

Statistical BER Analysis of

Concatenated FEC in Multi-Part

Links

Richard Barrie, University of Toronto

richard.barrie@isl.utoronto.ca

Ming Yang, University of Toronto/Alphawave SEMI

ming.yang@isl.utoronto.ca

Anthony Chan Carusone, University of Toronto/Alphawave SEMI

tony.chan.carusone@isl.utoronto.ca

mailto:richard.barrie@isl.utoronto.ca
mailto:ming.yang@isl.utoronto.ca
mailto:tony.chan.carusone@isl.utoronto.ca

Abstract
This paper presents a statistical model that accurately estimates post-FEC BER for multi-part links

using a concatenated FEC. Both the inner and outer codes in the concatenated FEC are assumed to be

linear block codes, and the inner code may include codeword interleaving. A hierarchical approach is

adopted to analyze the propagation of PAM-symbol and FEC-symbol errors through a multi-layer

Markov model in the presence of DFE error propagation. The proposed model also considers

miscorrections introduced by the inner-FEC decoder, a significant source of error in concatenated

FEC architectures. A hybrid approach is used to model miscorrections, with the probability of

miscorrections determined from a separate time-domain simulation. The proposed statistical model

can be combined with our existing approaches to model other noise sources such as residual ISI,

crosstalk, transmitter and receiver jitter, and other system-level design choices including precoding

and bit-multiplexing.

Authors Biography
Richard Barrie received his B.A.Sc. degree in robotics engineering from the University of Toronto

in 2022. He is currently a M.A.Sc. candidate in the University of Toronto’s Department of Electrical

and Computer Engineering. His research interests are in system modeling and design for high-speed

communications.

Ming Yang received the B.Eng. degree in aerodynamic engineering from the Department of

Aeronautics, Xiamen University, Xiamen, China, in 2012, and the B.Eng. and M.Eng. degree in

electrical engineering from the Department of Electrical and Computer Engineering, McGill

University, Montreal, Canada, in 2013 and 2016, respectively. He is currently a Ph.D. candidate in the

Edward S. Rogers Sr. Department of Electrical & Computer Engineering at University of Toronto. He

is the recipient of the Alexander Graham Bell Canada Graduate Scholarships award. He also works as

a system engineer at Alphawave IP Group. His research interests are in analog integrated circuit

design, on-chip analog signal processing and high-performance integrated circuit testing.

Anthony Chan Carusone received his Ph.D. from the University of Toronto in 2002 and has since

been a professor in the University of Toronto’s Department of Electrical and Computer Engineering.

He has also been a consultant to industry in the areas of integrated circuit design and digital

communication since 1997. He is currently the Chief Technology Officer of Alphawave IP Group in

Toronto, Canada.

Prof. Chan Carusone co-authored Best Student Papers at the 2007, 2008, 2011, and 2022 Custom

Integrated Circuits Conferences, the Best Invited Paper at the 2010 Custom Integrated Circuits

Conference, the Best Paper at the 2005 Compound Semiconductor Integrated Circuits Symposium,

the Best Young Scientist Paper at the 2014 European Solid-State Circuits Conference, and a Best

Paper at DesignCon 2021. He co-authored the popular textbooks “Analog Integrated Circuit Design”

(along with D. Johns and K. Martin) and “Microelectronic Circuits,” 8th edition (along with A. Sedra,

K.C. Smith and V. Gaudet). He was Editor-in-Chief of the IEEE Transactions on Circuits and

Systems II: Express Briefs in 2009, and an Associate Editor for the IEEE Journal of Solid-State

Circuits 2010-2017. He was a Distinguished Lecturer for the IEEE Solid-State Circuits Society

2015-2017 and has served on the Technical Program Committee of several IEEE conferences

including the International Solid-State Circuits Conference 2016-2021. He is currently the

Editor-in-Chief of the IEEE Solid-State Circuits Letters and is an IEEE Fellow.

Figure 1. System-level diagram of a serially concatenated FEC with an outer code (no, ko, to), and an

inner code (ni, ki, ti).

1. Introduction

Forward error correction (FEC) codes are necessary for modern high-speed wireline links to achieve

acceptably low bit error rates (BER). The post-FEC BER of a wireline link cannot be accurately

estimated from only knowing the pre-FEC BER and the FEC architecture; other factors such as

equalization techniques, decision feedback equalizer (DFE) error propagation, inter-symbol

interference, crosstalk, and jitter must be considered. Ideally, one may perform a transient simulation

to capture the characteristics of all noise sources fully. However, the targeted <10-15 BERs make

time-domain simulations prohibitively long, especially for exploring architectural design alternatives.

Therefore, an efficient statistical model that accurately predicts very low post-FEC BERs serves an

essential function in the design of high-speed wireline links.

In our previous work [1-2], we proposed a statistical model for standard non-binary linear block

codes, such as the RS(544,514,15) KP4 and RS(528,514,7) KR4 codes. This FEC architecture is

suitable for most wireline signaling up to 112 Gb/s. However, in 224 Gb/s per lane applications with

4-PAM signaling, the Nyquist frequency doubles from 28 GHz to 56 GHz. Doubling the Nyquist

frequency generally hampers signal integrity resulting in less operating margin and a worse pre-FEC

BER. Despite the progress being made on improving channel materials, transceiver architecture

designs, and system-level innovations, stronger FECs are needed to loosen pre-FEC BER

requirements for 200+ Gb/s applications. Thus the IEEE 802.3dj task force is considering a

concatenated FEC architecture.

Figure 1 shows the system-level diagram of a serially concatenated FEC. The outer code is a

non-binary linear block code, which can correct up to to FEC symbol errors. A typical choice for the

outer code in IEEE 802.3dj is the standard RS KP4 (544,514,15) FEC in GF(210), which can correct

up to to = 15 FEC symbol errors in a KP4 codeword with codeword length no = 544 FEC symbols, and

payload length ki = 514 FEC symbols. This choice of code with large to allows it to correct long burst

errors caused by DFE error propagation which is crucial for links with the high DFE tap coefficients

required for 200+ Gb/s signaling.

Next, an inner code is applied to provide another layer of protection against random bit errors. Due to

stringent latency and complexity requirements, the inner code will typically be a simple code that can

correct a small number of bit errors. Even codes that can only correct one bit error per codeword are

effective in correcting random errors, allowing the outer block code to work more efficiently on long

burst errors. Choices for the inner code include the Hamming(127,120,1), which can correct up to

ti = 1 bit in an inner codeword with codeword length ni = 127 bits and payload length ki = 120 bits,

and BCH (144,136,1), which can correct up to ti = 1 bit in an inner codeword with ni = 144 bits and

ki = 136 bits. These codes have a minimum Hamming distance of three between valid codewords [3],

which is relatively small. Because of this, inner codewords with more than one bit error are at risk of

being decoded to the wrong codeword (miscorrected), adding a bit error to the codeword. These

inner-FEC miscorrections significantly worsen the post-FEC BER, as the additional bit error may

corrupt an additional outer-FEC symbol. To improve the performance of the Hamming(127,120,1)

code, an additional parity bit can be added to extend the minimum Hamming distance between

codewords to 4. This is known as the extended Hamming (128,120,1) code [4]. Although this code

can still only correct one bit error, it will not miscorrect codewords with two bit errors, improving the

performance of the concatenated FEC.

This paper presents a statistical model that accurately estimates post-FEC BER for multi-part links

using a concatenated FEC. We use a simplified link architecture as depicted in Figure 1, focusing on

error analysis of the channel connecting the two modules, which may have both random and burst

errors. The host-to-module interfaces in the multi-part link are assumed to be benign and do not

significantly contribute to the post-FEC BER. Both the inner and outer codes in the concatenated FEC

are assumed to be linear block codes, and the inner code may include codeword interleaving. A

hierarchical approach is adopted to analyze the propagation of PAM-symbol and FEC-symbol errors

through a multi-layer Markov model in the presence of DFE error propagation. Our model also

considers inner-FEC miscorrections. The proposed statistical model can be combined with our

existing approaches [2] to model noise sources such as residual ISI, crosstalk, transmitter and receiver

jitter, and other system-level design choices such as precoding and bit-multiplexing. A series of

techniques, including state aggregation, time aggregation, state reduction, and dynamic programming

are used, making the time complexity to compute post-FEC BERs below 10-15 reasonable. The

model’s accuracy is verified by comparing pre-FEC vs. post-FEC BER plots with time-domain

simulation results. The implementation details of the concatenated FEC for the next generation of

high-speed wireline links, such as the choice of inner code and inner-FEC interleaving scheme, are

still being discussed by the IEEE 802.3dj task force, and many candidates were proposed [5-7]. The

scope of this paper covers some of the most popular options, but the modeling methodologies

presented can be easily extended to other candidates.

The main body of this work is divided into two sections. In Section 2, we propose a statistical model

for concatenated FEC codes. A hybrid approach is used to model inner-FEC miscorrections, with

information on the probability of miscorrections determined by a separate time-domain simulation. In

Section 3, we expand the proposed statistical model to consider inner-FEC interleaving. We propose a

novel method to partition the correctable trellis paths that significantly reduces the computational

complexity for tracking the error information in each interleaved inner codeword. Finally, we

conclude our work in Section 4.

