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Modeling Oscillator Injection Locking
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Abstract—This paper presents a simulation-based model for the
behavior of injection-locked oscillators (ILOs) that can be applied
to any oscillator topology under any strength of injected signal. By
using the phase domain response (PDR) of an oscillator, the pro-
posed model is shown to accurately predict the behavior of ILOs
with asymmetric lock ranges or those using injection into mul-
tiple locations. It can also model subharmonic injection locking
behavior. The model is validated through comparison with SPICE
simulations as well as measured results of a multiplying ILO fab-
ricated in 65-nm CMOS.

Index Terms—Frequency multiplication, impulse sensitivity
function (ISF), injection locking, jitter tracking, locking range,
locking time, phase-domain modeling.

I. INTRODUCTION

I NJECTION-LOCKED oscillators (ILOs) are becoming in-
creasingly common as frequency dividers [1], multipliers

[2], or as alternatives to phase-locked loops (PLLs) [3]. This is
due in large part to their small power and area requirements as
well as their ability to operate at high speeds [1] and to quickly
transition between operating states [4].
Due to their potential for ubiquitous use, a great deal of at-

tention has recently been paid to developing a comprehensive
model of the injection-locking behavior of oscillators. Despite
this, an ILO model that is accurate, intuitive and applicable for
all types of oscillators under any strength of injection signal has
yet to be developed. This paper analyzes the strengths andweak-
nesses of both the frequency domain model, first proposed in
[5], and the more recently proposed phase domain model [6],
which is based on the impulse sensitivity function (ISF) of an
oscillator [7]. It then proposes a new model using the phase do-
main response (PDR) of an ILO, which can easily be extracted
from and applied to any oscillator under any type of injected
signal. The utility of this new model is then demonstrated by
using it to develop an ILO with a wide lock range.

II. THE FREQUENCY DOMAIN MODEL

An early model used to describe injection locking phenomena
observed in LC oscillators was developed in [5]. In this model
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the phase difference between the injected and free running os-
cillator signals, , was derived as

(1)

where is the free running oscillator frequency, is the
difference between and the injected signal frequency, is
the quality factor of the tank, is the injected signal strength,
and the strength of the free running oscillations is .
When the injection locked oscillator has settled to a steady

state then

(2)

and (1) can be simplified to

(3)

From this, the lock range, , of the injection locked oscil-
lator can be found to be

(4)

Although this original analysis proved accurate for the case
studied in [5], it relied on the following assumptions:
• The injected input and oscillator output are both sinusoidal.
• The oscillator uses an LC tank (since Q is required).
• The strength of the injected signal is much smaller than that
of the free running oscillator.

As a result, many later publications have since expanded on
this model to make it suitable for large injection strengths [8],
[9], ring oscillators [10] and different injected signals such as
narrow pulses [8]. These and other works have advanced the
frequency domain modeling of ILOs to be able to accurately
reflect measured results of their lock range, transient phase step
response, jitter tracking bandwidth, and phase noise [11].
Unfortunately, the frequency domain model’s accuracy

comes at the cost of a loss of generality or increased com-
plexity. While attempts have been made to generalize the
frequency domain model [12] to make it applicable in all situa-
tions, the results remain complex and difficult to apply during
oscillator design. Without a straightforward and intuitive way
to determine the effective factor, injected signal strength

, free-running oscillator strength and whether the ratio
is considered “large,” it is extremely difficult for the

1549-8328 © 2013 IEEE
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Fig. 1. Impulses applied to an oscillator have varying impacts on the output
depending on the relative phase at which they are applied.

Fig. 2. Example impulse sensitivity functions for oscillators with (a) sinusoidal
and (b) square wave outputs.

circuit designer to make use of this model when designing an
ILO.

III. THE IMPULSE SENSITIVITY FUNCTION

The ISF was developed in [7] to describe phase noise in os-
cillators by observing that when small noise current impulses
are applied to an oscillator, their impact on the output phase of
the oscillator depends on the relative phase at which they are
applied. Fig. 1 illustrates this concept, showing that for current
impulses applied at phases , and the resulting output
phase change is negative, zero or positive, respectively.
It is therefore possible to determine the sensitivity of an os-

cillator’s output phase for all possible applied impulse phases.
Typical examples of the resulting impulse sensitivity function,
denoted by , are shown in Fig. 2. Note that different injection
techniques can produce different functions for a single ILO.
Hence, in common practice, simulations of the oscillator in the
presence of very small impulsive injections are used to obtain
.
The ISF has then traditionally been used to analyze oscillator

phase noise and is shown in [7] to have advantages over the
Leeson model [13] in its ability to predict and noise
as well as the influence of cyclostationary noise sources. It also
offers circuit designers insight into how the shape of the oscil-
lator’s output waveform can affect the phase noise performance.

