log20 is designed to work independently from de-

velopers’ manual LPS placement. If developers have already

placed LPSes in the system, Log20 can be used to suggest

additional LPSes while keeping the existing ones. However,

Log20 cannot ‘learn’ from the logging patterns in existing

LPSes (e.g., which conditions are log-worthy) and apply them

to place LPSes on unlogged paths.

8 EXPERIMENTAL EVALUATION
We answer the following questions in our evaluation: (1) How

effective is Log20’s automatic LPS placement? (2) How does

it compare with developers’ manual placement? (3) Do the

LPSes placed by Log20 help with debugging? (4) How does

it compare with the static-analysis based path profiling al-

gorithm by Ball and Larus [2]? (5) How well does Log20

approximate an optimal placement? (6) How much overhead

does our tracing library incur?

Our evaluation was setup as follows: we evaluated Log20

on four systems – HDFS, HBase, Hadoop YARN, and Zoo-

Keeper. HiBench [13] was used to generate workloads for

HDFS and YARN while we used HBase’s built-in Perfor-

mance Evaluation tool to generate workloads for HBase.

ZooKeeper’s workload was generated and evaluated using

the benchmark tool from the original ZooKeeper paper [14].

For HDFS, HBase, and YARN, we ran an 11-node cluster com-

prising one master and 10 slaves. We used a 10 node cluster

for ZooKeeper because leader-node promotion is dynamic.

To obtain the path profiles, we monitored the systems

using our tracing library. The number of paths collected is

shown in Table 7. Each path is the execution of a request on

one node. For HDFS, HBase, and YARN, we used the trace

from the slave (datanode, region server, and node manager

respectively). We chose slave nodes instead of the master

because slaves are on the critical path of most user requests,

requiring a critical balance between informativeness and the

overhead of logging. ZooKeeper is a decentralized system,

so we randomly selected a node when analyzing its trace.

Table 7 shows the counted number of different execution

paths in two ways: (1) by the count of basic blocks, and (2) by

only considering basic block appearances. The large variance

in the number of paths under these two approaches is a result

of data-processing loops. For example, HDFS contains a loop

that processes a batch of data per iteration. This results in a

large number of unique paths when they are distinguished

by the basic block count. This further leads to a high entropy

value that can only be eliminated if we record the number of

iterations of that loop. Log20 is able to disambiguate different

paths based on both basic block appearance and basic block

execution counts. Our evaluation result is mainly based on

appearance because we believe developers usually look for

the appearance of log entries rather than their counts dur-

ing postmortem debugging. Nevertheless, we also show the

count-based result for HDFS.

8.1 Entropy versus Overhead
The curves in Figure 4 illustrate the relationship between

entropy and overhead. Overhead is measured as the expected

number of log entries per request. On average, the execution

of each LPS takes 1.5 µs in our system using Log4j, the default

logging library used by the evaluated systems. With these

curves, developers can choose the right balance between the

informativeness and overhead, measured either by number

of log entries per request or by slowdown.

The reduction of entropy has a non-linear relationship

with the increase in overhead. At the beginning, with rel-

atively small overhead, Log20 can compute a near-optimal

placement that quickly reduces the entropy as the overhead

is increased. Later additions of LPSes have diminishing re-

turns in reducing the entropy. Fundamentally, this is because

the production workload is highly skewed. There are just a

small number of hot paths while the vast majority of paths

are cold. For example, in our HDFS workload, 20% of the

unique paths (by basic block appearance) account for 78%

of all paths are sampled. Similarly, at the basic block level,

the weight distribution is also skewed – a small number of

basic blocks appear the majority the time across the trace.

Consequently, under a small overhead threshold, Log20 in-

fers a placement that covers the cold paths and basic blocks,

and can quickly reduce the entropy, since there is only a

small number of unique hot paths. However, to further re-

duce entropy, we need to place LPSes in hot paths to further

differentiate them.

This non-linear relationship further suggests the impor-

tance of a good placement strategy. A sophisticated place-

ment strategy could eliminate a majority of the uncertainty

with relatively little overhead, whereas a less optimal strat-

egy could incur large overheads without offering meaningful

information. For example, in HDFS, Log20’s placement can

reduce the entropy from 6.41 to 0.91 with fewer than two log

entries per request. Intuitively, this means that with two log

entries per request, Log20 can reduce the number of possible

paths from 2
6.41 ≈ 85 to 2

0.91 ≈ 2.

SOSP ’17, October 28, 2017, Shanghai, China X. Zhao, K. Rodrigues et al.

