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Abstract 
This paper presents a statistical model that accurately estimates post-FEC BER for multi-part links 

using a concatenated FEC. Both the inner and outer codes in the concatenated FEC are assumed to be 

linear block codes, and the inner code may include codeword interleaving. A hierarchical approach is 

adopted to analyze the propagation of PAM-symbol and FEC-symbol errors through a multi-layer 

Markov model in the presence of DFE error propagation. The proposed model also considers 

miscorrections introduced by the inner-FEC decoder, a significant source of error in concatenated 

FEC architectures. A hybrid approach is used to model miscorrections, with the probability of 

miscorrections determined from a separate time-domain simulation. The proposed statistical model 

can be combined with our existing approaches to model other noise sources such as residual ISI, 

crosstalk, transmitter and receiver jitter, and other system-level design choices including precoding 

and bit-multiplexing.  
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Figure 1. System-level diagram of a serially concatenated FEC with an outer code (no, ko, to), and an 

inner code (ni, ki, ti). 

 

1. Introduction 

Forward error correction (FEC) codes are necessary for modern high-speed wireline links to achieve 

acceptably low bit error rates (BER). The post-FEC BER of a wireline link cannot be accurately 

estimated from only knowing the pre-FEC BER and the FEC architecture; other factors such as 

equalization techniques, decision feedback equalizer (DFE) error propagation, inter-symbol 

interference, crosstalk, and jitter must be considered. Ideally, one may perform a transient simulation 

to capture the characteristics of all noise sources fully. However, the targeted <10-15 BERs make 

time-domain simulations prohibitively long, especially for exploring architectural design alternatives. 

Therefore, an efficient statistical model that accurately predicts very low post-FEC BERs serves an 

essential function in the design of high-speed wireline links. 

 

In our previous work [1-2], we proposed a statistical model for standard non-binary linear block 

codes, such as the RS(544,514,15) KP4 and RS(528,514,7) KR4 codes. This FEC architecture is 

suitable for most wireline signaling up to 112 Gb/s. However, in 224 Gb/s per lane applications with 

4-PAM signaling, the Nyquist frequency doubles from 28 GHz to 56 GHz. Doubling the Nyquist 

frequency generally hampers signal integrity resulting in less operating margin and a worse pre-FEC 

BER. Despite the progress being made on improving channel materials, transceiver architecture 

designs, and system-level innovations, stronger FECs are needed to loosen pre-FEC BER 

requirements for 200+ Gb/s applications. Thus the IEEE 802.3dj task force is considering a 

concatenated FEC architecture. 

 

Figure 1 shows the system-level diagram of a serially concatenated FEC. The outer code is a 

non-binary linear block code, which can correct up to to FEC symbol errors. A typical choice for the 

outer code in IEEE 802.3dj is the standard RS KP4 (544,514,15) FEC in GF(210), which can correct 

up to to = 15 FEC symbol errors in a KP4 codeword with codeword length no = 544 FEC symbols, and 

payload length ki = 514 FEC symbols. This choice of code with large to allows it to correct long burst 

errors caused by DFE error propagation which is crucial for links with the high DFE tap coefficients 

required for 200+ Gb/s signaling. 

 

Next, an inner code is applied to provide another layer of protection against random bit errors. Due to 

stringent latency and complexity requirements, the inner code will typically be a simple code that can 

correct a small number of bit errors. Even codes that can only correct one bit error per codeword are 

effective in correcting random errors, allowing the outer block code to work more efficiently on long 

burst errors. Choices for the inner code include the Hamming(127,120,1), which can correct up to 

ti  = 1 bit in an inner codeword with codeword length ni = 127 bits and payload length ki = 120 bits, 

and BCH (144,136,1), which can correct up to ti  = 1 bit in an inner codeword with ni = 144 bits and 

ki = 136 bits. These codes have a minimum Hamming distance of three between valid codewords [3], 

which is relatively small. Because of this, inner codewords with more than one bit error are at risk of 

being decoded to the wrong codeword (miscorrected), adding a bit error to the codeword. These 



inner-FEC miscorrections significantly worsen the post-FEC BER, as the additional bit error may 

corrupt an additional outer-FEC symbol. To improve the performance of the Hamming(127,120,1) 

code, an additional parity bit can be added to extend the minimum Hamming distance between 

codewords to 4. This is known as the extended Hamming (128,120,1) code [4]. Although this code 

can still only correct one bit error, it will not miscorrect codewords with two bit errors, improving the 

performance of the concatenated FEC. 

This paper presents a statistical model that accurately estimates post-FEC BER for multi-part links 

using a concatenated FEC. We use a simplified link architecture as depicted in Figure 1, focusing on 

error analysis of the channel connecting the two modules, which may have both random and burst 

errors. The host-to-module interfaces in the multi-part link are assumed to be benign and do not 

significantly contribute to the post-FEC BER. Both the inner and outer codes in the concatenated FEC 

are assumed to be linear block codes, and the inner code may include codeword interleaving. A 

hierarchical approach is adopted to analyze the propagation of PAM-symbol and FEC-symbol errors 

through a multi-layer Markov model in the presence of DFE error propagation. Our model also 

considers inner-FEC miscorrections. The proposed statistical model can be combined with our 

existing approaches [2] to model noise sources such as residual ISI, crosstalk, transmitter and receiver 

jitter, and other system-level design choices such as precoding and bit-multiplexing. A series of 

techniques, including state aggregation, time aggregation, state reduction, and dynamic programming 

are used, making the time complexity to compute post-FEC BERs below 10-15 reasonable. The 

model’s accuracy is verified by comparing pre-FEC vs. post-FEC BER plots with time-domain 

simulation results. The implementation details of the concatenated FEC for the next generation of 

high-speed wireline links, such as the choice of inner code and inner-FEC interleaving scheme, are 

still being discussed by the IEEE 802.3dj task force, and many candidates were proposed [5-7]. The 

scope of this paper covers some of the most popular options, but the modeling methodologies 

presented can be easily extended to other candidates. 

 

The main body of this work is divided into two sections. In Section 2, we propose a statistical model 

for concatenated FEC codes. A hybrid approach is used to model inner-FEC miscorrections, with 

information on the probability of miscorrections determined by a separate time-domain simulation. In 

Section 3, we expand the proposed statistical model to consider inner-FEC interleaving. We propose a 

novel method to partition the correctable trellis paths that significantly reduces the computational 

complexity for tracking the error information in each interleaved inner codeword. Finally, we 

conclude our work in Section 4. 

 

2. Modeling Concatenated FEC 

2.1 General Approach 

In this subsection, we present the trellis model for concatenated FEC shown in Figure 2, which 

contains four levels of hierarchy: The PAM-symbol trellis and the FEC-symbol trellis were first 

proposed in [1], where we presented a trellis model for an end-to-end RS FEC. Building on this work, 

we include two more levels of hierarchy: the inner-FEC trellis and outer-FEC trellis, to model a 

concatenated FEC architecture.  

 

Figure 2 shows the trellis model of a concatenated FEC with a hypothetical non-binary outer code in 

GF(24) assuming (no = 2, ko = 1, to = 1) and a binary inner code assuming (ni = 10, ki = 8, ti = 1). We 



describe the four layers in Figure 2 from the bottom to up. The PAM-symbol trellis models state 

transitions between PAM symbols using the transition probabilities ‘p’. The PAM-symbol trellis is 

time-aggregated to form the FEC-symbol trellis, that models state transitions between FEC symbols 

with the transition probabilities ‘a’. Next, the inner-FEC trellis builds a single-step transition 

probability for the inner codeword ‘aI’, including the inner-FEC payload and overhead. Finally, the 

outer-FEC trellis models the state transition ‘aO’ between decoded inner codewords until the end of 

the outer codeword, where the post-FEC BER can be calculated. ‘aO’ is generated by applying 

inner-FEC decoding to ‘aI’, removing bit errors in correctable trellis paths. Subsections 2.1.1-2.1.5 

describe how this trellis model is constructed for general inner and outer codes. Specifically, we focus 

on calculating the one-step state transition probabilities and the trellis-path probabilities in each trellis 

layer. 

 

 
Figure 2. Trellis model of a hypothetical concatenated FEC assuming a non-binary outer code (2,1,1) in 

GF(24) and a binary inner code (10,8,1). The unlikely error states ±4, and ±6 are disregarded for 

simplicity of the example. 