A. ISF-Based ILO Modeling

Although well suited to modeling phase noise, the ISF model
cannot be directly applied to model the injection locking be-
havior of an oscillator [14]. Unlike the noise sources for which
the ISF model was developed, the injecting waveforms in ILOs
are deterministic. They therefore cause the ISF to change signif-
icantly, especially under strong injection. For example, straight-
forward application of the ISFmodel cannot account for locking
an oscillator to a frequency other than its free-running frequency

Fig. 3. Simulations of the I and Q states of a four-stage VCO show that (a) an
injected impulse causes a perturbation (dotted line) from the steady state (solid
line). Repeated impulses (b) can lock the VCO to a different frequency but this
requires a new ISF to model the oscillator’s new trajectory through state-space.

[14]. This is because, according to the ISF model, the phase at
the output of an oscillator can be calculated as

(5)

where is the time of injection and is an injected signal
with a period close, but not equal to that of the free-running
oscillator, .
Since has the same frequency as , this means that

the frequencies of and will not be equal and that the
integral of their product in (5) will contain no dc component.
This contradicts the known result for an oscillator that is injec-
tion locked to . In this case the output phase of the
ILO should increase linearly with time relative to the phase of
the free-running oscillator, which should be represented by a dc
component in the solution to the integral in (5).
This idea can be represented graphically by examining the

I and Q state variables of a four-stage ring oscillator. Simula-
tion results of such an oscillator, reported in Fig. 3(a), show
that the injection of an impulse causes a temporary deviation
(dotted line) from the steady-state oscillator’s trajectory through
state-space (solid line), where the magnitude of this deviation is
related to the ISF of the oscillator and the strength of the injected
impulse. Conventional wisdom dictates that, in order for the ISF
to be successfully applied to any future impulses, the transient
response of the oscillator must first settle back to its steady-state
trajectory. This implies that the oscillator’s frequency must re-
main unchanged and that the ISF is therefore unsuitable for use
in the presence of a series of injected impulses designed to lock
the ILO to a frequency other than , since this would result in
shifts in the I and Q states as shown in Fig. 3(b) and thereby
continuously require new ISFs.
Despite these difficulties, ISF analysis has been successfully

adapted to accommodate injection locking. For example, in [6]
it is assumed that with each injected impulse, the ILO’s func-
tion undergoes equivalent changes in phase and any future in-
jected impulses will be applied to the new, phase-shifted ISF
as shown in Fig. 4. Although this technique accounts for tran-
sient phase changes in the ISF, the model still fails to account
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Fig. 4. Injected impulses result in step changes in the oscillator output, which
must be accounted for by changing the ISF in order to model injection locking.

Fig. 5. Dividing an injected signal into impulses that act immediately on the
ILO output phase also shift the corresponding function, allowing for in-
jection locking to be accurately modeled by the ISF.

for changes in the amplitude or shape of the ISF that inevitably
arise when the oscillator’s trajectory through state space devi-
ates significantly from its free-running trajectory, as can result
from strong injection. Moreover, the analysis is complex and
difficult to generalize. As a result, its application commonly re-
lies on simulations to obtain the ISF.
The challenge of modeling oscillators under strong injection

is best illustrated by way of example. In Fig. 5 an injected signal
is divided into impulses of area . The first impulse pro-
duces a shift in oscillator output phase, , obtained by multi-
plying the pulse area by . In [6], this same phase
shift is applied to the ISF so that the second impulse is multi-
plied by , and so on.
The application of this technique can be not only cumbersome

and time consuming, but also inaccurate if the injected signal is
large. For example, Fig. 6(a) shows how the ISF of a 4-GHz ILO
can be determined through simulation by injecting an impulse
(in this case a 5-mV, 10-ps pulse) into an oscillator at various
phases, , in relation to the oscillator output. Once this ISF has
been determined, it is possible to use the method described by
Fig. 5 to predict the ILO’s sensitivity to other injected signals. In
Fig. 6(b) the amplitude of the applied signal has been increased
by a factor of 10. Using the ISF, one would expect the resulting
oscillator phase shift to also increase by a factor of 10. Sim-
ilar predictions can be made for an increase in pulse width, as
shown in Fig. 6(c). Simulations of the ILO show that these pre-
dictions are relatively accurate, so long as the resulting phase
shifts remain smaller than approximately 10 degrees. Unfortu-
nately, larger phase shifts are often required in order to imple-
ment an ILO with a wide lock range or a fast lock time. Fig. 6(d)