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7 8 9 10

E
n

tr
o

p
y

Number of log entries per request

(a) HDFS

Log20

Info

 0

 0.5

 1

 1.5

 2

 2.5

 0 1 2

E
n

tr
o

p
y

Number of log entries per request

(b) HBase

Log20

Info

Debug

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.5 1 1.5 2 2.5 3 3.5 4

E
n

tr
o

p
y

Number of log entries per request

(c) YARN

Log20

Info

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1
E

n
tr

o
p

y

Number of log entries per request

(d) ZooKeeper

Log20

Info

Debug

Figure 4: Entropy versus overhead. The x-axis shows the overhead, measured in average number of log entries per request.
The y-axis shows the entropy. We also show the entropy and overhead of existing logs. For HDFS and YARN, we only show
the Info verbosity because Debug verbosity outputs thousands of entries that are outside of the range.

 7

 8

 9

 10

 11

 12

 0 1 2 3 4 5 6 7 8 9 10

E
n
tr

o
p
y

Number of log entries per request

Log20

Figure 5: The entropy-overhead trade-off for HDFS when
paths are differentiated by basic block counts. Most of the
remaining entropy is caused by data-processing loops.

Figure 5 illustrates the entropy-overhead relationship for

HDFS when execution paths are differentiated by basic block

counts. Due to the high cost of recording the number of iter-

ations in each data-processing loop, Log20 can only reduce

a small amount of entropy within the threshold of 10 log

entries per request.

Comparison with existing LPS placements. Figure 4

shows the entropy and overhead of the existing LPS place-

ments in each system. Log20 is substantially more efficient

in disambiguating code paths compared to the existing place-

ments. Table 8 further illustrates this point. To be as informa-

tive as existing Info logs, Log20’s placement only outputs 0.08

log entries per request, compared with the 1.58 log entries

Num. of Info Debug

log entries Log20 existing % Log20 existing %

HDFS 0.22 3.87 5% 0.32 2434.92 0%

YARN 0.03 0.86 3% 0.14 13.69 1%

ZooKeeper 0.005 0.012 41% 0.02 1.31 1%

Average 0.08 1.58 17% 0.16 816.98 1%

Table 8: Comparing the overhead, as measured by the aver-
age number of log entries per request, between the existing
LPS placement and the placement generated by Log20 that
has the same entropy as the existing LPS. % is computed as
Log20/existing.

Entropy

Info Debug

Log20 existing Log20 existing

HDFS 0.61 3.71 0.16 3.21

YARN 0.23 1.80 0.00 1.08

ZooKeeper 1.32 2.18 0.00 0.74

Average 0.72 2.57 0.05 1.68

Table 9: Comparing the informativeness of LPS placements
between Log20 and developers’ manual effort, under the
same overhead threshold.

required by the existing Info log placement. The difference is

even more substantial when compared with Debug-level log

output. For example, HDFS outputs an average of 2434.92

log entries per request under Debug verbosity; In contrast,

Log20: Automated Log Placement under Specified Overhead Threshold SOSP ’17, October 28, 2017, Shanghai, China

Existing (H = 3.71) Log20 (H = 0.63)

Location w H Location w H

writeBlock:677 0.58 5.42 BlockSender:342 0.10 5.54

writeBlock:715 0.83 5.44 convert:376 0.27 5.58

writeBlock:593 0.85 5.47 sendBlock:706 0.12 5.58

receivePacket:616 0.54 5.65 receivePacket:616 0.54 5.65

receivePacket:520 1.04 5.74 add:158 0.06 5.68

writeBlock:754 0.01 6.16 close:298 0.11 5.72

flushOrSync:386 0.00 6.18 receivePacket:520 1.04 5.74

Table 10: Comparison between the LPSes placed by devel-
opers (existing) and by Log20 on HDFS (v2.6.0). HDFS datan-
ode only outputs 7 types of log entries under the default ver-
bosity in our sampled traces. All of them are shown. Log20’s
placement is computed under the same overhead threshold
as existing Info log. The LPSes are ranked byH , which is the
entropy of the placement that only contains that one LPS. 23
LPSes under Log20’s placement are exercised; we only show
the top 7. w is the average number of times the LPS gets ex-
ecuted per request. The format of the location is “method
name:line number”.

Log20’s placement only outputs 0.32 log entries per request

to achieve the same entropy.