 



2.1.1 PAM-Symbol Trellis 

In [1], we have shown a methodology for modeling an N-tap DFE with 4-PAM signaling using a 

Markov model containing 16N states and that this model can be simplified to 4N states using state 

aggregation. All examples shown in this paper assume 4-PAM signaling with a 1-tap DFE. At time 

index k corresponding to the kth transmitted 4-PAM symbol, the aggregated Markov model contains 

error states Dk  {0, ±2, ±4, ±6}, corresponding to the difference in voltage level between transmitted 

and received 4-PAM symbols. In the Markov model, the state-transition probability from a source 

state ‘i'’ to a sink state ‘i’ in the PAM-symbol trellis is denoted as pi’i. We find the steady-state 

probability, πi, of any state i in the Markov model by solving the global balance equation [8], 
 

                                                                    𝜋𝑖 = ∑ 𝑝𝑖′𝑖𝜋𝑖′𝑖′ ,                                          (1) 
 

subject to 
 

                                                                         ∑ 𝜋𝑖𝑖 = 1.                                                        (2) 
 

We next apply trellis-based dynamic programming to the Markov model to efficiently calculate the 

probability of bit errors in a codeword. Rather than finding the BER by enumerating all possible error 

patterns in the trellis, dynamic programming solves the problem much faster by grouping the 

probability of all trellis paths having the same number of bit errors. When traversing a PAM-symbol 

trellis using dynamic programming, each state transition introduces either 0, 1, or 2 bit errors. We 

define jPAM as the number of bit errors in a PAM symbol detection. Assuming gray-coding, an error 

value ±2 or ±6 corresponds to jPAM = 1, and an error value ±4 corresponds to jPAM = 2. We define 

Prj
k(i) as the probability of arriving at state i at the kth stage of the PAM-symbol trellis after traversing 

all trellis paths containing exactly j bit errors. In each trellis iteration, for states ‘i’ where the most 

recently received 4-PAM symbol has jPAM-bit errors, 
 

                                                        𝑃𝑟𝑘+1
𝑗 (𝑖) = ∑ 𝑃𝑟𝑘

𝑗−𝑗𝑃𝐴𝑀(𝑖′)𝑝𝑖′𝑖𝑖′  .                                              (3) 
 

Figure 3 shows the PAM-symbol trellis from the example in Figure 2. The unlikely error states ±4, 

and ±6 are disregarded for the simplicity of the example. All possible paths from the 0th PAM symbol 

(k = 0) to the 2nd PAM symbol (k = 2) are shown with arrows. The probabilities of arriving at the 2nd 

PAM symbol with j  {0,1,2} bit errors are calculated using the dynamic programming procedure 

described in Equation 3. 

 

 

 
Figure 3. Example of a PAM-symbol trellis. 

 

 

 



2.1.2 FEC-Symbol Trellis 

Using the methods described so far, every outer-FEC symbol in GF(2m) can be decomposed into a 

length-m/2 4-PAM trellis describing the link behavior in the physical layer. We apply Equation 3 to 

recursively compute Prk
j(i), aggregating the probability of error patterns having exactly j bit errors, 

where j  {0 … m/2}. 

 

 
Figure 4. Example of a FEC-symbol trellis in GF(24), each state transition in the FEC-symbol trellis is 

generated by time-aggregating the underlying PAM-symbol trellis paths. 

 

Assuming a generalized N-tap DFE and Dk  {0, ±2, ±4, ±6}, all paths in the PAM-symbol trellis 

representing Prj
k(i) can be decomposed into 4N groups of trellis paths, each starting with one of the 4N 

Markov states at k = 0. Each of these paths can be considered as a one-step state transition equivalent 

to traversing m/2 4-PAM stages. As such, we may construct a new trellis model for the entire FEC 

block, assuming that each state transition from the kF
th to the (kF+1)th stage has traversed a group of 

length-m/2 PAM-symbol-trellis paths. This is known as the time aggregation of a Markov decision 

process [9]; we group trellis paths over m/2 consecutive 4-PAM symbols while the time-aggregated 

Markov model preserves both the time-homogeneity and bit-error information. We call this 

time-aggregated PAM-symbol trellis the FEC-symbol trellis, distinguishing it from the PAM 

symbol-level trellis considered thus far. For the FEC-symbol trellis example shown in Figure 4, every 

two 4-PAM symbols are time-aggregated to form a one-step transition in the FEC-symbol trellis. 

 

To analyze the FEC trellis, we must first find all the state-transition probabilities aj
i’i of these 4N states 

by analysis of each underlying PAM-symbol trellis. First, we instantiate the expanded PAM-symbol 

trellis by assuming that the trellis starts at the state ‘i’’ in aj
i’i with a probability of 1, 

 

                                                                       𝑃𝑟0
0(𝑖′) = 1.                                                                (4) 

 

Next, after traversing the expanded PAM-symbol trellis using the dynamic programming procedure 

described in Equation 3, the transition probability aj
i’i to the next (kF+1)th FEC-symbol trellis stage 

can be calculated by summing the probability of all j-bit-error PAM-symbol-trellis paths ending at 

state ‘i’, 
 

                                                           𝑎𝑖′𝑖
𝑗
= 𝑃𝑟𝑘=𝑚/2

𝑗 (𝑖)|
𝑃𝑟0

0(𝑖′)=1
.                                                   (5) 



In the FEC-symbol trellis, dynamic programming is also applied to enumerate the probability of all 

error patterns having more than to FEC symbol errors in a codeword. However, the dynamic 

programming algorithm described by Equation 3 can only track the total number of bit errors. 

Therefore, we create another error index allowing us to aggregate all error patterns in terms of both 

FEC symbol errors and bit errors. In the FEC-symbol trellis, we denote Pr_FECkF
js,jb(i) the probability 

of visiting Markov state i at the kF
th FEC symbol after traversing all trellis paths containing exactly js 

FEC symbol errors and jb bit errors. Hence, the error probabilities at time kF +1, Pr_FECkF+1
js,jb(i), can 

be found iteratively from the values of Pr_FECkF
js,jb(i) and the transition probabilities ai’i

j. We 

calculate Pr_FECkF+1
js,jb(i) by iterating over all possible j and i', 

 

                                     𝑃𝑟_𝐹𝐸𝐶𝑘𝐹+1
𝑗𝑠,𝑗𝑏 (𝑖) = ∑ ∑ 𝑃𝑟_𝐹𝐸𝐶𝑘𝐹

𝑗𝑠−𝑚𝑖𝑛(1,𝑗),𝑗𝑏−𝑗(𝑖′)𝑎𝑖′𝑖
𝑗

𝑖′𝑗 .                              (6) 

 

2.1.3 Inner-FEC Trellis 

In [1-2] we have shown the statistical modeling of a single end-to-end FEC where the FEC-symbol 

trellis is used to traverse the entire length of the outer codeword. When modeling the concatenated 

FEC architecture, another level of time aggregation is needed to model the inner codeword. In this 

subsection, we describe the procedure of constructing the inner-FEC trellis using the FEC-symbol 

trellis. Note that the FEC-symbol trellis refers to outer-FEC symbol transitions, not inner-FEC symbol 

transitions. As this paper only considers binary inner codes, we simply refer to an inner-FEC symbol 

as a bit. 

 

Consider an inner-FEC payload containing ki bits message that can be divided evenly into an integer 

number of ki/(m/2) = 2ki/m outer-FEC symbols. We aggregate all the 2ki/m outer-FEC symbols in the 

payload into a one-step state transition. We define 𝑎𝑃𝐿𝑖′𝑖
𝑗𝑠,𝑗𝑏 as the transition probability from source 

state i’ at the beginning of the inner-FEC payload to sink state i at the end of the inner-FEC payload 

with all paths containing exactly js FEC symbol errors and jb bit errors. By traversing a length-2ki/m 

FEC-symbol trellis, 𝑎𝑃𝐿𝑖′𝑖
𝑗𝑠,𝑗𝑏 can be calculated by, 

 

                                                  𝑎𝑃𝐿𝑖′𝑖
𝑗𝑠,𝑗𝑏 = 𝑃𝑟_𝐹𝐸𝐶𝑘𝐹=2𝑘𝑖/𝑚

𝑗𝑠,𝑗𝑏 (𝑖)|
𝑃𝑟𝑘𝐹=0

0,0 (𝑖′)=1
.                                      (7) 

 

After traversing the inner-FEC trellis to obtain aPL, we consider the inner-FEC overhead for parity 

checks. Note that bit errors in the inner-FEC overhead are always discarded after decoding. 