Fig. 6. Simulating an ILO’s response to an injected impulse (a) determines the
ISF of the oscillator. This ISF can then be used to predict the ILO’s sensitivity to
pulses with (b) larger amplitudes or (c) wider pulse widths but fails to accurately
predict large, wide pulses (d).

shows a large injected pulse amplitude, such as would be re-
quired in a fast-locking ILO. The ISF prediction method in this
case greatly overestimates the actual phase shifts.

IV. THE PHASE DOMAIN RESPONSE

In this work, simulations are also used to develop the ILO
model; however, instead of simulating the ILO under impulsive
injection and feeding the result into complex, and in some cases
inaccurate, expressions, we instead simulate the ILO’s phase
transient with the actual injected pulse shape being studied. As a
result, the proposedmethod can be viewed as an extension of the
ISF model, which allows the circuit designer to easily translate
simulation results into an understanding of ILO behavior. Due to
the speed at which these simulations can be performed, the pro-
posed technique allows for fast iterations of the design process,
thereby enabling quick progression towards design goals.More-
over, the resultingmodel is accurate even under strong injection,
and is readily incorporated into behavioral simulations.
To define the model we begin by defining the relationship be-

tween the injected signal and the ILO output. First, we assume
that when the ILO is locked by some injected signal to an an-
gular frequency , its output is

(6)

where is some periodic function with period describing
the oscillating waveshape (e.g., square, sinusoidal, etc.) and
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represents the phase of the signal.1 Similarly, the injected signal
can be represented by

(7)

where is some periodic function (i.e., a sinusoid or a pulse
train) with period , is the phase of the injected signal
and is an integer that represents some multiplication factor
between the injected and ouput signal frequencies. In this paper,
the behavior of ILOs under either fundamental or subharmonic
injection frequencies (i.e., ) are considered. Although
there is no reason to believe that these techniques cannot be ap-
plied to ILOs under superharmonic injection, the work required
to prove this was outside the scope of this paper.
In the case where the injected signal is no longer present, the

ILOwill free-run at a frequency , and its output
becomes

(8)

where again represents the phase of the ILO output, which
may not be equal to the from (6) depending on the injected
signal. Here, is the difference between the frequency of the
locked ILO and its free-running frequency,

(9)

In this work, the oscillator’s response to one full period of the
injected signal, , is simulated. If the ILO includes any pe-
ripheral circuitry such as narrow pulse generators to condition
the injected signal then this can be included in the simulation
to ensure that the effects of this circuitry are accurately cap-
tured. Each period of this injected signal changes the phase of
the ILO’s output, , by an angle, . This phase change de-
pends upon , defined as the phase of the ILO output signal

subtracted from the phase of the injected signal, ,
such that

(10)

Note that in this work, the phase difference between the injected
and output signals is defined simply by the difference in their
zero crossings.
Hence, we define the phase domain response (PDR), ,

as the ILO’s phase change for each injection of one period of
as a function of the relative phase of this injection, .

The PDR is readily extracted from a series of transient simula-
tions, as demonstrated by Fig. 7 where two samples of are
determined by applying one period of at phases and
.
Since the PDR is specific to the injected signal, , it can

have a wide variety of possible shapes depending on the ampli-
tude, shape and frequency of the injected signal and the injection
scheme used. While this technique means that PDR simulations
must be redone if the injected pulse shape is changed, these sim-
ulations can be run in a short time and the results are accurate
and provide insight.

1Note that voltage state variables are used in this work, any of the rele-
vant signals may be branch currents instead of voltages.

Fig. 7. The PDR, , is determined through simulation by applying one
period of the injected signal, , at different phases, , relative to the
oscillator’s output signal, , and observing the resulting change in output
phase, .

