
540 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 5, SEPTEMBER 1992

Heterogeneous Distributed Shared Memory
Songnian Zhou, Member, IEEE, Michael Stumm, Member, IEEE, Kai Li, and David Wortman, Member, IEEE

Abstract-Heterogeneity in distributed systems is increasingly
a fact of life, due to specialization of computing equipment. It is
highly desirable to integrate heterogeneous hosts into a coherent
computing environment to support distributed and parallel appli-
cations, so that the individual strengths of the different hosts can
be exploited together. Distributed shared memory (DSM), a high-
level, highly transparent model for interprocess communication
in distributed systems, is a promising vehicle for achieving such
an integration.

This paper studies the design, implementation, and perfor-
mance of heterogeneous distributed shared memory (HDSM). As
a practical research effort, we have developed a prototype HDSM
system that integrates very different types of hosts, and have
ported a number of applications to this system. Our experience
shows that, despite a number of difficulties in data conversion,
HDSM is indeed implementable with minimal loss in functional
and performance transparency when compared to homogeneous
DSM systems.

Index Tern-Data consistency, data sharing, distributed com-
puter systems, distributed shared memory, heterogeneous com-
puter systems, interprocess communication, parallel computation,
performance evaluation, virtual memory systems.

I. INTRODUC~ON
ISTRIBUTED shared memory (DSM) is a model for D interprocess communication in distributed systems. In the

DSM model, processes running on separate hosts can access a
shared address space through normal load and store operations
and other memory access instructions. The underlying DSM
system provides its clients with a shared, coherent memory
address space. Each client can access any memory location in
the shared address space at any time and see the value last
written by any client. The primary advantage of DSM is the
simpler abstraction it provides to the application programmer,
making it the focus of recent study and implementation
efforts [lo], [l l] , [15]-[18], [24], [3], [14], [25]. (See Stumm
and Zhou [24] for an overview.) The abstraction is one
the programmer already understands well, since the access
protocol is consistent with the way sequential applications
access data. The communication mechanism is entirely hidden
from the application writer so that the programmer does not
have to be conscious of data movement between processes, and
complex data structures can be passed by reference, requiring
no packing and unpacking.

In principle, the performance of applications that use DSM
is expected to be worse than if they use message passing

Manuscript received July 19, 1990; revised June 19, 1991.
S. Zhou, M. Stumm, and D. Wortman are with the Computer Systems

K. Li is with the Department of Computer Science, Princeton University,

IEEE Log Number 9202077.

Research Institute, University of Toronto, Toronto, Ont., Canada M5S 1A4.

Princeton, NJ.

directly, since message passing is a direct extension to the un-
derlying communication mechanism of the system, and since
DSM is typically implemented as a separate layer between the
application and a message passing system. However, several
implementations of DSM algorithms have demonstrated that
DSM can be competitive to message passing in terms of
performance for many applications [5], [18], [l l] . For some
existing applications, we have found that DSM can result in
superior performance. This is possible for two reasons. First,
for many DSM algorithms, data is moved between hosts in
large blocks. Therefore, if the application exhibits a reasonable
degree of locality in its data accesses, communication overhead
is amortized over multiple memory accesses, reducing over-
all communication requirements. Second, many (distributed)
parallel applications execute in phases, where each compute
phase is preceded by a data exchange phase. The time needed
for the data exchange phase is often dictated by the throughput
of existing communication bottlenecks. In contrast, DSM
algorithms typically move data on demand as they are being
accessed, eliminating the data exchange phase, spreading the
communication load over a longer period of time, and allowing
for a greater degree of concurrency. One could argue that
the above methods of accessing data could be programmed
using messages, in effect imitating DSM in the individual
applications. Such programming for communication, however,
usually represents substantial effort in addition to that for the
implementation of the application itself.

The most widely known algorithm for implementing DSM
is due to Li [17], [18], which is well suited for a large class
of algorithms. In Li’s algorithm, known as SVM, the shared
address space is partitioned into pages, and copies of these
pages are distributed among the hosts, following a multiple-
reader/single-writer (MRSW) protocol: Pages that are marked
read-only can be replicated and may reside in the memory of
several hosts, but a page being written to can reside only in
the memory of one host.

One advantage of Li’s algorithm is that it can easily be
integrated into the virtual memory of the host operating
system.’ If a shared memory page is held locally at a host,
it can be mapped into the application’s virtual address space
on that host and therefore be accessed using normal machine
instructions for accessing memory. An access to a page not
held locally triggers a page fault, passing control to a fault
handler. The fault handler then communicates with the remote
hosts in order to obtain a valid copy of the page before
mapping it into the application’s address space. Whenever

It is for this reason that Li called this algorithm and the concept it supports
Shared Virtual Memory (SVM). In this paper, the more general term, DSM,
will be used.

1045-9219/92$03 1.00 0 1992 IEEE

ZHOU et 01.: HETEROGENEOUS DISTRIBUTED SHARED MEMORY 541

a page is migrated away from a host, it is removed from
any local address space it has been mapped into. Similarly,
whenever a host attempts to write to a page for which it
does not have a local copy marked as writable, a page fault
occurs and the local fault handler communicates with the
other hosts (after having obtained a copy of the page, if
necessary) to invalidate all other copies in the system, before
marking the local copy as writable and allowing the faulted
process to continue. This protocol is similar to the write-
invalidate algorithms used for cache consistency in shared-
memory multiprocessors, except that the basic unit on which
operations occur is a page instead of a cache line. The DSM
fault handlers communicate with DSM memory managers, one
of which runs on each host. Each DSM memory manager
manipulates local virtual page mapping tables according to
the MRSW protocol, keeps track of the location of copies of
each DSM page it manages, and passes pages to requesting
page fault handlers. In this paper, we assume this protocol for
supporting DSM.

For parallel and distributed application programming, dis-
tributed shared memory can hide communication complexity
from the application when used on a homogeneous set of hosts.
DSM in homogeneous systems achieves complete functional
transparency, in the sense that a program written for a shared
memory multiprocessor system can run on DSM without
change. The fact that no physical memory is shared can
be completely hidden from the applications programmer, as
can the fact that, to transfer data, messages have to be
passed between the hosts. On the other hand, performance
transparency can only be achieved to a limited degree, since
the physical location(s) of the data being accessed affect
application performance, whereas in a uniform memory access
(UMA) multiprocessor, the data access cost is not affected by
its location in the shared memory. In the case of the MRSW
protocol, if a page is not available on the local host when being
accessed, it has to be brought in from another host, causing
extra delay.

In this paper, we study how DSM can be extended to
heterogeneous system environments, and to what degree the
functional and performance transparency can be maintained.
Heterogeneity exists in many (if not most) computing envi-
ronments and is usually unavoidable because hardware and
its software is often designed for a particular application
domain. For example, supercomputers and multiprocessors
are good at compute-intensive applications, but often poor
at user interfaces and device I/O. Personal computers and
workstations, on the other hand, usually have very good user
interfaces. There exist many applications that require sophisti-
cated user interfaces, dedicated I/O devices, as well as massive
computing power. Examples of such applications can be found
in CAD/CAM, artificial intelligence, interactive graphics, and
interactive simulation. Hence, it is highly desirable to integrate
heterogeneous machines into a coherent distributed system,
and to share resources among them.

Heterogeneity in a distributed system comes in a num-
ber of forms. The hardware architectures of the machines
may be different, including the instruction sets, the data
representations, the hardware page sizes, and the number

of processors on a host (i.e., uni- or multiprocessors). The
operating systems, the system and application programming
languages and their compilers, the types of distributed file
systems, and the communications protocols may also differ.

A number of methods have been proposed to achieve
heterogeneous system integration. (See Notkin et al. [22] for
an overview.) For example, several remote procedure call
(RPC) systems enable servers and application software running
on hosts of different types to communicate [26], [l], [4],
[12]. Such systems typically define a network standard data
format for the procedure call and return messages that all
hosts follow by converting between their local representations
and this standard. Another method for heterogeneous system
integration is to build a heterogeneous distributed file system
[13], [9], [21], [2], [7]. Again, a file system access interface
and data format is defined that all the hosts must follow to
share files among them.

