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Songnian Zhou, Member, IEEE, Michael Stumm, Member, IEEE, Kai Li, and David Wortman, Member, IEEE 

Abstract-Heterogeneity in distributed systems is increasingly 
a fact of life, due to specialization of computing equipment. It is 
highly desirable to integrate heterogeneous hosts into a coherent 
computing environment to support distributed and parallel appli- 
cations, so that the individual strengths of the different hosts can 
be exploited together. Distributed shared memory (DSM), a high- 
level, highly transparent model for interprocess communication 
in distributed systems, is a promising vehicle for achieving such 
an integration. 

This paper studies the design, implementation, and perfor- 
mance of heterogeneous distributed shared memory (HDSM). As 
a practical research effort, we have developed a prototype HDSM 
system that integrates very different types of hosts, and have 
ported a number of applications to this system. Our experience 
shows that, despite a number of difficulties in data conversion, 
HDSM is indeed implementable with minimal loss in functional 
and performance transparency when compared to homogeneous 
DSM systems. 

Index Tern-Data consistency, data sharing, distributed com- 
puter systems, distributed shared memory, heterogeneous com- 
puter systems, interprocess communication, parallel computation, 
performance evaluation, virtual memory systems. 

I. INTRODUC~ON 
ISTRIBUTED shared memory (DSM) is a model for D interprocess communication in distributed systems. In the 

DSM model, processes running on separate hosts can access a 
shared address space through normal load and store operations 
and other memory access instructions. The underlying DSM 
system provides its clients with a shared, coherent memory 
address space. Each client can access any memory location in 
the shared address space at any time and see the value last 
written by any client. The primary advantage of DSM is the 
simpler abstraction it provides to the application programmer, 
making it the focus of recent study and implementation 
efforts [lo], [ l l ] ,  [15]-[18], [24], [3], [14], [25]. (See Stumm 
and Zhou [24] for an overview.) The abstraction is one 
the programmer already understands well, since the access 
protocol is consistent with the way sequential applications 
access data. The communication mechanism is entirely hidden 
from the application writer so that the programmer does not 
have to be conscious of data movement between processes, and 
complex data structures can be passed by reference, requiring 
no packing and unpacking. 

In principle, the performance of applications that use DSM 
is expected to be worse than if they use message passing 
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directly, since message passing is a direct extension to the un- 
derlying communication mechanism of the system, and since 
DSM is typically implemented as a separate layer between the 
application and a message passing system. However, several 
implementations of DSM algorithms have demonstrated that 
DSM can be competitive to message passing in terms of 
performance for many applications [5], [18], [ l l ] .  For some 
existing applications, we have found that DSM can result in 
superior performance. This is possible for two reasons. First, 
for many DSM algorithms, data is moved between hosts in 
large blocks. Therefore, if the application exhibits a reasonable 
degree of locality in its data accesses, communication overhead 
is amortized over multiple memory accesses, reducing over- 
all communication requirements. Second, many (distributed) 
parallel applications execute in phases, where each compute 
phase is preceded by a data exchange phase. The time needed 
for the data exchange phase is often dictated by the throughput 
of existing communication bottlenecks. In contrast, DSM 
algorithms typically move data on demand as they are being 
accessed, eliminating the data exchange phase, spreading the 
communication load over a longer period of time, and allowing 
for a greater degree of concurrency. One could argue that 
the above methods of accessing data could be programmed 
using messages, in effect imitating DSM in the individual 
applications. Such programming for communication, however, 
usually represents substantial effort in addition to that for the 
implementation of the application itself. 

The most widely known algorithm for implementing DSM 
is due to Li [17], [18], which is well suited for a large class 
of algorithms. In Li’s algorithm, known as SVM, the shared 
address space is partitioned into pages, and copies of these 
pages are distributed among the hosts, following a multiple- 
reader/single-writer (MRSW) protocol: Pages that are marked 
read-only can be replicated and may reside in the memory of 
several hosts, but a page being written to can reside only in 
the memory of one host. 

One advantage of Li’s algorithm is that it can easily be 
integrated into the virtual memory of the host operating 
system.’ If a shared memory page is held locally at a host, 
it can be mapped into the application’s virtual address space 
on that host and therefore be accessed using normal machine 
instructions for accessing memory. An access to a page not 
held locally triggers a page fault, passing control to a fault 
handler. The fault handler then communicates with the remote 
hosts in order to obtain a valid copy of the page before 
mapping it into the application’s address space. Whenever 

It is for this reason that Li called this algorithm and the concept it supports 
Shared Virtual Memory (SVM). In this paper, the more general term, DSM, 
will be used. 
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a page is migrated away from a host, it is removed from 
any local address space it has been mapped into. Similarly, 
whenever a host attempts to write to a page for which it 
does not have a local copy marked as writable, a page fault 
occurs and the local fault handler communicates with the 
other hosts (after having obtained a copy of the page, if 
necessary) to invalidate all other copies in the system, before 
marking the local copy as writable and allowing the faulted 
process to continue. This protocol is similar to the write- 
invalidate algorithms used for cache consistency in shared- 
memory multiprocessors, except that the basic unit on which 
operations occur is a page instead of a cache line. The DSM 
fault handlers communicate with DSM memory managers, one 
of which runs on each host. Each DSM memory manager 
manipulates local virtual page mapping tables according to 
the MRSW protocol, keeps track of the location of copies of 
each DSM page it manages, and passes pages to requesting 
page fault handlers. In this paper, we assume this protocol for 
supporting DSM. 

For parallel and distributed application programming, dis- 
tributed shared memory can hide communication complexity 
from the application when used on a homogeneous set of hosts. 
DSM in homogeneous systems achieves complete functional 
transparency, in the sense that a program written for a shared 
memory multiprocessor system can run on DSM without 
change. The fact that no physical memory is shared can 
be completely hidden from the applications programmer, as 
can the fact that, to transfer data, messages have to be 
passed between the hosts. On the other hand, performance 
transparency can only be achieved to a limited degree, since 
the physical location(s) of the data being accessed affect 
application performance, whereas in a uniform memory access 
(UMA) multiprocessor, the data access cost is not affected by 
its location in the shared memory. In the case of the MRSW 
protocol, if a page is not available on the local host when being 
accessed, it has to be brought in from another host, causing 
extra delay. 

In this paper, we study how DSM can be extended to 
heterogeneous system environments, and to what degree the 
functional and performance transparency can be maintained. 
Heterogeneity exists in many (if not most) computing envi- 
ronments and is usually unavoidable because hardware and 
its software is often designed for a particular application 
domain. For example, supercomputers and multiprocessors 
are good at compute-intensive applications, but often poor 
at user interfaces and device I/O. Personal computers and 
workstations, on the other hand, usually have very good user 
interfaces. There exist many applications that require sophisti- 
cated user interfaces, dedicated I/O devices, as well as massive 
computing power. Examples of such applications can be found 
in CAD/CAM, artificial intelligence, interactive graphics, and 
interactive simulation. Hence, it is highly desirable to integrate 
heterogeneous machines into a coherent distributed system, 
and to share resources among them. 

Heterogeneity in a distributed system comes in a num- 
ber of forms. The hardware architectures of the machines 
may be different, including the instruction sets, the data 
representations, the hardware page sizes, and the number 

of processors on a host (i.e., uni- or multiprocessors). The 
operating systems, the system and application programming 
languages and their compilers, the types of distributed file 
systems, and the communications protocols may also differ. 

