US008869172B2

12 United States Patent (10) Patent No.: US 8.869.,172 B2

Soares et al. 45) Date of Patent: Oct. 21, 2014
(54) METHOD AND SYSTEM METHOD AND USPC e, 719/318
SYSTEM FOR EXCEPTION-LESS SYSTEM (58) Field of Classification Search
CALLS FOR EVENT DRIVEN PROGRAMS None

See application file for complete search history.

(71) Applicant: Quietus Systems Inc., Toronto (CA)
(56) References Cited

(72) Inventors: Livio Soares, New York, NY (US);
Michael Stumm, Toronto (CA) PUBLICATIONS

Livio Soares, “Improving server efficiency through exception-less
system calls,” May 5, 2011, Microsoft presentation top-level

webpage, retrieved from http://research.microsofit.com/apps/video/

default.aspx?1d=148595 on Sep. 4, 2013 .*
Livio Soares, “Microsoft Research: Improving server efficiency
through exception-less system calls,” May 5, 2011, Microsoft pre-

(73) Assignee: Quietus Systems Inc., Toronto, ON
(CA)

*3) Notice: Subject to any disclaimer, the term of this
] y
patent 1s extended or adjusted under 35

U.S.C. 154(b) by O days. sentation, pp. 1-56 (slides),), retrieved via hyperlink “Slides PDF”
from http://research.microsoft.com/apps/video/default.
(21) Appl. No.: 13/633,032 aspx?1d=148595 on Sep. 4, 2013.*
Livio Soares, “Improving server efficiency through exception-less
(22) Filed: Oct. 1, 2012 system calls,” May 5, 2011, Microsoft presentation pp. 1-21 (tran-

script), retrieved via hyperlink “transcript (DOC)” from http://re-

. _ vt
(65) Prior Publication Data Zeazr(n):lllén:crosoft.com/apps/wdeo/default.aspx.1d 148595 on Sep.

US 2013/0290644 Al Oct. 31, 2013 _ _
* cited by examiner

Related U.S. Application Data Primary Examiner — H S Sough

(60) Provisional application No. 61/541,161, filed on Sep. ~ Assistant Lxaminer — Wﬂ%iam C Wood
30, 2011, provisional application No. 61/541,164, (74) Attorney, Agent, or Firm — Robert P. Stratton
filed on Sep. 30, 2011.

(37) ABSTRACT

(51) Int. Cl. A method and system 1s disclosed which alters the perfor-
Goor 3/00 (2006.01) mance ol computer systems to make exception-less system
Goorl 9/44 (2006.01) calls, thus avoiding or reducing the direct and indirect over-
GoOol 9/46 (2006.01) heads associated with making an exception-based system
Goor 15/00 (2006.01) call. The invention can be employed with single core proces-
Gook 3/06 (2006.01) sor systems and with multi-core processor systems.

(52) U.S. CL
CPC e, GO6F 3/067 (2013.01) 5 Claims, 4 Drawing Sheets

200

Create Shared Memory Space For A User
Mode Process

204

Define Set Of Entries For Exception-Less
System Calls In The Shared Memory Space

208

Create Syscall Thread In Kernel Space For
Each Entry In Shared Memory Space

O——

212
A Syscall Thread Checks Entries For

Submitted Exception-Less System Calls And
Processes A Submitted Entry, Marking lts
Status Busy

216

Is Processing Of
Entry Blocked?

U.S. Patent Oct. 21, 2014 Sheet 1 of 4 US 8,869,172 B2

100
Create A Shared Memory Space For A User
Mode Process

104

Define Set Of Entries For Exception-Less
System Calls In The Shared Memory Space

108
A Thread In The User Mode Process

|_ocates Free Entry In Shared Memory
Space

112

Thread Writes Relevant Data For System
Call Into The Free Entry and Marks Entry

Status As Submitted

116
Thread Checks Status Of Entry

Process Return Values And Mark entry

Free

U.S. Patent Oct. 21, 2014 Sheet 2 of 4 US 8,869,172 B2

200

Create Shared Memory Space For A User
Mode Process

204

Define Set Of Entries For Exception-Less
System Calls In The Shared Memory Space

208

Create Syscall Thread In Kernel Space For
Each Entry In Shared Memory Space

212
A Syscall Thread Checks Entries For

Submitted Exception-Less System Calls And
Processes A Submitted Entry, Marking Its
Status Busy