Heterogeneous distributed shared memory (HDSM) is use-
ful for distributed and parallel applications to exploit resources
available on multiple types of hosts at the same time. For
instance, a CAM application controlling a manufacturing line
in real time would be able to acquire data through I/O devices
attached to a workstation and output results on its bit-mapped
display, while doing most of the computation on compute
servers. With HDSM, not only can workstations and compute
servers be used simultaneously, but multiple compute servers
can be used to increase the aggregate amount of computing
power available to a single application. A similar effort to
provide heterogeneous distributed shared memory is being
undertaken by Bisiani and Forin [l l] with their Agora system.
However, they use a different DSM algorithm (one where
the shared data is replicated on all hosts accessing the data).
As discussed by Stumm and Zhou [24], we believe that
the MRSW protocol performs better for a larger class of
applications than the fully replicated algorithm used by Bisiani
and Forin. Forin, Barrera, and Sanzi implemented a shared
memory server on heterogeneous processors running the Mach
operating system [111. Their work addressed the issues of
multiple VM page sizes, and the conversion of basic hardware
data types, such as integer, in the context of Mach.

This paper studies the design, implementation, and perfor-
mance of heterogeneous distributed shared memory. As a prac-
tical research effort, we have developed a prototype HDSM
system with hosts that differ significantly. Our experience
shows that, despite a number of difficulties in data conversion,
HDSM can be implemented while retaining functional and
performance transparency close to that of homogeneous DSM.
Very good performance is obtained for a number of sample
applications running on our prototype. In Section 11, we discuss
the problems that need to be addressed in order to achieve
an HDSM system. Although some of the problems are very
difficult, in Section 111 we show that it is possible to build
an HDSM system supporting a wide range of applications,
using our prototype system as an example. The performance
characteristics of our system, as measured by its overhead and
the performance of a number of applications running on it,
are discussed in Section IV. Finally, concluding remarks are
made in Section V.

542 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 5, SEPTEMBER 1992

i
i + l
i + 2
i + 3

11. ISSUES RELATED TO HETEROGENEITY

Since with DSM, the components of a distributed appli-
cation share memory directly, they are more tightly coupled
than when data is shared through RPC or a distributed file
system. For this reason, it is more difficult to extend DSM
to a heterogeneous system environment. These difficulties are
explained in this section. Our techniques for overcoming them
will be discussed in the next section.

MSB ‘J’ LSB ‘J’
‘0’ ‘0’
“’ “’

LSB “’ MSB “’

TABLE I
BIG-ENDIAN AND LITTLE-ENDIAN BYTE ORDERING

I Big-Endian I Little-Endian
Byte char char

array I i n t I i n t arrav

A. Data Conversion

Data items may be represented differently on various types
of hosts due to differences in the machine architectures,
the programming languages for the applications, and their
compilers. For data types as simple as integers, the order of the
bytes can be different. For floating point numbers, the lengths
of the mantissa and exponent fields, as well as their positions
can differ. For higher level structured data types (e.g., records,
arrays), the alignment and order of the components in the data
structure can differ between hosts. A simple example, depicted
in Table I, presents two data types, an array of four characters
and an integer, first in big-endian order and then in little-
endian order [6]. This example illustrates the type dependent
differences in data representation that can arise between hosts.

Sharing data among heterogeneous hosts means that the
physical representation of the data will have to be converted
when the data is transferred between hosts of different types.
In the most general case, data conversion will not only
incur run-time overhead, but also may be impossible due
to nonequivalent data content (e.g., lost bits of precision
in floating point numbers, and mismatch in their ranges of
representation). This may represent a potential limitation to
HDSM for some systems and applications. The question that
needs to be addressed is whether, for a specific set of hosts and
programming languages, data conversion can be performed
for all or most data types to form a useful HDSM system
(i.e., a system that supports a large collection of realistic
applications).

B. Thread Management

As a means of supporting a shared address space, distributed
shared memory usually goes hand in hand with a thread
system that allows multiple threads to share the same address
space. Such a combination makes programming of parallel
applications particularly easy. In a heterogeneous system envi-
ronment, the facilities for thread management, which includes
thread creation, termination, scheduling and synchronization
primitives, may all be different on different types of hosts, if
they exist at all.

Migrating a thread from one host to another in a homoge-
neous DSM system is usually easy, since minimal context is
kept for the threads. Typically, the per-thread stack is allocated
in the shared address space, so the stack need not be moved
explicitly. The descriptor, or Thread Control Block (TCB),
constitutes a small amount of data that needs to be moved
at migration time. In a heterogeneous DSM system, however,
thread migration is much more difficult. The binary images of
the program are different, so it is hard to identify “equivalent

MSB = Most Significant Byte; LSB = Least Significant Byte.

points of execution” in the binaries (i.e., the places in the
different binary program images at which execution can be
suspended and later resumed on another host of a different type
such that the result of the execution is not affected). Similarly,
the formats of the threads’ stacks are likely to be different, due
to architectural, language, and compiler differences; therefore,
converting the stacks at migration time may be very difficult,
if not impossible.

While it is clear that thread migration presents yet another
limitation to HDSM, its significance is debatable for two
reasons. First, in HDSM, threads can be created and started
on remote hosts of any type, thus reducing the need for
dynamic thread migration. Second, migration between hosts of
the same type is still easy to achieve in HDSM, and, for many
applications, this may be all that is required. For an application
running on a workstation and a set of (homogeneous) compute
servers, for instance, its threads can freely migrate between the
compute servers to balance their load.

C. Page Sizes
The unit of data managed and transferred by DSM is a data

block, which we call a DSMpage. In a homogeneous DSM
system, a DSM page has usually the same size as a native
virtual memory (VM) page, so that the memory management
hardware (MMU) can be used to trigger a DSM page fault. In a
heterogeneous DSM system, the hosts may have different VM
page sizes, presenting both complexity in the page coherency
algorithm and opportunity in control of the granularity of data
sharing.

D. Uniform File Access

A DSM system supporting an application running on a
number of hosts benefits from the existence of a distributed
file system that allows the threads to open files and perform
I/O in a uniform way. While this is likely to be the case
in a modern, homogeneous system, multiple incompatible
distributed file systems may exist on heterogeneous hosts, due
to the multiplicity of distributed file system protocols currently
in existence. A uniform file access interface, encompassing
both file names and file operations, should be provided to an
HDSM application. One possibility is to choose one of the
file systems as the standard and make the other(s) emulate
it. It is also possible to define an independent file system
structure, and make the native distributed file systems emulate
it. Recent research on heterogeneous distributed file system is
applicable here [7]. Since heterogeneous distributed file system

ZHOU et al. : HETEROGENEOUS DISTRIBUTED SHARED MEMORY 543

is a research topic on its own, we will not address it any further
in this paper.

E. Programming Languages

The system programming languages used on the hetero-
geneous hosts may be different. This implies that multiple
(more-or-less) equivalent implementations of an HDSM sys-
tem may have to be done in the various languages. However,
applications running on HDSM should not be affected by
the language(s) used to implement HDSM, as long as a
functionally equivalent application interface is supported by
HDSM on all the hosts. If a common application programming
language is available on all the hosts, then the same program
would be usable on the hosts (with recompilation). Otherwise,
multiple (equivalent) implementations of an application would
have to be written, increasing the difficulties in using HDSM
substantially.

F. Interhost Communication

The realization of HDSM requires the existence of a com-
mon communication protocol between the different types of
hosts involved. This requirement is not particular to HDSM,
however, some common transport protocol must exist for the
hosts to communicate in any case. The availability of the OS1
and TCPAP protocols on most systems makes the interhost
communication increasingly feasible.

111. MERMAID: A PROTOTYPE
In the preceding section, we identified a number of issues

that need to be addressed in order to build an HDSM system.
Instead of studying these issues in the abstract, we have taken
an experimental approach by designing and building an HDSM
prototype, Mermaid, and by studying its performance. We
discuss our experience in this section. Although the techniques
we used to resolve the issues related to heterogeneity are in
the context of Mermaid, we believe that most of them are
generally applicable. For the use of Mermaid, please see [19].

A. System Overview

In selecting the types of hosts participating in Mermaid,
we wanted to include machines that are sufficiently differ-
ent, so that the difficult issues arising from heterogeneity
can be studied. Based on suitability and availability, SunOS
workstations and DEC Firefly multiprocessors were chosen.
Sun-3 workstations are based on M68020 CPU’s and run
Sun’s version of the UNIX operating system, SunOS. The
system programming language is C . The Firefly, developed at
DEC’s System Research Center, is a small-scale multiproces-

Modula-2+, an augmented version of Modula-2 [23]. Table I1
highlights the differences between the two types of machines2

To focus on our research problems, we adopted a system
architecture for Mermaid similar to that of the IVY system de-
veloped by Li [17] that uses a page-based MRSW consistency
protocol, as described in Section I. It consists of three modules,
as shown in Fig. 1. The thread management module provides
operations for thread creation, termination, scheduling, as well
as synchronization primitives. The shared memory module
allocates and deallocates shared memory and handles page
faults. It uses a page table for the shared address space
to maintain data consistency, and performs data conversion
at page transfer time, if necessary. The responsibility for
managing the pages is assigned to the participating hosts
in a round-robin fashion (named fixed-distributed algorithm
by Li [NI). The above two modules are supported by the
remote operations module, which implements a simple request-
response protocol for communication between the hosts.