A number of methods have been proposed to achieve 
heterogeneous system integration. (See Notkin et al. [22] for 
an overview.) For example, several remote procedure call 
(RPC) systems enable servers and application software running 
on hosts of different types to communicate [26], [l], [4], 
[12]. Such systems typically define a network standard data 
format for the procedure call and return messages that all 
hosts follow by converting between their local representations 
and this standard. Another method for heterogeneous system 
integration is to build a heterogeneous distributed file system 
[13], [9], [21], [2], [7]. Again, a file system access interface 
and data format is defined that all the hosts must follow to 
share files among them. 

Heterogeneous distributed shared memory (HDSM) is use- 
ful for distributed and parallel applications to exploit resources 
available on multiple types of hosts at the same time. For 
instance, a CAM application controlling a manufacturing line 
in real time would be able to acquire data through I/O devices 
attached to a workstation and output results on its bit-mapped 
display, while doing most of the computation on compute 
servers. With HDSM, not only can workstations and compute 
servers be used simultaneously, but multiple compute servers 
can be used to increase the aggregate amount of computing 
power available to a single application. A similar effort to 
provide heterogeneous distributed shared memory is being 
undertaken by Bisiani and Forin [ l l ]  with their Agora system. 
However, they use a different DSM algorithm (one where 
the shared data is replicated on all hosts accessing the data). 
As discussed by Stumm and Zhou [24], we believe that 
the MRSW protocol performs better for a larger class of 
applications than the fully replicated algorithm used by Bisiani 
and Forin. Forin, Barrera, and Sanzi implemented a shared 
memory server on heterogeneous processors running the Mach 
operating system [ 111. Their work addressed the issues of 
multiple VM page sizes, and the conversion of basic hardware 
data types, such as integer, in the context of Mach. 

This paper studies the design, implementation, and perfor- 
mance of heterogeneous distributed shared memory. As a prac- 
tical research effort, we have developed a prototype HDSM 
system with hosts that differ significantly. Our experience 
shows that, despite a number of difficulties in data conversion, 
HDSM can be implemented while retaining functional and 
performance transparency close to that of homogeneous DSM. 
Very good performance is obtained for a number of sample 
applications running on our prototype. In Section 11, we discuss 
the problems that need to be addressed in order to achieve 
an HDSM system. Although some of the problems are very 
difficult, in Section 111 we show that it is possible to build 
an HDSM system supporting a wide range of applications, 
using our prototype system as an example. The performance 
characteristics of our system, as measured by its overhead and 
the performance of a number of applications running on it, 
are discussed in Section IV. Finally, concluding remarks are 
made in Section V. 
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11. ISSUES RELATED TO HETEROGENEITY 

Since with DSM, the components of a distributed appli- 
cation share memory directly, they are more tightly coupled 
than when data is shared through RPC or a distributed file 
system. For this reason, it is more difficult to extend DSM 
to a heterogeneous system environment. These difficulties are 
explained in this section. Our techniques for overcoming them 
will be discussed in the next section. 

MSB ‘J’ LSB ‘J’ 
‘0’ ‘0’ 
“’ “’ 

LSB “’ MSB “’ 

TABLE I 
BIG-ENDIAN AND LITTLE-ENDIAN BYTE ORDERING 

I Big-Endian I Little-Endian 
Byte char char 

array I i n t  I i n t  arrav 

A. Data Conversion 

Data items may be represented differently on various types 
of hosts due to differences in the machine architectures, 
the programming languages for the applications, and their 
compilers. For data types as simple as integers, the order of the 
bytes can be different. For floating point numbers, the lengths 
of the mantissa and exponent fields, as well as their positions 
can differ. For higher level structured data types (e.g., records, 
arrays), the alignment and order of the components in the data 
structure can differ between hosts. A simple example, depicted 
in Table I, presents two data types, an array of four characters 
and an integer, first in big-endian order and then in little- 
endian order [6]. This example illustrates the type dependent 
differences in data representation that can arise between hosts. 

Sharing data among heterogeneous hosts means that the 
physical representation of the data will have to be converted 
when the data is transferred between hosts of different types. 
In the most general case, data conversion will not only 
incur run-time overhead, but also may be impossible due 
to nonequivalent data content (e.g., lost bits of precision 
in floating point numbers, and mismatch in their ranges of 
representation). This may represent a potential limitation to 
HDSM for some systems and applications. The question that 
needs to be addressed is whether, for a specific set of hosts and 
programming languages, data conversion can be performed 
for all or most data types to form a useful HDSM system 
(i.e., a system that supports a large collection of realistic 
applications). 

B. Thread Management 

As a means of supporting a shared address space, distributed 
shared memory usually goes hand in hand with a thread 
system that allows multiple threads to share the same address 
space. Such a combination makes programming of parallel 
applications particularly easy. In a heterogeneous system envi- 
ronment, the facilities for thread management, which includes 
thread creation, termination, scheduling and synchronization 
primitives, may all be different on different types of hosts, if 
they exist at all. 

Migrating a thread from one host to another in a homoge- 
neous DSM system is usually easy, since minimal context is 
kept for the threads. Typically, the per-thread stack is allocated 
in the shared address space, so the stack need not be moved 
explicitly. The descriptor, or Thread Control Block (TCB), 
constitutes a small amount of data that needs to be moved 
at migration time. In a heterogeneous DSM system, however, 
thread migration is much more difficult. The binary images of 
the program are different, so it is hard to identify “equivalent 

MSB = Most Significant Byte; LSB = Least Significant Byte. 

points of execution” in the binaries (i.e., the places in the 
different binary program images at which execution can be 
suspended and later resumed on another host of a different type 
such that the result of the execution is not affected). Similarly, 
the formats of the threads’ stacks are likely to be different, due 
to architectural, language, and compiler differences; therefore, 
converting the stacks at migration time may be very difficult, 
if not impossible. 

While it is clear that thread migration presents yet another 
limitation to HDSM, its significance is debatable for two 
reasons. First, in HDSM, threads can be created and started 
on remote hosts of any type, thus reducing the need for 
dynamic thread migration. Second, migration between hosts of 
the same type is still easy to achieve in HDSM, and, for many 
applications, this may be all that is required. For an application 
running on a workstation and a set of (homogeneous) compute 
servers, for instance, its threads can freely migrate between the 
compute servers to balance their load. 

C. Page Sizes 
The unit of data managed and transferred by DSM is a data 

block, which we call a DSMpage. In a homogeneous DSM 
system, a DSM page has usually the same size as a native 
virtual memory (VM) page, so that the memory management 
hardware (MMU) can be used to trigger a DSM page fault. In a 
heterogeneous DSM system, the hosts may have different VM 
page sizes, presenting both complexity in the page coherency 
algorithm and opportunity in control of the granularity of data 
sharing. 

D. Uniform File Access 

A DSM system supporting an application running on a 
number of hosts benefits from the existence of a distributed 
file system that allows the threads to open files and perform 
I/O in a uniform way. While this is likely to be the case 
in a modern, homogeneous system, multiple incompatible 
distributed file systems may exist on heterogeneous hosts, due 
to the multiplicity of distributed file system protocols currently 
in existence. A uniform file access interface, encompassing 
both file names and file operations, should be provided to an 
HDSM application. One possibility is to choose one of the 
file systems as the standard and make the other(s) emulate 
it. It is also possible to define an independent file system 
structure, and make the native distributed file systems emulate 
it. Recent research on heterogeneous distributed file system is 
applicable here [7]. Since heterogeneous distributed file system 
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is a research topic on its own, we will not address it any further 
in this paper. 

E.  Programming Languages 

The system programming languages used on the hetero- 
geneous hosts may be different. This implies that multiple 
(more-or-less) equivalent implementations of an HDSM sys- 
tem may have to be done in the various languages. However, 
applications running on HDSM should not be affected by 
the language(s) used to implement HDSM, as long as a 
functionally equivalent application interface is supported by 
HDSM on all the hosts. If a common application programming 
language is available on all the hosts, then the same program 
would be usable on the hosts (with recompilation). Otherwise, 
multiple (equivalent) implementations of an application would 
have to be written, increasing the difficulties in using HDSM 
substantially. 