V. PDR-BASED ILO MODELING

With the PDR in hand, a behavioral model for the ILO is
formed under the assumption that injection of the waveform
at a relative phase causes an immediate change in the ILO’s
output phase equal to .2 Moreover, it is assumed that, apart
from the phase shifts resulting from these injection events,
the ILO continues to operate at its free-running frequency,
, causing its phase relative to the lock frequency to drift by

radians each period.
If we treat each period of the injected signal as a discrete event

then we are interested in the phase difference at the start of the
injection and (10) becomes

(11)

While an ILO is locking, the difference between the injected
signal phase and ILO output phase evolves along the sequence

. This means that the phase shift introduced by in-
jection event is such that

(12)

The negative sign is included because an increase in ILO output
phase results in future injection events being applied earlier rel-
ative to the ILO output.
In the event that (i.e., ) an additional

phase shift of is added to (12). The resulting ex-
pression for the phase difference between the injected signal and
the ILO output becomes

(13)

Finally, since any perturbations of the phase of the injected
signal phase (i.e., cycle-to-cycle jitter) can be represented as

(14)

2This is an approximation since, in fact, it may generally take some time for
the ILO’s output phase to react to the injected input. However, the accuracy of
this approximation is borne out by later comparison of the model with transistor-
level simulations and measurements.
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Fig. 8. Model representing the nonlinear phase relationship between the in-
jected signal and the ILO output.

this should be included in the model and (13) becomes

(15)

One may also wish to consider the ILO’s behavior in terms of
an absolute phase reference in order tomodel external phase per-
turbations and to make this model applicable in other, larger sys-
tems. This can be done by substituting (11) into (15), resulting
in

(16)

This relationship incorporates the nonlinear PDR, , and
can be represented by the system drawn in Fig. 8. The absolute
phase reference of this model means that it can easily be imple-
mented to model ILO behavior in system level simulations.
Equations (16) and (11) and Fig. 8, comprise a general non-

linear behavioral model of an ILO. The nonlinear PDR function,
, may be extracted from a relatively quick series of tran-

sient simulations of the ILO to be modeled, as described above.
In the next section, it will be shown how may also be ex-
tracted from measurements of an ILO. The following sections
will show how the model may be used to very quickly and ac-
curately find the phase relationship, lock range, lock time and
tracking bandwidth of an ILO. Each of these ILO performance
metrics would otherwise require extensive transistor-level sim-
ulations; hence, the model greatly accelerates design iterations,
affording the designer insight. Themodel may also be integrated
into larger behavioral system-level models such as phase-locked
loops and clock distribution networks.

A. Steady-State Phase Shift

When locked, the oscillator and injected pulses will settle to
some steady-state phase relationship, , where each injected
period causes a phase shift that is just sufficient to cancel
the phase drift resulting from . In order for an ILO, with
free-running frequency of to lock to , the phase change
produced by each period of the injected signal at steady-state,

, must be sufficient to eliminate the phase drift accumu-
lated over cycles of the oscillator output such that

(17)

Equation (17) shows that the steady-state phase relationship,
, between the injected signal and the ILO output is deter-

mined by the frequency difference, . This observation is in-
tuitive since the steady-state phase relationship between the in-
jected and output signals, , of an ILO has previously been ex-
ploited in applications such as clock deskew, where ILO output

Fig. 9. Steady-state phase relationships are determined by the difference be-
tween and .

phase can be adjusted by tuning the free-running frequency of a
VCO [3].
Fig. 9 illustrates this concept by showing the steady-state

phase, , relationship between the injected signal and the
oscillator output for a variety of injection frequencies. When

the injected pulses have no need to influence the
oscillator’s output and therefore settle to a steady-state rela-
tionship where, according to the PDR, they will have no effect
on the output phase (i.e., ). When each
injected pulse must decrease the oscillation frequency, meaning
that the pulses settle to a steady-state relationship where they
will each create a positive change in oscillator phase, given
in this example by . These steady-state relationships are
reached, after some settling time, regardless of the phase at
which the injected pulses begin.

B. Lock Range

Fig. 9 shows that a natural extension of the steady-state phase
shift modeling is that the lock range of an ILO can be determined
directly from its PDR since the ILO can only successfully lock
to an injected signal that produces a large enough phase change
in the oscillator output to compensate for the difference in their
frequencies. In other words, the maximum value of , which
we define to be , can be found using (17) to be

(18)

Similarly, the minimum value of , which we define to be
, is

(19)

The total output referred lock range, , is therefore

(20)

(21)

(22)

where has been defined as the peak-to-peak
value of the PDR. Simulation results of an example oscillator
topology comparing these lock range equations to SPICE-level
simulations are presented in Section VI-A.
Treating the maximum and minimum PDR values separately,

as in (18) and (19), identifies cases where the lock range is not
centered equally about the free-running frequency. This effect
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can be present in ILOs for a variety of reasons, especially during
strong injection and is often ignored in ILO models. Although
it has been reported and incorporated into a model in [9], this
work was limited to the specific case of an LC-ILO using an
inductor with a low factor. In contrast, the lock range calcu-
lation given by (22) does not require that the circuit designer
determine an effective , injection strength, or any other oscil-
lator parameter. Instead it relies only on the PDR, which can be
efficiently extracted from simulation of any ILO.