Table 9 further compares the entropies of the existing logs

and Log20’s placement computed with the same overhead

threshold as the existing logs. Log20 significantly reduces

the amount of uncertainty compared with developers’ man-

ual placement effort. In particular, Log20’s placement can

achieve 0 entropy, i.e., disambiguate all paths, when given

the same overhead threshold as existing Debug-level logs in

YARN and ZooKeeper.

In Table 10, we further zoom into HDFS to compare each

LPS placed by Log20 and developers’ manual effort under the

same overhead threshold. Log20’s placement achieves much

lower entropy (0.63) compared to the existing Info logs. This

is because Log20 carefully places LPSes at basic blocks that

have a low weight yet reduce the most amount of entropy

when an LPS is placed within them. Moreover, Log20 avoids

placing LPSes on hot paths. For example, consider the code

for “add:158”:

157 public void add(double value) {

158 if (value > max) max = value;

159 if (value < min) min = value;

160 }

Logging at the true branch at line 158 can reduce the entropy

from 6.41 to 5.68, yet the log entry only appears 0.06 times

per request. This method is used to compute the maximum

and minimum latency of readBlock and writeBlock requests.

In 2350 requests, the value of max was updated only 143

times. In fact, Log20 also places an LPS at the true branch

Instrumentation points executed

System Ball-Larus Log20 Ball-Larus/Log20

HDFS 310056 104089 3.0X

HBase 14.98 4.98 3.0X

YARN 527.73 11.63 45.4X

ZooKeeper 12.74 0.77 16.5X

Table 11: The average number of instrumentation points
executed by Ball-Larus algorithm and Log20 (zero-entropy).

at line 159 that updates the value of min.
2
Consequently,

Log20’s placement is able output 23 different types of log

entries, compared to only 7 in the existing logs.

Interestingly, despite the differences, 3 out of the 7 exist-

ing LPSes that are executed in our workload overlap with

Log20’s placement (see the highlighted entries in Table 10),

suggesting that Log20 matches developers’ intuition. All

three are warning messages that record (1) when disk write

takes longer than a threshold, (2) when a network request is

longer than a threshold, and (3) when flushing the buffered

data to disk takes longer than a threshold.

Comparison with Ball-Larus path profiling. Ball and
Larus proposed an algorithm to instrument a target pro-

gram to collect a trace that can determine how many times

each execution path runs [2]. This trace has the same ef-

fect as a zero-entropy LPS placement. The algorithm works

by carefully assigning an integer value to each edge on the

control-flow-graph such that the sum of the edge values tra-

versed in different paths is different. The basic blocks are

instrumented to update the sum value, and each path out-

puts this sum at its end. It does not need to instrument every

block, because those with only 0-valued incoming edges do

not need to be instrumented as they do not need to update

the sum. It uses runtime path profile to avoid instrumenting

the most frequently executed basic blocks.

We implemented the Ball-Larus algorithm, and compared

it with Log20’s zero-entropy LPS placement. We focus on

the number of instrumentation points executed. For Log20,

this is the number of log entries. Table 11 shows the result.

Log20’s instrumentation is at least 3X more efficient than

that of the Ball-Larus algorithm. This is because Ball-Larus

algorithm uses a static approach; it aims to differentiate every

possible execution path. In comparison, Log20 only needs

to place LPSes to differentiate the execution paths in the

trace sampled from the current workload, which is orders of

magnitude smaller than the total number of possible paths.

In addition, variable values are used by Log20’s LPSes to

further disambiguate paths.

2
We filed a bug report with the HDFS developers, suggesting that the two

LPSes be added [11]. Developers confirmed their usefulness and agreed

to add them. We are currently working on a patch as developers demand

throttling control and recording the calling context in the log message.

SOSP ’17, October 28, 2017, Shanghai, China X. Zhao, K. Rodrigues et al.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.1 0.2 0.3 0.4 0.5

E
n
tr

o
p
y

Number of log entries per request

Log20
Brute-force

Figure 6: Entropy-overhead curves generated by Log20 and
a brute-force (optimal) algorithm for ZooKeeper.

Avg. num. Avg. num. of

of variables BBs replaced

HDFS 0.551 0.774

HBase 0.563 0.802

YARN 0.536 0.719

ZooKeeper 0.587 0.807

Average 0.559 0.776

Table 12: The number of variables included per LPS and the
number of basic blocks that can be disambiguated by them.

Note that in this experiment we only compared Ball-Larus’

result with Log20’s LPS placement (under logging mode)

instead of its instrumentation under tracing mode. Tracing

mode and Ball-Larus’ algorithm will have similar results as

we instrument every basic block. However, Log20’s tracing

need not be enabled all the time since the traces are only

used to compute LPS placements for the current workload.