2. Modeling Concatenated FEC

2.1 General Approach

In this subsection, we present the trellis model for concatenated FEC shown in Figure 2, which

contains four levels of hierarchy: The PAM-symbol trellis and the FEC-symbol trellis were first

proposed in [1], where we presented a trellis model for an end-to-end RS FEC. Building on this work,

we include two more levels of hierarchy: the inner-FEC trellis and outer-FEC trellis, to model a

concatenated FEC architecture.

Figure 2 shows the trellis model of a concatenated FEC with a hypothetical non-binary outer code in

GF(24) assuming (no = 2, ko = 1, to = 1) and a binary inner code assuming (ni = 10, ki = 8, ti = 1). We

describe the four layers in Figure 2 from the bottom to up. The PAM-symbol trellis models state

transitions between PAM symbols using the transition probabilities ‘p’. The PAM-symbol trellis is

time-aggregated to form the FEC-symbol trellis, that models state transitions between FEC symbols

with the transition probabilities ‘a’. Next, the inner-FEC trellis builds a single-step transition

probability for the inner codeword ‘aI’, including the inner-FEC payload and overhead. Finally, the

outer-FEC trellis models the state transition ‘aO’ between decoded inner codewords until the end of

the outer codeword, where the post-FEC BER can be calculated. ‘aO’ is generated by applying

inner-FEC decoding to ‘aI’, removing bit errors in correctable trellis paths. Subsections 2.1.1-2.1.5

describe how this trellis model is constructed for general inner and outer codes. Specifically, we focus

on calculating the one-step state transition probabilities and the trellis-path probabilities in each trellis

layer.

Figure 2. Trellis model of a hypothetical concatenated FEC assuming a non-binary outer code (2,1,1) in

GF(24) and a binary inner code (10,8,1). The unlikely error states ±4, and ±6 are disregarded for

simplicity of the example.

2.1.1 PAM-Symbol Trellis

In [1], we have shown a methodology for modeling an N-tap DFE with 4-PAM signaling using a

Markov model containing 16N states and that this model can be simplified to 4N states using state

aggregation. All examples shown in this paper assume 4-PAM signaling with a 1-tap DFE. At time

index k corresponding to the kth transmitted 4-PAM symbol, the aggregated Markov model contains

error states Dk {0, ±2, ±4, ±6}, corresponding to the difference in voltage level between transmitted

and received 4-PAM symbols. In the Markov model, the state-transition probability from a source

state ‘i'’ to a sink state ‘i’ in the PAM-symbol trellis is denoted as pi’i. We find the steady-state

probability, πi, of any state i in the Markov model by solving the global balance equation [8],

 𝜋𝑖 = ∑ 𝑝𝑖′𝑖𝜋𝑖′𝑖′ , (1)

subject to

 ∑ 𝜋𝑖𝑖 = 1. (2)

We next apply trellis-based dynamic programming to the Markov model to efficiently calculate the

probability of bit errors in a codeword. Rather than finding the BER by enumerating all possible error

patterns in the trellis, dynamic programming solves the problem much faster by grouping the

probability of all trellis paths having the same number of bit errors. When traversing a PAM-symbol

trellis using dynamic programming, each state transition introduces either 0, 1, or 2 bit errors. We

define jPAM as the number of bit errors in a PAM symbol detection. Assuming gray-coding, an error

value ±2 or ±6 corresponds to jPAM = 1, and an error value ±4 corresponds to jPAM = 2. We define

Prj
k(i) as the probability of arriving at state i at the kth stage of the PAM-symbol trellis after traversing

all trellis paths containing exactly j bit errors. In each trellis iteration, for states ‘i’ where the most

recently received 4-PAM symbol has jPAM-bit errors,

 𝑃𝑟𝑘+1
𝑗 (𝑖) = ∑ 𝑃𝑟𝑘

𝑗−𝑗𝑃𝐴𝑀(𝑖′)𝑝𝑖′𝑖𝑖′ . (3)

Figure 3 shows the PAM-symbol trellis from the example in Figure 2. The unlikely error states ±4,

and ±6 are disregarded for the simplicity of the example. All possible paths from the 0th PAM symbol

(k = 0) to the 2nd PAM symbol (k = 2) are shown with arrows. The probabilities of arriving at the 2nd

PAM symbol with j {0,1,2} bit errors are calculated using the dynamic programming procedure

described in Equation 3.

Figure 3. Example of a PAM-symbol trellis.

2.1.2 FEC-Symbol Trellis

Using the methods described so far, every outer-FEC symbol in GF(2m) can be decomposed into a

length-m/2 4-PAM trellis describing the link behavior in the physical layer. We apply Equation 3 to

recursively compute Prk
j(i), aggregating the probability of error patterns having exactly j bit errors,

where j {0 … m/2}.

Figure 4. Example of a FEC-symbol trellis in GF(24), each state transition in the FEC-symbol trellis is

generated by time-aggregating the underlying PAM-symbol trellis paths.

Assuming a generalized N-tap DFE and Dk {0, ±2, ±4, ±6}, all paths in the PAM-symbol trellis

representing Prj
k(i) can be decomposed into 4N groups of trellis paths, each starting with one of the 4N

Markov states at k = 0. Each of these paths can be considered as a one-step state transition equivalent

to traversing m/2 4-PAM stages. As such, we may construct a new trellis model for the entire FEC

block, assuming that each state transition from the kF
th to the (kF+1)th stage has traversed a group of

length-m/2 PAM-symbol-trellis paths. This is known as the time aggregation of a Markov decision

process [9]; we group trellis paths over m/2 consecutive 4-PAM symbols while the time-aggregated

Markov model preserves both the time-homogeneity and bit-error information. We call this

time-aggregated PAM-symbol trellis the FEC-symbol trellis, distinguishing it from the PAM

symbol-level trellis considered thus far. For the FEC-symbol trellis example shown in Figure 4, every

two 4-PAM symbols are time-aggregated to form a one-step transition in the FEC-symbol trellis.

To analyze the FEC trellis, we must first find all the state-transition probabilities aj
i’i of these 4N states

by analysis of each underlying PAM-symbol trellis. First, we instantiate the expanded PAM-symbol

trellis by assuming that the trellis starts at the state ‘i’’ in aj
i’i with a probability of 1,

 𝑃𝑟0
0(𝑖′) = 1. (4)

Next, after traversing the expanded PAM-symbol trellis using the dynamic programming procedure

described in Equation 3, the transition probability aj
i’i to the next (kF+1)th FEC-symbol trellis stage

can be calculated by summing the probability of all j-bit-error PAM-symbol-trellis paths ending at

state ‘i’,

 𝑎𝑖′𝑖
𝑗
= 𝑃𝑟𝑘=𝑚/2

𝑗 (𝑖)|
𝑃𝑟0

0(𝑖′)=1
. (5)

In the FEC-symbol trellis, dynamic programming is also applied to enumerate the probability of all

error patterns having more than to FEC symbol errors in a codeword. However, the dynamic

programming algorithm described by Equation 3 can only track the total number of bit errors.

Therefore, we create another error index allowing us to aggregate all error patterns in terms of both

FEC symbol errors and bit errors. In the FEC-symbol trellis, we denote Pr_FECkF
js,jb(i) the probability

of visiting Markov state i at the kF
th FEC symbol after traversing all trellis paths containing exactly js

FEC symbol errors and jb bit errors. Hence, the error probabilities at time kF +1, Pr_FECkF+1
js,jb(i), can

be found iteratively from the values of Pr_FECkF
js,jb(i) and the transition probabilities ai’i

j. We

calculate Pr_FECkF+1
js,jb(i) by iterating over all possible j and i',

 𝑃𝑟_𝐹𝐸𝐶𝑘𝐹+1
𝑗𝑠,𝑗𝑏 (𝑖) = ∑ ∑ 𝑃𝑟_𝐹𝐸𝐶𝑘𝐹

𝑗𝑠−𝑚𝑖𝑛(1,𝑗),𝑗𝑏−𝑗(𝑖′)𝑎𝑖′𝑖
𝑗

𝑖′𝑗 . (6)

2.1.3 Inner-FEC Trellis

In [1-2] we have shown the statistical modeling of a single end-to-end FEC where the FEC-symbol

trellis is used to traverse the entire length of the outer codeword. When modeling the concatenated

FEC architecture, another level of time aggregation is needed to model the inner codeword. In this

subsection, we describe the procedure of constructing the inner-FEC trellis using the FEC-symbol

trellis. Note that the FEC-symbol trellis refers to outer-FEC symbol transitions, not inner-FEC symbol

transitions. As this paper only considers binary inner codes, we simply refer to an inner-FEC symbol

as a bit.