Nonetheless, it is vital to consider the possibility of bit errors in the inner-FEC overhead because they 

affect if the inner codeword is correctable. Considering an inner codeword with an even number of  

ni - ki bits overhead that can be represented by a PAM-symbol trellis, we apply time aggregation to 

the PAM-symbol trellis to find the one-step transition probability 𝑎𝑂𝐻𝑖′𝑖
𝑗𝑏−𝑂𝐻  of the inner-FEC 

overhead having exactly jb-OH bit errors, 
 

                                                     𝑎𝑂𝐻𝑖′𝑖
𝑗𝑏−𝑂𝐻 = 𝑃𝑟𝑘=(𝑛𝑖−𝑘𝑖)/2

𝑗𝑏−𝑂𝐻 (𝑖)|
𝑃𝑟0

0(𝑖′)=1
.                                         (8) 

 

We then aggregate the transition probabilities of the inner-FEC payload and inner-FEC overhead to 

obtain the one-step transition probability of the inner codeword. In the inner-FEC trellis, we denote 

the time index at the end of each inner codeword kI. 𝑎𝐼𝑖′𝑖
𝑗𝑠,𝑗𝑏,𝑗𝑏−𝑂𝐻  is the state transition probability of 

going from source state ‘i'’ at the beginning of an inner-FEC payload to sink state ‘i’ at the end of an 

inner-FEC overhead, while having exactly js FEC-symbol errors and jb bit errors in the payload, and 



jb-OH bit errors in the overhead. 𝑎𝐼𝑖′𝑖
𝑗𝑠,𝑗𝑏,𝑗𝑏−𝑂𝐻  can be computed by time aggregating the payload and 

overhead of an inner codeword, 
 

                        𝑎𝐼𝑖′𝑖
𝑗𝑠,𝑗𝑏,𝑗𝑏−𝑂𝐻 = 𝑃𝑟_𝐼𝑘𝐼=1

𝑗𝑠,𝑗𝑏,𝑗𝑏−𝑂𝐻(𝑖)|𝑃𝑟_𝐼𝑘𝐼=0
0,0,0 (𝑖′)=1 = ∑ (𝑎𝑃𝐿𝑖′𝑖~

𝑗𝑠,𝑗𝑏 𝑎𝑂𝐻𝑖~𝑖
𝑗𝑏−𝑂𝐻)𝑖~ .               (9) 

 

In Figure 5, we show an example of two FEC-symbol transitions that are aggregated to form the 

inner-FEC payload with one-step state transition probability aPL. The inner-FEC overhead consists of 

only one PAM-symbol with transition probability aOH = p. aPL and aOH are combined using Equation 9 

to generate aI. 

 

Next, we apply inner-FEC decoding on aI to produce aO, which is the one-step transition probability 

of a decoded inner codeword in the outer-FEC trellis. aO does not need to track the information about 

jb-OH because the inner-FEC overhead is discarded after decoding. The number of bit errors in the 

entire inner codeword is jb + jb-OH. Considering an inner code that can correct ti bit errors, all trellis 

paths in the inner-FEC trellis with jb + jb-OH ≤ ti are correctable. We iterate over all possible trellis 

paths in the inner-FEC trellis representing one inner-FEC codeword. If jb + jb-OH ≤ ti, these correctable 

paths are accumulated in the outer-FEC transitions aO containing neither bit errors nor FEC-symbol 

errors, 
 

                                                          𝑎𝑂𝑖′𝑖
0,0 = 𝑎𝑂𝑖′𝑖

0,0 + 𝑎𝐼𝑖′𝑖
𝑗𝑠,𝑗𝑏,𝑗𝑏−𝑂𝐻 .                                                  (10) 

 

For non-correctable paths in the inner-FEC trellis with jb + jb-OH > ti, after decoding we add these 

paths to outer-FEC transitions aO while preserving the same number of FEC-symbol errors and bit 

errors that occurred in the inner-FEC payload, 
 

                                                        𝑎𝑂𝑖′𝑖
𝑗𝑠,𝑗𝑏 = 𝑎𝑂𝑖′𝑖

𝑗𝑠,𝑗𝑏 + 𝑎𝐼𝑖′𝑖
𝑗𝑠,𝑗𝑏,𝑗𝑏−𝑂𝐻 .                                                (11) 

 

 

 
Figure 5. Example of an inner-FEC trellis, each codeword consist of 2 outer-FEC symbols in GF(24) and 

a 2-bit overhead for parity checks. 

 

 

 



2.1.4 Outer-FEC Trellis and Post-FEC BER Calculation 
 

We use the decoded inner codeword transition probabilities 𝑎𝑂𝑖′𝑖
𝑗𝑠,𝑗𝑏 to traverse the outer-FEC trellis. In 

this section, we consider an outer codeword having no∙mbits that divides into an integer no∙m/ki 

number of inner-FEC payloads. First, we set the initial conditions at kO = 0 to their steady-state values 

found by Equation 1 and Equation 2. We define js-I and jb-I as the number of FEC-symbol errors and 

bit errors that occurred in the decoded inner codeword, respectively. We also denote Pr_OkO
js,jb(i) the 

probability of visiting Markov state i at the kO
th stage in the outer-FEC trellis after traversing all trellis 

paths containing exactly js FEC symbol errors and jb bit errors. Dynamic programming is used to 

calculate Pr_OkO+1
js,jb(i) by iterating over all possible js-I, jb-I and i' 

 

                              𝑃𝑟_𝑂𝑘𝑂+1
𝑗𝑠,𝑗𝑏 (𝑖) = ∑ ∑ ∑ 𝑃𝑟_𝑂𝑘𝑂

𝑗𝑠−𝑗𝑠−𝐼,𝑗𝑏−𝑗𝑏−𝐼(𝑖′)𝑎𝑂𝑖′𝑖
𝑗𝑠−𝐼,𝑗𝑏−𝐼

𝑖′𝑗𝑏−𝐼𝑗𝑠−𝐼 .                       (12) 
 

We traverse the outer-FEC trellis until the end of the outer codeword (kO = nom/ki) using the dynamic 

programming procedure described in Equation 12 to obtain 𝑃𝑟_𝑂𝑛𝑜𝑚/𝑘𝑖
𝑗𝑠,𝑗𝑏 (𝑖). 

 

The example in Figure 6 shows an outer-FEC trellis example that consists of two decoded inner 

codewords. At the end of the outer codeword (kO = 2), up to 1 FEC-symbol error can be corrected by 

the outer-FEC decoder. The post-FEC BER can be approximated by [1],  
 

                                          𝐵𝐸𝑅𝑝𝑜𝑠𝑡−𝐹𝐸𝐶 ≈ ∑ (∑ (
𝑃𝑟_𝑂𝑘𝑂=𝑛𝑜𝑚/𝑘

𝑗𝑠,𝑗𝑏 ∙𝑗𝑏

𝑛𝑜∙𝑚
)𝑗𝑏 )

𝑗𝑠
𝑚𝑎𝑥

𝑗𝑠=𝑡𝑜+1
.                                (13) 

 

At low BER, the probability of having an erroneous outer codeword decreases exponentially with 

increasing js. Pruning trellis paths having negligible probabilities can result in a significant reduction 

in computational complexity. This pruning is achieved by capping the upper summation limit in 

Equation 13 to js
max, indicating that only trellis paths having up to js

max FEC symbol errors contribute 

to the post-FEC BER. 

                             

 
Figure 6. Example of an outer-FEC trellis, state transition aO in the outer-FEC trellis is generated by 

applying inner-FEC decoding to aI. 



 
Figure 7. A detailed trellis example of the proposed trellis model described in Figure 2. 

 

2.1.5 Trellis Example of a Concatenated FEC 

In Figure 7, we show a detailed trellis example of our proposed trellis model previously described in 

Figure 2, assuming the same non-binary outer code (2,1,1) in GF(24) and the binary inner code 

(10,8,1). The same trellis path is shown at all four levels of hierarchy: the PAM-symbol trellis, 

FEC-symbol trellis, inner-FEC trellis and outer-FEC trellis. In the inner-FEC trellis, the first inner 

codeword has one bit error that appears in the payload (jb = 1), and no bit error in the overhead 

(jb-OH = 0). The only bit error in the first inner codeword is correctable with ti =1. After decoding, the 

first outer-FEC state transition 𝑎𝑂11
0,0 is error-free. 