We chose to implement Mermaid at the user level, as a
library package to be linked into application programs using
DSM. Although a kernel-level implementation would be more
efficient, the difference in performance is not expected to affect
applications performance significantly, as evidenced by the
low overhead of Mermaid which will be discussed in Section
IV-A. More importantly, a user-level implementation has a
number of advantages. First, it is more flexible and easier
to implement; experimentation may be carried out without
rebooting the hosts.

Second, several DSM packages can be provided to the appli-
cations on the same system. Our analysis of the performance
of applications using different shared data algorithms showed
that the correct choice of algorithm was often dictated by the
memory access behavior of the application [24]. It is therefore
desirable to provide multiple DSM systems employing differ-
ent algorithms for applications to choose from. A user-level
implementation makes this much easier.

Finally, a user-level DSM system is more portable, although
some small changes to the operating system kernel are still
needed for some systems. For example, Mermaid requires
kernel support for setting the access permissions of memory
pages from the user level, so that a memory access fault is
generated if a nonresident page is accessed on a host. It was
necessary to add a new system call to SunOS for this purpose
(Taos provides such a call). A second change to the operating
system kernel was to pass the address of the DSM page that
has an access violation to its user-level fault handler. No other
kernel changes were necessary for these two host types.

B. Basic Support

Programming Languages: As discussed in Section 11-E, it
is necessary to choose languages for implementing HDSM
and for implementing applications running on HDSM. While

processor has a direct-mapped 64 kilobyte cache. The caches
are coherent, so that all processors within a single Firefly have
a consistent view of shared memory. The operating system for
the Firefly is Taos [20], an Ultrix with threads and inexpensive
thread synchronization. The system programming language is

HDSM, interfacing HDSM to the native operating systems is

’The hardware MMU page size on a CVAX is 512 bytes, but the VM
implementation on the Firefly uses two MMU pages for one VM page of 1
kilobyte. On the Sun, both the hardware MMU page and the VM page have
a size of 8 kilobytes.

544 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 5, SEPTEMBER 1992

TABLE I1
HIGHLIGHTS OF THE HETEROGENEOUS FEATURES OF THE SUN AND FIREFLY

Attribute Sun-3 Firefly

Processor M68020 CVAX

Number of processors
Byte order Little-endian Big-endian

VM page size 8 kilobytes 1 kilobyte

Operating system SunOS 3.5 Taos

System language C Modula-2+

Application language C Modula-2+, C

Thread management unavailable available
Communication protocol TCP/IP, UDP/IP, Sun RPC UDP/IP subsets, FF RPC

File system SUN NFS RFS

1 4-6 (user usable) + 1 (I/O)

Floating point IEEE VAX

Thread Mgmt:
- thre8d creation and

terminat ion

- thread migr8tion
- thread mcheduling
- thread mynchronizatj

Shared Memory Mgmt:
- page tablo

mu18genmnt

- DSM 8llocation

- page f8ult handling
- dat8 convermionn

I \ Remote Operations:
- roquont-romponne
- requent-fo~w8rd-roply
- broadcant-reply

Kernel : I t
UDP / IP p8gO f8Ult EyEtOIll C8ii to

nignal with ch8nge VM page
faulting 8ddr accenn right.

Fig. 1. Structure of the Mermaid system.

easier if the native system implementation languages are used.
For Mermaid, we chose the latter approach by having a C
implementation for the Sun, and a Modula-2+ implementation
for the Firefly. As a result, most of the Mermaid functionalities
had to be implemented twice, and, whenever changes are
made to Mermaid, both implementations must be modified.
Though certainly cumbersome, the modification process has
been relatively straightforward.

The situation for application programs is quite different,
since it is highly undesirable to force the user to implement
an application in multiple languages. We therefore chose C
as the common application language. We have ported to
Mermaid a number of large, complex applications originally
written in C for sequential machines, by only modifying the
top-level logic to break the computation into parallel tasks,
(without understanding the low-level algorithms employed
by the application, which typically constitutes 80-95% of
the code). This would have been impossible had multiple
languages been required.

Communication Substrate: The distributed shared memory
modules typically operate in a request-response mode. For
instance, when a page fault occurs, the fault handler sends a

page request to the manager for this page, which either supplies
the page, or forward the request to the owner on another host.
The most suitable protocol for the remote operations module
is therefore a request-response protocol, with forwarding and
multicast capabilities. Multicast is used for write invalidation.

We implemented our own presentation layer protocol in the
Remote Operations module following the above requirements,
and use it to support all interactions between the memory and
thread management modules running on different hosts. This
presentation layer protocol is implemented using UDP/IP, a
simple, datagram-based transport protocol. Our implementa-
tion was complicated by the fact that fragmentation in UDP/IP
is not supported on the Fireflies, We did not use the RPC
packages available on the Suns and Fireflies, since they are
incompatible and do not meet our requirements with respect to
functionality, i.e., broadcast and forwarding. Moreover, since
data conversion is performed in HDSM, we need not incur the
overhead of data marshalling and demarshalling at the RPC
level.

Thread Support: Many well established operating systems,
including SunOS, do not provide direct support for multiple
threads that share a common address space. Mermaid therefore
provides a simple thread module at the user level on the Sun.
Since all threads in a Sun address space run within a single
Unix process, the suspension of one thread by the operating
system scheduler (e.g., for synchronous I/O) makes the other
threads nonexecutable as well. This has not been a problem for
the Mermaid applications we ported, since parallel applications
often allocate only one thread on each processor. For the
Firefly, a system-level thread package is available and is used
by Mermaid. Mermaid threads in an address space may be
created on one host and later moved to and started on other
hosts of any type. Alternatively, threads may be created and
started on remote hosts directly. However, no dynamic thread
migration facility is provided in the current implementation of
Mermaid.

Parallel executing threads need a way to synchronize. In
principle, this could be supported by using atomic instructions
on shared memory locations. In practice, however, this leads
to an excessive movement of (large) DSM pages between
the hosts involved. We therefore implemented a separate

ZHOU et al.: HETEROGENEOUS DISTRIBUTED SHARED MEMORY 545

distributed synchronization facility that provides for more
efficient P and V operations and events.

C. Data Conversion

When data is transferred from a machine of one type to
a machine of another type, it must be converted before it is
accessed on the destination machine. In Mermaid, the unit
of data that is converted is a page, and the conversion is
based on the type of data stored on the page. Our goals for
data conversion were to minimize the amount of work the
user has to do, to make the conversion method as general
as possible, and to achieve good performance. We adopted a
three-part conversion scheme for Mermaid. First, the types of
data to be allocated in the shared memory are indicated in the
memory allocation requests. Second, routines to convert the
various types of data are automatically generated by utility
software. Finally, a mechanism is built into Mermaid SO that
the appropriate conversion routine is invoked whenever a page
is transferred. We discuss the three parts in more detail in the
following sections.

I) Typed Data Allocation: The information about the lay-
out of a page has to be passed to Mermaid so that appropriate
conversion can be performed upon page transfer. For this
purpose, we provide a special memory allocation subroutine
similar to malloc in Unix that has an additional argument
identifying the type of data being allocated, as shown in
Fig. 2(b). When processing such a request, the memory
management module of Mermaid records the range of the
shared address space allocated for this request, and the data
type, in the corresponding DSM page table entry or entries.
There is no restriction as to the type or size of data that can be
allocated; a structure may be larger than a page. For example,
Fig. 2(a) depicts a user-defined structure, sharedType, that
is allocated by the call in Fig. 2(b).

In principle, multiple types of data could be coallocated in
the same page, but this makes keeping track of the data types
complicated and the dynamic data conversion inefficient. We
therefore made the restriction that a page contain data of one
type only? so that information with respect to only one data
type needs to be kept in each HDSM page table entry, and
only one conversion routine needs to be invoked (which may
invoke other routines in turn, as will be discussed below).
Multiple allocation requests for the same type of data may be
satisfied, fully or partially, by the same page, given that there
is space in the page.