F. Interhost Communication 

The realization of HDSM requires the existence of a com- 
mon communication protocol between the different types of 
hosts involved. This requirement is not particular to HDSM, 
however, some common transport protocol must exist for the 
hosts to communicate in any case. The availability of the OS1 
and TCPAP protocols on most systems makes the interhost 
communication increasingly feasible. 

111. MERMAID: A PROTOTYPE 
In the preceding section, we identified a number of issues 

that need to be addressed in order to build an HDSM system. 
Instead of studying these issues in the abstract, we have taken 
an experimental approach by designing and building an HDSM 
prototype, Mermaid, and by studying its performance. We 
discuss our experience in this section. Although the techniques 
we used to resolve the issues related to heterogeneity are in 
the context of Mermaid, we believe that most of them are 
generally applicable. For the use of Mermaid, please see [19]. 

A. System Overview 

In selecting the types of hosts participating in Mermaid, 
we wanted to include machines that are sufficiently differ- 
ent, so that the difficult issues arising from heterogeneity 
can be studied. Based on suitability and availability, SunOS 
workstations and DEC Firefly multiprocessors were chosen. 
Sun-3 workstations are based on M68020 CPU’s and run 
Sun’s version of the UNIX operating system, SunOS. The 
system programming language is C .  The Firefly, developed at 
DEC’s System Research Center, is a small-scale multiproces- 

Modula-2+, an augmented version of Modula-2 [23]. Table I1 
highlights the differences between the two types of machines2 

To focus on our research problems, we adopted a system 
architecture for Mermaid similar to that of the IVY system de- 
veloped by Li [17] that uses a page-based MRSW consistency 
protocol, as described in Section I. It consists of three modules, 
as shown in Fig. 1. The thread management module provides 
operations for thread creation, termination, scheduling, as well 
as synchronization primitives. The shared memory module 
allocates and deallocates shared memory and handles page 
faults. It uses a page table for the shared address space 
to maintain data consistency, and performs data conversion 
at page transfer time, if necessary. The responsibility for 
managing the pages is assigned to the participating hosts 
in a round-robin fashion (named fixed-distributed algorithm 
by Li [NI). The above two modules are supported by the 
remote operations module, which implements a simple request- 
response protocol for communication between the hosts. 

We chose to implement Mermaid at the user level, as a 
library package to be linked into application programs using 
DSM. Although a kernel-level implementation would be more 
efficient, the difference in performance is not expected to affect 
applications performance significantly, as evidenced by the 
low overhead of Mermaid which will be discussed in Section 
IV-A. More importantly, a user-level implementation has a 
number of advantages. First, it is more flexible and easier 
to implement; experimentation may be carried out without 
rebooting the hosts. 

Second, several DSM packages can be provided to the appli- 
cations on the same system. Our analysis of the performance 
of applications using different shared data algorithms showed 
that the correct choice of algorithm was often dictated by the 
memory access behavior of the application [24]. It is therefore 
desirable to provide multiple DSM systems employing differ- 
ent algorithms for applications to choose from. A user-level 
implementation makes this much easier. 

Finally, a user-level DSM system is more portable, although 
some small changes to the operating system kernel are still 
needed for some systems. For example, Mermaid requires 
kernel support for setting the access permissions of memory 
pages from the user level, so that a memory access fault is 
generated if a nonresident page is accessed on a host. It was 
necessary to add a new system call to SunOS for this purpose 
(Taos provides such a call). A second change to the operating 
system kernel was to pass the address of the DSM page that 
has an access violation to its user-level fault handler. No other 
kernel changes were necessary for these two host types. 

B. Basic Support 

Programming Languages: As discussed in Section 11-E, it 
is necessary to choose languages for implementing HDSM 
and for implementing applications running on HDSM. While 

processor has a direct-mapped 64 kilobyte cache. The caches 
are coherent, so that all processors within a single Firefly have 
a consistent view of shared memory. The operating system for 
the Firefly is Taos [20], an Ultrix with threads and inexpensive 
thread synchronization. The system programming language is 

HDSM, interfacing HDSM to the native operating systems is 

’The hardware MMU page size on a CVAX is 512 bytes, but the VM 
implementation on the Firefly uses two MMU pages for one VM page of 1 
kilobyte. On the Sun, both the hardware MMU page and the VM page have 
a size of 8 kilobytes. 
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TABLE I1 
HIGHLIGHTS OF THE HETEROGENEOUS FEATURES OF THE SUN AND FIREFLY 

Attribute Sun-3 Firefly 

Processor M68020 CVAX 

Number of processors 
Byte order Little-endian Big-endian 

VM page size 8 kilobytes 1 kilobyte 

Operating system SunOS 3.5 Taos 

System language C Modula-2+ 

Application language C Modula-2+, C 

Thread management unavailable available 
Communication protocol TCP/IP, UDP/IP, Sun RPC UDP/IP subsets, FF RPC 

File system SUN NFS RFS 

1 4-6 (user usable) + 1 (I/O) 

Floating point IEEE VAX 

Thread Mgmt: 
- thre8d creation and 

terminat ion 

- thread migr8tion 
- thread mcheduling 
- thread mynchronizatj 

Shared Memory Mgmt: 
- page tablo 

mu18genmnt 

- DSM 8llocation 

- page f8ult handling 
- dat8 convermionn 

I \  Remote Operations: 
- roquont-romponne 
- requent-fo~w8rd-roply 
- broadcant-reply 

Kernel : I t 
UDP / IP p8gO f8Ult EyEtOIll C8ii to 

nignal with ch8nge VM page 
faulting 8ddr accenn right. 

Fig. 1. Structure of the Mermaid system. 

easier if the native system implementation languages are used. 
For Mermaid, we chose the latter approach by having a C 
implementation for the Sun, and a Modula-2+ implementation 
for the Firefly. As a result, most of the Mermaid functionalities 
had to be implemented twice, and, whenever changes are 
made to Mermaid, both implementations must be modified. 
Though certainly cumbersome, the modification process has 
been relatively straightforward. 

The situation for application programs is quite different, 
since it is highly undesirable to force the user to implement 
an application in multiple languages. We therefore chose C 
as the common application language. We have ported to 
Mermaid a number of large, complex applications originally 
written in C for sequential machines, by only modifying the 
top-level logic to break the computation into parallel tasks, 
(without understanding the low-level algorithms employed 
by the application, which typically constitutes 80-95% of 
the code). This would have been impossible had multiple 
languages been required. 

Communication Substrate: The distributed shared memory 
modules typically operate in a request-response mode. For 
instance, when a page fault occurs, the fault handler sends a 

page request to the manager for this page, which either supplies 
the page, or forward the request to the owner on another host. 
The most suitable protocol for the remote operations module 
is therefore a request-response protocol, with forwarding and 
multicast capabilities. Multicast is used for write invalidation. 

We implemented our own presentation layer protocol in the 
Remote Operations module following the above requirements, 
and use it to support all interactions between the memory and 
thread management modules running on different hosts. This 
presentation layer protocol is implemented using UDP/IP, a 
simple, datagram-based transport protocol. Our implementa- 
tion was complicated by the fact that fragmentation in UDP/IP 
is not supported on the Fireflies, We did not use the RPC 
packages available on the Suns and Fireflies, since they are 
incompatible and do not meet our requirements with respect to 
functionality, i.e., broadcast and forwarding. Moreover, since 
data conversion is performed in HDSM, we need not incur the 
overhead of data marshalling and demarshalling at the RPC 
level. 