 

In the second inner codeword, two bit errors occur in the payload (jb =2). Because these two bit errors 

occur within the same FEC symbol at kF = 4, they only contribute to one FEC symbol error (js =1). 

Also, there is one bit error in the inner-FEC overhead (jb-OH = 1), resulting in a total of three bit errors 

in the inner codeword, which is uncorrectable by the inner-FEC decoder with ti = 1. After decoding, 

only the two bit errors from the payload remain in the outer-FEC trellis. Therefore, the second 

transition 𝑎𝑂12
1,2 in the outer-FEC trellis has one FEC-symbol error and two bit errors. 



Since all errors in the first inner codeword have been corrected, at kO = 2 we have js-I = 1 and jb-I = 2. 

The single FEC symbol error in the outer-FEC codeword is correctable by the outer FEC decoder 

with to =1. As a result, the example trellis path in Figure 7 does not contain any post-FEC bit errors. 

 

2.2 Modeling Inner-FEC Miscorrections 

The analysis in Section 2.1 does not consider inner-FEC miscorrections, which significantly impact 

the accuracy of BER analysis. In this section, we introduce a hybrid approach to accurately model 

miscorrections, using probabilities extracted from a separate time-domain simulation as part of our 

proposed statistical model. 

 

The inner codes considered for 200 Gb/s+ wireline transceivers generally have a low Hamming 

distance. Inner codewords with more than ti bit errors may be decoded to the wrong codeword. This is 

known as a miscorrection, which may introduce up to ti new bit errors and up to ti new FEC-symbol 

errors at the inner-FEC decoder output. This paper considers two popular candidate codes in IEEE 

802.3dj, the extended Hamming (128,120,1) code and the BCH(144,136,1) codes, both with ti =1. 

 

Recall that the extended Hamming code uses an additional parity bit to increase the minimum 

hamming distance between valid codewords, eliminating miscorrections in codewords having exactly 

2 bit errors. We define b as the maximum number of bit errors an inner codeword can have before 

decoding that guarantees no miscorrections. Hence, the Hamming (128,120,1) code has b = 2. 

However, the BCH (144,136,1) decoder may miscorrect any codeword with more than one bit error, 

so it has b = ti = 1.  

 

Figure 8 shows all possible scenarios for inner-FEC decoding with ti =1. If the total number of bit 

errors in the codeword jb + jb-OH ≤ ti, the decoder always corrects all errors in the codeword. With 

ti < jb + jb-OH ≤ b, the codeword is not correctable, but a miscorrection does not occur, so js and jb are 

preserved after decoding. If jb + jb-OH > b, the codeword is not correctable and a miscorrection is 

possible. In this case, the probability that no miscorrection occurs is denoted PX. The probability that a 

miscorrection occurs, and the additional bit error corrupts a FEC symbol that already contains a bit 

error, increasing only jb by 1, is denoted PY. The probability that a miscorrection occurs and the 

additional bit error corrupts a previously error-free outer-FEC symbol, increasing both js and jb by 1, 

is denoted PZ. 

 

 
 

Figure 8. All possible scenarios for inner-FEC decoding with ti =1. 



We extract the probability of PX, PY and PZ using a time-domain simulation. The time-domain model 

has the identical channel response, DFE tap weight, and noise sources considered in the statistical 

model. As PZ is the probability of an inner codeword miscorrection with a new FEC-symbol error 

added to the decoded codeword, given that jb + jb-OH > b in an inner codeword, 
 

                         𝑃𝑍 =
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑𝑖𝑛𝑛𝑒𝑟−𝐹𝐸𝐶𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑𝑚𝑖𝑠𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑤𝑖𝑡ℎ𝑗𝑠𝑎𝑑𝑑𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑−𝑖𝑛𝑛𝑒𝑟𝐹𝐸𝐶𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑𝑠𝑤𝑖𝑡ℎ𝑗𝑏−𝑃𝐿+𝑗𝑏−𝑂𝐻>𝑏
.                 (14) 

 

Since PY is the probability of an inner codeword miscorrection without additional FEC-symbol error 

added to the decoded codeword, given that jb + jb-OH > di in an inner codeword, 
 

                      𝑃𝑌 =
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑𝑖𝑛𝑛𝑒𝑟−𝐹𝐸𝐶𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑𝑚𝑖𝑠𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠𝑤𝑖𝑡ℎ𝑜𝑢𝑡𝑗𝑠𝑎𝑑𝑑𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑𝑖𝑛𝑛𝑒𝑟−𝐹𝐸𝐶𝑐𝑜𝑑𝑒𝑤𝑜𝑟𝑑𝑠𝑤𝑖𝑡ℎ𝑗𝑏−𝑃𝐿+𝑗𝑏−𝑂𝐻>𝑏
.                (15) 

 

Lastly, as PX, PY and PZ are mutually exclusive, these probabilities must add up to 1, and 
 

                                                                   P𝑋 = 1 − 𝑃𝑌 − 𝑃𝑍.                                                                  (16) 
 

The inner-FEC miscorrection in the trellis can be modeled by modifying the inner-FEC decoding 

procedure described by Equation 11. With miscorrection, an uncorrectable outer-FEC transition 

probabilities 𝑎𝐼𝑖′𝑖
𝑗𝑠,𝑗𝑏,𝑗𝑏𝑂𝐻  is split into the 3 subcases described by Equation 14-16. For non-correctable 

transitions with jb + jb-OH > b, we have 
 

                                                     𝑎𝑂𝑖′𝑖
𝑗𝑏,𝑗𝑠 = 𝑎𝑂𝑖′𝑖

𝑗𝑏,𝑗𝑠 + 𝑎𝐼𝑖′𝑖
𝑗𝑠,𝑗𝑏,𝑗𝑏𝑂𝐻 ∙ 𝑃𝑋, 

                                                 𝑎𝑂𝑖′𝑖
𝑗𝑏+1,𝑗𝑠 = 𝑎𝑂𝑖′𝑖

𝑗𝑏+1,𝑗𝑠 + 𝑎𝐼𝑖′𝑖
𝑗𝑠,𝑗𝑏,𝑗𝑏𝑂𝐻 ∙ 𝑃𝑌,                                          (17) 

                                             𝑎𝑂𝑖′𝑖
𝑗𝑏+1,𝑗𝑠+1 = 𝑎𝑂𝑖′𝑖

𝑗𝑏+1,𝑗𝑠+1 + 𝑎𝐼𝑖′𝑖
𝑗𝑠,𝑗𝑏,𝑗𝑏𝑂𝐻 ∙ 𝑃𝑍. 

 

Our proposed approach assumes that the probabilities PX, PY and PZ are constant values which are not 

a function of the number of bit errors in a codeword. For a given inner code, these events can be 

determined uniquely for every possible error pattern in the trellis, and they do show correlation to the 

number of existing bit errors in an inner codeword. However, as the number of bit errors per inner 

codeword increases, their probability of occurring decreases exponentially. As a result, our 

simplification in modeling PX, PY and PZ has negligible impact on the post-FEC BER. 

 

Figure 9 shows the probability PY(E) and PZ(E) as a function of the number of bit errors E in an inner 

codeword before decoding, and E = jb + jb-OH. Subplots (a) and (b) in Figure 9 report PY(E) and PZ(E) 

with the Hamming (128,120,1) code and the BCH (144,136,1) code, respectively. The reported data is 

generated from a time-domain simulation that observed over one million codewords transmitted with 

a pre-FEC BER at 10-3, assuming a channel response h = 1 + 0.5z-1 and a zero-forcing 1-tap DFE. In 

each subplot, we also superimpose the probability of having exactly E bit errors in an inner codeword 

using a solid blue line. Our least-confident data in these figures is for having 7 bit errors in a 

codeword. In both subplots, we observed over 400 codewords containing 7 bit errors. The 

miscorrection probabilities depend on the number of bit errors, but as E increases its exponentially 

decaying probability of occurrence allows us to approximate PY(E) and PZ(E) using a constant value 

defined by Equation 14 and 15. Note that with the BCH code, miscorrections happen for all 

codewords having more than 1 bit error and the additional bit error is likely to corrupt an error-free 

FEC symbol. However, with the extended Hamming code, miscorrections only happen for odd 

numbers of errors that are greater than 2, and a large portion of the bit errors produced by 

miscorrections appear in the existing erred FEC symbols. The decoding behavior of the extended 



Hamming code can be easily captured by altering the condition for triggering Equation 17. That is, 

Equation 17 is only updated when jb + jb-OH > b and jb + jb-OH is an odd number.  