Our requirement of allocating only one data type per page
may result in more memory usage, since now several pages
may be partially filled, rather than at most one. However,
the number of pages wasted is limited by the number of
distinct data types being allocated in the shared memory.
For modem machines with a large main memory, this is
typically not a serious problem. Also, as an optimization in
our implementation, when a partially filled page is being
transferred, only the part with valid data is transferred and
converted (if necessary). Despite the increased memory usage,

3Note that the data type need not be a basic type provided by the
programming language, but can be an application defined compound type.

segregating data by types may have the desirable side effect of
reducing page contention for some applications, if unrelated
data of different types no longer co-reside in a page.

2) Automatic Data Conversion: In addition to data type in-
formation, Mermaid also needs a corresponding conversion
routine for each type. In Section 11-A, we noted that data
conversion may not be possible for some types due to differ-
ences in data content, size, or alignment. Here, we first assume
that conversion is possible, and discuss a general framework
for automatically generating the conversion routines. We then
study the Mermaid case to expose its limitations.

Conversion Code Generation: In general, a hierarchy of
conversion routines must be constructed that partially reflects
the data type hierarchy defined in the application program.
This hierarchy is partial, because only those types directly
or indirectly allocated in the shared memory need conversion
routines. For the basic data types defined by the language and
supported by the hardware, such as int, short, float, and
double in C, efficient conversion routines can be provided
by the HDSM system i t ~ e l f . ~ For user-defined data types, a
conversion routine is invoked that consists of a sequence of
calls to lower level routines, mirroring the structure of the data
type. If an element is of a basic type, then its HDSM routine
is invoked directly. Otherwise, a routine composed for the
element is invoked. Ultimately every data type is composed
of basic types. Fig. 2(c) gives an example of the conversion
code for user-defined, nested data types.

We have constructed a fully automatic conversion routine
generator that processes the compiler output for a program
and produces all the necessary conversion routine^.^ The
conversion routines generated are structural, in that they only
specify the names of the lower level routines and the order in
which they should be invoked; the same source code may
therefore be used on all machines, independent of which
machine the routines are generated on. The machine-dependent
basic conversion routines provided by HDSM ensure that the
conversion is correct on each machine. A number of simple
optimizations are made in our current implementation. For ex-
ample, a single routine is called for an array of data elements,
as shown in Fig. 2(c) for the structure embeddedType.

In addition to the conversion routines, the generator also
generates a table matching the data types that are directly spec-
ified in the memory allocation routines to their corresponding
conversion routines. This table is used by Mermaid at page
transfer time to invoke the appropriate conversion routine.

Feasibility of Conversion: We now address the issue of the
feasibility of data conversion. Three problems are involved:
1) the conversion of basic data types, 2) the handling of a
data item crossing a page boundary, and 3) the handling of
different ordering of fields in a record.

On both the Sun and the Firefly, the ASCII standard is used
for characters (char in C); hence, no character conversion is
needed. Conversion of integers (either the four-byte int or
the two-byte short) is a matter of proper byte swapping.

4These are implemented as inline code for efficiency reasons.
51t was necessary to work with the compiler output since we were unable to

obtain access to the source code or internal documentation for the C compilers
on both machines.

546 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 5, SEPTEMBER 1992

struct mbeddedTyp8 {
double d;
char cc81 ;

/* an 8-byte double precision floating number */
/* an array of eight ASCII characters */

struct shar8dType
int *p;
float b;
struct embeddedType eC161;

/* a (4-byte) pointer to an integer */
/* a 4-byte single precision floating number */
/* an array of 16 records declared above */

11;

(a)

I ptr = (struct sharedType *) DSM-Alloc((siseof(struct sharedType) * n, “eharedType”); I

conv-embeddedType(dst, src, numrecords)
itruct embeddedType dst Cl, srcCl;
int nllmrecords;

register struct embeddedType *dstp = dst, *srcp = e x , *srcend = tsrcCnumrecords-11

for (; srcp <= arcend; srcp++, detptt)

c

conv-f loat64(dstp->d, srcp->d) ;
conv-chars(dstp->c,srcp->c, 8) ;

>
>
conv-SharedTypddst, arc, nunrecords)
struct sharedType dst c1 , arc cl ;
int numrecords ;

register struct sharedType *dstp = dst, *srcp = src, *arcend = tsrcCnnmrecords-11;

for (; srcp <= srcend; srcptt, dstptt) {

c

conv-pointer(dstp->p,srcp->p);
conv-float32(dstp->b, srcp->b) ;
conv-embeddedType(dstp->e,srcp->e, 16) ;

>
>

Fig. 2. An example of data conversion. (a) Sample data structure with embedded substructure. (b) Sample allocation statement for the second structure
in (a). (c) Data conversion routines generated for the structures in (a).

Conversion of floating point numbers is somewhat more
complicated. While both the VAX and the IEEE formats of
single precision floating point numbers (float in C) use
23 bits to represent a 24 bit mantissa, 7 bits to represent
the exponent, and 1 bit for the sign, their layout is quite
different. In the IEEE format, the bits in the mantissa are stored
contiguously, while in the VAX format they are partitioned
across bits 0-6 and 16-31. The bias used to represent the
exponents differ by one in the two formats. Despite these
differences, equivalent conversion is achievable, except for
the following special cases. The IEEE format used on the
Sun supports unnormalized numbers and special cases, such as
infinity and NAN’S (not a number), which are not supported
by the VAX format on the Firefly. These cases can be detected
with two additional comparison operations. The positions
and lengths of the exponent and mantissa fields may be
different (such is the case with IEEE and VAX), requiring
bit manipulation operations.

The VAX and IEEE formats for representing double pre-
cision floating point numbers differ more significantly. The

IEEE format uses an l l-bit exponent and a 52-bit mantissa,
whereas the VAX uses an %bit exponent and a 55-bit mantissa.
Therefore, the smaller exponent field and the smaller mantissa
field of the two representations dictate the range of (floating
point) numbers that can be correctly represented on both types
of machines.

For pointers, conversion is necessary if the shared address
space starts at different virtual addresses on different host
types. The HDSM system on each host may obtain the
starting address of the shared memory for each host type at
initialization time by communicating with each other, without
application intervention. Converting a pointer is then a simple
matter of adding an offset to the value of the pointer. This is
the scheme used in Mermaid.

In Mermaid, all the corresponding basic data types have
the same sizes, but their alignment requirements may be
different. For the double type, for instance, Sun requires only
even-byte alignment, whereas Firefly (VAX) requires quad-
byte alignment. Thus the size of a compound structure and
the alignment of the elements in it may be different on the

ZHOU et al.: HETEROGENEOUS DISTRIBUTED SHARED MEMORY 541

two machines. Our automatic conversion generator detects
this problem and automatically generates a revised structure
definition with dummy elements inserted to force data structure
elements of interest to have the same alignment on both
machines. The application program is then recompiled on both
machines with the revised data structure definition and correct
alignment of corresponding elements is achieved. This process
will result in some wasted storage on the machine with the
less strict alignment requirements but it is essential for the
operation of HDSM.

In general, it is also possible for a data item to cross a page
boundary. If the item is a compound structure, and none of its
basic data items crosses the page boundary, then the partial
structure on the page to be converted may be copied to a
temporary buffer (with the missing part of the structure filled
with some default values taken from a template), where the
conversion may be performed in-place using the appropriate
routine. The partial structure is then copied back to the
appropriate location in the page. If, on the other hand, a
basic data item crosses a page boundary, then the conversion
will need the parts on both (neighboring) pages. One of these
pages may be resident on another host, making it necessary
for it to be transferred. For certain data types, page-based data
conversion may not be possible. Consider, for example, an
integer with its first two bytes at the end of one page, and
its last two bytes at the beginning of the following page.
If byte swapping is necessary in converting an integer, then
transferring one of the two pages between hosts with different
byte orders can result in the loss of half of the integer, since
the two pages held by their owner(s) may end up having the
same two bytes of the integer. Such a problem does not arise
in Mermaid, since we ensure, by forced alignment, that no
basic data items cross page boundaries.

A similar problem arises if compilers on different machines
ordered the space allocated for the fields of a structure differ-
ently. Even if no basic data item crosses a page boundary, the
same field in a structure may be located on different pages,
depending on the type of machine(s) holding the data. Again,
neighboring pages would be needed for conversion, and it is
possible to lose some of the data items during conversion. For
the C compilers on the Sun and the Firefly, this problem does
not exist.