Thread Support: Many well established operating systems, 
including SunOS, do not provide direct support for multiple 
threads that share a common address space. Mermaid therefore 
provides a simple thread module at the user level on the Sun. 
Since all threads in a Sun address space run within a single 
Unix process, the suspension of one thread by the operating 
system scheduler (e.g., for synchronous I/O) makes the other 
threads nonexecutable as well. This has not been a problem for 
the Mermaid applications we ported, since parallel applications 
often allocate only one thread on each processor. For the 
Firefly, a system-level thread package is available and is used 
by Mermaid. Mermaid threads in an address space may be 
created on one host and later moved to and started on other 
hosts of any type. Alternatively, threads may be created and 
started on remote hosts directly. However, no dynamic thread 
migration facility is provided in the current implementation of 
Mermaid. 

Parallel executing threads need a way to synchronize. In 
principle, this could be supported by using atomic instructions 
on shared memory locations. In practice, however, this leads 
to an excessive movement of (large) DSM pages between 
the hosts involved. We therefore implemented a separate 
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distributed synchronization facility that provides for more 
efficient P and V operations and events. 

C. Data Conversion 

When data is transferred from a machine of one type to 
a machine of another type, it must be converted before it is 
accessed on the destination machine. In Mermaid, the unit 
of data that is converted is a page, and the conversion is 
based on the type of data stored on the page. Our goals for 
data conversion were to minimize the amount of work the 
user has to do, to make the conversion method as general 
as possible, and to achieve good performance. We adopted a 
three-part conversion scheme for Mermaid. First, the types of 
data to be allocated in the shared memory are indicated in the 
memory allocation requests. Second, routines to convert the 
various types of data are automatically generated by utility 
software. Finally, a mechanism is built into Mermaid SO that 
the appropriate conversion routine is invoked whenever a page 
is transferred. We discuss the three parts in more detail in the 
following sections. 

I )  Typed Data Allocation: The information about the lay- 
out of a page has to be passed to Mermaid so that appropriate 
conversion can be performed upon page transfer. For this 
purpose, we provide a special memory allocation subroutine 
similar to malloc in Unix that has an additional argument 
identifying the type of data being allocated, as shown in 
Fig. 2(b). When processing such a request, the memory 
management module of Mermaid records the range of the 
shared address space allocated for this request, and the data 
type, in the corresponding DSM page table entry or entries. 
There is no restriction as to the type or size of data that can be 
allocated; a structure may be larger than a page. For example, 
Fig. 2(a) depicts a user-defined structure, sharedType, that 
is allocated by the call in Fig. 2(b). 

In principle, multiple types of data could be coallocated in 
the same page, but this makes keeping track of the data types 
complicated and the dynamic data conversion inefficient. We 
therefore made the restriction that a page contain data of one 
type only? so that information with respect to only one data 
type needs to be kept in each HDSM page table entry, and 
only one conversion routine needs to be invoked (which may 
invoke other routines in turn, as will be discussed below). 
Multiple allocation requests for the same type of data may be 
satisfied, fully or partially, by the same page, given that there 
is space in the page. 

Our requirement of allocating only one data type per page 
may result in more memory usage, since now several pages 
may be partially filled, rather than at most one. However, 
the number of pages wasted is limited by the number of 
distinct data types being allocated in the shared memory. 
For modem machines with a large main memory, this is 
typically not a serious problem. Also, as an optimization in 
our implementation, when a partially filled page is being 
transferred, only the part with valid data is transferred and 
converted (if necessary). Despite the increased memory usage, 

3Note that the data type need not be a basic type provided by the 
programming language, but can be an application defined compound type. 

segregating data by types may have the desirable side effect of 
reducing page contention for some applications, if unrelated 
data of different types no longer co-reside in a page. 

2) Automatic Data Conversion: In addition to data type in- 
formation, Mermaid also needs a corresponding conversion 
routine for each type. In Section 11-A, we noted that data 
conversion may not be possible for some types due to differ- 
ences in data content, size, or alignment. Here, we first assume 
that conversion is possible, and discuss a general framework 
for automatically generating the conversion routines. We then 
study the Mermaid case to expose its limitations. 

Conversion Code Generation: In general, a hierarchy of 
conversion routines must be constructed that partially reflects 
the data type hierarchy defined in the application program. 
This hierarchy is partial, because only those types directly 
or indirectly allocated in the shared memory need conversion 
routines. For the basic data types defined by the language and 
supported by the hardware, such as int, short, float, and 
double in C, efficient conversion routines can be provided 
by the HDSM system i t ~ e l f . ~  For user-defined data types, a 
conversion routine is invoked that consists of a sequence of 
calls to lower level routines, mirroring the structure of the data 
type. If an element is of a basic type, then its HDSM routine 
is invoked directly. Otherwise, a routine composed for the 
element is invoked. Ultimately every data type is composed 
of basic types. Fig. 2(c) gives an example of the conversion 
code for user-defined, nested data types. 

We have constructed a fully automatic conversion routine 
generator that processes the compiler output for a program 
and produces all the necessary conversion  routine^.^ The 
conversion routines generated are structural, in that they only 
specify the names of the lower level routines and the order in 
which they should be invoked; the same source code may 
therefore be used on all machines, independent of which 
machine the routines are generated on. The machine-dependent 
basic conversion routines provided by HDSM ensure that the 
conversion is correct on each machine. A number of simple 
optimizations are made in our current implementation. For ex- 
ample, a single routine is called for an array of data elements, 
as shown in Fig. 2(c) for the structure embeddedType. 

In addition to the conversion routines, the generator also 
generates a table matching the data types that are directly spec- 
ified in the memory allocation routines to their corresponding 
conversion routines. This table is used by Mermaid at page 
transfer time to invoke the appropriate conversion routine. 

Feasibility of Conversion: We now address the issue of the 
feasibility of data conversion. Three problems are involved: 
1) the conversion of basic data types, 2) the handling of a 
data item crossing a page boundary, and 3) the handling of 
different ordering of fields in a record. 

On both the Sun and the Firefly, the ASCII standard is used 
for characters (char in C); hence, no character conversion is 
needed. Conversion of integers (either the four-byte int or 
the two-byte short) is a matter of proper byte swapping. 

4These are implemented as inline code for efficiency reasons. 
51t  was necessary to work with the compiler output since we were unable to 

obtain access to the source code or internal documentation for the C compilers 
on both machines. 
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struct mbeddedTyp8 { 
double d; 
char cc81 ; 

/* an 8-byte double precision floating number */ 
/* an array of eight ASCII characters */ 

struct shar8dType 
int *p; 
float b; 
struct embeddedType eC161; 

/* a (4-byte) pointer to an integer */ 
/* a 4-byte single precision floating number */ 
/* an array of 16 records declared above */ 

11; 

(a) 

I ptr = (struct sharedType *) DSM-Alloc((siseof(struct sharedType) * n, “eharedType”); I 

conv-embeddedType(dst, src, numrecords) 
itruct embeddedType dst Cl, srcCl; 
int nllmrecords; 

register struct embeddedType *dstp = dst, *srcp = e x ,  *srcend = tsrcCnumrecords-11 

for (; srcp <= arcend; srcp++, detptt) 

c 

conv-f loat64(dstp->d, srcp->d) ; 
conv-chars(dstp->c,srcp->c, 8) ; 

> 
> 
conv-SharedTypddst, arc, nunrecords) 
struct sharedType dst c1 , arc cl ; 
int numrecords ; 

register struct sharedType *dstp = dst, *srcp = src, *arcend = tsrcCnnmrecords-11; 

for (; srcp <= srcend; srcptt, dstptt) { 

c 

conv-pointer(dstp->p,srcp->p); 
conv-float32(dstp->b, srcp->b) ; 
conv-embeddedType(dstp->e,srcp->e, 16)  ; 

> 
> 

Fig. 2. An example of data conversion. (a) Sample data structure with embedded substructure. (b) Sample allocation statement for the second structure 
in (a). (c) Data conversion routines generated for the structures in (a). 