Consider an inner-FEC payload containing ki bits message that can be divided evenly into an integer

number of ki/(m/2) = 2ki/m outer-FEC symbols. We aggregate all the 2ki/m outer-FEC symbols in the

payload into a one-step state transition. We define 𝑎𝑃𝐿𝑖′𝑖
𝑗𝑠,𝑗𝑏 as the transition probability from source

state i’ at the beginning of the inner-FEC payload to sink state i at the end of the inner-FEC payload

with all paths containing exactly js FEC symbol errors and jb bit errors. By traversing a length-2ki/m

FEC-symbol trellis, 𝑎𝑃𝐿𝑖′𝑖
𝑗𝑠,𝑗𝑏 can be calculated by,

 𝑎𝑃𝐿𝑖′𝑖
𝑗𝑠,𝑗𝑏 = 𝑃𝑟_𝐹𝐸𝐶𝑘𝐹=2𝑘𝑖/𝑚

𝑗𝑠,𝑗𝑏 (𝑖)|
𝑃𝑟𝑘𝐹=0

0,0 (𝑖′)=1
. (7)

After traversing the inner-FEC trellis to obtain aPL, we consider the inner-FEC overhead for parity

checks. Note that bit errors in the inner-FEC overhead are always discarded after decoding.

Nonetheless, it is vital to consider the possibility of bit errors in the inner-FEC overhead because they

affect if the inner codeword is correctable. Considering an inner codeword with an even number of

ni - ki bits overhead that can be represented by a PAM-symbol trellis, we apply time aggregation to

the PAM-symbol trellis to find the one-step transition probability 𝑎𝑂𝐻𝑖′𝑖
𝑗𝑏−𝑂𝐻 of the inner-FEC

overhead having exactly jb-OH bit errors,

 𝑎𝑂𝐻𝑖′𝑖
𝑗𝑏−𝑂𝐻 = 𝑃𝑟𝑘=(𝑛𝑖−𝑘𝑖)/2

𝑗𝑏−𝑂𝐻 (𝑖)|
𝑃𝑟0

0(𝑖′)=1
. (8)

We then aggregate the transition probabilities of the inner-FEC payload and inner-FEC overhead to

obtain the one-step transition probability of the inner codeword. In the inner-FEC trellis, we denote

the time index at the end of each inner codeword kI. 𝑎𝐼𝑖′𝑖
𝑗𝑠,𝑗𝑏,𝑗𝑏−𝑂𝐻 is the state transition probability of

going from source state ‘i'’ at the beginning of an inner-FEC payload to sink state ‘i’ at the end of an

inner-FEC overhead, while having exactly js FEC-symbol errors and jb bit errors in the payload, and

jb-OH bit errors in the overhead. 𝑎𝐼𝑖′𝑖
𝑗𝑠,𝑗𝑏,𝑗𝑏−𝑂𝐻 can be computed by time aggregating the payload and

overhead of an inner codeword,

 𝑎𝐼𝑖′𝑖
𝑗𝑠,𝑗𝑏,𝑗𝑏−𝑂𝐻 = 𝑃𝑟_𝐼𝑘𝐼=1

𝑗𝑠,𝑗𝑏,𝑗𝑏−𝑂𝐻(𝑖)|𝑃𝑟_𝐼𝑘𝐼=0
0,0,0 (𝑖′)=1 = ∑ (𝑎𝑃𝐿𝑖′𝑖~

𝑗𝑠,𝑗𝑏 𝑎𝑂𝐻𝑖~𝑖
𝑗𝑏−𝑂𝐻)𝑖~ . (9)

In Figure 5, we show an example of two FEC-symbol transitions that are aggregated to form the

inner-FEC payload with one-step state transition probability aPL. The inner-FEC overhead consists of

only one PAM-symbol with transition probability aOH = p. aPL and aOH are combined using Equation 9

to generate aI.

Next, we apply inner-FEC decoding on aI to produce aO, which is the one-step transition probability

of a decoded inner codeword in the outer-FEC trellis. aO does not need to track the information about

jb-OH because the inner-FEC overhead is discarded after decoding. The number of bit errors in the

entire inner codeword is jb + jb-OH. Considering an inner code that can correct ti bit errors, all trellis

paths in the inner-FEC trellis with jb + jb-OH ≤ ti are correctable. We iterate over all possible trellis

paths in the inner-FEC trellis representing one inner-FEC codeword. If jb + jb-OH ≤ ti, these correctable

paths are accumulated in the outer-FEC transitions aO containing neither bit errors nor FEC-symbol

errors,

 𝑎𝑂𝑖′𝑖
0,0 = 𝑎𝑂𝑖′𝑖

0,0 + 𝑎𝐼𝑖′𝑖
𝑗𝑠,𝑗𝑏,𝑗𝑏−𝑂𝐻 . (10)

For non-correctable paths in the inner-FEC trellis with jb + jb-OH > ti, after decoding we add these

paths to outer-FEC transitions aO while preserving the same number of FEC-symbol errors and bit

errors that occurred in the inner-FEC payload,

 𝑎𝑂𝑖′𝑖
𝑗𝑠,𝑗𝑏 = 𝑎𝑂𝑖′𝑖

𝑗𝑠,𝑗𝑏 + 𝑎𝐼𝑖′𝑖
𝑗𝑠,𝑗𝑏,𝑗𝑏−𝑂𝐻 . (11)

Figure 5. Example of an inner-FEC trellis, each codeword consist of 2 outer-FEC symbols in GF(24) and

a 2-bit overhead for parity checks.

2.1.4 Outer-FEC Trellis and Post-FEC BER Calculation

We use the decoded inner codeword transition probabilities 𝑎𝑂𝑖′𝑖
𝑗𝑠,𝑗𝑏 to traverse the outer-FEC trellis. In

this section, we consider an outer codeword having no∙mbits that divides into an integer no∙m/ki

number of inner-FEC payloads. First, we set the initial conditions at kO = 0 to their steady-state values

found by Equation 1 and Equation 2. We define js-I and jb-I as the number of FEC-symbol errors and

bit errors that occurred in the decoded inner codeword, respectively. We also denote Pr_OkO
js,jb(i) the

probability of visiting Markov state i at the kO
th stage in the outer-FEC trellis after traversing all trellis

paths containing exactly js FEC symbol errors and jb bit errors. Dynamic programming is used to

calculate Pr_OkO+1
js,jb(i) by iterating over all possible js-I, jb-I and i'

 𝑃𝑟_𝑂𝑘𝑂+1
𝑗𝑠,𝑗𝑏 (𝑖) = ∑ ∑ ∑ 𝑃𝑟_𝑂𝑘𝑂

𝑗𝑠−𝑗𝑠−𝐼,𝑗𝑏−𝑗𝑏−𝐼(𝑖′)𝑎𝑂𝑖′𝑖
𝑗𝑠−𝐼,𝑗𝑏−𝐼

𝑖′𝑗𝑏−𝐼𝑗𝑠−𝐼 . (12)

We traverse the outer-FEC trellis until the end of the outer codeword (kO = nom/ki) using the dynamic

programming procedure described in Equation 12 to obtain 𝑃𝑟_𝑂𝑛𝑜𝑚/𝑘𝑖
𝑗𝑠,𝑗𝑏 (𝑖).

The example in Figure 6 shows an outer-FEC trellis example that consists of two decoded inner

codewords. At the end of the outer codeword (kO = 2), up to 1 FEC-symbol error can be corrected by

the outer-FEC decoder. The post-FEC BER can be approximated by [1],

 𝐵𝐸𝑅𝑝𝑜𝑠𝑡−𝐹𝐸𝐶 ≈ ∑ (∑ (
𝑃𝑟_𝑂𝑘𝑂=𝑛𝑜𝑚/𝑘

𝑗𝑠,𝑗𝑏 ∙𝑗𝑏

𝑛𝑜∙𝑚
)𝑗𝑏)

𝑗𝑠
𝑚𝑎𝑥

𝑗𝑠=𝑡𝑜+1
. (13)

At low BER, the probability of having an erroneous outer codeword decreases exponentially with

increasing js. Pruning trellis paths having negligible probabilities can result in a significant reduction

in computational complexity. This pruning is achieved by capping the upper summation limit in

Equation 13 to js
max, indicating that only trellis paths having up to js

max FEC symbol errors contribute

to the post-FEC BER.

Figure 6. Example of an outer-FEC trellis, state transition aO in the outer-FEC trellis is generated by

applying inner-FEC decoding to aI.

Figure 7. A detailed trellis example of the proposed trellis model described in Figure 2.

2.1.5 Trellis Example of a Concatenated FEC

In Figure 7, we show a detailed trellis example of our proposed trellis model previously described in

Figure 2, assuming the same non-binary outer code (2,1,1) in GF(24) and the binary inner code

(10,8,1). The same trellis path is shown at all four levels of hierarchy: the PAM-symbol trellis,

FEC-symbol trellis, inner-FEC trellis and outer-FEC trellis. In the inner-FEC trellis, the first inner

codeword has one bit error that appears in the payload (jb = 1), and no bit error in the overhead

(jb-OH = 0). The only bit error in the first inner codeword is correctable with ti =1. After decoding, the

first outer-FEC state transition 𝑎𝑂11
0,0 is error-free.