The un ion structure in C allows various formats for a
compound data type. Unfortunately, C does not require a tag
field to indicate the format being used, thus making automatic
conversion of union structures impossible. In Mermaid, we
require the user to add a tag field at the beginning of a union
structure, and to set its value to indicate the interpretation
of the rest of the structure. Such a requirement would not
be necessary in more sensibly designed languages, such as
Pascal and Modula-2.

3) Dynamic Conversion Mechanism: Once the conversion
routines are generated as described above, they can be com-
piled and linked with the user program on each type of
machine, without additional effort from the user. Upon page
transfer, the remote machine type is checked, and, if different
from the local one, the appropriate conversion routine is
invoked. The conversion mechanism in Mermaid uses the

data type information stored in the HDSM page table entries,
and the table matching the data types to their corresponding
conversion routines produced by the code generator described
in Section Ill-Cl.

In our current implementation, conversion is always done by
the receiving machine. This is desirable for some cases, such as
when a master thread distributes input data to multiple worker
threads, because the conversion can be performed by the
workers in parallel, rather than by the master sequentially. For
other cases, such as when the master collects results from the
workers, it is better to have the sending machine perform the
conversion. Our primary motivation for the current scheme is
simplicity and transparency. Since only two types of machine
are involved, data is always converted from the foreign format
to the native format, rather than using an intermediate, network
standard format as in some RPC systems [9].

4) Limitations: A Summary: The data conversion problem
is complex. Our experience indicates that our solution is
sufficient for many practical applications in the context of
Mermaid, and we believe that it is similar in complexity to
the solution used by existing heterogeneous RPC schemes
[26]. However, as pointed out above, our solution does have
a number of limitations:

1) Some functional transparency is sacrificed by requir-
ing the programmer to specify the type of data being
allocated. This is usually only a small annoyance.

2) Floating point numbers can lose precision when being
converted. Since an application does not have direct
control over how many times a page is migrated be-
tween hosts of different types and hence converted, the
numerical accuracy of results may become questionable.
However, we do not consider this to be a practical
problem for many environments; for example, in an
environment consisting of workstations and computation
servers, data is typically transferred once to the compu-
tation servers and then transferred back again at the end
of the computation. The initial (floating point) data and
final results are not likely to be in the extreme ranges, or
nonnumbers. During the computation phase, data pages
may be transferred among the (homogeneous) compute
servers without conversion.

3) Entire pages are converted even though only a small
portion of a page may be accessed before it is transferred
away. However, we have found that the cost of page
conversion to be small compared to the overall migration
cost (to be discussed in Section IV-A). Applications
that access only a few data items of a page between
page migrations will perform poorly in both the homo-
geneous and heterogeneous cases when using a page-
based MRSW algorithm. A DSM system based on
the MRSW algorithm performs poorly with this type
of access behavior in both the homogeneous and the
heterogeneous cases.

4) An additional tag field is required in union structures
in languages such as C and Modula-2; the value of
the tag must be set by the application to indicate the
interpretation of data in the structure.

-

548 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 5, SEPTEMBER 1992

5) The order of the fields within compound structures must
be the same on each host.

6) A memory page may contain data of only one type,
which may be a compound type containing multiple data
items of other types.

Of the above limitations, the first three are “hard” in that
they are limitations to our design. The fourth limitation is
particular to the C language. The fifth is not a problem in
any of the systems we know of, including the Sun and the
Firefly. The last limitation is not necessary, but is desirable
for efficiency.

D. Page Sizes

In a heterogeneous system with machines supporting dif-
ferent VM page sizes, choosing a size for the DSM page
becomes an important issue. We may use the largest VM
page size for DSM pages. Since VM page sizes are most
likely powers of 2, multiple small VM pages fit exactly in
one DSM page; hence, they can be treated as a group on
page faults. The potential drawback of such a largest page
size algorithm is that more data than necessary may be moved
between hosts with smaller VM page sizes. In severe cases,
page thrashing may occur, when data items in the same DSM
page are being updated by multiple hosts at the same time,
causing large numbers of page transfers among the hosts
without much progress in the execution of the application.
While page thrashing may occur with any DSM page size, it
is more likely with larger DSM page sizes, due to increased
false sharing, where nonoverlapping regions in the same page
are shared and updated by threads on different hosts, causing
repeated page transfers. False sharing should be contrasted to
real sharing, in which a number of data items are shared and
updated by multiple hosts. While performance degradation due
to real sharing is hard to avoid, performance degradation due
to false sharing can often be reduced by using smaller DSM
pages.6

One way to reduce data contention is to use the smallest
VM page size for the DSM pages. If a page fault occurs on a
host with a larger page size, multiple DSM pages are moved
to fill that (larger) page. If a fault occurs on a host with a small
(DSM) page and no host with a large page size is sharing the
data, then only this small (DSM) page needs to be obtained.
We call this the smallest page size algorithm.’

Typically, if page thrashing does not occur, more DSM page
faults occur on hosts with small VM page sizes, resulting
in more fault handling overhead and (small) page transfers.
Although intermediate DSM page sizes are possible, the
above two algorithms represent the two extremes of the page
size algorithms. We have implemented both algorithms in
Mermaid, and the performance comparison between them will
be discussed in Section IV-C2.

6False sharing can also be reduced by rearranging memory layout, so that
data that would be falsely shared if placed on the same page is assigned to
different pages.

’The actual algorithm must differentiate between many cases depending on
the type of page fault (read or write), the page sizes of the requesting and the
owner hosts, and how the page is currently being shared (what type of hosts
have read/write accesses).

IV. PERFORMANCE EVALUATION

We have performed a number of experiments on our pro-
totype Mermaid system in order to study the impacts of
heterogeneity on the performance of distributed shared mem-
ory systems. Along the way, some performance aspects of
distributed shared memory in general are also studied. In
the following, we first discuss a number of overhead mea-
surements, followed by the response time measurements of
three Mermaid applications. We then assess the performance
impact of DSM page size algorithms and page thrashing. All
measurements were performed on Sun3160 workstations and
Fireflies. The measured hosts were idle during the experiments,
except for the activities being studied. The results we observed
were very stable (except for the page thrashing cases to be
discussed in Section IV-C2). The Mermaid prototype is not
fine-tuned to achieve optimal performance, since our goal is
not to push the performance of HDSM to its limit, but to assess
its practical value in terms of its performance and ability in
supporting applications.

A. Overhead Assessment

Compared to physical shared memory, distributed shared
memory has a number of additional overheads. Since data is
no longer physically shared, DSM pages need to be moved
between hosts upon page faults, typically over a slow, bit-serial
network, such as the Ethernet. In a user-level implementation,
the access rights of the DSM pages have to be set, and DSM
page faults have to be passed to the user level. The allocation
of shared memory, thread scheduling, and thread synchroniza-
tion also introduce overhead, but they are relatively small
compared to the communication overheads. Finally, for het-
erogeneous systems, the costs of data conversion and the page
size algorithm must be added.

The basic costs of handling a page fault in Mermaid are
shown in Table 111. Included are the invocation of the user-
level handler, the identification of page fault type (read or
write), the HDSM page table processing, and the request
message transmission time.’ The delay in transferring the
page over the network is not included. The values of a few
milliseconds are considered to be quite small. The costs on
the Fireflies are higher, due to the higher overhead of the page
fault handling mechanism for access violation (about 4.5 ms
or higher). The operating system kernel, the “nub,” of Taos
version 72.4 on the Fireflies, considers access violation fault
to be a rare case.

Table IV shows the costs of transferring 8 kilobyte and 1
kilobyte pages between hosts. The higher cost when the Firefly
is involved is partially due to user level message fragmentation
and reassembly processing. The costs for 8 kilobyte transfers
are only about three times that of 1 kilobyte transfers, due to
the fixed portion of the cost of the message transport. Hence, in
the absence of page thrashing, larger DSM pages incur fewer
page faults and lower data transfer overhead.

8To collect the data for this and subsequent overhead measurements, the
Mermaid system was slightly modified so that a large number of the same
operation (e.g., 100 000) are performed in a sequence, and the total elapsed
time measured.

ZHOU et al. : HETEROGENEOUS DISTRIBUTED SHARED MEMORY

Sun Firefly page 8 kilobyte page
data type Sun Firefly Read 1.98 6.80 ---
int 5.01 7.75 Write 3 n4 6 70

549

1 kilobyte
Sun Firefly
0.63 1 .oo

TABLE I11
COSTS OF PAGE FAULT HANDLING (ms)

~~ ~

page size 8 kilobyte

TABLE V
COSTS OF DATA CONVERSIONS (ms)

1 kilobyte

. . __._ . .