C. Lock Time

When an injected signal is applied, the time that it takes for
an ILO’s output to settle to some steady-state phase relationship
with this injection is known as the lock time. This transient re-
lationship can be useful in determining the ILO’s jitter tracking
capabilities [11] and can also be important in applications that
require fast locking, such as frequency hoping [15], burst mode
[16] or fast power-on applications [4].
The PDR allows us to predict lock time variations that are

not obvious in the frequency-domain ILO model. Although it
has been shown that the frequency domain model can be ma-
nipulated to predict these lock time variations [15], the com-
plexity introduced by such manipulations can make this ap-
proach unattractive. Whereas it is usually suggested that lock
time depends only upon and injection strength, the PDR
model indicates that there is also a strong dependence on the
initial phase relationship, , between the ILO output and the
injected signal.
For the analysis of lock time, however, we assume that

no phase perturbations are introduced by the injected signal
. In this case, the model given by (15) shows that

the ILO phase will settle to its steady-state condition, , when

(23)

and therefore

(24)

which corresponds to (17) as determined previously.
To reach this state, an injected signal that begins at a phase

that is far from the desired steady-state relationship, , will
require more injection events, and therefore a longer time, to
reach . Fig. 10 demonstrates this relationship for an example
case where two identical injected signals are applied individu-
ally to an ILO at initial phases and . Since is much
closer to than , this means that , which re-
sults in a shorter lock time for the injected signal that begins at
. Note that although , the steady-state ILO

output phase cannot settle to this point. A small deviation to the
left of , resulting from noise or a slight frequency difference
between and , will produce a small positive phase shift,
which will then shift the phase difference further to the left of
, in turn producing a larger positive phase shift, and so on

until is reached. A similar effect occurs in the opposite di-
rection if the shift occurs to the right of . Due to the small

Fig. 10. An ILO’s lock time depends on the initial phase difference, , be-
tween the injected signal and the steady-state phase difference, , required
by the frequency of the injected signal.

steps that begin this settling, the increase in lock time that oc-
curs when is significant.
To illustrate this effect, Fig. 11(a) shows the PDR of a 4-stage

ring oscillator obtained using SPICE simulations of a 400-
(differential) injected pulse with a width of 70 ps. Note that in
these simulations the phase difference between the injected and
output signals is defined by the difference between their zero
crossings. When this injected signal is at a frequency close to
then is where on the rising edge of the PDR,

as indicated. If the injected signal begins its injection at a phase
that is close to it will therefore settle quickly, following a
simple, first order exponential settling step response. Indeed,
the time constant of this exponential settling is expressed in
the following section as a function of the jitter tracking band-
width, , in (30), in accordance with other linear modeling
approaches. If the injected signal begins farther from , espe-
cially if it begins near the unstable operating point , it will
require a much longer lock time. This effect is captured by the
PDR model as shown in Fig. 11(b) where 2 identical signals are
injected into the 4-stage ring oscillator but beginning at initial
phases and , respectively. This can lead to large varia-
tions in the lock time of an ILO for a given injection frequency,
but is not captured by traditional analyses based on frequency
domain modeling.
A more complete picture of the lock time of an ILO as a func-

tion of its initial phase is shown in Fig. 12 for both SPICE sim-
ulations and as predicted using the PDR model. In these sim-
ulations the lock time is defined as the time taken for the os-
cillator’s output phase to settle to within 1 of its steady-state
phase. Although the lock time reaches a maximum value near
12 ns, it should be noted that there is no fundamental limit to
this and it is possible to observe very long settling times in an
ideal, noise-free simulation environment. In practice noise will
push the oscillator phase away from , thereby causing it to
lock more quickly.

D. Tracking Bandwidth

Although a strength of the PDR-based model is that it
captures the nonlinear phase response of the ILO during large
phase transients, it can also be used to find linear performance
metrics in the presence of small phase deviations such as phase
tracking bandwidth. Specifically, consider an ILO that has
reached steady-state at a lock point with a relative phase shift

defined by (17). Small phase perturbations around this lock
point due to phase changes (i.e., jitter) in the injected signal,

, result in restoring phase shifts that are proportional to the
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Fig. 11. PDR (a) and transient phase response (b) of a 4-stage ring ILO. When
injection begins far from at the lock time is longer than when it begins
at .