Conversion of floating point numbers is somewhat more 
complicated. While both the VAX and the IEEE formats of 
single precision floating point numbers (float in C) use 
23 bits to represent a 24 bit mantissa, 7 bits to represent 
the exponent, and 1 bit for the sign, their layout is quite 
different. In the IEEE format, the bits in the mantissa are stored 
contiguously, while in the VAX format they are partitioned 
across bits 0-6 and 16-31. The bias used to represent the 
exponents differ by one in the two formats. Despite these 
differences, equivalent conversion is achievable, except for 
the following special cases. The IEEE format used on the 
Sun supports unnormalized numbers and special cases, such as 
infinity and NAN’S (not a number), which are not supported 
by the VAX format on the Firefly. These cases can be detected 
with two additional comparison operations. The positions 
and lengths of the exponent and mantissa fields may be 
different (such is the case with IEEE and VAX), requiring 
bit manipulation operations. 

The VAX and IEEE formats for representing double pre- 
cision floating point numbers differ more significantly. The 

IEEE format uses an l l-bit  exponent and a 52-bit mantissa, 
whereas the VAX uses an %bit exponent and a 55-bit mantissa. 
Therefore, the smaller exponent field and the smaller mantissa 
field of the two representations dictate the range of (floating 
point) numbers that can be correctly represented on both types 
of machines. 

For pointers, conversion is necessary if the shared address 
space starts at different virtual addresses on different host 
types. The HDSM system on each host may obtain the 
starting address of the shared memory for each host type at 
initialization time by communicating with each other, without 
application intervention. Converting a pointer is then a simple 
matter of adding an offset to the value of the pointer. This is 
the scheme used in Mermaid. 

In Mermaid, all the corresponding basic data types have 
the same sizes, but their alignment requirements may be 
different. For the double type, for instance, Sun requires only 
even-byte alignment, whereas Firefly (VAX) requires quad- 
byte alignment. Thus the size of a compound structure and 
the alignment of the elements in it may be different on the 
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two machines. Our automatic conversion generator detects 
this problem and automatically generates a revised structure 
definition with dummy elements inserted to force data structure 
elements of interest to have the same alignment on both 
machines. The application program is then recompiled on both 
machines with the revised data structure definition and correct 
alignment of corresponding elements is achieved. This process 
will result in some wasted storage on the machine with the 
less strict alignment requirements but it is essential for the 
operation of HDSM. 

In general, it is also possible for a data item to cross a page 
boundary. If the item is a compound structure, and none of its 
basic data items crosses the page boundary, then the partial 
structure on the page to be converted may be copied to a 
temporary buffer (with the missing part of the structure filled 
with some default values taken from a template), where the 
conversion may be performed in-place using the appropriate 
routine. The partial structure is then copied back to the 
appropriate location in the page. If, on the other hand, a 
basic data item crosses a page boundary, then the conversion 
will need the parts on both (neighboring) pages. One of these 
pages may be resident on another host, making it necessary 
for it to be transferred. For certain data types, page-based data 
conversion may not be possible. Consider, for example, an 
integer with its first two bytes at the end of one page, and 
its last two bytes at the beginning of the following page. 
If byte swapping is necessary in converting an integer, then 
transferring one of the two pages between hosts with different 
byte orders can result in the loss of half of the integer, since 
the two pages held by their owner(s) may end up having the 
same two bytes of the integer. Such a problem does not arise 
in Mermaid, since we ensure, by forced alignment, that no 
basic data items cross page boundaries. 

A similar problem arises if compilers on different machines 
ordered the space allocated for the fields of a structure differ- 
ently. Even if no basic data item crosses a page boundary, the 
same field in a structure may be located on different pages, 
depending on the type of machine(s) holding the data. Again, 
neighboring pages would be needed for conversion, and it is 
possible to lose some of the data items during conversion. For 
the C compilers on the Sun and the Firefly, this problem does 
not exist. 

The un ion  structure in C allows various formats for a 
compound data type. Unfortunately, C does not require a tag 
field to indicate the format being used, thus making automatic 
conversion of union structures impossible. In Mermaid, we 
require the user to add a tag field at the beginning of a union 
structure, and to set its value to indicate the interpretation 
of the rest of the structure. Such a requirement would not 
be necessary in more sensibly designed languages, such as 
Pascal and Modula-2. 

3) Dynamic Conversion Mechanism: Once the conversion 
routines are generated as described above, they can be com- 
piled and linked with the user program on each type of 
machine, without additional effort from the user. Upon page 
transfer, the remote machine type is checked, and, if different 
from the local one, the appropriate conversion routine is 
invoked. The conversion mechanism in Mermaid uses the 

data type information stored in the HDSM page table entries, 
and the table matching the data types to their corresponding 
conversion routines produced by the code generator described 
in Section Ill-Cl. 

In our current implementation, conversion is always done by 
the receiving machine. This is desirable for some cases, such as 
when a master thread distributes input data to multiple worker 
threads, because the conversion can be performed by the 
workers in parallel, rather than by the master sequentially. For 
other cases, such as when the master collects results from the 
workers, it is better to have the sending machine perform the 
conversion. Our primary motivation for the current scheme is 
simplicity and transparency. Since only two types of machine 
are involved, data is always converted from the foreign format 
to the native format, rather than using an intermediate, network 
standard format as in some RPC systems [9]. 

4) Limitations: A Summary: The data conversion problem 
is complex. Our experience indicates that our solution is 
sufficient for many practical applications in the context of 
Mermaid, and we believe that it is similar in complexity to 
the solution used by existing heterogeneous RPC schemes 
[26]. However, as pointed out above, our solution does have 
a number of limitations: 

1) Some functional transparency is sacrificed by requir- 
ing the programmer to specify the type of data being 
allocated. This is usually only a small annoyance. 

2) Floating point numbers can lose precision when being 
converted. Since an application does not have direct 
control over how many times a page is migrated be- 
tween hosts of different types and hence converted, the 
numerical accuracy of results may become questionable. 
However, we do not consider this to be a practical 
problem for many environments; for example, in an 
environment consisting of workstations and computation 
servers, data is typically transferred once to the compu- 
tation servers and then transferred back again at the end 
of the computation. The initial (floating point) data and 
final results are not likely to be in the extreme ranges, or 
nonnumbers. During the computation phase, data pages 
may be transferred among the (homogeneous) compute 
servers without conversion. 

3) Entire pages are converted even though only a small 
portion of a page may be accessed before it is transferred 
away. However, we have found that the cost of page 
conversion to be small compared to the overall migration 
cost (to be discussed in Section IV-A). Applications 
that access only a few data items of a page between 
page migrations will perform poorly in both the homo- 
geneous and heterogeneous cases when using a page- 
based MRSW algorithm. A DSM system based on 
the MRSW algorithm performs poorly with this type 
of access behavior in both the homogeneous and the 
heterogeneous cases. 

4) An additional tag field is required in union structures 
in languages such as C and Modula-2; the value of 
the tag must be set by the application to indicate the 
interpretation of data in the structure. 
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5) The order of the fields within compound structures must 
be the same on each host. 

6) A memory page may contain data of only one type, 
which may be a compound type containing multiple data 
items of other types. 

Of the above limitations, the first three are “hard” in that 
they are limitations to our design. The fourth limitation is 
particular to the C language. The fifth is not a problem in 
any of the systems we know of, including the Sun and the 
Firefly. The last limitation is not necessary, but is desirable 
for efficiency. 