Thus, Log20 can be configured to trace every nth request,

balancing the accuracy of the trace with its overhead. For

I/O-bound workloads, we found sampling unnecessary since

the tracing overhead was less than 1% (see §8.3) due to the

efficiency of our library.

Comparison to an optimal placement. Figure 6 shows

the entropy-overhead curves generated by Log20 and an

optimal, but brute-force algorithm which enumerates every

possible placement. We used ZooKeeper because it has the

smallest number of basic blocks (63) in its trace. Even then,

the optimal algorithm was still not able to finish; we had to

restrict the algorithm to the first 25 blocks in the block count

matrix. For 9 out of 13 data points, we see that Log20 indeed

matches the optimal placement. For the remaining 4 points,

Log20 differs by a negligible amount (< 0.0001 in entropy).

Effectiveness of variable logging. Table 12 shows the ef-
fectiveness of Log20’s variable logging. On average, an LPS

at each basic block can record 0.559 variable values, which in

turn can be used to replace 0.776 static LPSes in other basic

blocks. This suggests every branch variable logged in a basic

block can disambiguate at least one other block.

(A)

3 424

E
x
is

ti
n
g
 L

P
S

es

L
o
g
2
0

(B)

15 67

L
P

S
es

 o
n
 c

o
ld

 p
at

h
s L

P
S

es o
n
 rare p

ath
s

Figure 7: The usefulness of logs in debugging 41 HDFS fail-
ures. (A) shows the number of caseswhere the existing LPSes
or Log20 is helpful. (B) shows the number of cases where
helpful LPSes placed by Log20 are on cold or rare paths.

8.2 Debugging Real-world Failures
We evaluated the usefulness of Log20 for debugging using 41

randomly selected user-reportedHDFS failures, sourced from

a prior work that studied distributed systems failures [34].

We carefully analyzed each failure to understand its prop-

agation path from the fault (i.e., root cause) to the failure

symptom. We then examined whether the LPSes placed by

Log20, subject to the same performance threshold as existing

Info logs, helped in narrowing down the failure propagation

paths. We manually reproduced 33 of the 41 failures.

Figure 7 shows the result. Overall, we found Log20 is

helpful in debugging 68% (28/41) of the real-world failures.

In comparison, existing default verbosity LPSes are helpful

in 27 cases. Although Log20 only marginally outperforms

manual logging, manual logging is loosely based on trial-

and-error where many LPSes are added as after-thoughts

(see §2) while Log20 is fully automated.

In 24 of the failures, both Log20 and existing LPSes help

with debugging. In fact, in 17 of them, Log20 places LPSes in

the same basic blocks as existing Error LPSes because these

blocks were not exercised by the traces from our produc-

tion workload (i.e., cold paths). Typically, these are (buggy)

exception handling paths that are only exercised in failure

scenarios. As described in §7, Log20 generates a zero-entropy

placement for all paths that were not covered by the trace,

allowing developers to reconstruct the exact execution flow

in these cases.

There are four failures where Log20 helps but existing

LPSes do not. In these cases, existing LPSes are not placed

on the failure propagation path; nor are they placed on paths

that are not executed but are relevant to the failure (so that

the absence of their output can be used to narrow down the

bug), leaving developers searching for root causes “in the

dark”. There are three bugs where existing LPSes help but

Log20 does not. In one of them (HDFS-4660), an existing LPS

outputs the size of a file block on the error path, which is

critical for diagnosis. Log20 also places an LPS on this error

path, but fails to include the block size because it is not used

Log20: Automated Log Placement under Specified Overhead Threshold SOSP ’17, October 28, 2017, Shanghai, China

in any branch conditions. In the other two bugs, the useful

logs are output by the HDFS client which is not traced nor

analyzed by Log20.

Figure 7 (B) further breaks down the 28 cases where Log20

helps with debugging. In 22 of them, the helpful LPSes are

placed on cold paths. More interestingly, in 13 bugs, the

helpful LPSes are in basic blocks that are covered by our

trace. These are normal but rarely executed blocks, and these

LPSes significantly reduce entropy without incurring large

overhead.

Next we discuss two failure case studies.