Fig. 12. Lock time varies greatly depending on the phase at which the injected
signal begins. This effect is seen in both SPICE-level simulation and the PDR-
based lock time model.

phase error. The constant of proportionality is the slope, , of
the PDR around . Hence, under small phase perturbations,
a first-order jitter tracking model may be applied,

(25)

where is the jitter tracking function, is an imaginary
number, is the frequency of the jitter and the 3-dB tracking
bandwidth is given by .

When the phase at the input of the ILO is perturbed by an
amount, , then the output phase of the ILO can be deter-
mined using (16) as

(26)

This equation shows that the rate of change of the output phase
of the ILO in response to is determined by . To deter-
mine the jitter tracking bandwidth of the system, we apply a
small step change to and observe the system response as
illustrated in Fig. 8. When this step is applied, the phase differ-
ence between the injected signal and the ILO output, , jumps
by the value of the applied step, which then causes the output
phase to change by , according to (26).
Since the output phase follows a first order exponential set-

tling, as shown in the previous section, the time constant
of this response can be found from the slope of . This can
be determined by taking the derivative of (26), resulting in

(27)

If we assume that for small perturbations in the slope of
is a constant given by then

(28)

and the time constant, , of the settling behavior can be de-
fined as

(29)

where is included to convert from injection cycles to
seconds. This then means that the jitter tracking bandwidth of
the first-order phase tracking model is given by

(30)

where the injected frequency, , is related to and there-
fore through (17).
To verify the accuracy of this model, the of the 4-stage

ring oscillator discussed in the previous section is calculated
using the PDR shown in Fig. 11 in conjunction with (28)to (30).
The result is compared to SPICE simulations of small phase
perturbations over a range of injected frequencies in Fig. 13.

VI. WIDE LOCK RANGE ILO DESIGN

This section presents a design example applying the proposed
model to a multiplying ILO (MILO) that generates a 4-GHz
output signal from a 1-GHz reference clock. In order to demon-
strate the usefulness of the PDR model, the MILO is designed
to have a very wide lock range, which is difficult to model using
other methods. Wide lock range is typically difficult to achieve
for ILOs, with reported lock ranges commonly less than 5% of
the free-running frequency [1], [4]. Hence, an unconventional
circuit architecture is required that doesn’t fit conventional ILO
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Fig. 13. The 3-dB jitter tracking bandwidth can be accurately predicted over a
range of injected frequencies using the PDR model.

models, but the PDR-based model can be applied easily and is
shown to accurately predict performance.
A ring oscillator topology was chosen for this work. The fre-

quency domain model presented in [3] states that the lock range
of a ring oscillator-based ILO is

(31)

where is the number of stages in the ring and is the relative
injection strength given as . Although this model in-
dicates that the number of oscillator stages should be decreased
and that the injection strength should be increased in order to
maximize , the model provides very little insight into
what the injected signal should look like and how it should be
applied to theMILO. Further complicating the application of the
frequency domain model is the fact that (31) must be modified
once the loosely defined boundary between weak and strong in-
jection is crossed.
The PDR model, specifically (22), indicates that the

lock range, , can be increased by maximizing the
peak-to-peak phase domain response, . Since can
be efficiently determined through simulation, the lock range
of different MILO topologies can be quickly evaluated and
compared. In this design a lock range of 1 GHz, or 25% of the
4-GHz was targeted, which translates to a target of 360 .
To serve as a starting point in the design, a four-stage CML

ring oscillator was simulated in a standard 65-nm GP CMOS
process. To create a strong injected signal strength, was
applied to a secondary input differential pair with the drain
nodes connected to those of the original CML stage as shown
in Fig. 14. The tail current of the injection pair was chosen to
be 1/5 of the main oscillator differential pair in order to ensure
that the ILO continues to oscillate when there is no injected
signal present. Varactor load capacitances are used to tune the
MILO’s free-running frequency if necessary.
The PDR of the four-stage MILO is then determined by sim-

ulation using injected pulses with an amplitude of 300
(differential) and a width equal to approximately half of one
period of a 4-GHz clock signal. These pulses were applied to
the first stage of the oscillator, as shown in Fig. 15. In order to
create a realistic pulse shape in the simulation environment, an
ideal pulse is first applied to a CML differential pair before it is
applied to the MILO. The secondary differential pair shown in

Fig. 14. One stage of the four-stage CML injection locked ring oscillator. Ap-
plying the injected signal to a secondary differential pair provides a strong in-
jection strength.