 

Note that a FEC code can have different implementations depending on the parity check matrix used. 

These implementations affect the probability and location of miscorrections. It was shown that triple 

bit error miscorrections in extended hamming codes can be minimized by choosing an optimal 

parity-check matrix [10]. The plots in Figure 9 are only for one choice of BCH(144,136,1) and 

extended Hamming(128,120,1) codes. 

 
(a) with extended Hamming (128,120,1) code 

 
 (b) with BCH (144,136,1) code 

Figure 9. PY and PZ as a function of the number of bit errors E in an inner codeword, simulated at 10-3 

pre-FEC BER with a zero-forcing 1-tap DFE. 
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2.3 FEC Symbols Divided Between Inner-Codeword Payloads 

In Section 2.1.3, we assumed that the inner-FEC payload can be evenly divided into an integer 

number of outer-FEC symbols. This is true for the Hamming (128,120,1) + RS KP4 concatenated 

code: the 120-bit payload is divided evenly into 12 RS FEC symbols in GF(210). However, this is not 

the case for the BCH(144,136,1) + RS KP4 code. Figure 10 shows the division of outer-FEC symbols 

in inner-FEC payloads for a concatenated BCH (144,136,1) + RS KP4 FEC. The 14th FEC symbol is 

divided into 2 inner-FEC payloads. Because of this, we cannot use the same one-step transition 

probability aj
i’i calculated in Equation 5 for the 14th FEC symbol. We modify the approach shown in 

Section 2.1.3 to create a new transition probability alast
j
i’i representing the last 6 bits in the BCH 

payload, or equivalently 3 4-PAM symbols. alast 
j
i’i can be calculated by 

 

                                                            𝑎𝑙𝑎𝑠𝑡𝑖′𝑖
𝑗
= 𝑃𝑟3

𝑗(𝑖)|
𝑃𝑟0

0(𝑖′)=1
.                                                    (18) 

 

When traversing the first inner codeword, aj
i’i is used for the first 13 FEC symbols, and alast 

j
i’i is used 

for the 14th FEC symbol. 

 
Figure 10. Division of outer-FEC symbols in inner-FEC payloads for a 

KP4 + BCH (144,136,1) concatenated FEC. 
 

With the BCH (144,136,1) code, the distribution of the FEC symbols in the inner-FEC payloads is not 

the same for all inner codewords. Only the first 6 bits in the 14th FEC symbol is contained in the first 

inner-FEC payload, and so the second inner-FEC payload starts with the remaining 4 bits of the 14th 

FEC symbol. Precisely modeling the division of FEC symbols only results in a very small increase in 

model accuracy at the cost of higher computational complexity. To simplify the analysis, we assume 

the same distribution of FEC symbols shown in Figure 10 applies to all inner codewords. 

  
Figure 11. Division of an outer codeword into inner codewords in a KP4 + Hamming (128,120,1) 

concatenated FEC. 
 

2.4 Inner Codewords Divided Between Outer Codewords 

In Section 2.1.4, we assumed an outer codeword having no∙mbits that divides into an integer no∙m/ki 

number of inner-FEC payloads. Figure 11 shows an example of a concatenated FEC with RS KP4 

(544,514,15) outer code and the Hamming (128,120,1) inner code. At the KP4 FEC encoder output, 

as indicated by point (a) in Figure 1, 30 parity-checking FEC symbols are appended to the 5140-bit 

message forming one encoded KP4 codeword. The entire KP4-encoded codeword is divided by the 

120-bit inner-FEC payloads. Each of the payloads is serially encoded by the extended-Hamming 



encoder generating inner codewords as shown in Figure 11 at point (b) of Figure 1. However, in this 

example, no∙m/ki = 45.33 is not an integer. In Figure 11, the 46th payload is divided between two 

neighboring KP4 codewords, with 40 payload bits in the first KP4 codeword and the remaining 80 

payload bits in the next KP4 codeword. 

 

When traversing the outer-FEC trellis, as the 46th inner-FEC payload does not fit entirely into the first 

KP4 codeword, we cannot use the same one-step transition probability 𝑎𝑂𝑖′𝑖
𝑗𝑠,𝑗𝑏  described in 

Section 2.1.3 to model the last state transition. We modify the approach to stop accumulating the bit 

error and FEC symbol errors when the end of the outer codeword is reached. The remaining bits that 

fall outside the codeword still matter when deciding if the inner codeword is correctable. To capture 

this, we consider this codeword equivalent to a 40-bit payload with the remaining 80 bits in the 

payload and 8 overhead bits lumped together to form one 88-bit overhead. As such, we follow the 

same process described in Section 2.1.3 to model the transition probability of this last codeword as 

aO,last. When traversing the outer-FEC trellis, aO is used for the first 45 inner codeword transitions, 

and aO,last is used for the 46th inner codeword. 

 

With the KP4 + Hamming (128,120,1) concatenated FEC, the distribution of the inner codewords in 

the outer codewords is not the same for all outer codewords. The outer-FEC codeword contains only 

the first 40 bits of the 46th inner codeword, and so the next outer codeword starts with the last 80 bits 

of the 46th inner codeword. Modeling these divided inner codewords has little impact on the accuracy 

of the statistical model while significantly increasing the computational complexity. To simplify the 

analysis, we assume the same distribution of inner codewords shown in Figure 11 applies to all outer 

codewords. 

 
Figure 12. Division of an outer codeword into inner codewords in a KP4 + BCH(144,136,1) concatenated 

FEC. 
 

Figure 12 shows an example of a concatenated FEC with RS KP4 (544,514,15) outer code and 

BCH (144,136,1) inner code. The length of the outer codeword is divided evenly into 40 inner-FEC 

payloads; hence the methodology for divided inner codewords described in this section does not apply 

to this case. 

 

2.5 Simulation Results 

Our 4-PAM statistical model is applied to links with two different concatenated FEC codes. In both 

cases, the outer code is the standard RS KP4 (544,514,15) FEC. The inner codes are the extended 

Hamming (128,120,1) reported in Figure 13 and BCH (144,136,1) reported in Figure 14. Each 

concatenated FEC code is simulated with (1) an all-pass channel response h = 1 without DFE and (2) 

h = 1 + 0.5z-1 with a zero-forcing 1-tap DFE. The links are subject to AWGN only. In both figures, we 



plot the post-FEC vs. pre-FEC BER curve of the two channels with and without inner-FEC 

miscorrections using the statistical model. Results generated by a time-domain behavioral model are 

superimposed in each figure. All time-domain data points in Figure 13 and Figure 14 are simulated 

down to a post-FEC BER of 10-8. To simulate the post-FEC BERs without miscorrections, we assign 

PY=PZ=0 in the statistical model, and an ideal inner-FEC decoder is used in the time-domain model. 

Good consistency is observed between the statistical and time-domain results, both with and without 

miscorrections. Moreover, the Hamming (128,120,1) code not only outperforms its BCH counterpart 

in both channel cases but also exhibits a smaller gap between simulations with and without 

miscorrections.  This observation is consistent with the findings reported in Figure 9, that a Hamming 

decoder is much less likely to add to another FEC-symbol error in a KP4 codeword. 
 

 
Figure 13. Simulation results of a KP4 + Hamming (128,120,1) concatenated FEC. 

   
Figure 14. Simulation results of a KP4 + BCH(144,136,1) concatenated FEC. 
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3. Modeling Inner-FEC Interleaving 

 

 
Figure 15. System-level diagram of serially-concatenated FEC with 1:x inner-FEC interleaving. 

 

Inner-FEC interleaving is a known technique to protect coding gain in the presence of burst errors. 

The additional errors introduced by the inner-FEC miscorrection may corrupt an error-free outer-FEC 

symbol, lowering the coding gain of the concatenated FEC. Figure 15 shows a system-level diagram 

of a concatenated FEC with 1:x inner-FEC interleaving. After the data is encoded by the outer code, 

the PAM-symbol interleaver divides PAM symbols into x streams in a round-robin fashion. Each 

stream is encoded by a separate inner-FEC encoder before being recombined in the same order by the 

PAM-symbol deinterleaver. At the receiver shown at point (c), the signal flow is reversed to retrieve 

and decode the inner codewords.  