Case 1: HDFS-4328. In this failure, the entire HDFS cluster

becomes unresponsive during system shutdown. There are

no existing LPSes printed on this failure path, and it is hard

to infer anything from the absence of log entries. In contrast,

when we reproduced this failure with Log20’s placed LPSes,

two log entries were printed repeatedly. The first is in the

following function:

private boolean isLongRead() {

return (endOffset - initialOffset) > LONG_READ;

}

This function returns true if the size of a single file block

is larger than a threshold, so that HDFS will advise the

OS to access the block sequentially using posix_fadvise

(POSIX_FADV_SEQUENTIAL). Log20 places an LPS only

when this function returns true, which is a rare condition

but did occur in the workload we used. (Recall that Log20

works on bytecode where the true and false returns are in

different basic blocks.)

The second repeated log entry is from this snippet:

while (..) {

try { wait (curPeriodEnd - now); }

catch (InterruptedException ignored) {}

}

Log20 places an LPS in the block that catches the Interrupt-

edException. In this code, the HDFS block scanner thread is

waiting for the thread that actually performs the block read

to finish. In case of a shutdown, it will receive an Interrupt-

edException; however, it mistakenly ignores the exception

and goes back to wait(). This causes the entire HDFS clus-

ter to hang when the user shuts down HDFS while the block

scanner thread is scanning a large block. The fix is to handle

this InterruptedException appropriately instead of ignoring

it. The LPSes placed by Log20 clearly point to this failure

path – the first log entry indicates that the block scanner

thread is reading a large block, and the second log entry

leads to the incorrect handling of the InterruptedException.

Case 2: HDFS-4182. This case demonstrates how the ab-

sence of a log entry helps with debugging. In this failure,

the Secondary Namenode has a resource leak of NameCache

entries. There is one NameCache for each directory, and

Logging Tracing mode

mode no-flush flush-long flush-short

Latency 43 ns 24 ns 25 ns 35 ns

Table 13: Performance of the tracing library.

it is supposed to be populated only during HDFS’ initial-

ization phase. There is a function, initialized(), that

should be invoked at the end of the initialization to clear the

NameCaches loaded from the last HDFS checkpoint image.

Although the Namenode correctly calls initialized() at

the end of the initialization stage, the Secondary Namenode

never invokes initialized(), which leads to the leak of

NameCache entries. Log20 places an LPS in initialized()

as it is a rare path on the Namenode. We can infer from the

absence of this log entry on the Secondary Namenode that

the leak occurred, since initialized() was not invoked.

8.3 Performance of the Tracing Library
Microbenchmark. We first measure the execution time of

each invocation to our tracing library in logging mode. We

created a benchmark following the same method that was

used by the Log4j 2 developers to benchmark Log4j 2 [26].

This benchmark first warms up the JVM [19], and then uses

a loop to invoke the tracing library 10 million times. Each

logging invocation outputs an average of 18.23 bytes of data,

which is the same as the average log output on the four real

systems. We set the size of the in-memory buffer to 4MB,

and it is flushed whenever it is filled. The latency of each

invocation is measured by the total execution time divided

by 10 million. The experiment is done on a server with Intel

Xeon E5-2630V3 2.4GHz CPUs and 128GB DDR4 RAM.

As shown in Table 13, each logging invocation using our

tracing library takes 43ns on average. This is significantly

faster than Log4j, which takes 1.5 µs per LPS.
We further measure the performance of the tracing library

when it operates in tracing mode. Recall that under this

mode, it only flushes the buffer at the end of the request.

Therefore, the average latency per log depends on the latency

of a request – a long request leads to less frequent flushes.

Therefore, we created two types of requests: a short request

that consists of 1,750 basic blocks being executed, and long

request that consists of 35,000 basic blocks. In both requests,

we invoke our library in every basic block. We repetitively

execute each request until we collect 10 million invocations

to the tracing library.

Table 13 shows this result. When we turn off flushing, the

latency of each invocation to our tracing library is 24 ns. If

we use it to trace a long request where we flush the buffer at

the end, this latency becomes 25 ns. Finally, if we perform the

same experiment with the short request, this latency grows

to 35 ns.

SOSP ’17, October 28, 2017, Shanghai, China X. Zhao, K. Rodrigues et al.

Base Tracing

HDFS read (1GB) 16.26s 16.24s (-0.2%)

HDFS write (1GB) 21.02s 21.20s (0.9%)

Table 14: Tracing overhead on HDFS.

Real systemevaluation.Given the efficiency of our tracing

library, it imposes only negligible overhead when used to

trace requests in real distributed systems. For example, as

shown in Table 14, it imposes less than 1% slowdown on

HDFS even when we include the flush time. Interestingly,

we observe that the traced read consistently outperforms

the uninstrumented read. The reason is that when we use

Soot to instrument bytecode, it further rewrites the bytecode

using a variety of optimizations [32].