Fig. 15. The PDR is determined by measuring the output phase change created
when a single pulse is applied to the MILO at different phases relative to the
oscillator’s output signal.

Fig. 16. Simulation results show that the peak-to-peak amplitude of the PDR
increases as more injection sites are added.

Fig. 14 is included in each stage of the oscillator to provide a
consistent load at the output of each stage. Where these injec-
tion pairs are unused, their gates have been grounded.
By applying this pulse at various times spanning one period of

the clock signal and observing the resulting change in the output
phase of the MILO, the PDR was determined and is plotted as
the “1 inj” curve in Fig. 16. It exhibits a of 26 , which corre-
sponds to a lock range of 54MHz and highlights the difficulty of
achieving a wide lock range for an ILO. Although the strength of
the injected signal has been maximized relative to the available
headroom in the 65-nm CMOS process, other strategies that at-
tempt to increase the MILO’s sensitivity to injected signals are
required in order to increase lock range.

A. Injection Point Selection

Injection into multiple locations of an oscillator has been
shown to increase the lock range of injection-locked frequency
dividers by applying the injected signal to the tail currents of
two [10] or three different stages of an -stage ring oscillator
[17]. In both cases off-chip controls were used to modify the
phase relationship between the injected signals, demonstrating
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TABLE I
COMPARISON OF LOCK RANGES CALCULATED USING THE ISF MODEL [6] AND THE PDR MODEL TO

THOSE OBTAINED DIRECTLY USING EXTENSIVE SPICE-LEVEL SIMULATIONS

that injected signals should be applied with successive phase de-
lays of in order to achieve the widest lock range. In other
words, the injected signal should experience the same delay as
is created by one oscillator stage before being injected into the
subsequent stage. This means that the required phase shift in the
injected signal can be easily created on-chip by passing the in-
jecting signal through delay elements that are identical to those
that make up the ring oscillator [4].
The addition of each new injection site increases the ILO’s

sensitivity to an injected pulse. This is illustrated in Fig. 16
where the peak-to-peak value of the PDR is increased as the
number of injection sites increases from injection into a single
stage (“1 inj”) to injection into all four ring oscillator stages (“4
inj”). Although the effects of this multi-stage injection would be
difficult to predict using conventional ILO models, the PDR is
readily determined through simulation and the results can easily
be translated into the resulting lock range, lock time, or tracking
bandwidth, as discussed in the previous sections.
It should be noted that the limited bandwidth of each element

in the delay line used to duplicate the delays of the ring oscil-
lator stages results in the loss of some high frequency content
of the injected pulse as it travels through each successive stage.
This means that the pulse, which began with a width equal to
half the bit period of the output clock will become wider by the
time it reaches the final stage of the ring. These wide pulses
are therefore able to produce a larger positive phase change in
the MILO output, which corresponds to improved locking to
frequencies lower than that of the free-running oscillator. They
are, however, not able to improve locking to higher frequencies,
resulting in a lock range that is not symmetric about the oscil-
lator’s free-running frequency. Although this effect is typically
not addressed by existing ILO models, it is clearly visible in the
difference between positive and negative peak values in Fig. 16.
The peak PDR values were translated to lock ranges using

(22) and are reported in Table I. These results are compared
to lock ranges obtained using the ISF method [6] and to those
obtained directly from SPICE-level simulation using Virtuoso
Spectre. To obtain the lock range in this way the transient re-
sponse of the oscillator was simulated over a range of frequen-
cies and a locked condition is identified by the settling of the
MILO’s output phase (relative to a reference signal) to some
steady-state value. In order to ensure that the MILO is locked
and that there is no eventual slipping in the output phase, the
transient simulation must be run for several hundred clock cy-
cles. This, combined with the fact that the step size of the fre-
quency sweep must be small in order to accurately determine

Fig. 17. Creating pulses at the reference clock edges emphasizes the desirable
harmonic of the input thereby improving the lock range of the MILO.

Fig. 18. The addition of a second edge detector with wide pulse widths further
emphasizes the desired harmonic of the input signal.

the lock range, results in simulations that consume a significant
amount of time and resources. This highlights the usefulness of
determining this information using the PDR method instead.

