A 5th Order Gm-C Filter in 0.25 mm CMOS with Digitally Programmable Poles and Zeros

Tony Chan Carusone, David A. Johns

tcc@eecg.utoronto.ca

May 29, 2002

Outline

- Motivation Analog Adaptive Filters
- Filter Design
 - filter structure
 - digitally programmable transconductor
- Results
- Conclusion

Motivation

- Analog adaptive filters offer several important advantages in high speed mixed signal systems:
 - reduced specifications on the A/D converter
 - reduced specifications on the analog line driver (echo cancellation application)
 - moves the equalizer outside of the timing recovery loop
 - potential for power and area savings over digital filters (at high speeds and long impulse responses)

- Analog implementations of adaptation algorithms are not robust
 - ⇒ digitally programmable analog filter

Filter Structure

• continuous-time orthonormal ladder filter [Johns et al, *TCAS*, Mar '89]

- gains a_i and b_i are digitally programmable transconductors \Rightarrow can realize any rational transfer function
- automatically scaled for optimum dynamic range

Digitally Programmable Transconductor

• fully-differential transconductor

• G_m is proportional to triode-transistor, M3, conductance

$$G_{m(M3)} \propto \left(\frac{W}{L}\right)_{(M3)} \cdot V_{gs(M3)}$$

Digitally Programmable Transconductor

• 9-bit programmable conductance, M3

Digitally Programmable Transconductor

• hysteresis is required when two separate mechanisms control the same adapted parameter

• the fine control DAC range is a function of the coarse control bits

Details of the 4-bit DAC

Die Photo

Experimental Results

• Lowpass filter with varying cutoff frequency and gain:

Experimental Results

Entire Prototype Gm-C Filter IC	
Technology	0.25 μm CMOS
Supply Voltage	2.5 V
Integrated Area	$2.5 \text{ mm} \times 1.7 \text{ mm} = 4.25 \text{ mm}^2$
Power	233 mW (Simulated)
	250 mW (Measured)
First Order Filter Test Structure	
THD with 200 mVpp input, 120 mVpp output tone at 8 MHz	-41 dB
5th Order Lowpass Orthonormal Ladder Filter Core (40 MHz passband)	
Integrated Area	$1.25 \text{ mm} \times 0.38 \text{ mm} = 0.469 \text{ mm}^2$
Power with 9-Bit Programmable Coefficients	130 mW (Simulated) ^a
Power with 5-Bit Programmable Coefficients	87.5 mW (Simulated) ^a
Noise Power	1.656 mVrms
THD with 125 mVpp input, 170 mVpp output tone at $f_{3 \text{ dB}}/2$	-27.7 dB ^b
SFDR with input tone at $f_{3 \text{ dB}}/2$	30 dB ^c

- a. Includes shared bias circuitry.
- b. Measurements for different transfer functions varied between -20 dB to -30 dB.
- c. Corresponds to input amplitude of 105 mVpp and output amplitude of 145 mVpp.

Current consumption of the prototype by block

Entire Prototype IC = 93.1 mA

Conclusions

• circuit techniques for digitally programmable analog filters in CMOS were explored

• a 5th order filter with digitally programmable poles and zeros was developed

• the speed of operation is faster than any previously reported filter with this degree of programmability (although the linearity is limited)