1.15
13.9 I 1.68

short 6.53
float I 9.72
double TABLE IV

COSTS OF TRANSFERRING A PAGE (mS)

to Firefly I Sun Firefly

7.6

Firefly Sun I 25 27 33 I ::: 6.7

18

The measured costs of converting a page of integers, shorts,
floating point numbers (single and double precision), and the
user-defined structure of Fig. 2(a) on a Sun3/60 and a Firefly
are shown in Table V. In all of the cases except that of
double on Fireflies, the conversion costs are substantially
lower than those of page transfer. The cost of converting an
1 kilobyte page is approximately 118 of that for an 8 kilobyte
page. It is interesting to note that the overhead for converting
the user-defined structure with an embedded structure is not
much larger than that for the basic types. We also measured
several other user data structures and found their conversion
costs to be comparable.

To consider the combined effects of the overhead costs
discussed above, we show the end-to-end page fault delays for
different types of hosts in Table VI. Three different scenarios
are considered, depending on the locations of the host on which
the thread triggering the page fault resides (Requester), the host
acting as the manager for the page (Manager), and the host
currently having ownership of the page (Owner). While the
Requester and the Owner are always different (otherwise there
would not be a page fault in the first place), the Requester and
the Manager, or the Manager and the Owner may be the same
host. The cost for (integer) data conversion is included when
the Requester and Owner hosts are of different types. The
measurements are based on the largest page size algorithm,
so the values are for 8 kilobyte pages only. The costs for
read and write page faults were found to be very similar.
The HDSM page fault delay is comparable to that of a VM
page fault involving a disk seek. The costs of page faults
involving both the Sun and the Firefly are very comparable
to the homogeneous case of Firefly, but higher than that
of Sun, partly due to user-level message fragmentation and
reassembly. As with traditional VM, if the HDSM fault rate is
not excessive, the application's performance under distributed
shared memory may be close to that under physical shared
memory.

B. Evaluation of Application Performance

1) Three Sample Applications: While the cost measure-
ments above are useful in assessing the performance penalty of
distributed shared memory, the most direct measure of DSM
performance is the execution times of applications. One of the

applications we implemented on Mermaid is a parallel version
of matrix multiplication (MM) in which the computation of the
rows in the result matrix is performed by a number of threads
running simultaneously, each on a separate processor. The
result matrix is divided into a number of groups of adjacent
rows equal to the number of threads, and assigned to the
threads. The result matrix is write-shared among the threads,
whereas the two argument matrices are only read-shared, and
can hence be replicated. At the end of the computation, pieces
of the result matrix are transferred (implicitly) to the master
thread, which creates and coordinates the activities of the slave
threads, but performs no multiplication itself. Except where
noted, the experiments discussed below use 512 x 512 matrices
of double' numbers.

Another application we converted to run under Mermaid is
a program that detects flaws in printed circuit boards (PCB).
Two digital images (front- and back-lit) of a sample PCB
are taken by a camera, digitized, and then transferred to a
workstation to be stored as large matrices. The software then
checks the geometric features on the board, such as conductors,
wire holes, and spacing between them. If design rule violations
are found, they are high-lighted in a third image, which is
displayed on the workstation, so that a human decision may
be made to rectify the problem. The amount of computation
involved in the rule checking is substantial: on a Firefly, it
takes about 11 min to process a 2 cm x 32 cm area using a
sequential version of the software. Obviously, speeding up the
execution would make the feedback on the manufacturing line
more timely, reducing the number of boards that may have
to be discarded. A suitable computing environment for on-
line PCB inspection is a workstation with bit-mapped display,
coupled with compute servers on which the checking software
runs in parallel. We therefore used Mermaid as a prototype
for such a system. Our version of the PCB software has a
master thread that runs on a Sun, divides the board area into
stripes, and creates threads on the Fireflies to check them."
All data including the raw and processed images, and the data
structures containing the design rules and the flaw statistics
are allocated in the DSM space, and are properly converted
when transferred between the Sun master and the Firefly slave
threads. For our measurements, an area of 2 cm x 32 cm is
used.

A third application we used to study Mermaid performance
is a partial differential equation solver that uses the Successive

64-bit, double precision floating point numbers.
"Small overlaps of the stripes are necessary so that features on the borders

are checked properly.

550 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 5, SEPTEMBER 1992

Sun-Sun Ffly-Sun Sun-Ffly

R W R w R W

W + O 26.4 26.7 47.7 48.3 56.3 47.8
R+M/O 29.6 27.9 50.9 51.6 58.6 59.4

R-M-+O 31.7 31.3 54.7 55.5 61.9 61.3

Ffly-Ffly

R W

46.5 46.4
49.6 49.1
54.4 53.6

TABLE VI1 Over-Relaxation method (SOR). Data is represented as a large
. I

SPEEDUPS OF MATRIX MULTIPLICATION WHEN two-dimensional matrix. With the boundary values fixed, the
internal values are then iteratively updated to be the average of

EXECUTED ON ONE OR MULTIPLE FIREFLIES

the values of their four neighbors, until they converge. While
this application is again based on large matrices (so we can
partition the computation along with the data by assigning
groups of adjacent rows of the matrix to the threads on
various Fireflies), its data access behavior is quite different
from the above two applications. The threads update values
in their regions asynchronously with each other. The entries
in the matrix are updated many times, and, for each iteration,
the neighboring entries in the neighboring rows are needed.
Thus, page sharing occurs in every iteration, and the number
of iterations generally grows with the size of the matrix.
Furthermore, to reach a decision on global convergence,
the local convergence condition of each thread needs to be
recorded in a shared array, and is checked by all threads.
Given the simple model of data sharing used in Mermaid,
it is interesting to see if page thrashing can be avoided, and
good speedup can be achieved. For the experiments described
below, a matrix of 128 x 816 of double numbers is used.

2) Physical Versus Distributed Shared Memory: Since the
Firefly is a multiprocessor, we are able to compare the
performance of physical shared memory to that of distributed
shared memory. The same number of threads are either
allocated to the processors on the same Firefly or to multiple
Fireflies, (with one thread on each). The speedups of MM
for both cases are shown in Table VII, for up to a maximum
number of four threads. The slightly worse performance for
the distributed case is due mainly to the cost of transferring
pages between the machines. As also observed with the PCB
and SOR applications, the penalty for running in a distributed
system depends on the costs of data distribution and replication
and the costs of data consistency and less so on the costs
of data conversion. The distribution and replication costs
are determined by the underlying communication and data
conversion costs, whereas data conversion costs also depend
on the applications’ data access behaviors.

3) Heterogeneous Versus Homogeneous Shared Memory: To
assess the effect of heterogeneity, we measured the response
times of the three sample applications with a number of threads
running on one or multiple Fireflies, and the master thread
running on a Sun3160. This is a representative configuration
of heterogeneous distributed shared memory that takes advan-
tages of both the user-friendly programming environment on
a workstation, and the computing power of the background
server hosts. Compared to the similar case in which both

number of processors

1 2 3 4

physical shared memory 1.00 1.98 3.00 3.97
distributed shared memory 0.97 1.91 2.87 3.32

the master and the slave threads run on Fireflies, very little
performance difference is observed. In the first case, pages
of the matrices are moved from the Sun to the Fireflies
and the result matrix is then moved back to the Sun after
the computation; all data movements are accompanied by
appropriate data conversions. No data conversion is needed
for the homogeneous case. This is further evidence that data
conversion does not add significant overhead to HDSM.

4) Application Performance with HDSM: The speedup
curves of the MM, PCB, and SOR applications running on
Mermaid are shown in Figs. 3, 4, and 5. The speedups
are computed with respect to a sequential execution on a
Firefly. For all the data points, the master thread is located
on a separate Sun3160. One to four Fireflies are used, and
the numbers of threads allocated to each are approximately
balanced. Better performance was observed using the largest
page size algorithm for MM and PCB, while for SOR the
smallest page size algorithm produced the best results (to be
discussed further in Section IV-C2). For MM, performance
improvements are observed as more and more threads are
added to the computation, up to 18, the maximum number
of Firefly processors available, for a maximum speedup of 12.

For PCB, there are two additional limitations to speedup:
First, the volume of data to be transferred is very high (about 5
megabytes for each image), incurring substantial synchronous
delays to remote worker threads as parts of the images are
faulted in from the master. Second, the overlapping areas of the
images must be processed by two threads, and represent extra
computation, which grows as more threads are used. Despite
these limitations, good speedup (up to 10 using 14 threads on
four Fireflies) were still observed. Hence, the checking can
now be completed in 65 s on four Fireflies, instead of 11 min
in the sequential case. In some cases, super-linear speedup was
observed. This is due to a reduction in the VM working set,
as the data is partitioned among more and more processors
where CPU caching becomes more effective. This observation
is analogous to one made by Li with respect to main memory
and VM paging [17].