In the second inner codeword, two bit errors occur in the payload (jb =2). Because these two bit errors

occur within the same FEC symbol at kF = 4, they only contribute to one FEC symbol error (js =1).

Also, there is one bit error in the inner-FEC overhead (jb-OH = 1), resulting in a total of three bit errors

in the inner codeword, which is uncorrectable by the inner-FEC decoder with ti = 1. After decoding,

only the two bit errors from the payload remain in the outer-FEC trellis. Therefore, the second

transition 𝑎𝑂12
1,2 in the outer-FEC trellis has one FEC-symbol error and two bit errors.

Since all errors in the first inner codeword have been corrected, at kO = 2 we have js-I = 1 and jb-I = 2.

The single FEC symbol error in the outer-FEC codeword is correctable by the outer FEC decoder

with to =1. As a result, the example trellis path in Figure 7 does not contain any post-FEC bit errors.

2.2 Modeling Inner-FEC Miscorrections

The analysis in Section 2.1 does not consider inner-FEC miscorrections, which significantly impact

the accuracy of BER analysis. In this section, we introduce a hybrid approach to accurately model

miscorrections, using probabilities extracted from a separate time-domain simulation as part of our

proposed statistical model.

The inner codes considered for 200 Gb/s+ wireline transceivers generally have a low Hamming

distance. Inner codewords with more than ti bit errors may be decoded to the wrong codeword. This is

known as a miscorrection, which may introduce up to ti new bit errors and up to ti new FEC-symbol

errors at the inner-FEC decoder output. This paper considers two popular candidate codes in IEEE

802.3dj, the extended Hamming (128,120,1) code and the BCH(144,136,1) codes, both with ti =1.

Recall that the extended Hamming code uses an additional parity bit to increase the minimum

hamming distance between valid codewords, eliminating miscorrections in codewords having exactly

2 bit errors. We define b as the maximum number of bit errors an inner codeword can have before

decoding that guarantees no miscorrections. Hence, the Hamming (128,120,1) code has b = 2.

However, the BCH (144,136,1) decoder may miscorrect any codeword with more than one bit error,

so it has b = ti = 1.

Figure 8 shows all possible scenarios for inner-FEC decoding with ti =1. If the total number of bit

errors in the codeword jb + jb-OH ≤ ti, the decoder always corrects all errors in the codeword. With

ti < jb + jb-OH ≤ b, the codeword is not correctable, but a miscorrection does not occur, so js and jb are

preserved after decoding. If jb + jb-OH > b, the codeword is not correctable and a miscorrection is

possible. In this case, the probability that no miscorrection occurs is denoted PX. The probability that a

miscorrection occurs, and the additional bit error corrupts a FEC symbol that already contains a bit

error, increasing only jb by 1, is denoted PY. The probability that a miscorrection occurs and the

additional bit error corrupts a previously error-free outer-FEC symbol, increasing both js and jb by 1,

is denoted PZ.

Figure 8. All possible scenarios for inner-FEC decoding with ti =1.

We extract the probability of PX, PY and PZ using a time-domain simulation. The time-domain model

has the identical channel response, DFE tap weight, and noise sources considered in the statistical

model. As PZ is the probability of an inner codeword miscorrection with a new FEC-symbol error

added to the decoded codeword, given that jb + jb-OH > b in an inner codeword,

 𝑃𝑍 =
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑𝑖𝑛𝑛𝑒𝑟−𝐹𝐸𝐶𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑𝑚𝑖𝑠𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑤𝑖𝑡ℎ𝑗𝑠𝑎𝑑𝑑𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑−𝑖𝑛𝑛𝑒𝑟𝐹𝐸𝐶𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑𝑠𝑤𝑖𝑡ℎ𝑗𝑏−𝑃𝐿+𝑗𝑏−𝑂𝐻>𝑏
. (14)

Since PY is the probability of an inner codeword miscorrection without additional FEC-symbol error

added to the decoded codeword, given that jb + jb-OH > di in an inner codeword,

 𝑃𝑌 =
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑𝑖𝑛𝑛𝑒𝑟−𝐹𝐸𝐶𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑𝑚𝑖𝑠𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑤𝑖𝑡ℎ𝑜𝑢𝑡𝑗𝑠𝑎𝑑𝑑𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑𝑖𝑛𝑛𝑒𝑟−𝐹𝐸𝐶𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑𝑠𝑤𝑖𝑡ℎ𝑗𝑏−𝑃𝐿+𝑗𝑏−𝑂𝐻>𝑏
. (15)

Lastly, as PX, PY and PZ are mutually exclusive, these probabilities must add up to 1, and

 P𝑋 = 1 − 𝑃𝑌 − 𝑃𝑍. (16)

The inner-FEC miscorrection in the trellis can be modeled by modifying the inner-FEC decoding

procedure described by Equation 11. With miscorrection, an uncorrectable outer-FEC transition

probabilities 𝑎𝐼𝑖′𝑖
𝑗𝑠,𝑗𝑏,𝑗𝑏𝑂𝐻 is split into the 3 subcases described by Equation 14-16. For non-correctable

transitions with jb + jb-OH > b, we have

 𝑎𝑂𝑖′𝑖
𝑗𝑏,𝑗𝑠 = 𝑎𝑂𝑖′𝑖

𝑗𝑏,𝑗𝑠 + 𝑎𝐼𝑖′𝑖
𝑗𝑠,𝑗𝑏,𝑗𝑏𝑂𝐻 ∙ 𝑃𝑋,

 𝑎𝑂𝑖′𝑖
𝑗𝑏+1,𝑗𝑠 = 𝑎𝑂𝑖′𝑖

𝑗𝑏+1,𝑗𝑠 + 𝑎𝐼𝑖′𝑖
𝑗𝑠,𝑗𝑏,𝑗𝑏𝑂𝐻 ∙ 𝑃𝑌, (17)

 𝑎𝑂𝑖′𝑖
𝑗𝑏+1,𝑗𝑠+1 = 𝑎𝑂𝑖′𝑖

𝑗𝑏+1,𝑗𝑠+1 + 𝑎𝐼𝑖′𝑖
𝑗𝑠,𝑗𝑏,𝑗𝑏𝑂𝐻 ∙ 𝑃𝑍.

Our proposed approach assumes that the probabilities PX, PY and PZ are constant values which are not

a function of the number of bit errors in a codeword. For a given inner code, these events can be

determined uniquely for every possible error pattern in the trellis, and they do show correlation to the

number of existing bit errors in an inner codeword. However, as the number of bit errors per inner

codeword increases, their probability of occurring decreases exponentially. As a result, our

simplification in modeling PX, PY and PZ has negligible impact on the post-FEC BER.

Figure 9 shows the probability PY(E) and PZ(E) as a function of the number of bit errors E in an inner

codeword before decoding, and E = jb + jb-OH. Subplots (a) and (b) in Figure 9 report PY(E) and PZ(E)

with the Hamming (128,120,1) code and the BCH (144,136,1) code, respectively. The reported data is

generated from a time-domain simulation that observed over one million codewords transmitted with

a pre-FEC BER at 10-3, assuming a channel response h = 1 + 0.5z-1 and a zero-forcing 1-tap DFE. In

each subplot, we also superimpose the probability of having exactly E bit errors in an inner codeword

using a solid blue line. Our least-confident data in these figures is for having 7 bit errors in a

codeword. In both subplots, we observed over 400 codewords containing 7 bit errors. The

miscorrection probabilities depend on the number of bit errors, but as E increases its exponentially

decaying probability of occurrence allows us to approximate PY(E) and PZ(E) using a constant value

defined by Equation 14 and 15. Note that with the BCH code, miscorrections happen for all

codewords having more than 1 bit error and the additional bit error is likely to corrupt an error-free

FEC symbol. However, with the extended Hamming code, miscorrections only happen for odd

numbers of errors that are greater than 2, and a large portion of the bit errors produced by

miscorrections appear in the existing erred FEC symbols. The decoding behavior of the extended

Hamming code can be easily captured by altering the condition for triggering Equation 17. That is,

Equation 17 is only updated when jb + jb-OH > b and jb + jb-OH is an odd number.

Note that a FEC code can have different implementations depending on the parity check matrix used.

These implementations affect the probability and location of miscorrections. It was shown that triple

bit error miscorrections in extended hamming codes can be minimized by choosing an optimal

parity-check matrix [10]. The plots in Figure 9 are only for one choice of BCH(144,136,1) and

extended Hamming(128,120,1) codes.

(a) with extended Hamming (128,120,1) code

 (b) with BCH (144,136,1) code

Figure 9. PY and PZ as a function of the number of bit errors E in an inner codeword, simulated at 10-3

pre-FEC BER with a zero-forcing 1-tap DFE.