D. Page Sizes 

In a heterogeneous system with machines supporting dif- 
ferent VM page sizes, choosing a size for the DSM page 
becomes an important issue. We may use the largest VM 
page size for DSM pages. Since VM page sizes are most 
likely powers of 2, multiple small VM pages fit exactly in 
one DSM page; hence, they can be treated as a group on 
page faults. The potential drawback of such a largest page 
size algorithm is that more data than necessary may be moved 
between hosts with smaller VM page sizes. In severe cases, 
page thrashing may occur, when data items in the same DSM 
page are being updated by multiple hosts at the same time, 
causing large numbers of page transfers among the hosts 
without much progress in the execution of the application. 
While page thrashing may occur with any DSM page size, it 
is more likely with larger DSM page sizes, due to increased 
false sharing, where nonoverlapping regions in the same page 
are shared and updated by threads on different hosts, causing 
repeated page transfers. False sharing should be contrasted to 
real sharing, in which a number of data items are shared and 
updated by multiple hosts. While performance degradation due 
to real sharing is hard to avoid, performance degradation due 
to false sharing can often be reduced by using smaller DSM 
pages.6 

One way to reduce data contention is to use the smallest 
VM page size for the DSM pages. If a page fault occurs on a 
host with a larger page size, multiple DSM pages are moved 
to fill that (larger) page. If a fault occurs on a host with a small 
(DSM) page and no host with a large page size is sharing the 
data, then only this small (DSM) page needs to be obtained. 
We call this the smallest page size algorithm.’ 

Typically, if page thrashing does not occur, more DSM page 
faults occur on hosts with small VM page sizes, resulting 
in more fault handling overhead and (small) page transfers. 
Although intermediate DSM page sizes are possible, the 
above two algorithms represent the two extremes of the page 
size algorithms. We have implemented both algorithms in 
Mermaid, and the performance comparison between them will 
be discussed in Section IV-C2. 

6False sharing can also be reduced by rearranging memory layout, so that 
data that would be falsely shared if placed on the same page is assigned to 
different pages. 

’The actual algorithm must differentiate between many cases depending on 
the type of page fault (read or write), the page sizes of the requesting and the 
owner hosts, and how the page is currently being shared (what type of hosts 
have read/write accesses). 

IV. PERFORMANCE EVALUATION 

We have performed a number of experiments on our pro- 
totype Mermaid system in order to study the impacts of 
heterogeneity on the performance of distributed shared mem- 
ory systems. Along the way, some performance aspects of 
distributed shared memory in general are also studied. In 
the following, we first discuss a number of overhead mea- 
surements, followed by the response time measurements of 
three Mermaid applications. We then assess the performance 
impact of DSM page size algorithms and page thrashing. All 
measurements were performed on Sun3160 workstations and 
Fireflies. The measured hosts were idle during the experiments, 
except for the activities being studied. The results we observed 
were very stable (except for the page thrashing cases to be 
discussed in Section IV-C2). The Mermaid prototype is not 
fine-tuned to achieve optimal performance, since our goal is 
not to push the performance of HDSM to its limit, but to assess 
its practical value in terms of its performance and ability in 
supporting applications. 

A. Overhead Assessment 

Compared to physical shared memory, distributed shared 
memory has a number of additional overheads. Since data is 
no longer physically shared, DSM pages need to be moved 
between hosts upon page faults, typically over a slow, bit-serial 
network, such as the Ethernet. In a user-level implementation, 
the access rights of the DSM pages have to be set, and DSM 
page faults have to be passed to the user level. The allocation 
of shared memory, thread scheduling, and thread synchroniza- 
tion also introduce overhead, but they are relatively small 
compared to the communication overheads. Finally, for het- 
erogeneous systems, the costs of data conversion and the page 
size algorithm must be added. 

The basic costs of handling a page fault in Mermaid are 
shown in Table 111. Included are the invocation of the user- 
level handler, the identification of page fault type (read or 
write), the HDSM page table processing, and the request 
message transmission time.’ The delay in transferring the 
page over the network is not included. The values of a few 
milliseconds are considered to be quite small. The costs on 
the Fireflies are higher, due to the higher overhead of the page 
fault handling mechanism for access violation (about 4.5 ms 
or higher). The operating system kernel, the “nub,” of Taos 
version 72.4 on the Fireflies, considers access violation fault 
to be a rare case. 

Table IV shows the costs of transferring 8 kilobyte and 1 
kilobyte pages between hosts. The higher cost when the Firefly 
is involved is partially due to user level message fragmentation 
and reassembly processing. The costs for 8 kilobyte transfers 
are only about three times that of 1 kilobyte transfers, due to 
the fixed portion of the cost of the message transport. Hence, in 
the absence of page thrashing, larger DSM pages incur fewer 
page faults and lower data transfer overhead. 

8To collect the data for this and subsequent overhead measurements, the 
Mermaid system was slightly modified so that a large number of the same 
operation (e.g., 100 000) are performed in a sequence, and the total elapsed 
time measured. 



ZHOU et al. : HETEROGENEOUS DISTRIBUTED SHARED MEMORY 

Sun Firefly page 8 kilobyte page 
data type Sun Firefly Read 1.98 6.80 --- 
int 5.01 7.75 Write 3 n4 6 70 

549 

1 kilobyte 
Sun Firefly 
0.63 1 .oo 

TABLE I11 
COSTS OF PAGE FAULT HANDLING (ms) 

~~ ~ 

page size 8 kilobyte 

TABLE V 
COSTS OF DATA CONVERSIONS (ms) 

1 kilobyte 

. . __._ . . 

1.15 
13.9 I 1.68 

short 6.53 
float I 9.72 
double TABLE IV 

COSTS OF TRANSFERRING A PAGE (mS) 

to Firefly I Sun Firefly 

7.6 

Firefly Sun I 25 27 33 I ::: 6.7 

18 

The measured costs of converting a page of integers, shorts, 
floating point numbers (single and double precision), and the 
user-defined structure of Fig. 2(a) on a Sun3/60 and a Firefly 
are shown in Table V. In all of the cases except that of 
double on Fireflies, the conversion costs are substantially 
lower than those of page transfer. The cost of converting an 
1 kilobyte page is approximately 118 of that for an 8 kilobyte 
page. It is interesting to note that the overhead for converting 
the user-defined structure with an embedded structure is not 
much larger than that for the basic types. We also measured 
several other user data structures and found their conversion 
costs to be comparable. 

To consider the combined effects of the overhead costs 
discussed above, we show the end-to-end page fault delays for 
different types of hosts in Table VI. Three different scenarios 
are considered, depending on the locations of the host on which 
the thread triggering the page fault resides (Requester), the host 
acting as the manager for the page (Manager), and the host 
currently having ownership of the page (Owner). While the 
Requester and the Owner are always different (otherwise there 
would not be a page fault in the first place), the Requester and 
the Manager, or the Manager and the Owner may be the same 
host. The cost for (integer) data conversion is included when 
the Requester and Owner hosts are of different types. The 
measurements are based on the largest page size algorithm, 
so the values are for 8 kilobyte pages only. The costs for 
read and write page faults were found to be very similar. 
The HDSM page fault delay is comparable to that of a VM 
page fault involving a disk seek. The costs of page faults 
involving both the Sun and the Firefly are very comparable 
to the homogeneous case of Firefly, but higher than that 
of Sun, partly due to user-level message fragmentation and 
reassembly. As with traditional VM, if the HDSM fault rate is 
not excessive, the application's performance under distributed 
shared memory may be close to that under physical shared 
memory. 