The performance of SOR is comparable to that of MM,

ZHOU et al.: HETEROGENEOUS DISTRIBUTED SHARED MEMORY 55 1

1 2 4 6 8 10 12 14 16 18

Number of threads

Fig. 3. Matrix multiplication with master on Sun and slaves on one to four Fireflies.

1 d J A 1 Fireay with sun master

I I I 1 I I I I
1 2 4 6 8 10 12 14 16

Number of threads

PCB with master on Sun and slaves on one to four Fireflies. Fig. 4.

12 -l : A 1 2

ru

3 Fireflies with Sun master

t:
A 1 Firefly with Sun master

I 1 I I I I I I
1 2 4 6 8 10 12 14 16

Number of threads

Fig. 5. SOR with master on Sun and slaves on one to four Fireflies.

despite the large numbers of iterations made by the threads,
causing many page faults on the pages that are shared by
threads running on different Fireflies. Thrashing does not
usually happen, since an iteration for each thread takes 150
ms or more, whereas a fault on an 1 kilobyte page only takes

approximately 15 ms.
The same application has been studied in the Amber system

at the University of Washington [8]. In Amber, an object-
oriented approach is used for parallel application support. For
the SOR application, the Amber implementation partitions

~

552 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 5, SEPTEMBER 1992

the matrix into groups of rows called section objects, and
stores one section object on each of the Fireflies. Multiple
computation threads on each Firefly work on the local section
object in parallel, and a separate communication thread on
each Firefly sends the boundary rows of the section object
to the neighboring Fireflies as the rows are updated. Thus,
the potential of data contention in Mermaid is avoided in
Amber, and the computing threads never have to stop for data.
With the limited number of processors we have, however, our
results are very comparable to those of Amber's on problems
of similar sizes. (A 122 x 842 matrix was used with Amber.)
Programming an application on Mermaid, on the other hand,
is much simpler than on Amber, because communication is
completely hidden in the shared memory system model.

It is interesting to note that physical shared memory is
treated as a special case of distributed shared memory in Mer-
maid; the two types of memory are fully integrated throughout
the heterogeneous system base, and the performance potential
of such a system is well explored (in the sense that physical
shared memory is used if present and distributed shared mem-
ory is used otherwise). Also, the number of machines involved
does not affect the performance of any of the three applications
much, as evidenced by the close clustering of the curves in
Figs. 3, 4, and 5. The feasibility and performance potential
of HDSM systems are therefore clearly demonstrated by these
experiments, at least for certain classes of applications.

Besides the data sizes used in the above experiments, we
also measured the performance of the three applications with
several other data sizes to force the same DSM pages to be
shared among multiple hosts. No significant changes to the
speedup values were found from those presented above.

C. Effects of the Page Size Algorithms and Page Thrashing

To assess the effects of page thrashing due to data contention
among threads, and to study the relationship between page
size and thrashing, we conducted a number of experiments
using two different implementations of matrix multiplication.
The first, MM1, assigns large groups of rows of the result
matrix to each thread," the second, MM2, assigns rows to
threads in a round-robin fashion. MM2 is expected to have
more data contention on its DSM pages and is intended to
represent the class of applications with this behavior. By using
matrix multiplication for both, we are able to eliminate other
factors affecting the performance of parallel applications, such
as scalability and the size of data sets.

1) Effects of Page Size Algorithms and Locality: We com-
pared the performance of MM1 using the largest page size
algorithm to that using the smallest page size algorithm,
and found that there is a small but definite degradation
in performance when using smaller page sizes, due to an
increased number of page faults on the Fireflies (see Fig. 6).

Since MM2 divides the result matrix into rows for the
slave threads (4 kilobyte, or 512 double floats each), and
since the smallest page size algorithm operates on 1 kilobyte
pages, we expected the degradation of MM2 over MM1 using
this smallest page size algorithm to be very small, which

"MM1 is the implementation of MM being used so far.

we verified experimentally (results not presented here). The
degradation is slightly greater with 256 x 256 matrices of
integers, where one DSM page of 1 kilobyte holds one row of
the matrix (256 integers). Using integers instead of double
precision floating point numbers, together with the smaller
matrices, accentuates the importance of communication and
locality.

2) Thrashing: The most likely case for thrashing is MM2
with the largest page size algorithm, where an 8 kilobyte page
is shared by up to 8 threads running on several Fireflies.
We ran MM2 with various numbers of threads on two or
three Fireflies. The corresponding execution times we observed
fluctuated greatly, even between consecutive runs of identical
setup. Speedup relative to the sequential case was rarely
observed, while execution times up to 10 times of that of the
sequential case were measured. Examination of the detailed
statistics of the numbers of page faults and transfers revealed
that a large number of pages were being transferred between
the Fireflies; the performance degradation and unpredictable
fluctuations were clearly due to page thrashing.

From the above experiments, it may be concluded that if
the locality in the application's data accesses is very good,
large DSM page sizes may generate less overhead and better
performance. If data in small ranges of the DSM space
are updated by separate threads, however, performance may
degrade greatly using large pages due to false sharing, and
small page sizes are more likely to provide stable performance.

Our experience with a number of applications shows that
small, seemingly minor changes to an implementation of an ap-
plication may result in very different data sharing patterns and
drastically different performance. MMl versus MM2, using the
largest page size algorithm, is such an example. For the SOR
application, we initially implemented the algorithm so that
each thread, during each iteration, updated the data elements
in its portion of the matrix from top to bottom, thus sharing
data with neighboring threads in every iteration. The resulting
performance was unsatisfactory due to the frequent read-write
sharing. We then changed the algorithm such that each thread
updated the data elements in its portion of the matrix from
top to bottom to top. Performance is improved substantially
because the number of times the boundary rows are worked
on is reduced by half, and the amount of computation in
between such shared data zones is doubled. Consequently,
data movement between machines and the possibility of data
contention are reduced, and better speedups are observed (as
shown in Fig. 5).

V. CONCLUDING REMARKS

In this paper, we discussed the main issues and solutions
of building a DSM system on a network of heterogeneous
machines. As a practical research effort, we designed and
implemented an HDSM system, Mermaid, for a network of
Sun workstations and Firefly multiprocessors, and we ported
a number of applications to Mermaid. We conclude that
heterogeneous DSM is indeed feasible. From a functional
point of view, we showed that little transparency need be
lost due to heterogeneity. The most important problem is data

ZHOU et al.: HETEROGENEOUS DISTRIBUTED SHARED MEMORY 553

Smallest page size algori th

Largest page size algorithm A

Response
time 1500-
(=)

1000 -

500 -

0 I I I I 1 I I I 1
1 2 4 6 8 10 12 14 16 18

Number of threads

Fig. 6. Response times of MMl using the largest (smallest) page size algorithms.

conversion. Our solution requires that the user specify the type
of data being allocated in the HDSM space, which is usually
natural to the programmer. For different representations of
floating point numbers, equivalent data conversion may be
impossible for extreme values. However, with the increasing
use of the IEEE floating point standard, this may be considered
to be a passing problem. We were able to easily integrate our
HDSM system into the physical shared memory system on the
Firefly, allowing the programmer to exploit both physical and
distributed shared memory using one and the same mechanism.

From a performance point of view, we again showed that
little transparency is lost due to heterogeneity; that is, our
heterogeneous DSM implementation performs comparably to
an equivalent homogeneous DSM system. Overall, we have
found that the cost of data conversion does not substantially
increase the cost of paging across the network. Other aspects
of heterogeneity, such as accommodating different page sizes
and user-level processing of messages, also do not contribute
significantly to the DSM overhead. The presence of multiple
VM page sizes on different types of machines presents appli-
cations with the opportunity of selecting the DSM page size
according to their data access patterns; we noticed substantial
performance gains in using suitable DSM page sizes.

Our measured performance results corroborate the results
of other researchers in that distributed shared memory can
be competitive to the direct use of message passing, for a
reasonably large class of applications. In some cases, they
actually outperform their message passing counterparts, even
though the shared memory system is implemented in a layer
on top of a message passing system.

Although our prototype Mermaid system integrates only two
types of hosts, we believe that the techniques we developed to
accommodate heterogeneity are easily extensible to more than
two types of hosts, without significant additional overhead.
For conversion of user-defined data types, the same conversion
routines can be used on all machines since the routines only
contain structural information. However, for the basic types,
separate conversion routines need to be written for each
(ordered) pair of machines, with a total of N x (N - 1)
routines for each basic data type allocated in the HDSM space.