216

|s Processing Of
Entry Blocked?

e Fig. 2a

U.S. Patent Oct. 21, 2014 Sheet 3 of 4 US 8,869,172 B2

Start Another oyscall Tnread 1o

Frocess Aneother Submitted Entry Ana
FPut Blocked Syscall Thread To Sleep

U.S. Patent Oct. 21, 2014 Sheet 4 of 4 US 8,869,172 B2

222

Process Requested System Call And
Write Return Values To Corresponding

Entry In Shared Memory Space And
Mark Entry Done

230
Y Recommence

Processing Of
Previously

Is Previously Blocked
Syscall Thread No
| onger Blocked?

Blocked Thread

Fig. 2¢

US 8,809,172 B2

1

METHOD AND SYSTEM METHOD AND
SYSTEM FOR EXCEPTION-LESS SYSTEM
CALLS FOR EVENT DRIVEN PROGRAMS

RELATED APPLICATIONS

This application claims prionity from U.S. provisional
patent application Ser. Nos. 61/541,161 and 61/541,164, each

filed Sep. 30, 2011, and the contents of each of these provi-
sional patent applications are included herein, in their
entirety, by reference.

FIELD OF THE INVENTION

The present invention relates to a system and method for
improving the performance of computer operating systems.
More specifically, the present invention relates to a system

and method for providing and performing exception-less sys-
tem calls 1n a computer operating system and for allowing
event driven programs to use exception-less system calls.

BACKGROUND OF THE INVENTION

Most modern computers, and especially general-purpose
computer systems, execute an operating system which man-
ages the computer’s resources and provides a set of common
services for application programs which are to be executed on
the computer. Operating systems typically act as an interme-
diary layer between application programs and the computer
resources, providing and managing services such as memory
allocation and 1nput and output (I/O) functions, such as read-
ing and/or writing information to and from disc drives, or
their equivalent.

Most operating systems employ a security model which
features at least two modes 1n which the computer can oper-
ate. In the first mode, often referred to as “supervisor mode”
or “kernel mode”, the operating system has unrestricted
access to the hardware and other resources of the computer
system. Generally, only the operating system 1tself (or the
kernel portion of the operating system) executes 1n supervisor
mode. The second mode, often referred to as “protected
mode” or “user mode” 1s the mode 1n which user applications
and less important operating system components execute and
soltware being executed 1n user mode cannot directly access
the resources of the computer system such as the above-
mentioned I/O and/or memory allocation functions.

Instead, when a user application requires access to 1/0 or
other computer resources only available 1n kernel mode, the
user application makes a request for those resources to the
operating system. Such a request 1s typically referred to as a
“system call” and the operating system recerves the system
call and attempts to fulfill the request.

When the operating system needs to perform tasks which
can only be performed in kemel mode, the mode of the
computer system must be switched from user mode to kernel
mode and, when the request has been fulfilled, the mode must
be switched back from kernel mode to user mode. These
switches, often referred to as “mode switches” or “context
switches”, are performed by the operating system executing a
special instruction which results 1n a processor “exception”
which allows the computer system to change from user mode
to kernel mode where the requested system call can be pro-
cessed and/or back again.

Operating systems which employ this security model have
been 1n widespread use for many years and are the presently
preferred method of mmplementing general-purpose (and
many special purpose) computer systems. However, prob-

10

15

20

25

30

35

40

45

50

55

60

65

2

lems exist with these systems. In particular, modern computer
systems are typically now superscalar which means that more

than one instruction can be executed by the processor in
parallel 1n different parts of the processor. Superscalar sys-
tems typically imnclude a set of features such as instruction
pipelines, multi-level data and instruction caches, out of order
and/or predictive execution units, translation look aside buil-
ers, etc. which assist in achieving superscalar performance.

Modern superscalar systems now commonly also have
multiple processors (1.e.—cores”) further increasing the abil-
ity of the computer system to execute multiple instructions 1n
parallel. As used herein, the term “superscalar” 1s intended to
comprise computer systems which can execute more than one
instruction in parallel and includes both single core and multi-
core computer systems.