0 0 0

0.66

0

0.38

0

0.53

0.20

0.12

0.20

8.9E-1

6.4E-2

2.6E-2

1.0E-2

4.2E-3

1.7E-3

6.6E-4

2.8E-4
1E-4

1E-3

1E-2

1E-1

1E+0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7

P
ro

b
ab

ili
ty

 o
f

a
C

o
d

e
w

o
rd

 w
it

h
 E

B
it

 E
rr

o
rs

P
ro

b
ab

ili
ty

 P
Y
(E

),
 P

Z(
E)

Number of Bit Errors E in a Hamming Codeword before decoding

Py: Probability of miscorrection, no FEC
symbol error added
Pz: Probability of miscorrection, FEC symbol
error added
Probability of E bit errors in a codeword

0 0 0.02 0.04 0.04

0.09 0.09
0.06

0.62

0.40 0.39 0.40
0.42

0.37

8.8E-1

7.1E-2

2.9E-2

1.2E-2
4.8E-3

2.0E-3

7.9E-4

3.1E-4
1E-4

1E-3

1E-2

1E-1

1E+0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7

P
ro

b
ab

ili
ty

 o
f

a
C

o
d

e
w

o
rd

 w
it

h
 E

B
it

 E
rr

o
rs

P
ro

b
ab

ili
ty

 P
Y
(E

),
 P

Z(
E)

Number of Bit Errors E in a BCH Codeword before decoding

Py: Probability of miscorrection, no FEC
symbol error added
Pz: Probability of miscorrection, FEC
symbol error added
Probability of E Bit Errors in a Codeword

2.3 FEC Symbols Divided Between Inner-Codeword Payloads

In Section 2.1.3, we assumed that the inner-FEC payload can be evenly divided into an integer

number of outer-FEC symbols. This is true for the Hamming (128,120,1) + RS KP4 concatenated

code: the 120-bit payload is divided evenly into 12 RS FEC symbols in GF(210). However, this is not

the case for the BCH(144,136,1) + RS KP4 code. Figure 10 shows the division of outer-FEC symbols

in inner-FEC payloads for a concatenated BCH (144,136,1) + RS KP4 FEC. The 14th FEC symbol is

divided into 2 inner-FEC payloads. Because of this, we cannot use the same one-step transition

probability aj
i’i calculated in Equation 5 for the 14th FEC symbol. We modify the approach shown in

Section 2.1.3 to create a new transition probability alast
j
i’i representing the last 6 bits in the BCH

payload, or equivalently 3 4-PAM symbols. alast
j
i’i can be calculated by

 𝑎𝑙𝑎𝑠𝑡𝑖′𝑖
𝑗
= 𝑃𝑟3

𝑗(𝑖)|
𝑃𝑟0

0(𝑖′)=1
. (18)

When traversing the first inner codeword, aj
i’i is used for the first 13 FEC symbols, and alast

j
i’i is used

for the 14th FEC symbol.

Figure 10. Division of outer-FEC symbols in inner-FEC payloads for a

KP4 + BCH (144,136,1) concatenated FEC.

With the BCH (144,136,1) code, the distribution of the FEC symbols in the inner-FEC payloads is not

the same for all inner codewords. Only the first 6 bits in the 14th FEC symbol is contained in the first

inner-FEC payload, and so the second inner-FEC payload starts with the remaining 4 bits of the 14th

FEC symbol. Precisely modeling the division of FEC symbols only results in a very small increase in

model accuracy at the cost of higher computational complexity. To simplify the analysis, we assume

the same distribution of FEC symbols shown in Figure 10 applies to all inner codewords.

Figure 11. Division of an outer codeword into inner codewords in a KP4 + Hamming (128,120,1)

concatenated FEC.

2.4 Inner Codewords Divided Between Outer Codewords

In Section 2.1.4, we assumed an outer codeword having no∙mbits that divides into an integer no∙m/ki

number of inner-FEC payloads. Figure 11 shows an example of a concatenated FEC with RS KP4

(544,514,15) outer code and the Hamming (128,120,1) inner code. At the KP4 FEC encoder output,

as indicated by point (a) in Figure 1, 30 parity-checking FEC symbols are appended to the 5140-bit

message forming one encoded KP4 codeword. The entire KP4-encoded codeword is divided by the

120-bit inner-FEC payloads. Each of the payloads is serially encoded by the extended-Hamming

encoder generating inner codewords as shown in Figure 11 at point (b) of Figure 1. However, in this

example, no∙m/ki = 45.33 is not an integer. In Figure 11, the 46th payload is divided between two

neighboring KP4 codewords, with 40 payload bits in the first KP4 codeword and the remaining 80

payload bits in the next KP4 codeword.

When traversing the outer-FEC trellis, as the 46th inner-FEC payload does not fit entirely into the first

KP4 codeword, we cannot use the same one-step transition probability 𝑎𝑂𝑖′𝑖
𝑗𝑠,𝑗𝑏 described in

Section 2.1.3 to model the last state transition. We modify the approach to stop accumulating the bit

error and FEC symbol errors when the end of the outer codeword is reached. The remaining bits that

fall outside the codeword still matter when deciding if the inner codeword is correctable. To capture

this, we consider this codeword equivalent to a 40-bit payload with the remaining 80 bits in the

payload and 8 overhead bits lumped together to form one 88-bit overhead. As such, we follow the

same process described in Section 2.1.3 to model the transition probability of this last codeword as

aO,last. When traversing the outer-FEC trellis, aO is used for the first 45 inner codeword transitions,

and aO,last is used for the 46th inner codeword.

With the KP4 + Hamming (128,120,1) concatenated FEC, the distribution of the inner codewords in

the outer codewords is not the same for all outer codewords. The outer-FEC codeword contains only

the first 40 bits of the 46th inner codeword, and so the next outer codeword starts with the last 80 bits

of the 46th inner codeword. Modeling these divided inner codewords has little impact on the accuracy

of the statistical model while significantly increasing the computational complexity. To simplify the

analysis, we assume the same distribution of inner codewords shown in Figure 11 applies to all outer

codewords.

Figure 12. Division of an outer codeword into inner codewords in a KP4 + BCH(144,136,1) concatenated

FEC.

Figure 12 shows an example of a concatenated FEC with RS KP4 (544,514,15) outer code and

BCH (144,136,1) inner code. The length of the outer codeword is divided evenly into 40 inner-FEC

payloads; hence the methodology for divided inner codewords described in this section does not apply

to this case.

2.5 Simulation Results

Our 4-PAM statistical model is applied to links with two different concatenated FEC codes. In both

cases, the outer code is the standard RS KP4 (544,514,15) FEC. The inner codes are the extended

Hamming (128,120,1) reported in Figure 13 and BCH (144,136,1) reported in Figure 14. Each

concatenated FEC code is simulated with (1) an all-pass channel response h = 1 without DFE and (2)

h = 1 + 0.5z-1 with a zero-forcing 1-tap DFE. The links are subject to AWGN only. In both figures, we

plot the post-FEC vs. pre-FEC BER curve of the two channels with and without inner-FEC

miscorrections using the statistical model. Results generated by a time-domain behavioral model are

superimposed in each figure. All time-domain data points in Figure 13 and Figure 14 are simulated

down to a post-FEC BER of 10-8. To simulate the post-FEC BERs without miscorrections, we assign

PY=PZ=0 in the statistical model, and an ideal inner-FEC decoder is used in the time-domain model.

Good consistency is observed between the statistical and time-domain results, both with and without

miscorrections. Moreover, the Hamming (128,120,1) code not only outperforms its BCH counterpart

in both channel cases but also exhibits a smaller gap between simulations with and without

miscorrections. This observation is consistent with the findings reported in Figure 9, that a Hamming

decoder is much less likely to add to another FEC-symbol error in a KP4 codeword.

Figure 13. Simulation results of a KP4 + Hamming (128,120,1) concatenated FEC.

Figure 14. Simulation results of a KP4 + BCH(144,136,1) concatenated FEC.

1E-14

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E-4 1E-3 1E-2

P
o

st
-F

EC
 B

ER

Pre-FEC BER

Statistical Model Dec Err On AWGN
Statistical Model Dec Err Off AWGN
Statistical Model Dec Err On DFE=0.5
Statistical Model Dec Err Off DFE=0.5
Time-Domain Model Dec Err On
Time-Domain Model Dec Err Off

1E-14

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E-4 1E-3 1E-2

P
o

st
-F

EC
 B

ER

Pre-FEC BER

Statistical Model Dec Err On AWGN

Statistical Model Dec Err Off AWGN

Statistical Model Dec Err On DFE=0.5

Statistical Model Dec Err Off DFE=0.5

Time-Domain Model Dec Err On

Time-Domain Model Dec Err Off

3. Modeling Inner-FEC Interleaving

Figure 15. System-level diagram of serially-concatenated FEC with 1:x inner-FEC interleaving.

Inner-FEC interleaving is a known technique to protect coding gain in the presence of burst errors.