B. Evaluation of Application Performance 

1) Three Sample Applications: While the cost measure- 
ments above are useful in assessing the performance penalty of 
distributed shared memory, the most direct measure of DSM 
performance is the execution times of applications. One of the 

applications we implemented on Mermaid is a parallel version 
of matrix multiplication (MM) in which the computation of the 
rows in the result matrix is performed by a number of threads 
running simultaneously, each on a separate processor. The 
result matrix is divided into a number of groups of adjacent 
rows equal to the number of threads, and assigned to the 
threads. The result matrix is write-shared among the threads, 
whereas the two argument matrices are only read-shared, and 
can hence be replicated. At the end of the computation, pieces 
of the result matrix are transferred (implicitly) to the master 
thread, which creates and coordinates the activities of the slave 
threads, but performs no multiplication itself. Except where 
noted, the experiments discussed below use 512 x 512 matrices 
of double' numbers. 

Another application we converted to run under Mermaid is 
a program that detects flaws in printed circuit boards (PCB). 
Two digital images (front- and back-lit) of a sample PCB 
are taken by a camera, digitized, and then transferred to a 
workstation to be stored as large matrices. The software then 
checks the geometric features on the board, such as conductors, 
wire holes, and spacing between them. If design rule violations 
are found, they are high-lighted in a third image, which is 
displayed on the workstation, so that a human decision may 
be made to rectify the problem. The amount of computation 
involved in the rule checking is substantial: on a Firefly, it 
takes about 11 min to process a 2 cm x 32 cm area using a 
sequential version of the software. Obviously, speeding up the 
execution would make the feedback on the manufacturing line 
more timely, reducing the number of boards that may have 
to be discarded. A suitable computing environment for on- 
line PCB inspection is a workstation with bit-mapped display, 
coupled with compute servers on which the checking software 
runs in parallel. We therefore used Mermaid as a prototype 
for such a system. Our version of the PCB software has a 
master thread that runs on a Sun, divides the board area into 
stripes, and creates threads on the Fireflies to check them." 
All data including the raw and processed images, and the data 
structures containing the design rules and the flaw statistics 
are allocated in the DSM space, and are properly converted 
when transferred between the Sun master and the Firefly slave 
threads. For our measurements, an area of 2 cm x 32 cm is 
used. 

A third application we used to study Mermaid performance 
is a partial differential equation solver that uses the Successive 

64-bit, double precision floating point numbers. 
"Small overlaps of the stripes are necessary so that features on the borders 

are checked properly. 
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Sun-Sun Ffly-Sun Sun-Ffly 

R W R w R W 

W + O  26.4 26.7 47.7 48.3 56.3 47.8 
R+M/O 29.6 27.9 50.9 51.6 58.6 59.4 

R-M-+O 31.7 31.3 54.7 55.5 61.9 61.3 

Ffly-Ffly 

R W 

46.5 46.4 
49.6 49.1 
54.4 53.6 

TABLE VI1 Over-Relaxation method (SOR). Data is represented as a large 
. I  

SPEEDUPS OF MATRIX MULTIPLICATION WHEN two-dimensional matrix. With the boundary values fixed, the 
internal values are then iteratively updated to be the average of 

EXECUTED ON ONE OR MULTIPLE FIREFLIES 

the values of their four neighbors, until they converge. While 
this application is again based on large matrices (so we can 
partition the computation along with the data by assigning 
groups of adjacent rows of the matrix to the threads on 
various Fireflies), its data access behavior is quite different 
from the above two applications. The threads update values 
in their regions asynchronously with each other. The entries 
in the matrix are updated many times, and, for each iteration, 
the neighboring entries in the neighboring rows are needed. 
Thus, page sharing occurs in every iteration, and the number 
of iterations generally grows with the size of the matrix. 
Furthermore, to reach a decision on global convergence, 
the local convergence condition of each thread needs to be 
recorded in a shared array, and is checked by all threads. 
Given the simple model of data sharing used in Mermaid, 
it is interesting to see if page thrashing can be avoided, and 
good speedup can be achieved. For the experiments described 
below, a matrix of 128 x 816 of double numbers is used. 

2) Physical Versus Distributed Shared Memory: Since the 
Firefly is a multiprocessor, we are able to compare the 
performance of physical shared memory to that of distributed 
shared memory. The same number of threads are either 
allocated to the processors on the same Firefly or to multiple 
Fireflies, (with one thread on each). The speedups of MM 
for both cases are shown in Table VII, for up to a maximum 
number of four threads. The slightly worse performance for 
the distributed case is due mainly to the cost of transferring 
pages between the machines. As also observed with the PCB 
and SOR applications, the penalty for running in a distributed 
system depends on the costs of data distribution and replication 
and the costs of data consistency and less so on the costs 
of data conversion. The distribution and replication costs 
are determined by the underlying communication and data 
conversion costs, whereas data conversion costs also depend 
on the applications’ data access behaviors. 

3) Heterogeneous Versus Homogeneous Shared Memory: To 
assess the effect of heterogeneity, we measured the response 
times of the three sample applications with a number of threads 
running on one or multiple Fireflies, and the master thread 
running on a Sun3160. This is a representative configuration 
of heterogeneous distributed shared memory that takes advan- 
tages of both the user-friendly programming environment on 
a workstation, and the computing power of the background 
server hosts. Compared to the similar case in which both 

number of processors 

1 2 3 4  

physical shared memory 1.00 1.98 3.00 3.97 
distributed shared memory 0.97 1.91 2.87 3.32 

the master and the slave threads run on Fireflies, very little 
performance difference is observed. In the first case, pages 
of the matrices are moved from the Sun to the Fireflies 
and the result matrix is then moved back to the Sun after 
the computation; all data movements are accompanied by 
appropriate data conversions. No data conversion is needed 
for the homogeneous case. This is further evidence that data 
conversion does not add significant overhead to HDSM. 

4) Application Performance with HDSM: The speedup 
curves of the MM, PCB, and SOR applications running on 
Mermaid are shown in Figs. 3, 4, and 5. The speedups 
are computed with respect to a sequential execution on a 
Firefly. For all the data points, the master thread is located 
on a separate Sun3160. One to four Fireflies are used, and 
the numbers of threads allocated to each are approximately 
balanced. Better performance was observed using the largest 
page size algorithm for MM and PCB, while for SOR the 
smallest page size algorithm produced the best results (to be 
discussed further in Section IV-C2). For MM, performance 
improvements are observed as more and more threads are 
added to the computation, up to 18, the maximum number 
of Firefly processors available, for a maximum speedup of 12. 

For PCB, there are two additional limitations to speedup: 
First, the volume of data to be transferred is very high (about 5 
megabytes for each image), incurring substantial synchronous 
delays to remote worker threads as parts of the images are 
faulted in from the master. Second, the overlapping areas of the 
images must be processed by two threads, and represent extra 
computation, which grows as more threads are used. Despite 
these limitations, good speedup (up to 10 using 14 threads on 
four Fireflies) were still observed. Hence, the checking can 
now be completed in 65 s on four Fireflies, instead of 11 min 
in the sequential case. In some cases, super-linear speedup was 
observed. This is due to a reduction in the VM working set, 
as the data is partitioned among more and more processors 
where CPU caching becomes more effective. This observation 
is analogous to one made by Li with respect to main memory 
and VM paging [17]. 