 

Inner-FEC interleaving distributes consecutive burst errors to different inner codewords. This allows 

burst errors that would result in a miscorrection with no inner-FEC interleaving to become correctable 

or miscorrection-free by satisfying jb + jb-OH ≤ b. Consider a burst of three consecutive 4-PAM errors, 

each containing 1 bit error, and the extended Hamming inner code with ti = 1 and b = 2. Without 

interleaving, the burst is neither correctable nor decoding-error-free. A likely miscorrection may 

corrupt an additional outer-FEC symbol, reducing the chance of successfully decoding the outer 

codeword. With 1:2 inner-FEC interleaving, one of the three errors is distributed to one inner 

codeword, and the other two are distributed to another inner codeword. Assuming the rest of the 

decisions in both interleaved codewords are error-free, inner-FEC interleaving avoids a miscorrection 

in this example.  

 

3.1 Transceiver Architecture of 1:2 Inner-FEC Interleaving 

Figure 16 shows the data stream of a concatenated KP4 + Hamming(128,120,1) FEC with 1:2 

PAM-symbol interleaving on the inner code. Cn in each block represents the nth outer-FEC symbol. 

These outer-FEC symbols contain Cn
1- Cn

10 representing the 10 bits in each outer-FEC symbol over 

GF(210). Bits are grouped into pairs to form 4-PAM symbols. For example, Cn
1- Cn

2 make up the 1st 

PAM symbol in the nth FEC symbol. 

 

After the PAM-symbol interleaver, the data is divided into two streams. Due to a round-robin 

distribution, the top stream contains the 1st PAM symbol, the bottom stream contains the 2nd, the top 

stream contains the 3rd, and so on. Figure 16 shows the distribution of the first 24 outer-FEC symbols 

in an encoded KP4 codeword. These make up the two 120-bit inner-FEC payloads that are encoded 

by the two extended Hamming encoders to produce two inner codewords. This section refers to these 

codewords as “inner codeword 1” and “inner codeword 2”. Both codewords have eight parity bits 



added to the payload after encoding. The nth parity bit is labelled P1
n and P2

n in inner codeword 1 and 

2, respectively. The combined data stream appearing at the deinterelaver output is transmitted through 

the PHY at point (b). This bit stream in the PHY is the same as the order at point (a) in the encoded 

KP4 codeword, with inner-FEC parity bits added. After transmission through the PHY, the data 

reaches point (c) at the receiver, and the whole decoding process shown in the bottom-half part of 

Figure 16 can be seen as the mirrored version of TX encoding. Note that the order of PAM symbols in 

the encoded KP4 codeword is the same as the PAM symbols transmitted in the PHY. The inner-FEC 

interleaving scheme is designed to ensure that the burst errors uncorrectable by the inner code corrupt 

the fewest possible outer-FEC symbols. In other words, the inner-FEC interleaving does not spread 

out burst errors over more outer-FEC symbols than necessary. 

 
Figure 16. Bit-steam example of a KP4 + Hamming(128,120,1) concatenated FEC with 1:2 inner-FEC 

interleaving. 

 

 
Figure 17. An example of PAM-symbol distribution between 1:2 interleaved inner codewords, resulting 

in two repeating PAM-symbol patterns in an outer-FEC symbol. 



3.2 Trellis Model for Concatenated FEC with 1:2 Inner-FEC Interleaving 

In this subsection, we describe how the trellis model for concatenated FEC is modified to model a 

concatenated FEC with 1:2 inner-FEC interleaving. We continue to use the 

KP4 + Hamming (128,120,1) code shown in Figure 16 as an example throughout this section.  

 

3.2.1 PAM-symbol and FEC-Symbol Trellis for 1:2 Interleaving 

Recall the time-aggregation of PAM symbols described in Section 2.1.2: Every m/2 consecutive 

4-PAM symbols transmitted in the PHY are grouped into one outer-FEC symbol in GF(2m). However, 

the 1:2 interleaving example in Figure 16 shows that the PAM symbols transmitted in the PHY are 

distributed into different inner codewords. Figure 17 provides a more detailed explanation of the 

PAM-symbol distribution given in Figure 16. With 1:2 interleaving, the selection of 4-PAM symbols 

in the PHY alternate between the two encoded inner codewords. We end up with two repeating 

PAM-symbol patterns in an outer-FEC symbol. The first pattern contains three 4-PAM symbols from 

inner codeword 1 and two from inner codeword 2. The second pattern contains two 4-PAM symbols 

from codeword 1 and three from inner codeword 2. 
 

In the PAM-symbol trellis, we introduce two new variables, jb1 and jb2 to track the number of bit 

errors in inner codeword 1 and 2, respectively. Dynamic programming is used to find the probability 

of arriving at state i at timestep k +1 with exactly jb1 and jb2 bit errors by iterating over all possible j 

and i', 
 

                                 𝑃𝑟𝑘+1
𝑗𝑏1,𝑗𝑏2(𝑖) = {

∑ ∑ 𝑃𝑟𝑘
𝑗𝑏1−𝑗,𝑗𝑏2(𝑖′)𝑝𝑖′𝑖𝑖′𝑗 , 𝑖𝑓(𝑘 + 1)𝑜𝑑𝑑

∑ ∑ 𝑃𝑟𝑘
𝑗𝑏1,𝑗𝑏2−𝑗(𝑖′)𝑝𝑖′𝑖𝑖′𝑗 , 𝑖𝑓(𝑘 + 1)𝑒𝑣𝑒𝑛

.                         (19) 

 

We apply time aggregation to find the one-step transition probability in the FEC-symbol trellis. To 

capture the two repeating PAM-symbol patterns described in Figure 17, we generate two probabilities 

𝑎𝑜𝑑𝑑𝑖′𝑖
𝑗𝑏1,𝑗𝑏2 and 𝑎𝑒𝑣𝑒𝑛𝑖′𝑖

𝑗𝑏1,𝑗𝑏2, the probability of a FEC-symbol transition from state i' to i with jb1 and 

jb2 bit errors at a timestep where kF is odd and even, respectively. We traverse a length-m/2 

PAM-symbol trellis using Equation 19 to calculate 𝑎𝑜𝑑𝑑𝑖′𝑖
𝑗𝑏1,𝑗𝑏2, 

 

                                                   𝑎𝑜𝑑𝑑𝑖′𝑖
𝑗𝑏1,𝑗𝑏2 = 𝑃𝑟𝑘=𝑚/2

𝑗𝑏1,𝑗𝑏2(𝑖)|
𝑃𝑟0

0,0(𝑖′)=1
.                                            (20) 

 

Next, the one-step transition probability for aodd is generated from aeven by swapping jb1 and jb2, 
 

                                                           𝑎𝑒𝑣𝑒𝑛𝑖′𝑖
𝑗𝑏1,𝑗𝑏2 = 𝑎𝑜𝑑𝑑𝑖′𝑖

𝑗𝑏2,𝑗𝑏1.                                                    (21) 
 

In the FEC-symbol trellis, we define variable js1 as the number of outer-FEC-symbol errors containing 

bit errors only from inner codeword 1. Similarly, js2 is defined as the number of outer-FEC-symbol 

errors with bit errors occurring only in inner codeword 2. js12 is defined as the number of 

outer-FEC-symbol errors with bit errors in both inner codewords. Note that each FEC-symbol error is 

classified into one of three mutually exclusive cases js1, js2, or js12, so the total number of FEC-symbol 

errors in a trellis path is js1+js2+js12. These variables are defined in this manner to easily determine 

how inner-FEC correction affects the number of outer-FEC symbol errors in a trellis path. For 

example, if codeword 1 is correctable but codeword 2 is not, js1 is the number of FEC symbol errors 

that can be corrected by inner codeword 1. The numbers of bit errors in inner codeword 1 and 2 at the 

(kF+1)th FEC symbol are denoted as j1, and j2, respectively. The probability of arriving at state i at the 



(kF+1)th FEC symbol with exactly js1, js2, and js12 FEC-symbol errors, and jb1 and jb2 bit errors is 

computed by iterating over all possible j1, j2 and i', 

 

      𝑃𝑟_𝐹𝐸𝐶𝑘𝐹+1
𝑗𝑠1,𝑗𝑠2,𝑗𝑠12,𝑗𝑏1,𝑗𝑏2(𝑖) =

{
 
 
 
 

 
 