While superscalar computer systems provide significant
advantages, they do suffer from some problems. In particular,
many of the superscalar features of such systems require the
executing program to display locality of execution to benefit
from these features. Without locality of execution, features
such as caches, predictive execution units, etc. cannot provide
theirr advantages and the rate of instructions executed per
cycle by a superscalar computer system will drop signifi-
cantly without locality of execution.

SUMMARY OF THE INVENTION

It 1s an object of the present ivention to provide a novel
system and method for providing and performing exception-
less system calls 1n a computer operating system which obvi-
ates or mitigates at least one disadvantage of the prior art.

According to a first aspect of the present invention, there 1s
provided a non-transitory computer readable medium having
instructions stored thereon for a system of performing excep-
tion-less system calls on a computer system executing an
operating system having a user mode and a kernel mode, the
operating system executing at least one event driven user
application, comprising: instructions for creating a shared
memory space between the at least one user application
executing 1n user mode and the operating system executing 1n
kernel mode; instructions for the user application to execute a
task allowing a request for at least one system call to be placed
into the shared memory space, the task from time to time
checking for completion of the system call and informing the
at least one user application when the system call 1s com-
pleted; mstructions for the operating system, in kernel mode,
to check the shared memory space from time to time to
identify system calls requested by the at least one user appli-
cation; and instructions for the operating system to perform at
least one 1dentified system call for the at least one user appli-
cation and to indicate completion of the at least one 1dentified
system call to the at least one user application via the shared
memory space.

Preferably, the non-transitory computer readable medium
further includes instructions to have the operating system
perform the at least one requested system call on a temporally
scheduled basis or, where the computer system includes at
least two processor cores, further including instructions to
have the operating system select at least one ol the at least two
processor cores and to cause the system calls to be preferen-
tially performed on the selected at least one processor core.

According to another aspect of the present invention, there
1s provided a computer-implemented method of performing
exception-less system calls on a computer system executing
an operating system having a user mode and a kernel mode,
the operating system executing at least one user application,
the method comprising the steps of: creating a shared

US 8,809,172 B2

3

memory space between the user application and the operating,
system for each at least one user application; 1n the shared
memory space of each at least one user application, creating,
a system call entry for each of at least one exception-less
system call; instantiating a system call thread in the operating
system kernel for each system call entry in each shared
memory space; istantiating a user application thread which
1s operable to, 1n response to a request from the user applica-
tion, set the contents of the at least one system call entry to
request the performance of a system call by the operating
system and to set the status of that system call entry appro-
priately and to, from time to time, check the status of the
system call entries 1n the shared memory space to determine
when a corresponding exception-less system call has been
completed; and causing a system call thread executing 1n the
kernel space of the operating system to check the status of at
least one system call entry in the shared memory space to
identily a requested exception-less system call waiting to be
performed and to execute the system call requested by that
system call entry and to update the corresponding status of
that system call entry.

The present invention teaches a method and system which
can enhance the performance of computer systems by altering
the operation of the operating system of those computer sys-
tems. The mvention provides a system and method for mak-
ing exception-less system calls, from event driven programs
or synchronous programs, thus avoiding or reducing the
direct and indirect overheads associated with making an
exception-based system call. In tests, significant improve-
ments 1 overall performance of a computer system have been
achieved.

The present invention improves the performance of user
applications executing on a computer system executing an
operating system by decoupling the execution of system calls
from the invocation of system calls, thus improving execution
locality within the computer system.

The mvention can be employed with single core processor
computer systems and with multi-core processor computer
systems, both affording improved temporal execution local-
ity and the later also providing improved spatial execution
locality. The system and method can be employed 1n a wide
range of operating systems.

Other features and advantages of the present invention are
described more fully below.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the present invention will now
be described, by way of example only, with reference to the
attached Figures, wherein:

FIG. 1 shows a tlowchart of the method of a user space
process making an exception-less system call; and

FIGS. 2a, 26 and 2¢ show a flowchart of the method of
kernel space processing of exception-less system calls 1n one
operating system environment.