The performance of SOR is comparable to that of MM, 
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Fig. 3. Matrix multiplication with master on Sun and slaves on one to four Fireflies. 
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PCB with master on Sun and slaves on one to four Fireflies. Fig. 4. 
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Fig. 5. SOR with master on Sun and slaves on one to four Fireflies. 

despite the large numbers of iterations made by the threads, 
causing many page faults on the pages that are shared by 
threads running on different Fireflies. Thrashing does not 
usually happen, since an iteration for each thread takes 150 
ms or more, whereas a fault on an 1 kilobyte page only takes 

approximately 15 ms. 
The same application has been studied in the Amber system 

at the University of Washington [8]. In Amber, an object- 
oriented approach is used for parallel application support. For 
the SOR application, the Amber implementation partitions 
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the matrix into groups of rows called section objects, and 
stores one section object on each of the Fireflies. Multiple 
computation threads on each Firefly work on the local section 
object in parallel, and a separate communication thread on 
each Firefly sends the boundary rows of the section object 
to the neighboring Fireflies as the rows are updated. Thus, 
the potential of data contention in Mermaid is avoided in 
Amber, and the computing threads never have to stop for data. 
With the limited number of processors we have, however, our 
results are very comparable to those of Amber's on problems 
of similar sizes. (A 122 x 842 matrix was used with Amber.) 
Programming an application on Mermaid, on the other hand, 
is much simpler than on Amber, because communication is 
completely hidden in the shared memory system model. 

It is interesting to note that physical shared memory is 
treated as a special case of distributed shared memory in Mer- 
maid; the two types of memory are fully integrated throughout 
the heterogeneous system base, and the performance potential 
of such a system is well explored (in the sense that physical 
shared memory is used if present and distributed shared mem- 
ory is used otherwise). Also, the number of machines involved 
does not affect the performance of any of the three applications 
much, as evidenced by the close clustering of the curves in 
Figs. 3, 4, and 5. The feasibility and performance potential 
of HDSM systems are therefore clearly demonstrated by these 
experiments, at least for certain classes of applications. 

Besides the data sizes used in the above experiments, we 
also measured the performance of the three applications with 
several other data sizes to force the same DSM pages to be 
shared among multiple hosts. No significant changes to the 
speedup values were found from those presented above. 

C. Effects of the Page Size Algorithms and Page Thrashing 

To assess the effects of page thrashing due to data contention 
among threads, and to study the relationship between page 
size and thrashing, we conducted a number of experiments 
using two different implementations of matrix multiplication. 
The first, MM1, assigns large groups of rows of the result 
matrix to each thread," the second, MM2, assigns rows to 
threads in a round-robin fashion. MM2 is expected to have 
more data contention on its DSM pages and is intended to 
represent the class of applications with this behavior. By using 
matrix multiplication for both, we are able to eliminate other 
factors affecting the performance of parallel applications, such 
as scalability and the size of data sets. 

1) Effects of Page Size Algorithms and Locality: We com- 
pared the performance of MM1 using the largest page size 
algorithm to that using the smallest page size algorithm, 
and found that there is a small but definite degradation 
in performance when using smaller page sizes, due to an 
increased number of page faults on the Fireflies (see Fig. 6). 

Since MM2 divides the result matrix into rows for the 
slave threads (4 kilobyte, or 512 double floats each), and 
since the smallest page size algorithm operates on 1 kilobyte 
pages, we expected the degradation of MM2 over MM1 using 
this smallest page size algorithm to be very small, which 

"MM1 is the implementation of MM being used so far. 

we verified experimentally (results not presented here). The 
degradation is slightly greater with 256 x 256 matrices of 
integers, where one DSM page of 1 kilobyte holds one row of 
the matrix (256 integers). Using integers instead of double 
precision floating point numbers, together with the smaller 
matrices, accentuates the importance of communication and 
locality. 

2) Thrashing: The most likely case for thrashing is MM2 
with the largest page size algorithm, where an 8 kilobyte page 
is shared by up to 8 threads running on several Fireflies. 
We ran MM2 with various numbers of threads on two or 
three Fireflies. The corresponding execution times we observed 
fluctuated greatly, even between consecutive runs of identical 
setup. Speedup relative to the sequential case was rarely 
observed, while execution times up to 10 times of that of the 
sequential case were measured. Examination of the detailed 
statistics of the numbers of page faults and transfers revealed 
that a large number of pages were being transferred between 
the Fireflies; the performance degradation and unpredictable 
fluctuations were clearly due to page thrashing. 

From the above experiments, it may be concluded that if 
the locality in the application's data accesses is very good, 
large DSM page sizes may generate less overhead and better 
performance. If data in small ranges of the DSM space 
are updated by separate threads, however, performance may 
degrade greatly using large pages due to false sharing, and 
small page sizes are more likely to provide stable performance. 

Our experience with a number of applications shows that 
small, seemingly minor changes to an implementation of an ap- 
plication may result in very different data sharing patterns and 
drastically different performance. MMl versus MM2, using the 
largest page size algorithm, is such an example. For the SOR 
application, we initially implemented the algorithm so that 
each thread, during each iteration, updated the data elements 
in its portion of the matrix from top to bottom, thus sharing 
data with neighboring threads in every iteration. The resulting 
performance was unsatisfactory due to the frequent read-write 
sharing. We then changed the algorithm such that each thread 
updated the data elements in its portion of the matrix from 
top to bottom to top. Performance is improved substantially 
because the number of times the boundary rows are worked 
on is reduced by half, and the amount of computation in 
between such shared data zones is doubled. Consequently, 
data movement between machines and the possibility of data 
contention are reduced, and better speedups are observed (as 
shown in Fig. 5). 

V. CONCLUDING REMARKS 

In this paper, we discussed the main issues and solutions 
of building a DSM system on a network of heterogeneous 
machines. As a practical research effort, we designed and 
implemented an HDSM system, Mermaid, for a network of 
Sun workstations and Firefly multiprocessors, and we ported 
a number of applications to Mermaid. We conclude that 
heterogeneous DSM is indeed feasible. From a functional 
point of view, we showed that little transparency need be 
lost due to heterogeneity. The most important problem is data 
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Fig. 6. Response times of MMl using the largest (smallest) page size algorithms. 

conversion. Our solution requires that the user specify the type 
of data being allocated in the HDSM space, which is usually 
natural to the programmer. For different representations of 
floating point numbers, equivalent data conversion may be 
impossible for extreme values. However, with the increasing 
use of the IEEE floating point standard, this may be considered 
to be a passing problem. We were able to easily integrate our 
HDSM system into the physical shared memory system on the 
Firefly, allowing the programmer to exploit both physical and 
distributed shared memory using one and the same mechanism. 

From a performance point of view, we again showed that 
little transparency is lost due to heterogeneity; that is, our 
heterogeneous DSM implementation performs comparably to 
an equivalent homogeneous DSM system. Overall, we have 
found that the cost of data conversion does not substantially 
increase the cost of paging across the network. Other aspects 
of heterogeneity, such as accommodating different page sizes 
and user-level processing of messages, also do not contribute 
significantly to the DSM overhead. The presence of multiple 
VM page sizes on different types of machines presents appli- 
cations with the opportunity of selecting the DSM page size 
according to their data access patterns; we noticed substantial 
performance gains in using suitable DSM page sizes. 

Our measured performance results corroborate the results 
of other researchers in that distributed shared memory can 
be competitive to the direct use of message passing, for a 
reasonably large class of applications. In some cases, they 
actually outperform their message passing counterparts, even 
though the shared memory system is implemented in a layer 
on top of a message passing system. 

Although our prototype Mermaid system integrates only two 
types of hosts, we believe that the techniques we developed to 
accommodate heterogeneity are easily extensible to more than 
two types of hosts, without significant additional overhead. 
For conversion of user-defined data types, the same conversion 
routines can be used on all machines since the routines only 
contain structural information. However, for the basic types, 
separate conversion routines need to be written for each 
(ordered) pair of machines, with a total of N x ( N  - 1) 
routines for each basic data type allocated in the HDSM space. 

For the implementor of the HDSM system, this is a one-time 
only effort and is transparent to the application programmer. 
In contrast, defining a network standard data format would 
decrease the conversion coding effort, but increase the run- 
time conversion overhead. 
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