For the implementor of the HDSM system, this is a one-time
only effort and is transparent to the application programmer.
In contrast, defining a network standard data format would
decrease the conversion coding effort, but increase the run-
time conversion overhead.

ACKNOWLEDGMENT

T. McInnerny was responsible for most of the Mermaid im-
plementation work, and conducted the measurements reported
in this paper. M. Lalovic and S. Fink separately implemented
two versions of the data conversion routine generator software.
A. Yip performed an initial porting of the PCB software to
Mermaid running on Suns. The SOR application is based
on a parallel implementation for a Firefly by R. Unrau.
Comments by the anonymous referees helped us to improve
the presentation of this paper. Partial support for this work was
generously provided by the Information Technology Research
Center of Ontario and Digital Equipment Corporation.

REFERENCES

“Network computing systems reference manual,” Tech. rep., Apollo
Computer Inc., Chelmsford, MA, 1987.
E. Balkovich, S. Lerman, and R. P. Parmelee, “Computing in higher
education: The Athena experience,” Commun. ACM, vol. 28, no. 11,
pp. 1214-1224, 1985.
J. Bennet, J. Carter, and W. Zwaenepoel, “Munin: Distributed shared
memory based on type-specific memory coherence,” in Proc. PPoPP,
Mar. 1990, pp. 168-176.
B. N. Bershad, D. T. Ching, E. D. Lazowska, H. Sanislo, and M.
Schwartz, “A remote procedure call facility for interconnecting het-
erogeneous computer systems,” IEEE Trans. Software Eng., vol. SE-13,
no. 8, pp. 880-894, 1987.
D. R. Cheriton, “Preliminary thoughts on problem-oriented shared
memory: A decentralized approach to distributed systems,” ACM Oper.
Sysf. Rev., vol. 19, no. 4, Oct. 1985.
D. Cohen, “On holy wars and a plea for peace,” IEEE Compuf. Mug.,
vol. 14, no. 10, 1981.
C. Pinkerton et al., “A heterogeneous distributed file system,” in Proc.
Tenth IEEE Int. Conf Distributed Compuf. Syst., 1990.
J. Chase et aL, “The Amber system: Parallel programming on a network
of multiprocessors,” in Proc. Twelfth ACM Symp. Oper. Sysf. Principles,
1989.
R. Sandberg et al., “Design and implementation of the Sun network
filesystem,” in Proc. 1985 Summer USENIX Conf., 1985.

554 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 5, SEPTEMBER 1992

[lo] B. D. Fleisch, “Mirage: A coherent distributed shared memory de-
sign,’’ in Proc. 12th ACM Symp. Oper. Syst. Princtples, Dec. 1989, pp.
211-223,

[111 A Forin, J. Barrera, M. Young, and R. Rashid, “Design, implementation,
and performance evaluation of a distributed shared memory server for
Mach,” in Proc. I989 Winter USENIX Conj, Jan. 1989

[12] K. Geihs and U. Holberg, “Retrospective on DACNOS,” Commun.
ACM, vol. 33, no. 2, pp. 439-448, Apr. 1990.

[131 D P. Geller, “The national software works: Access to distributed files
and tools,” in Proc. ACM Nut. Conf, Oct. 1977, pp. 39-43,

[14] M. Kaashoek, A. Tanenbaum, S. Hummel, and H Bal, “An efficient
reliable broadcast protocol,” ACM Oper. Syst. Rev., vol. 23, no 4, PP.
5-19, Oct. 1989.

[15] R.E. Kessler and M. Livny, “An analysis of distributed shared memory
algorithms,” in Proc. 9th Int. Conf Distributed Comput. Syst., June 1989

[16] 0. Krieger and M. Stumm, “An optimistic approach for consistent
replicated data for mulitcomputers,” in Proc. 1990 HICSS, 1990

[17] K. Li, “Shared virtual memory on loosely coupled multiprocessors,”
Ph.D. dissertation, Dep. Comput. Sci., Yale Univ. 1986.

[18] K. Li and P. Hudak, “Memory coherence in shared virtual memory
systems,” ACM Trans. Comput. Syst., vol. 7, no. 4, pp 321-359, Nov
1989.

1191 T. McInnernv. M. Stumm. and S. Zhou. “Mermaid user’s guide and Dro-

Michael Stumm (M’87) received the diploma in
mathematics and the Ph.D. in computer science from
the University of Zurich, Switzerland, in 1980 and
1984, respectively.

Since 1987, he has been on the faculty of the De-
partments of Electrical Engineering and Computer
Science at the University of Toronto, where he is
currently an Associate Professor. He is a member
of the Computer Systems Research Institute. His re-
search interests are in the area of computer systems.

Dr. Stumm is a member of the IEEE Computer
Society and the Association for Computing Machinery.

grammer’s manual,” Tech. rep., Computer Systems ReseYrch Instihe,
Univ. Toronto, Sept. 1990.
P. R. Mclones and G. F. Swart, “Evolving the UNIX system interface
to support multithreaded programs,” Tech. Rep. 21, Systems Research
Center, Digital Equipment Corp., Sept. 1987.
J. H. Moris, M. Satyanarayanan, D. S. H. Rosenthal M. H. Conner, J. H.
Howard, and F. D. Smith, “Andrew: A distributed personal computing
environment,” Commun. ACM, vol. 29, no. 3, pp. 184-201, 1986.
D. Notkin, N. Hutchinson, J. Sanislo, and M. Schwartz, “Heterogeneous
computing environments: Report on the ACM SIGOPS workshop on
accommodating heterogeneity,” Commun. ACM, vol. 30, no. 2, pp.
142-162. Feb. 1987.

Kai Li received the B.S. degree from Jilin Uni-
versity, China, in 1977, the M.S. degree from the
Graduate School of the University of Science and
Technology, China, in 1981, and the M.S. and Ph.D.
degrees in computer science from Yale University
in 1983 and 1986, respectively.

Since 1986, he has been on the faculty of the
Department of Computer Science at Princeton Uni-
versity, where he is currently an Associate Pro-
fessor. His research interests include parallel and
distributed systems, parallel programming, and com-

[23] P. Rovner, “Extending Modula-2 to build large integrated systems,”
IEEE Sofhyare, vol. 6, pp. 46-57, Nov. 1986.

[24] M. Stumm and S. Zhou, “Algorithms implementing distributed shared
memory,” IEEE Comput. Mag., vol. 23, no. 5, May 1990.

[25] -, “Fault tolerant distributed shared memory,” in Proc. IEEE Int.
Conf Parallel Distributed Comput., Dec 1990.

[26] “Networking on the Sun workstation,” Tech. rep., Sun Microsystems
Inc., Mt. View CA, 1985.

[27] C. P. Thacker, L. C. Stewart, and E. H. Satterthwaite, “Firefly: A
multiprocessor workstation,” IEEE Trans. Comput., vol. 37, no. 8, pp.
909-920, Aug. 1988.

Puter architecture.

Computing Machinery.
Dr. Li is a member of the IEEE Computer Society and the Association for

David Wortman (S’65-M’70) received the
Songnian Zhou (S’83-M’87) received the B.S.
degree from Northeastern University, Boston, MA,
in 1982, and the M.S. and Ph.D. degrees in computer
science from the University of California, Berkeley,
in 1984 and in 1987, respectively.

Since 1987, he has been on the faculty of the
Departments of Computer Science and Electrical
Engineering at the University of Toronto, where he
is currently an Associate Professor. He is a mem-
ber of the Computer Systems Research Institute.

B.S.E.E. degree from Yale Unhersity in 1961,
and the M.Sc. and Ph.D. degrees in computer
science from Stanford University in 1968 and 1972,
respectively.

Since 1970 he has been on the faculty of the
Department of Computer Science at the University
of Toronto where he is currently a Professor. He is a
member of the Computer Systems Research Institute
at the University of Toronto where he pursues
research in the areas of advanced compilation

His research interests include parallel computation,
multiprocessor operating system, distributed systems, computer networks, and
performance evaluation.

Dr. Zhou is a member of the IEEE Computer Society and the Association
for Computing Machinery.

techniques, software engineering, and computer architecture. His most recent
research has been on the design and implementation of high-performance
concurrent and distributed compilers.

Dr. Wortman is a member of the IEEE, IFIP Working Group 2.4, the IEEE
Computer Society and the Association for Computing Machinery.