9 RELATEDWORK
LPS placement. Errlog [35] automatically places error

LPSes in a small set of generic error patterns (e.g., system

call error returns). Fu et al. [9] presented an empirical study

of logging practices at Microsoft and identified a set of pro-

gram patterns that are considered log-worthy. Li et al. [18]
enhanced the work of Fu et al. and offered suggestions to

place LPSes based on existing placements, using a machine

learning algorithm without considering performance over-

heads. In contrast, Log20 does not rely on existing LPSes.

It automatically computes a placement with near-optimal

entropy under a specified overhead threshold. In a position

paper [38], we proposed the idea of using information theory

to guide LPS placement. This paper further formalizes the

path disambiguation problem based on set theories, proposes

a concrete algorithm, and provides a full implementation.

Log enhancement. Other works enhance existing LPSes.

LogEnhancer [37] includes additional variable values in each

LPS to enhance its informativeness. Our variable value log-

ging is similar, but simpler. Unlike LogEnhancer, we do not

perform inter-procedural analysis and thus we are not aware

of variable values that can be used to replace static LPSes

in other methods. Yuan et al. proposed a tool to adjust the

verbosity of each LPS [36]. These works are complemen-

tary to Log20 because they address different aspects of log

automation.

Path profiling and customized program coverage. As
discussed in §8.1, Ball and Larus [2] proposed a path pro-

filing algorithm that disambiguates every path. Larus later

extended this method by adding latency information and the

ability to trace inter-procedurally [16]. Ohmann et al. [24] for-
malized the problem of customized program coverage, that

is to instrument the program while respecting a certain set

of constraints in order to generate coverage information for

a given set of program points. Their practical methods used

static analysis and approximation algorithms to compute

placements that minimized the runtime of instrumentation.

Log20 is complementary to these approaches. These ap-

proaches are based on static analysis so they are capable of

differentiating all paths independent of the runtime work-

load. Therefore, they can be used by Log20 in placing LPSes

in basic blocks that are not exercised by the trace. However,

Log20’s use of runtime tracing means that its placement can

be more efficient as it adapts to the workload (as shown in

§8.1). In addition, in practice developers must consider the

trade-off between overhead and informativeness. Log20’s

application of entropy allows it to generate a near-optimal

placement under any overhead threshold, a unique feature

that does not exist in any prior work.

Tracing frameworks, including DTrace [4], System-

Tap [30], X-Trace [8], MagPie [3], Pivot Tracing [22], just to

name a few, allow developers to write scripts or queries to

collect a system’s runtime statistics. Instead of relying on

manual work, Log20 automatically infers the instrumenta-

tion locations that are the most informative. The inferred

placement can be further leveraged by these tracing frame-

works to collect more informative traces with less overhead.

10 CONCLUDING REMARKS
This paper introduced Log20 that can automate the place-

ment of log printing statements in software programs.

Guided by information theory, it measures how effective

each logging statement is in disambiguating code paths. We

have shown that the placement strategy inferred by Log20 is

significantly more efficient in path disambiguation than the

placement of log printing statements in existing programs.

ACKNOWLEDGEMENTS
We thank our shepherd, Junfeng Yang, and the anonymous

reviewers for their insightful feedback. In particular, our

shepherd has provided invaluable comments through mul-

tiple revision iterations; these comments significantly im-

proved the paper. This research is supported by an NSERC

Discovery grant, a NetApp Faculty Fellowship, a MITACS

grant, and a Huawei contract.

REFERENCES
[1] G. Altekar and I. Stoica. ODR: Output-deterministic Replay for Multi-

core Debugging. In Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles, SOSP ’09, pages 193–206. ACM, 2009.

[2] T. Ball and J. R. Larus. Efficient Path Profiling. In Proceedings of the
29th Annual ACM/IEEE International Symposium on Microarchitecture,
MICRO ’96, pages 46–57. IEEE Computer Society, 1996.

[3] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using Magpie for

Request Extraction and Workload Modelling. In Proceedings of the 6th
Conference on Symposium on Operating Systems Design & Implementa-
tion, OSDI ’04, pages 259–272. USENIX Association, 2004.

[4] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamic Instru-

mentation of Production Systems. In Proceedings of the 10th USENIX

Log20: Automated Log Placement under Specified Overhead Threshold SOSP ’17, October 28, 2017, Shanghai, China

Annual Technical Conference, USENIX ATC ’04, pages 15–28. USENIX

Association, 2004.