DETAILED DESCRIPTION OF THE INVENTION

The present mnventors have determined that, during a con-
text switch between user mode and kernel mode, or vice
versa, the contents of caches, buflers, pipelines and other
superscalar optimization features are “polluted” (1.e.—their
contents and/or state mvalidated) by the context switch as
locality of execution 1s lost.

In tests, the present inventors have found that a significant
drop 1n the istruction per cycle (IPC) rate of a computer
system occurs when a system call 1s made. This drop 1s both

10

15

20

25

30

35

40

45

50

55

60

65

4

due to the direct overhead associated with saving the contents
of system registers and performing the context switch and to
the indirect overhead associated with the resulting pollution
of superscalar features. In fact, in tests by the inventors, it was
found that the performance degradation from indirect over-
head was significantly larger than that resulting from the
direct overhead.

Accordingly, to reduce the degradation of the performance
of superscalar computer systems which results from context
switches 1n prior art operating systems, the present inventors
have developed an exception-less system call system and
method.

In conventional operating systems, a system call 1s made by
writing necessary values to appropriate system registers and
having the processor execute a special instruction that results
in a processor exception. The processor exception results 1n
the user-mode 1nstruction pipeline being flushed, the saving
ol a predefined set of register values onto the kernel stack,
changing the processor domain from user mode to kernel
mode and redirecting execution to the registered exception
handler. As part of this process, superscalar features like the
[.1 data and instruction caches, translation look-aside bufters,
branch prediction tables, prefetch butfers and larger unified
caches (1.e.—L2 and L3) have user mode data overwritten
with kernel mode data and are thus polluted and execution
locality 1s lost.

Returning from kernel mode, after the exception has been
handled, the results of the system call are written to defined
registers, the saved user mode register values are pulled from
the stack and the domain 1s switched from kernel mode to user
mode.

The loss of execution locality which results from this pro-
cess 1s significant and, in tests conducted by the inventors, the
IPC rate of the computer system upon return from a system
call was significantly lower than the IPC rate prior to making
the system call and many thousands of cycles were required to
re-achieve the pre-system call IPC rate.

To reduce the loss of execution locality resulting from
system calls, the present inventors have developed what they
refer to as an exception-less system call. In fact, the present
inventors have developed two approaches to an exception-
less system call: the first being the batching of system calls;
and the second, for multi-core systems, being core special-
1zation. As will be apparent, the exception-less system call of
the present mvention can employ either or both of these
approaches, as desired.

With the batching of system calls, the execution of one or
more system calls 1s delayed and then those delayed system
calls are subsequently executed as a batch. Thus, instead of
performing a separate context switch for each system call, a
context switch 1s only incurred once for the set of system calls
and this improves temporal locality of execution.

For multi-core systems, an exception-less system call can
be scheduled for execution on a core different from the core
on which the system call was invoked, thus providing
improved spatial locality and reducing indirect overheads.

In a current embodiment of the present invention, the iter-
face for the exception-less system call 1s one or more memory
pages that are shared between user and kernel spaces. These
pages, referred to herein as syscall pages, are organized to
contain exception-less system call entries, each entry contain-
ing space for the request status (1.e. “Ifree”, “submitted”,
“busy”, “cancel”, “done”, etc.), a system call number, argu-
ments and return values.

While the description herein employs the term ““thread”
when referring to executing processes within the computer
system, 1t 1s intended that the term *“thread” not be a limitation

US 8,809,172 B2

S

to the scope of the mvention and that “thread” should be read
to also encompass other execution units (i.e.—processes,
tasks, etc.) which are available in operating systems with
architectures and/or operating modalities that offer such
execution units either instead of, or in addition to, threads.

To make an exception-less system call, a user space thread
locates a free entry in the syscall pages, by checking the value
of the status field, and populates that free entry with the
necessary and appropriate values required for the particular
system call using regular store instructions. Once the syscall
entry has been populated, the user space thread marks the
status of that entry to “submitted™ and the user space thread
can then continue executing without interruption.