 
 ∑ ∑ ∑ 𝑃𝑟_𝐹𝐸𝐶𝑘𝐹

𝑗𝑠1−1,𝑗𝑠2,𝑗𝑠12,𝑗𝑏1−𝑗1,𝑗𝑏2−𝑗2(𝑖′)𝑎𝑜𝑑𝑑 𝑖′𝑖
𝑗1,𝑗2

𝑖′𝑗2𝑗1 , 𝑖𝑓𝑗1 > 0, 𝑗2 = 0, (𝑘𝐹 + 1)𝑜𝑑𝑑

∑ ∑ ∑ 𝑃𝑟_𝐹𝐸𝐶𝑘𝐹
𝑗𝑠1,𝑗𝑠2−1,𝑗𝑠12,𝑗𝑏1−𝑗1,𝑗𝑏2−𝑗2(𝑖′)𝑎𝑜𝑑𝑑 𝑖′𝑖

𝑗1,𝑗2
𝑖′𝑗2𝑗1 , 𝑖𝑓𝑗1 = 0, 𝑗2 > 0, (𝑘𝐹 + 1)𝑜𝑑𝑑

∑ ∑ ∑ 𝑃𝑟_𝐹𝐸𝐶𝑘𝐹
𝑗𝑠1,𝑗𝑠2,𝑗𝑠12−1,𝑗𝑏1−𝑗1,𝑗𝑏2−𝑗2(𝑖′)𝑎𝑜𝑑𝑑𝑖′𝑖

𝑗1,𝑗2
𝑖′𝑗2𝑗1 , 𝑖𝑓𝑗1 = 0, 𝑗2 > 0, (𝑘𝐹 + 1)𝑜𝑑𝑑

∑ ∑ ∑ 𝑃𝑟_𝐹𝐸𝐶𝑘𝐹
𝑗𝑠1−1,𝑗𝑠2,𝑗𝑠12,𝑗𝑏1−𝑗1,𝑗𝑏2−𝑗2(𝑖′)𝑎𝑒𝑣𝑒𝑛𝑖′𝑖

𝑗1,𝑗2
𝑖′𝑗2𝑗1 , 𝑖𝑓𝑗1 > 0, 𝑗2 = 0, (𝑘𝐹 + 1)𝑒𝑣𝑒𝑛

∑ ∑ ∑ 𝑃𝑟_𝐹𝐸𝐶𝑘𝐹
𝑗𝑠1,𝑗𝑠2−1,𝑗𝑠12,𝑗𝑏1−𝑗1,𝑗𝑏2−𝑗2(𝑖′)𝑎𝑒𝑣𝑒𝑛𝑖′𝑖

𝑗1,𝑗2
𝑖′𝑗2𝑗1 , 𝑖𝑓𝑗1 = 0, 𝑗2 > 0, (𝑘𝐹 + 1)𝑒𝑣𝑒𝑛

∑ ∑ ∑ 𝑃𝑟_𝐹𝐸𝐶𝑘𝐹
𝑗𝑠1,𝑗𝑠2,𝑗𝑠12−1,𝑗𝑏1−𝑗1,𝑗𝑏2−𝑗2(𝑖′)𝑎𝑒𝑣𝑒𝑛𝑖′𝑖

𝑗1,𝑗2
𝑖′𝑗2𝑗1 , 𝑖𝑓𝑗1 > 0, 𝑗2 > 0, (𝑘𝐹 + 1)𝑒𝑣𝑒𝑛

.    (22) 

 

3.2.2 Inner-FEC Trellis for 1:2 Interleaving 

With 1:2 inner-FEC interleaving, every 2ni bits must be traversed to reach the end of both inner 

codewords. Figure 18 shows an inner-FEC trellis example of 1:2 interleaved Hamming(128,120,1) 

codewords where 256 bits are traversed as the basic building block to compute aI, the one-step 

transition probability of the two inner codewords before decoding. 

 

In the inner-FEC trellis, jb-PL1 and jb-PL2 are defined as the number of bit errors in the payload of inner 

codeword 1 and 2, respectively. We traverse the FEC-symbol trellis up to kF = ki/m using Equation 22 

to find aPL, 
 

                     𝑎𝑃𝐿𝑖′𝑖
𝑗𝑠1,𝑗𝑠2,𝑗𝑠12,𝑗𝑏−𝑃𝐿1,𝑗𝑏−𝑃𝐿2 = 𝑃𝑟_𝐹𝐸𝐶𝑘𝐹=𝑘𝑖/𝑚

𝑗𝑠1,𝑗𝑠2,𝑗𝑠12,𝑗𝑏−𝑃𝐿1,𝑗𝑏−𝑃𝐿2(𝑖)|
𝑃𝑟𝑘𝐹=0

0,0,0,0,0(𝑖′)=1
.              (23) 

 

We define jb-OH1 and jb-OH2 as the number of bit errors in the overheads of inner codewords 1 and 2, 

respectively. We traverse the PAM-symbol trellis representing the overhead to k = 2(ni-ki) using 

Equation 19 to find aOH, which is the one-step transition probability for the overhead in the 2 inner 

codewords, 
 

                                         𝑎𝑂𝐻𝑖′𝑖
𝑗𝑏1−𝑂𝐻,𝑗𝑏2−𝑂𝐻 = 𝑃𝑟𝑘=2(𝑛𝑖−𝑘𝑖)

𝑗𝑏1−𝑂𝐻,𝑗𝑏2−𝑂𝐻(𝑖)|
𝑃𝑟0

0,0(𝑖′)=1
.                                  (24) 

 

aPL and aOH are aggregated to produce aI, the one-step transition probability for the two inner 

codewords without correction, 
 

        𝑎𝐼𝑖′𝑖
𝑗𝑠1,𝑗𝑠2,𝑗𝑠12,𝑗𝑏−𝑃𝐿1,𝑗𝑏−𝑃𝐿2,𝑗𝑏−𝑂𝐻1,𝑗𝑏−𝑂𝐻2 = ∑ (𝑎𝑃𝐿𝑖′𝑖~

𝑗𝑠1,𝑗𝑠2,𝑗𝑠12 ,𝑗𝑏−𝑃𝐿1 ,𝑗𝑏−𝑃𝐿2𝑎𝑂𝐻𝑖~𝑖
𝑗𝑏1−𝑂𝐻,𝑗𝑏2−𝑂𝐻)𝑖~ .      (25) 

 

 

 

 
Figure 18. Example of 1:2 interleaved Hamming (128,120,1) codewords. 

 

 



In the outer-FEC trellis, each state transition aO corresponds to traversing two decoded inner 

codewords with 1:2 inner-FEC interleaving. We iterate over all transition probabilities aI, to compute 

𝑎𝑂𝑖′𝑖
𝑗𝑠,𝑗𝑏, the one-step transition in the outer-FEC trellis for both inner codewords after decoding. Note 

that aO does not track the inner-FEC symbol and bit errors. There are 4 cases for inner-FEC error 

correction: 

1. If (jb-PL1 + jb-OH1) ≤ ti and (jb-PL2 + jb-OH2) ≤ ti, both inner codeword 1 and 2 are correctable, 

and the transition probability aI is decoded to the outer-FEC transition aO with js = 0 and 

jb = 0: 
 

                                             𝑎𝑂𝑖′𝑖
0,0 = 𝑎𝑂𝑖′𝑖

0,0 + 𝑎𝐼𝑖′𝑖
𝑗𝑠1,𝑗𝑠2,𝑗𝑠12,𝑗𝑏−𝑃𝐿1,𝑗𝑏−𝑃𝐿2,𝑗𝑏−𝑂𝐻1,𝑗𝑏−𝑂𝐻2 .                       (26) 

 

 

2. If (jb-PL1 + jb-OH1) ≤ ti and (jb-PL2 + jb-OH2) > ti, only inner codeword 1 is correctable. 

Accordingly, aO contains only the bit errors jb-PL2 in inner-FEC payload 2. Only the FEC 

symbol errors js1 are corrected, and so aO contains js2 + js12 FEC symbol errors: 
 

                           𝑎𝑂𝑖′𝑖
𝑗𝑠12+𝑗𝑠2,𝑗𝑏−𝑃𝐿2 = 𝑎𝑂𝑖′𝑖

𝑗𝑠12+𝑗𝑠2,𝑗𝑏−𝑃𝐿2 + 𝑎𝐼𝑖′𝑖
𝑗𝑠1,𝑗𝑠2,𝑗𝑠12,𝑗𝑏−𝑃𝐿1,𝑗𝑏−𝑃𝐿2,𝑗𝑏−𝑂𝐻1,𝑗𝑏−𝑂𝐻2.      (27) 

 

 