[5] H. Cui, J. Simsa, Y.-H. Lin, H. Li, B. Blum, X. Xu, J. Yang, G. A. Gibson,

and R. E. Bryant. Parrot: A Practical Runtime for Deterministic, Stable,

and Reliable Threads. In Proceedings of the 24th ACM Symposium on
Operating Systems Principles, SOSP ’13, pages 388–405. ACM, 2013.

[6] D. Devecsery, M. Chow, X. Dou, J. Flinn, and P. M. Chen. Eidetic

Systems. In Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation, OSDI ’14, pages 525–540. USENIX
Association, 2014.

[7] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen. ReVirt:

Enabling Intrusion Analysis Through Virtual-machine Logging and

Replay. In Proceedings of the 5th Symposium on Operating Systems
Design and Implementation, OSDI ’02, pages 211–224. ACM, 2002.

[8] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica. X-trace:

A Pervasive Network Tracing Framework. In Proceedings of the 4th
USENIX Conference on Networked Systems Design & Implementation,
NSDI ’07, pages 271–284. USENIX Association, 2007.

[9] Q. Fu, J. Zhu, W. Hu, J.-G. Lou, R. Ding, Q. Lin, D. Zhang, and T. Xie.

Where DoDevelopers Log? An Empirical Study on Logging Practices in

Industry. In Companion Proceedings of the 36th International Conference
on Software Engineering, ICSE Companion ’14, pages 24–33. ACM, 2014.

[10] M. Hauswirth and T. M. Chilimbi. Low-overhead Memory Leak De-

tection Using Adaptive Statistical Profiling. In Proceedings of the 11th
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’04, pages 156–164. ACM,

2004.

[11] HDFS-12332: Logging Improvement for SampleStat Function Min-

Max.add. https://issues.apache.org/jira/browse/HDFS-12332.

[12] J. Huang, P. Liu, and C. Zhang. LEAP: Lightweight Deterministic

Multi-processor Replay of Concurrent Java Programs. In Proceedings
of the 18th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE ’10, pages 207–216. ACM, 2010.

[13] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang. The HiBench Bench-

mark Suite: Characterization of the MapReduce-based Data Analy-

sis. In 26th International Conference on Data Engineering Workshops,
ICDEW ’10, pages 41–51. IEEE Computer Society, 2010.

[14] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper: Wait-free

Coordination for Internet-scale Systems. In Proceedings of the 16th
USENIX Annual Technical Conference, USENIX ATC ’10, pages 145–158.

USENIX Association, 2010.

[15] JavaParser: Process Java Code Programmatically. http://javaparser.

org/.

[16] J. R. Larus. Whole Program Paths. In Proceedings of the ACM SIGPLAN
1999 Conference on Programming Language Design and Implementation,
PLDI ’99, pages 259–269. ACM, 1999.

[17] V. I. Levenshtein. Binary Codes Capable of Correcting Deletions,

Insertions, and Reversals. In Soviet Physics Doklady, 10(8), pages 707–
710, 1966.

[18] H. Li, W. Shang, Y. Zou, and A. E. Hassan. Towards Just-in-time

Suggestions for Log Changes. Empirical Software Engineering, pages
1–35, 2016.

[19] D. Lion, A. Chiu, H. Sun, X. Zhuang, N. Grcevski, and D. Yuan. Don’t

Get Caught in the Cold, Warm-up Your JVM: Understand and Elimi-

nate JVMWarm-up Overhead in Data-Parallel Systems . In Proceedings
of the 12th USENIX Symposium on Operating Systems Design and Im-
plementation, OSDI ’16, pages 383–400. USENIX Association, 2016.

[20] T. Liu, C. Curtsinger, and E. D. Berger. Dthreads: Efficient Determin-

istic Multithreading. In Proceedings of the 23rd ACM Symposium on
Operating Systems Principles, SOSP ’11, pages 327–336. ACM, 2011.

[21] Log4j - Log4j 2 Guide - Apache Log4j 2. http://logging.apache.org/

log4j/2.x/.

[22] J. Mace, R. Roelke, and R. Fonseca. Pivot Tracing: Dynamic Causal

Monitoring for Distributed Systems. In Proceedings of the 25th Sympo-
sium on Operating Systems Principles, SOSP ’15, pages 378–393. ACM,

2015.

[23] S. Narayanasamy, G. Pokam, and B. Calder. BugNet: Continuously

Recording Program Execution for Deterministic Replay Debugging. In

Proceedings of the 32nd Annual International Symposium on Computer
Architecture, ISCA ’05, pages 284–295. IEEE Computer Society, 2005.