The user space thread then later checks the status of the
exception-less system call by reading the status information
in the corresponding entry 1n the syscall pages until the status
1s “done”. When done, the user thread can appropnately
process any return values and will mark the status of the entry
in the syscall page as “free” to allow the entry space to be
reused. The user space thread can then continue its execution
again.

As will be apparent, none of these operations (storing
values 1n the syscall pages or reading the results from the
syscall pages) causes an exception to be raised, hence the term
exception-less system call.

While the above-discussion refers to syscall pages, the
present invention 1s not so limited and any shared memory
space can be used with the present invention to pass excep-
tion-less system call entries between user mode and kernel
mode, as will occur to those of skill in the art.

Unlike exception based system calls, an exception-less
system call does not create an explicit notification to the
kernel that a call has been made, nor 1s an execution stack
provided. Instead, with the present invention a kernel thread,
referred to herein as a “syscall thread”, executes 1n kernel
mode for each process executing on the computer system
which employs exception-less system calls.

Syscall threads execute to, according to a schedule: 1den-
t1fy and pull waiting exception-less system call requests from
the syscall pages or other shared memory structure; to appro-
priately execute those calls on behalf of the requesting user-
mode thread; to place any return values in the corresponding
syscall page entry; and to update appropriately 1ts status in the
corresponding syscall page entry.

In a specific embodiment of the present invention imple-
mented 1n Linux and subject to the Linux thread blocking
architecture/model, a syscall thread 1s created for each entry
in the syscall, or other shared memory, for each process
employing exception-less system calls. Despite creating mul-
tiple syscall threads, only one syscall thread 1s active per user
application and core (in multi-core computer systems) at any
given time. I the system call does not block, all execution 1s
performed by the one syscall thread while the remaining
syscall threads sleep on a work queue. However, 11 the execu-
tion of the requested exception-less system call 1s blocked (by
resource contention, etc.), immediately before the syscall
thread 1s put to sleep, the next syscall thread on the work
queue 1s awoken and starts executing the next system call.
When the resources required by the first syscall thread (now
sleeping) become Iree, 1t 1s awakened and resumes 1ts execu-
tion.

Suitable modifications and alternatives to this blocking
mechanism will be apparent to those of skill in the art and,
depending upon the architecture and models employed by the
target operating system, may vary significantly from that
described above for the Linux model.

10

15

20

25

30

35

40

45

50

55

60

65

6

As should now be apparent, a great deal of flexibility 1s
available 1n scheduling the execution of system calls by
syscall threads. As mentioned above, syscall threads can be
scheduled to execute on one or more selected cores 1n a
multi-core system, typically the selected core i1s different
from the core on which the requesting user thread 1s execut-
ing, to improve spatial locality. Similarly, syscall threads can
be scheduled to execute at a variety of times and/or after
specified events, including at: pre-selected time intervals; or
when user space threads are unable to make further progress
without execution of waiting systems calls; or combinations
of these 1ntervals and timings; etc.

As will be apparent, 11 desired these scheduling methods
can be combined to improve both temporal and spatial execu-
tion locality.

In a present single core embodiment of the present inven-
tion on the Linux system (kernel version 2.6.33), 11 no block-
ing occurs, the executing syscall thread processes all system
calls, in sequence before switching back to user mode. If a
system call 1s blocked, the executing syscall thread awakens
another syscall thread which will begin processing the
remaining system calls awaiting processing, again executing,
all remaining non blocked system calls, or 11 blocked, awak-
ening another syscall thread, etc. All pending system calls are
either fimished, or blocked, with at least one system call hav-

ing been completed, before the computer system 1s returned
to user mode.

In a present multi-core embodiment of the present inven-
tion on the Linux system, the execution of syscall threads 1s
biased to a subset of the available cores, the subset either
being dynamaically specified 1n accordance with the workload
of the computer system or, in a simpler case, being statically
defined. Execution of syscall threads i1s preferentially
assigned to one of the subset of cores which 1s not presently
executing a syscall thread to enhance spatial execution local-
ity.

As should be apparent to those of skill in the art, the
implementation of exception-less system calls 1n accordance
with the present invention can be achieved i addition to prior
art exception-based system call mechanisms. In fact, it 1s
contemplated that such a coexistence of system call mecha-
nisms will be the norm as start up and initialization of many
computer operating systems will require exception-based
system calls. Further, avoiding the pollution of superscalar
features by some system calls will not be of concern.