The additional errors introduced by the inner-FEC miscorrection may corrupt an error-free outer-FEC

symbol, lowering the coding gain of the concatenated FEC. Figure 15 shows a system-level diagram

of a concatenated FEC with 1:x inner-FEC interleaving. After the data is encoded by the outer code,

the PAM-symbol interleaver divides PAM symbols into x streams in a round-robin fashion. Each

stream is encoded by a separate inner-FEC encoder before being recombined in the same order by the

PAM-symbol deinterleaver. At the receiver shown at point (c), the signal flow is reversed to retrieve

and decode the inner codewords.

Inner-FEC interleaving distributes consecutive burst errors to different inner codewords. This allows

burst errors that would result in a miscorrection with no inner-FEC interleaving to become correctable

or miscorrection-free by satisfying jb + jb-OH ≤ b. Consider a burst of three consecutive 4-PAM errors,

each containing 1 bit error, and the extended Hamming inner code with ti = 1 and b = 2. Without

interleaving, the burst is neither correctable nor decoding-error-free. A likely miscorrection may

corrupt an additional outer-FEC symbol, reducing the chance of successfully decoding the outer

codeword. With 1:2 inner-FEC interleaving, one of the three errors is distributed to one inner

codeword, and the other two are distributed to another inner codeword. Assuming the rest of the

decisions in both interleaved codewords are error-free, inner-FEC interleaving avoids a miscorrection

in this example.

3.1 Transceiver Architecture of 1:2 Inner-FEC Interleaving

Figure 16 shows the data stream of a concatenated KP4 + Hamming(128,120,1) FEC with 1:2

PAM-symbol interleaving on the inner code. Cn in each block represents the nth outer-FEC symbol.

These outer-FEC symbols contain Cn
1- Cn

10 representing the 10 bits in each outer-FEC symbol over

GF(210). Bits are grouped into pairs to form 4-PAM symbols. For example, Cn
1- Cn

2 make up the 1st

PAM symbol in the nth FEC symbol.

After the PAM-symbol interleaver, the data is divided into two streams. Due to a round-robin

distribution, the top stream contains the 1st PAM symbol, the bottom stream contains the 2nd, the top

stream contains the 3rd, and so on. Figure 16 shows the distribution of the first 24 outer-FEC symbols

in an encoded KP4 codeword. These make up the two 120-bit inner-FEC payloads that are encoded

by the two extended Hamming encoders to produce two inner codewords. This section refers to these

codewords as “inner codeword 1” and “inner codeword 2”. Both codewords have eight parity bits

added to the payload after encoding. The nth parity bit is labelled P1
n and P2

n in inner codeword 1 and

2, respectively. The combined data stream appearing at the deinterelaver output is transmitted through

the PHY at point (b). This bit stream in the PHY is the same as the order at point (a) in the encoded

KP4 codeword, with inner-FEC parity bits added. After transmission through the PHY, the data

reaches point (c) at the receiver, and the whole decoding process shown in the bottom-half part of

Figure 16 can be seen as the mirrored version of TX encoding. Note that the order of PAM symbols in

the encoded KP4 codeword is the same as the PAM symbols transmitted in the PHY. The inner-FEC

interleaving scheme is designed to ensure that the burst errors uncorrectable by the inner code corrupt

the fewest possible outer-FEC symbols. In other words, the inner-FEC interleaving does not spread

out burst errors over more outer-FEC symbols than necessary.

Figure 16. Bit-steam example of a KP4 + Hamming(128,120,1) concatenated FEC with 1:2 inner-FEC

interleaving.

Figure 17. An example of PAM-symbol distribution between 1:2 interleaved inner codewords, resulting

in two repeating PAM-symbol patterns in an outer-FEC symbol.

3.2 Trellis Model for Concatenated FEC with 1:2 Inner-FEC Interleaving

In this subsection, we describe how the trellis model for concatenated FEC is modified to model a

concatenated FEC with 1:2 inner-FEC interleaving. We continue to use the

KP4 + Hamming (128,120,1) code shown in Figure 16 as an example throughout this section.

3.2.1 PAM-symbol and FEC-Symbol Trellis for 1:2 Interleaving

Recall the time-aggregation of PAM symbols described in Section 2.1.2: Every m/2 consecutive

4-PAM symbols transmitted in the PHY are grouped into one outer-FEC symbol in GF(2m). However,

the 1:2 interleaving example in Figure 16 shows that the PAM symbols transmitted in the PHY are

distributed into different inner codewords. Figure 17 provides a more detailed explanation of the

PAM-symbol distribution given in Figure 16. With 1:2 interleaving, the selection of 4-PAM symbols

in the PHY alternate between the two encoded inner codewords. We end up with two repeating

PAM-symbol patterns in an outer-FEC symbol. The first pattern contains three 4-PAM symbols from

inner codeword 1 and two from inner codeword 2. The second pattern contains two 4-PAM symbols

from codeword 1 and three from inner codeword 2.

In the PAM-symbol trellis, we introduce two new variables, jb1 and jb2 to track the number of bit

errors in inner codeword 1 and 2, respectively. Dynamic programming is used to find the probability

of arriving at state i at timestep k +1 with exactly jb1 and jb2 bit errors by iterating over all possible j

and i',

 𝑃𝑟𝑘+1
𝑗𝑏1,𝑗𝑏2(𝑖) = {

∑ ∑ 𝑃𝑟𝑘
𝑗𝑏1−𝑗,𝑗𝑏2(𝑖′)𝑝𝑖′𝑖𝑖′𝑗 , 𝑖𝑓(𝑘 + 1)𝑜𝑑𝑑

∑ ∑ 𝑃𝑟𝑘
𝑗𝑏1,𝑗𝑏2−𝑗(𝑖′)𝑝𝑖′𝑖𝑖′𝑗 , 𝑖𝑓(𝑘 + 1)𝑒𝑣𝑒𝑛

. (19)

We apply time aggregation to find the one-step transition probability in the FEC-symbol trellis. To

capture the two repeating PAM-symbol patterns described in Figure 17, we generate two probabilities

𝑎𝑜𝑑𝑑𝑖′𝑖
𝑗𝑏1,𝑗𝑏2 and 𝑎𝑒𝑣𝑒𝑛𝑖′𝑖

𝑗𝑏1,𝑗𝑏2, the probability of a FEC-symbol transition from state i' to i with jb1 and

jb2 bit errors at a timestep where kF is odd and even, respectively. We traverse a length-m/2

PAM-symbol trellis using Equation 19 to calculate 𝑎𝑜𝑑𝑑𝑖′𝑖
𝑗𝑏1,𝑗𝑏2,

 𝑎𝑜𝑑𝑑𝑖′𝑖
𝑗𝑏1,𝑗𝑏2 = 𝑃𝑟𝑘=𝑚/2

𝑗𝑏1,𝑗𝑏2(𝑖)|
𝑃𝑟0

0,0(𝑖′)=1
. (20)

Next, the one-step transition probability for aodd is generated from aeven by swapping jb1 and jb2,

 𝑎𝑒𝑣𝑒𝑛𝑖′𝑖
𝑗𝑏1,𝑗𝑏2 = 𝑎𝑜𝑑𝑑𝑖′𝑖

𝑗𝑏2,𝑗𝑏1. (21)

In the FEC-symbol trellis, we define variable js1 as the number of outer-FEC-symbol errors containing

bit errors only from inner codeword 1. Similarly, js2 is defined as the number of outer-FEC-symbol

errors with bit errors occurring only in inner codeword 2. js12 is defined as the number of

outer-FEC-symbol errors with bit errors in both inner codewords. Note that each FEC-symbol error is

classified into one of three mutually exclusive cases js1, js2, or js12, so the total number of FEC-symbol

errors in a trellis path is js1+js2+js12. These variables are defined in this manner to easily determine

how inner-FEC correction affects the number of outer-FEC symbol errors in a trellis path. For

example, if codeword 1 is correctable but codeword 2 is not, js1 is the number of FEC symbol errors

that can be corrected by inner codeword 1. The numbers of bit errors in inner codeword 1 and 2 at the

(kF+1)th FEC symbol are denoted as j1, and j2, respectively. The probability of arriving at state i at the