[24] P. Ohmann, D. B. Brown, N. Neelakandan, J. Linderoth, and B. Liblit.

Optimizing Customized Program Coverage. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering,
ASE 2016, pages 27–38. ACM, 2016.

[25] S. Park, Y. Zhou,W. Xiong, Z. Yin, R. Kaushik, K. H. Lee, and S. Lu. PRES:

Probabilistic Replay with Execution Sketching on Multiprocessors. In

Proceedings of the 22nd Symposium on Operating Systems Principles,
SOSP ’09, pages 177–192. ACM, 2009.

[26] Performance of Log4j 2. https://logging.apache.org/log4j/log4j-2.2/

performance.html.

[27] C. E. Shannon. A Mathematical Theory of Communication. The Bell
System Technical Journal, 27(4):623–656, 1948.

[28] Spring Loaded. https://github.com/spring-projects/spring-loaded.

[29] D. Subhraveti and J. Nieh. Record and Transplay: Partial Checkpointing

for Replay Debugging Across Heterogeneous Systems. In Proceedings
of the ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems, SIGMETRICS ’11, pages 109–120. ACM,

2011.

[30] SystemTap. https://sourceware.org/systemtap/.

[31] H. Thane and H. Hansson. Using Deterministic Replay for Debugging

of Distributed Real-time Systems. In Proceedings of the 12th Euromicro
Conference on Real-Time Systems, ECRTS 2000, pages 265–272, 2000.

[32] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan.

Soot: A Java Bytecode Optimization Framework. In CASCON First
Decade High Impact Papers, CASCON ’10, pages 214–224. IBM Corp.,

2010.

[33] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M. Chen, J. Flinn,

and S. Narayanasamy. DoublePlay: Parallelizing Sequential Logging

and Replay. In Proceedings of the 16th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems,
ASPLOS ’11, pages 15–26. ACM, 2011.

[34] D. Yuan, Y. Luo, X. Zhuang, G. Rodrigues, X. Zhao, Y. Zhang, P. U.

Jain, and M. Stumm. Simple Testing Can Prevent Most Critical Fail-

ures: An Analysis of Production Failures in Distributed Data-intensive

Systems. In Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation, OSDI ’14, pages 249–265. USENIX
Association, 2014.

[35] D. Yuan, S. Park, P. Huang, Y. Liu, M. Lee, Y. Zhou, and S. Savage. Be

Conservative: Enhancing Failure Diagnosis with Proactive Logging. In

Proceedings of the 10th USENIX Symposium on Operating System Design
and Implementation, OSDI ’12, pages 293–306. USENIX Association,

2012.

[36] D. Yuan, S. Park, and Y. Zhou. Characterising Logging Practices in

Open-Source Software. In Proceedings of the 34th International Con-
ference on Software Engineering, ICSE ’12, pages 102–112. IEEE Press,

2012.

[37] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage. Improving Software

Diagnosability via Log Enhancement. In Proceedings of the 16th Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’11, pages 3–14. ACM, 2011.

[38] X. Zhao, K. Rodrigues, Y. Luo, M. Stumm, D. Yuan, and Y. Zhou. The

Game of Twenty Questions: Do You Know Where to Log? In Proceed-
ings of the 16thWorkshop on Hot Topics in Operating Systems, HotOS ’17,
pages 125–131. ACM, 2017.

https://issues.apache.org/jira/browse/HDFS-12332
http://javaparser.org/
http://javaparser.org/
http://logging.apache.org/log4j/2.x/
http://logging.apache.org/log4j/2.x/
https://logging.apache.org/log4j/log4j-2.2/performance.html
https://logging.apache.org/log4j/log4j-2.2/performance.html
https://github.com/spring-projects/spring-loaded
https://sourceware.org/systemtap/

	Abstract
	1 Introduction
	2 Revision History of LPSes
	3 Informativeness of Logging
	3.1 Disambiguating Paths with Log Output
	3.2 Disambiguated Paths of LPS Placement
	3.3 Entropy of LPS Placement

	4 The LPS Placement Algorithm
	4.1 Estimating Slowdown
	4.2 The Placement Problem and Algorithm
	4.3 Placement with Variable Values

	5 Implementation
	6 Tracing Library
	6.1 Usage
	6.2 Design

	7 Limitations
	8 Experimental Evaluation
	8.1 Entropy versus Overhead
	8.2 Debugging Real-world Failures
	8.3 Performance of the Tracing Library

	9 Related Work
	10 Concluding Remarks
	References