FIG. 1 shows a flowchart explaining the method of a user
space process making an exception-less system call. The
method starts at step 100 wherein a shared memory space,
such as the above-described syscall pages, 1s created for the
process executing in user mode space. The creation of this
shared memory space can be achieved 1n a wide variety of
manners, as will occur to those of skill in the art, and waill
depend upon the particular operating system on which the
present invention 1s implemented. The shared memory space
can be proactively created at the time of creation of the
process, or can be subsequently created the first time the
process wishes to make an exception-less system call.

At step 104, a set of entries of data structures necessary for
making an exception-less system call and providing return
values 1s created 1n the share memory space and each of these
entries includes a status field which 1s mitialized to indicate
that the entry 1s iree.

When a thread 1n the user mode process needs to make an
exception-less system call, the thread locates an entry 1n the
shared memory space whose status i1s indicated as being
“free”, as shown at step 108.

US 8,809,172 B2

7

Next, at step 112 the thread writes the relevant data
required to make the desired system call into the entry 1den-
tified at step 108 and changes the status of that entry to
“submitted”.

The thread can then continue execution but also checks,
from time to time, the status of the entry as indicated at step
116. When the status of the entry 1s “done™, as indicated at
step 120, the method continues to step 124 wherein the thread
processes any return values from the exception-less system
call and makes the entry 1n the shared memory as again being
free and then the thread continues 1ts execution.

FIGS. 2a, 2b and 2¢ show a flowchart explaining the
method of kernel space processing of exception-less system
calls 1n a Linux operating system environment or other envi-
ronment having a similar thread blocking architecture.

The method commences at step 200 where the operating,
system creates a shared memory space for a process executing
in user mode. As will be apparent, this step corresponds to,
and 1s the same as, step 100 1n FIG. 1. Next, at step 204, a set
ol entries of data structures necessary for making an excep-
tion-less system call and providing return values 1s created in
the share memory space and each of these entries includes a
status field which 1s mitialized to indicate that the entry 1s
“free”. This step corresponds to, and 1s the same as, step 104
in FIG. 1.

Next, at step 208, a syscall thread, or other suitable execu-
tion unit, 1s created 1n the operating system kernel space for
cach entry created 1n step 204 1n the shared memory space. As
discussed above, the creation of this multiplicity of syscall
threads 1s desired when dealing with the Linux thread block-
ing architecture and may not be desired or required under
other operating systems and the present invention 1s not lim-
ited to use with such a thread blocking architecture.

Atstep 212, asyscall thread checks the entries 1n the shared
memory to locate an entry with a status of “submitted” and
commences processing ol the system call requested in that
entry, updating its status to “busy”.

At step 216, the syscall thread determines if processing of
the requested system call 1s blocked and, if it 1s, the method
continues at step 218.

Atstep 218, another syscall thread 1s started by the blocked
syscall thread which his then put to sleep. The newly started
syscall thread checks for entries in the shared memory space
with a status of “submitted” and begins processing the entry.
The method then returns to step 216.

If at step 216, the processing of the requested system call 1s
not blocked, the method continues at step 22 where process-
ing of the requested system call 1s completed. The syscall
thread writes any return values from the system call to the
corresponding entry in the shared memory and marks the
status of that entry as “completed”.

At step 226 the method checks to see 1f any previously
blocked syscall thread 1s no longer blocked. If such an
unblocked thread exists, the method proceeds to step 230
wherein execution of that thread 1s recommenced and the
method returns to step 222.

I, at step 226, no previously block syscall thread exists, or
any such blocked syscall thread remains blocked, processing
returns to step 212.

As will be apparent, the method of FIGS. 2a, 2b and 2¢ can
be easily modified by those of skill in the art for operating,
systems with resource contention architectures which differ
from the Linux thread blocking architecture described herein.

Aswill also be apparent, the method of FIGS. 2a,2b and 2¢
does not explicitly show the scheduling of syscall threads. As
discussed above, a variety of scheduling approaches can be
employed with the present invention including those which

10

15

20

25

30

35

40

45

50

55

60

65

8

enhance temporal execution locality and, 1n multi-core com-
puter systems, those which enhance spatial execution local-
ity.