(kF+1)th FEC symbol with exactly js1, js2, and js12 FEC-symbol errors, and jb1 and jb2 bit errors is

computed by iterating over all possible j1, j2 and i',

 𝑃𝑟_𝐹𝐸𝐶𝑘𝐹+1
𝑗𝑠1,𝑗𝑠2,𝑗𝑠12,𝑗𝑏1,𝑗𝑏2(𝑖) =

{

 ∑ ∑ ∑ 𝑃𝑟_𝐹𝐸𝐶𝑘𝐹

𝑗𝑠1−1,𝑗𝑠2,𝑗𝑠12,𝑗𝑏1−𝑗1,𝑗𝑏2−𝑗2(𝑖′)𝑎𝑜𝑑𝑑 𝑖′𝑖
𝑗1,𝑗2

𝑖′𝑗2𝑗1 , 𝑖𝑓𝑗1 > 0, 𝑗2 = 0, (𝑘𝐹 + 1)𝑜𝑑𝑑

∑ ∑ ∑ 𝑃𝑟_𝐹𝐸𝐶𝑘𝐹
𝑗𝑠1,𝑗𝑠2−1,𝑗𝑠12,𝑗𝑏1−𝑗1,𝑗𝑏2−𝑗2(𝑖′)𝑎𝑜𝑑𝑑 𝑖′𝑖

𝑗1,𝑗2
𝑖′𝑗2𝑗1 , 𝑖𝑓𝑗1 = 0, 𝑗2 > 0, (𝑘𝐹 + 1)𝑜𝑑𝑑

∑ ∑ ∑ 𝑃𝑟_𝐹𝐸𝐶𝑘𝐹
𝑗𝑠1,𝑗𝑠2,𝑗𝑠12−1,𝑗𝑏1−𝑗1,𝑗𝑏2−𝑗2(𝑖′)𝑎𝑜𝑑𝑑𝑖′𝑖

𝑗1,𝑗2
𝑖′𝑗2𝑗1 , 𝑖𝑓𝑗1 = 0, 𝑗2 > 0, (𝑘𝐹 + 1)𝑜𝑑𝑑

∑ ∑ ∑ 𝑃𝑟_𝐹𝐸𝐶𝑘𝐹
𝑗𝑠1−1,𝑗𝑠2,𝑗𝑠12,𝑗𝑏1−𝑗1,𝑗𝑏2−𝑗2(𝑖′)𝑎𝑒𝑣𝑒𝑛𝑖′𝑖

𝑗1,𝑗2
𝑖′𝑗2𝑗1 , 𝑖𝑓𝑗1 > 0, 𝑗2 = 0, (𝑘𝐹 + 1)𝑒𝑣𝑒𝑛

∑ ∑ ∑ 𝑃𝑟_𝐹𝐸𝐶𝑘𝐹
𝑗𝑠1,𝑗𝑠2−1,𝑗𝑠12,𝑗𝑏1−𝑗1,𝑗𝑏2−𝑗2(𝑖′)𝑎𝑒𝑣𝑒𝑛𝑖′𝑖

𝑗1,𝑗2
𝑖′𝑗2𝑗1 , 𝑖𝑓𝑗1 = 0, 𝑗2 > 0, (𝑘𝐹 + 1)𝑒𝑣𝑒𝑛

∑ ∑ ∑ 𝑃𝑟_𝐹𝐸𝐶𝑘𝐹
𝑗𝑠1,𝑗𝑠2,𝑗𝑠12−1,𝑗𝑏1−𝑗1,𝑗𝑏2−𝑗2(𝑖′)𝑎𝑒𝑣𝑒𝑛𝑖′𝑖

𝑗1,𝑗2
𝑖′𝑗2𝑗1 , 𝑖𝑓𝑗1 > 0, 𝑗2 > 0, (𝑘𝐹 + 1)𝑒𝑣𝑒𝑛

. (22)

3.2.2 Inner-FEC Trellis for 1:2 Interleaving

With 1:2 inner-FEC interleaving, every 2ni bits must be traversed to reach the end of both inner

codewords. Figure 18 shows an inner-FEC trellis example of 1:2 interleaved Hamming(128,120,1)

codewords where 256 bits are traversed as the basic building block to compute aI, the one-step

transition probability of the two inner codewords before decoding.

In the inner-FEC trellis, jb-PL1 and jb-PL2 are defined as the number of bit errors in the payload of inner

codeword 1 and 2, respectively. We traverse the FEC-symbol trellis up to kF = ki/m using Equation 22

to find aPL,

 𝑎𝑃𝐿𝑖′𝑖
𝑗𝑠1,𝑗𝑠2,𝑗𝑠12,𝑗𝑏−𝑃𝐿1,𝑗𝑏−𝑃𝐿2 = 𝑃𝑟_𝐹𝐸𝐶𝑘𝐹=𝑘𝑖/𝑚

𝑗𝑠1,𝑗𝑠2,𝑗𝑠12,𝑗𝑏−𝑃𝐿1,𝑗𝑏−𝑃𝐿2(𝑖)|
𝑃𝑟𝑘𝐹=0

0,0,0,0,0(𝑖′)=1
. (23)

We define jb-OH1 and jb-OH2 as the number of bit errors in the overheads of inner codewords 1 and 2,

respectively. We traverse the PAM-symbol trellis representing the overhead to k = 2(ni-ki) using

Equation 19 to find aOH, which is the one-step transition probability for the overhead in the 2 inner

codewords,

 𝑎𝑂𝐻𝑖′𝑖
𝑗𝑏1−𝑂𝐻,𝑗𝑏2−𝑂𝐻 = 𝑃𝑟𝑘=2(𝑛𝑖−𝑘𝑖)

𝑗𝑏1−𝑂𝐻,𝑗𝑏2−𝑂𝐻(𝑖)|
𝑃𝑟0

0,0(𝑖′)=1
. (24)

aPL and aOH are aggregated to produce aI, the one-step transition probability for the two inner

codewords without correction,

 𝑎𝐼𝑖′𝑖
𝑗𝑠1,𝑗𝑠2,𝑗𝑠12,𝑗𝑏−𝑃𝐿1,𝑗𝑏−𝑃𝐿2,𝑗𝑏−𝑂𝐻1,𝑗𝑏−𝑂𝐻2 = ∑ (𝑎𝑃𝐿𝑖′𝑖~

𝑗𝑠1,𝑗𝑠2,𝑗𝑠12 ,𝑗𝑏−𝑃𝐿1 ,𝑗𝑏−𝑃𝐿2𝑎𝑂𝐻𝑖~𝑖
𝑗𝑏1−𝑂𝐻,𝑗𝑏2−𝑂𝐻)𝑖~ . (25)

Figure 18. Example of 1:2 interleaved Hamming (128,120,1) codewords.

In the outer-FEC trellis, each state transition aO corresponds to traversing two decoded inner

codewords with 1:2 inner-FEC interleaving. We iterate over all transition probabilities aI, to compute

𝑎𝑂𝑖′𝑖
𝑗𝑠,𝑗𝑏, the one-step transition in the outer-FEC trellis for both inner codewords after decoding. Note

that aO does not track the inner-FEC symbol and bit errors. There are 4 cases for inner-FEC error

correction:

1. If (jb-PL1 + jb-OH1) ≤ ti and (jb-PL2 + jb-OH2) ≤ ti, both inner codeword 1 and 2 are correctable,

and the transition probability aI is decoded to the outer-FEC transition aO with js = 0 and

jb = 0:

 𝑎𝑂𝑖′𝑖
0,0 = 𝑎𝑂𝑖′𝑖

0,0 + 𝑎𝐼𝑖′𝑖
𝑗𝑠1,𝑗𝑠2,𝑗𝑠12,𝑗𝑏−𝑃𝐿1,𝑗𝑏−𝑃𝐿2,𝑗𝑏−𝑂𝐻1,𝑗𝑏−𝑂𝐻2 . (26)

2. If (jb-PL1 + jb-OH1) ≤ ti and (jb-PL2 + jb-OH2) > ti, only inner codeword 1 is correctable.

Accordingly, aO contains only the bit errors jb-PL2 in inner-FEC payload 2. Only the FEC

symbol errors js1 are corrected, and so aO contains js2 + js12 FEC symbol errors:

 𝑎𝑂𝑖′𝑖
𝑗𝑠12+𝑗𝑠2,𝑗𝑏−𝑃𝐿2 = 𝑎𝑂𝑖′𝑖

𝑗𝑠12+𝑗𝑠2,𝑗𝑏−𝑃𝐿2 + 𝑎𝐼𝑖′𝑖
𝑗𝑠1,𝑗𝑠2,𝑗𝑠12,𝑗𝑏−𝑃𝐿1,𝑗𝑏−𝑃𝐿2,𝑗𝑏−𝑂𝐻1,𝑗𝑏−𝑂𝐻2. (27)

3. If (jb-PL1 + jb-OH1) > ti and (jb-PL2 + jb-OH2) ≤ ti, only inner codeword 2 is correctable:

 𝑎𝑂𝑖′𝑖
𝑗𝑠12+𝑗𝑠1,𝑗𝑏−𝑃𝐿1 = 𝑎𝑂𝑖′𝑖

𝑗𝑠12+𝑗𝑠1,𝑗𝑏−𝑃𝐿1 + 𝑎𝐼𝑖′𝑖
𝑗𝑠1,𝑗𝑠2,𝑗𝑠12,𝑗𝑏−𝑃𝐿1,𝑗𝑏−𝑃𝐿2,𝑗𝑏−𝑂𝐻1,𝑗𝑏−𝑂𝐻2. (28)

4. If (jb-PL1 + jb-OH1) > ti and (jb-PL2 + jb-OH2) > ti, neither codeword 1 nor 2 is correctable. In

this case, aO contains all FEC-symbol and bit errors from both inner-FEC payloads:

 𝑎𝑂𝑖′𝑖
𝑗𝑠12+𝑗𝑠1+𝑗𝑠2,𝑗𝑏−𝑃𝐿1+𝑗𝑏−𝑃𝐿2 = 𝑎𝑂𝑖′𝑖

𝑗𝑠12+𝑗𝑠1+𝑗𝑠2,𝑗𝑏−𝑃𝐿1+𝑗𝑏−𝑃𝐿2 +

𝑎𝐼𝑖′𝑖
𝑗𝑠1,𝑗𝑠2,𝑗𝑠12,𝑗𝑏−𝑃𝐿1,𝑗𝑏−𝑃𝐿2,𝑗𝑏−𝑂𝐻1,𝑗𝑏−𝑂𝐻2 . (29)

After the inner-FEC decoding, the outer-FEC trellis is traversed up to kO = nom/2ki in the same

manner described in Section 2.1.4. The post-FEC BER is obtained in the same way also described in

Section 2.1.4. Inner-FEC miscorrections, FEC divided between inner codewords, and inner

codewords divided between outer codewords, are modeled as described in Sections 2.3-2.5.