B. Frequency Pre-Conditioning

Another method of increasing the lock range of a multiplying
ILO is to introduce a frequency pre-conditioning circuit that em-
phasizes the input’s desirable harmonic. For example, an edge
detector comprising a delay and XOR gate, as shown in Fig. 17
is often used for this purpose [4], [16].
While the impact of adding an edge detector to the MILO

would be difficult to include in existing ILO models, its inclu-
sion in the PDR simulations is trivial. First, the delays andXORs
shown in Fig. 17 were included prior to the ILO. Then a dc offset
was added to the first amplification stage in the delay chain in
order to create the return-to-zero pulses shown in this figure.
Simulations of the MILO using this injection technique show
that it increases to 114 . Further increases are then achieved
by adding a second edge detector set to create pulse widths equal
to twice that of the original edge detector, resulting the MILO
topology shown in Fig. 18. Using this technique increases
to 204 .
Furthermore, with the injected pulses now arriving at almost

the same frequency as the output clock, it becomes unnecessary
for the injected signal to return to zero between injected pulses
and a full swing sinusoid can now be used as the injection signal
instead. Note that this circuit was reported in [18] as a tech-
nique for implementing a frequency-multiplier with wide op-



2832 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 60, NO. 11, NOVEMBER 2013

Fig. 19. PDR curves for ILOs using (a) one edge detector, (b) two edge detec-
tors and (c) two edge detectors used to produce a sinusoidal (NRZ) injection
signal.

Fig. 20. Die photo of the MILO fabricated in 65-nm GP CMOS.

erating range and fast power-on functionality but no model for
the ILO was presented. Simulations of this circuit show that
increases beyond the target value of 360 . The simulated PDR
curves for the case of one edge detector, two edge detectors, and
two edge detectors without return-to-zero (NRZ) injection, are
shown in Fig. 19. The PDR values reported for the case of two
edge detectors with sinusoidal injection indicate that a 4-GHz
ILO using this topology should be able to achieve a lock range
that extends 0.7 GHz above [using (18)] and 1.06 GHz below
[using (19)].

VII. MEASURED RESULTS

To validate the predictions of the PDR model, the MILO,
including both edge detectors, was fabricated in a 65-nm GP
CMOS process. A die photo of this prototype, which consumes
0.042 , is shown in Fig. 20.
Direct measurement of the PDR of an ILO is impractical since

it can be exceedingly difficult to apply of a single period of the
injected signal and to observe the real-time change in the output
phase. Instead it is possible to obtain part of the PDR indirectly
using the relationship described by (17). Since the fabricated
ILO was designed to have a multiplication factor of and
was measured to have an , it is possible to mea-
sure the resulting values of as various frequency offsets,
, are applied. In order to ensure that there are no changes in

the phase of the injected signal introduced by the test setup, fre-
quency offsets are applied by keeping constant and varying
the of the ILO, which is accomplished in this design by
varying varactor voltages. Fig. 21(a) compares the values
measured in this way to those obtained from SPICE-level sim-
ulations. Fig. 21(b) then translates these measurements to the
PDR using (17) and compares them to the PDR that is obtained
through simulation as discussed in the previous sections.
The measured lock range of the fabricated device is from 3

GHz to 4.7 GHz, or 42.5% of the 4-GHz free-running frequency.

Fig. 21. Measured values of (a) for various frequency offsets can be trans-
lated to (b) the PDR of the ILO. These measurements show good agreement
with SPICE-level simulations.

TABLE II
COMPARISON OF MEASURED LOCK RANGES TO
THOSE CALCULATED USING THE PDR MODEL

This compares well with the lock range that was predicted by the
PDR, as can be seen in the comparison shown in Table II. The
PDR model predicts not only the total lock range accurately but
also the asymmetry of this lock range.

VIII. CONCLUSION

Modeling ILO behavior by using conventional frequency do-
main models requires the use of several parameters which are
difficult to define. Modeling using the ISF-based model is ac-
curate and applicable only when the injected signal strength is
low. As an alternative, the proposed PDR model of an oscillator
can be used in conjunction with simple transistor-level simula-
tions to accurately predict the behavior of any ILO under any
injected signal. This makes the PDR model useful during the
design of an ILO, helping to optimize the circuit for a given set
of requirements.
Using this PDR model a MILO was designed to multiply

a 1-GHz reference clock by 4 to produce a 4-GHz output
clock. By simulating the PDR of the MILO at various stages



DUNWELL AND CARUSONE: MODELING OSCILLATOR INJECTION LOCKING USING THE PHASE DOMAIN RESPONSE 2833

throughout the design process, it was possible to quickly
evaluate the impact that each change in topology had on the
lock range. This in turn made it possible to achieve the target
lock range in a logical progression of design steps, resulting
in a MILO with a measured lock range equal to 42.5% of the
free-running frequency.
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