Perhaps surprisingly, it has been determined that the
present invention can also be used effectively with event
driven application programs, such as event driven servers,
executing on computer systems.

Such event driven applications can employ threads or non-
blocking/asynchronous 1/0O to handle concurrent requests.
Thread-based implementations are oiten considered the sim-
pler approach to handling concurrent requests as the operat-
ing system inherently tracks the progress of I/O operations.

A disadvantage of threaded servers that utilize a separate
thread per request/transaction 1s inefficiency of handling a
large number of concurrent requests. The two main sources of
this 1nefficiency are the extra memory usage allocated to
thread stacks and the overhead of tracking and scheduling a
large number of execution contexts.

To reduce the overheads of threading, developers have
typically adopted use of event-driven programming wherein
the program 1s structured as a state machine driven by the
progress of various operations, typically involving 1/O.

Event-driven programs make use of non-blocking, or asyn-
chronous, primitives, along with event notification systems to
deal with concurrent I/O operations. While these primitives
allow for uninterrupted execution that enables a single execu-
tion context (1.e.—a single thread), to fully utilize the proces-
sor, they do sutifer from disadvantages. In particular, a major
disadvantage 1s that 1t requires a more complex programming
model, wherein the application 1s responsible for tracking the
status of I/O operations and the availability of I/O resources.
Further, the application must support multiplexing the execu-
tion stages ol multiple concurrent requests.

In both models of I/O concurrency, the operating system
kernel play a critical role 1n multiplexing the execution of
concurrent requests. Therefore, it 1s critical for the operating
system to support etficient I/O multiplexing primitives. Man-
agement of both I/O requests and events i1s therefore split
between the application and the operating system kernel and
thus there 1s a need for continuous communication between
the application and the operating system kernel.

Conventional implementations of asynchronous I/O pro-
vide signal or interrupt-based completion notifications.
Completion notification allows the kernel to notily a user
thread that a previously 1ssued asynchronous request has been
completed. While such completion notifications are thus very
usetul, they typically are implemented through a signal or
other upcall mechamism which has the same adverse effects
on execution locality (and thus system performance) that
system calls have and which the present invention endeavors
to reduce. The present inventors have determined that the high
frequency of mode switching required for this communica-
tion 1s largely responsible for the low execution efficiency
demonstrated by many event-driven applications. Thus, with
the present invention such completion notification methods
are not offered.

To allow event-driven applications to employ the excep-
tion-less system calls of the present invention, a notification
library for asynchronous system calls has been developed.
The main loop of this notification library polls the syscall
pages, described above, currently in use to determine the
completion of system calls. To reduce overhead, the polling
for system call completion 1s only performed when all cur-
rently pending callback handlers have completed. With sui-
ficient work/load, polling should occur relatively infre-
quently.

US 8,809,172 B2

9

Inthe case that all callback handlers have completed and no
new exception-less system calls have completed, the notifi-
cation library notifies the kernel that 1t cannot continue until
one or more of the pending system calls 1s completed.

The notification library provides appropriate system call
functions including *“‘accept”, “read”, “open”, “sendiile”,
‘close”, etc. and associated callback handlers. When the noti-
fication library detects that a system call has been completed,
the corresponding callback handler 1s mmvoked, effectively
driving the next stage of execution of the state machine within
the user application.

As 1s known, cancellation of in-progress system calls may
be necessary 1n some cases. For example, with non-blocking,
system calls, reads are often implemented by waiting for a
notification that the requested socket has become available
and, 1t the socket does not become available within a specified
timeout period, the connection 1s closed. With the exception-
less system calls of the present invention, the read request 1s
1ssued belore the user application knows 11 or when new data
will arrive. To implement a timeout, the user application must
explicitly cancel pending reads 1t the timeout period has
expired.