3. If (jb-PL1 + jb-OH1) > ti and (jb-PL2 + jb-OH2) ≤ ti, only inner codeword 2 is correctable: 
 

                           𝑎𝑂𝑖′𝑖
𝑗𝑠12+𝑗𝑠1,𝑗𝑏−𝑃𝐿1 = 𝑎𝑂𝑖′𝑖

𝑗𝑠12+𝑗𝑠1,𝑗𝑏−𝑃𝐿1 + 𝑎𝐼𝑖′𝑖
𝑗𝑠1,𝑗𝑠2,𝑗𝑠12,𝑗𝑏−𝑃𝐿1,𝑗𝑏−𝑃𝐿2,𝑗𝑏−𝑂𝐻1,𝑗𝑏−𝑂𝐻2.       (28) 

 

4. If (jb-PL1 + jb-OH1) > ti and (jb-PL2 + jb-OH2) > ti, neither codeword 1 nor 2 is correctable. In 

this case, aO contains all FEC-symbol and bit errors from both inner-FEC payloads: 
 

                                    𝑎𝑂𝑖′𝑖
𝑗𝑠12+𝑗𝑠1+𝑗𝑠2,𝑗𝑏−𝑃𝐿1+𝑗𝑏−𝑃𝐿2 = 𝑎𝑂𝑖′𝑖

𝑗𝑠12+𝑗𝑠1+𝑗𝑠2,𝑗𝑏−𝑃𝐿1+𝑗𝑏−𝑃𝐿2 +

𝑎𝐼𝑖′𝑖
𝑗𝑠1,𝑗𝑠2,𝑗𝑠12,𝑗𝑏−𝑃𝐿1,𝑗𝑏−𝑃𝐿2,𝑗𝑏−𝑂𝐻1,𝑗𝑏−𝑂𝐻2 .          (29) 

 

After the inner-FEC decoding, the outer-FEC trellis is traversed up to kO = nom/2ki in the same 

manner described in Section 2.1.4. The post-FEC BER is obtained in the same way also described in 

Section 2.1.4. Inner-FEC miscorrections, FEC divided between inner codewords, and inner 

codewords divided between outer codewords, are modeled as described in Sections 2.3-2.5. 

 

3.3 Modeling 1:4 Interleaving 

More complex interleaving schemes, such as 1:4 can be modeled using the same methodology as in 

1:2 interleaving. However, modeling higher-order interleaving schemes can quickly become 

prohibitively complex. For example, consider the three error variables used to track FEC-symbol 

errors in 1:2 inner-FEC interleaving: js1, js2, js12. Extending this methodology to 1:4 interleaving yields 

a total number of fifteen error variables: js1, js2, js3, js4, js12, js13, js14, js23, js24, js34, js123, js124, js134, js234, 

js1234. In general, for 1:x interleaving, 2x-1 variables are needed. 

 

Considering all these variables jointly produces too many transitions to compute. To simplify the 

computation, we note that some of these variables do not need to be considered jointly for ti=1. We 

can partition the correctable subset of trellis paths into mutually exclusive groups, with each error 

variable in a group containing no more than 1 bit error. We then find the outer-FEC trellis transition 

probability aO by separately calculating and deducting the probability of each correctable group from 

the total probability space 𝑎𝐼𝑖′𝑖
𝑗𝑠,𝑗𝑏,𝑗𝑏−𝑂𝐻 . 



 

For example, if js1=1 and js12=1, there is one erred FEC symbol with bit errors only in codeword 1, 

and another erred FEC symbol with bit errors only in codeword 1 and 2. Therefore, inner codeword 1 

is uncorrectable in this example as it has more than 1 bit error. This suggests js1 and js12 are mutually 

exclusive events in the correctable-trellis subspace. With ti=1, only two mutually exclusive error 

scenarios are possible in this example: js1=1 and js12=0, or js1=0 and js12=1. We refer to these 

correctable error scenarios as mutually exclusive because one of js1 and js12 must be 0, so they do not 

need to be considered jointly. However, certain variables need to be considered jointly, for example 

js1 and js2. This is because the correctability of FEC symbols counted with js1 and js2 are independent. 

The errors in all interleaved codewords may be correctable given js1=1 and js2=1. We can group the 

FEC-symbol error variables into the following nine groups where variables in each group need to be 

considered jointly: 

 

js1, js2, js3, js4 js12, js34 js13, js24 js14, js23 js123 js124 js134 js234 js1234 

 

By traversing the inner-FEC trellis nine times, each time tracking and correcting a different group of 

outer-FEC symbol error variables, we significantly reduce the computation complexity of the trellis 

model. The maximum number of variables that must be considered jointly with 1:4 interleaving 

reduces from fifteen to only four. 

 

3.4 Simulation Results 

Our 4-PAM statistical model is applied to links with two concatenated FEC codes. The outer code is 

the standard RS KP4 (544,514,15) FEC in both cases. The inner codes are the extended 

Hamming (128,120,1) code reported in Figure 19 and the BCH(144,136,1) code reported in 

Figure 20. Each concatenated FEC code is simulated with a channel response h = 1 + 0.5z-1 and a 

zero-forcing 1-tap DFE. The links are subject to AWGN only. We plot the post-FEC vs. pre-FEC 

BER curve with no inner-FEC interleaving, 1:2 interleaving, and 1:4 interleaving in each figure. All 

simulations include inner-FEC miscorrections. Results generated by a time-domain behavioral model 

are superimposed in each figure. All time-domain data points reported in Figure 19 and Figure 20 are 

simulated down to a post-FEC BER of 10-8. Good consistency is observed between the statistical 

results and time-domain results.  

 

Overall, the extended Hamming inner code reported in Figure 19 outperforms the BCH inner code in 

Figure 20. Note that in Figure 20, higher-order interleaving not only results in an improved post-FEC 

BER at high pre-FEC BERs, but it also introduces a higher post-FEC error floor at low pre-FEC 

BERs. Subject to a large DFE tap weight, long burst errors are the dominant source of post-FEC 

errors at low pre-FEC BERs [1]. Without interleaving, long bursts are likely contained within one 

inner codeword. In this case, a miscorrection can possibly add one FEC-symbol error to a KP4 

codeword. With interleaving, a long burst will corrupt multiple inner codewords, possibly introducing 

multiple miscorrections and adding more than one FEC-symbol errors to a KP4 codeword. As 

reported in Figure 9, the extended Hamming (128,120,1) code exhibits much better decoding behavior 

and adds much fewer FEC-symbol errors than the BCH (144,136,1) code in the presence of long 

bursts. This explains why we do not observe a similar error floor at 10-12 post-FEC BER with the 

extended Hamming code in Figure 19. 

 
 



 
Figure 19. Simulation results of a KP4 + Hamming (128,120,1) concatenated FEC with different 

interleaving schemes. 

 

  
Figure 20. Simulation results of a KP4 + BCH(144,136,1) concatenated FEC with different interleaving 

schemes. 

 

4. Conclusion 
In this paper, we presented a statistical model that accurately estimates post-FEC BER for high-speed 

wireline links using a concatenated FEC that may include interleaving on the inner code. A 

hierarchical approach is adopted to analyze the propagation of PAM-symbol and FEC-symbol errors 

through a 4-layer trellis model in the presence of DFE error propagation. This approach expands on 

previous work by adding two additional layers of abstraction to model state transitions in inner 

codewords. A hybrid approach is used to model inner-FEC miscorrections, taking information on the 

probability of miscorrections determined by a separate time-domain simulation. The proposed 

statistical model can be combined with our existing approaches to model other noise sources such as 

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E-4 1E-3 1E-2

P
o

st
-F

EC
 B

ER

Pre-FEC BER

No Inner Interleaving

1:2 Interleaving

1:4 Interleaving

Time-Domain Model

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E-4 1E-3 1E-2

P
o

st
-F

EC
 B

ER

Pre-FEC BER

No Inner Interleaving

1:2 Interleaving

1:4 Interleaving

Time-Domain Model



residual ISI, crosstalk, transmitter and receiver jitter, and other system-level design choices, including 

precoding and bit-multiplexing. One possible future work is to model a concatenated FEC 

architecture that uses soft decoding.  

 

The proposed model can serve as a tool for evaluating FEC choices for 200+ Gb/s applications. It 

allows us to compare the effect of different inner/outer codes and inner-FEC interleaving schemes on 

post-FEC BER. It can also be used as a tool for system-level transceiver design, allowing designers to 

see the impact of design choices on the post-FEC BER efficiently. 
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