3.3 Modeling 1:4 Interleaving

More complex interleaving schemes, such as 1:4 can be modeled using the same methodology as in

1:2 interleaving. However, modeling higher-order interleaving schemes can quickly become

prohibitively complex. For example, consider the three error variables used to track FEC-symbol

errors in 1:2 inner-FEC interleaving: js1, js2, js12. Extending this methodology to 1:4 interleaving yields

a total number of fifteen error variables: js1, js2, js3, js4, js12, js13, js14, js23, js24, js34, js123, js124, js134, js234,

js1234. In general, for 1:x interleaving, 2x-1 variables are needed.

Considering all these variables jointly produces too many transitions to compute. To simplify the

computation, we note that some of these variables do not need to be considered jointly for ti=1. We

can partition the correctable subset of trellis paths into mutually exclusive groups, with each error

variable in a group containing no more than 1 bit error. We then find the outer-FEC trellis transition

probability aO by separately calculating and deducting the probability of each correctable group from

the total probability space 𝑎𝐼𝑖′𝑖
𝑗𝑠,𝑗𝑏,𝑗𝑏−𝑂𝐻 .

For example, if js1=1 and js12=1, there is one erred FEC symbol with bit errors only in codeword 1,

and another erred FEC symbol with bit errors only in codeword 1 and 2. Therefore, inner codeword 1

is uncorrectable in this example as it has more than 1 bit error. This suggests js1 and js12 are mutually

exclusive events in the correctable-trellis subspace. With ti=1, only two mutually exclusive error

scenarios are possible in this example: js1=1 and js12=0, or js1=0 and js12=1. We refer to these

correctable error scenarios as mutually exclusive because one of js1 and js12 must be 0, so they do not

need to be considered jointly. However, certain variables need to be considered jointly, for example

js1 and js2. This is because the correctability of FEC symbols counted with js1 and js2 are independent.

The errors in all interleaved codewords may be correctable given js1=1 and js2=1. We can group the

FEC-symbol error variables into the following nine groups where variables in each group need to be

considered jointly:

js1, js2, js3, js4 js12, js34 js13, js24 js14, js23 js123 js124 js134 js234 js1234

By traversing the inner-FEC trellis nine times, each time tracking and correcting a different group of

outer-FEC symbol error variables, we significantly reduce the computation complexity of the trellis

model. The maximum number of variables that must be considered jointly with 1:4 interleaving

reduces from fifteen to only four.

3.4 Simulation Results

Our 4-PAM statistical model is applied to links with two concatenated FEC codes. The outer code is

the standard RS KP4 (544,514,15) FEC in both cases. The inner codes are the extended

Hamming (128,120,1) code reported in Figure 19 and the BCH(144,136,1) code reported in

Figure 20. Each concatenated FEC code is simulated with a channel response h = 1 + 0.5z-1 and a

zero-forcing 1-tap DFE. The links are subject to AWGN only. We plot the post-FEC vs. pre-FEC

BER curve with no inner-FEC interleaving, 1:2 interleaving, and 1:4 interleaving in each figure. All

simulations include inner-FEC miscorrections. Results generated by a time-domain behavioral model

are superimposed in each figure. All time-domain data points reported in Figure 19 and Figure 20 are

simulated down to a post-FEC BER of 10-8. Good consistency is observed between the statistical

results and time-domain results.

Overall, the extended Hamming inner code reported in Figure 19 outperforms the BCH inner code in

Figure 20. Note that in Figure 20, higher-order interleaving not only results in an improved post-FEC

BER at high pre-FEC BERs, but it also introduces a higher post-FEC error floor at low pre-FEC

BERs. Subject to a large DFE tap weight, long burst errors are the dominant source of post-FEC

errors at low pre-FEC BERs [1]. Without interleaving, long bursts are likely contained within one

inner codeword. In this case, a miscorrection can possibly add one FEC-symbol error to a KP4

codeword. With interleaving, a long burst will corrupt multiple inner codewords, possibly introducing

multiple miscorrections and adding more than one FEC-symbol errors to a KP4 codeword. As

reported in Figure 9, the extended Hamming (128,120,1) code exhibits much better decoding behavior

and adds much fewer FEC-symbol errors than the BCH (144,136,1) code in the presence of long

bursts. This explains why we do not observe a similar error floor at 10-12 post-FEC BER with the

extended Hamming code in Figure 19.

Figure 19. Simulation results of a KP4 + Hamming (128,120,1) concatenated FEC with different

interleaving schemes.

Figure 20. Simulation results of a KP4 + BCH(144,136,1) concatenated FEC with different interleaving

schemes.

4. Conclusion
In this paper, we presented a statistical model that accurately estimates post-FEC BER for high-speed

wireline links using a concatenated FEC that may include interleaving on the inner code. A

hierarchical approach is adopted to analyze the propagation of PAM-symbol and FEC-symbol errors

through a 4-layer trellis model in the presence of DFE error propagation. This approach expands on

previous work by adding two additional layers of abstraction to model state transitions in inner

codewords. A hybrid approach is used to model inner-FEC miscorrections, taking information on the

probability of miscorrections determined by a separate time-domain simulation. The proposed

statistical model can be combined with our existing approaches to model other noise sources such as

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E-4 1E-3 1E-2

P
o

st
-F

EC
 B

ER

Pre-FEC BER

No Inner Interleaving

1:2 Interleaving

1:4 Interleaving

Time-Domain Model

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E-4 1E-3 1E-2

P
o

st
-F

EC
 B

ER

Pre-FEC BER

No Inner Interleaving

1:2 Interleaving

1:4 Interleaving

Time-Domain Model

residual ISI, crosstalk, transmitter and receiver jitter, and other system-level design choices, including

precoding and bit-multiplexing. One possible future work is to model a concatenated FEC

architecture that uses soft decoding.

The proposed model can serve as a tool for evaluating FEC choices for 200+ Gb/s applications. It

allows us to compare the effect of different inner/outer codes and inner-FEC interleaving schemes on

post-FEC BER. It can also be used as a tool for system-level transceiver design, allowing designers to

see the impact of design choices on the post-FEC BER efficiently.

References
[1] M. Yang, S. Shahramian, H. Shakiba, H. Wong, P. Krotnev and A. Chan Carusone, "Statistical

BER Analysis of Wireline Links With Non-Binary Linear Block Codes Subject to DFE Error

Propagation," in IEEE Transactions on Circuits and Systems I: Regular Papers.

[2] M. Yang, S. Shahramian, H. Shakiba, H. Wong, P. Krotnev and A. Carusone, “A Statistical

Modeling Approach for FEC-Encoded High-Speed Wireline Links,” DesignCon 2020, Santa

Clara, CA, 2020.

[3] S. Lin and D. J. Costello, Error Control Coding: Fundamentals and Applications, Englewood

Cliffs, NJ, Prentice Hall, 2004.

[4] M. Isaka and M. Fossorier, "High-rate serially concatenated coding with extended Hamming

codes," in IEEE Communications Letters, vol. 9, no. 2, pp. 160-162, Feb. 2005.

[5] Proposal for a specific (128,120) extended inner Hamming Code with lower power and lower

latency soft Chase decoding than textbook codes, IEEE Standard 802.3df, Oct. 2022.

[6] Constructing a BCH/Hamming Inner Code for 200 Gb/s per lane PMDs, IEEE Standard 802.3df,

Oct. 2022.

[7] Concatenated SFEC proposal for 200Gb/s per Lane IM-DD Optical PMD, IEEE Standard

802.3df, Nov. 2022.

[8] A. Leon-Garcia, Probability, Statistics, and Random Processes for Electrical Engineering.

Prentice Hall, 2007.

[9] X.-R. Cao, Z. Y. Ren, S. Bhatnagar, M. Fu, and S. Marcus, “A time aggregation approach to

Markov decision processes,” Automatica, vol. 38, pp. 929–943, 2002.

[10] M. Richter, K. Oberlaender and M. Goessel, "New Linear SEC-DED Codes with Reduced Triple

Bit Error Miscorrection Probability," 2008 14th IEEE International On-Line Testing Symposium,

Rhodes, Greece, 2008, pp. 37-42, doi: 10.1109/IOLTS.2008.27.