To enable system calls to be cancelled, when checking for
new requests syscall threads, in addition to the steps
described above, also check for entries whose state has been
changed to cancel by the user applications (via an appropriate
function call in the notification library). To cancel an 1in-
process system call, the syscall thread executing that system
call 1s 1dentified and a signal 1s sent to the executing thread to
interrupt 1ts execution. When the syscall thread wakes up, 1t
sets 1ts return vale to a predefined value, indicating the that
system call was cancelled and sets its status to “done”. As will
be apparent, due to the asynchronous implementation, can-
cellation of system calls 1s not guaranteed to succeed. Thus,
the user application must check the exception-less system call
return value to disambiguate between system calls that were
cancelled and those which were completed.

As should now be apparent, the present invention provides
a method and system which can enhance the performance of
computer systems by altering the operation of the operating
system of those computer systems. The invention provides a
system and method for making exception-less system calls,
thus avoiding or reducing the direct and indirect overheads
associated with making an exception-based system call. In
test environments, significant improvements 1n overall per-
formance of a computer system have been achieved. The
present mnvention can also be employed with user applications
employing an event-driven architecture, such as event-driven
SErvers.

The mvention can be employed with single core processor
computer systems and with multi-core processor computer
systems, both affording improved temporal execution local-
ity and the later also providing improved spatial execution
locality. The system and method can be employed in a wide
range ol operating systems.

The above-described embodiments of the invention are
intended to be examples of the present invention and alter-
ations and modifications may be effected thereto, by those of
skill 1n the art, without departing from the scope of the inven-
tion which 1s defined solely by the claims appended hereto.

We claim:

1. A non-transitory computer readable medium having
instructions stored thereon for a system of performing excep-
tion-less system calls on a computer system executing an
operating system having a user mode and a kernel mode, the
operating system executing at least one event driven user
application, comprising:

10

15

20

25

30

35

40

45

50

55

60

65

10

instructions for creating a shared memory space between
the at least one user application executing 1n user mode
and the operating system executing 1n kernel mode;

instructions for the user application to execute a task allow-
ing a request for at least one system call to be placed into
the shared memory space, the task from time to time
checking for completion of the system call and inform-
ing the at least one user application when the system call
1s completed;

instructions for the operating system, 1n kernel mode, to

check the shared memory space from time to time to
identily system calls requested by the at least one user
application; and

instructions for the operating system to perform at least one

identified system call for the at least one user application
and to indicate completion of the at least one 1dentified
system call to the at least one user application via the
shared memory space.

2. The non-transitory computer readable medium of claim
1 further including nstructions to have the operating system
perform the at least one requested system call on a temporally
scheduled basis.

3. The non-transitory computer readable medium of claim
1 wherein the computer system includes at least two proces-
sor cores and further including instructions to have the oper-
ating system select at least one of the at least two processor
cores and to cause the system calls to be preferentially per-
formed on the selected at least one processor core.

4. The non-transitory computer readable medium of claim
1 wherein the instructions for the operating system cause a
system call thread executing 1n the kernel mode of the oper-
ating system to check the status of at least one system call
entry 1n the shared memory space to 1dentily the at least one
requested exception-less system call waiting to be performed
and to execute the system call requested by the 1dentified at
least one exception-less system call entry.

5. A computer-implemented method of performing excep-
tion-less system calls on a computer system executing an
operating system having a user mode and a kernel mode, the
operating system executing at least one user application, the
method comprising the steps of:

creating a shared memory space between the user applica-

tion and the operating system for each at least one user
application;

in the shared memory space of each at least one user appli-

cation, creating a system call entry for each of at least
one exception-less system call;

instantiating a system call thread in the operating system

kernel for each system call entry in each shared memory
space;

instantiating a user application thread which 1s operable to,

in response to a request from the user application, set the
contents of the at least one system call entry to request
the performance of a system call by the operating system
and to set the status of that system call entry appropri-
ately and to, from time to time, check the status of the
system call entries 1n the shared memory space to deter-
mine when a corresponding exception-less system call
has been completed; and

causing a system call thread executing 1n the kernel space

of the operating system to check the status of at least one

system call entry in the shared memory space to identily
a requested exception-less system call waiting to be
performed and to execute the system call requested by

US 8,809,172 B2
11

that system call entry and to update the corresponding
status of that system call entry.

¥ H H ¥ ¥

12

	Front Page
	Drawings
	Specification
	Claims

