

IIDC 1394-based Digital Camera Specification Version 1.30 July 25, 2000

Sponsored by:

Instrumentation and Industrial Control Working Group (II-WG) of the 1394 Trade Association, Digital Camera Sub Working Group (DC-SWG)

Approved for Release by:

1394 Trade Association Board of Directors

Abstract: The purpose of this document is to act as a design guide for digital camera makers that wish to use IEEE 1394 as the camera-to-PC interconnect. Adherence to the design specifications contained herein do not guarantee, but will promote interoperability for this class of device. The camera registers, fields within those registers, video formats, modes of operation, and controls for each are specified. Area has been left for growth. To make application for additional specification, contact the 1394 Trade Association Instrumentation and Industrial Control Working Group, Digital Camera Sub Working Group (II-WG DC-SWG).

Keywords: Camera, 1394, Digital Video, Isochronous, Asynchronous

Copyright © 1996-2001 by the 1394 Trade Association.

Regency Plaza Suite 350, 2350 Mission College Blvd., Santa Clara, CA 95054, USA http://www.1394TA.org

All rights reserved.

Permission is granted to members of the 1394 Trade Association to reproduce this document for their own use or the use of other 1394 Trade Association members only, provided this notice is included. All other rights reserved. Duplication for sale, or for commercial or for-profit use is strictly prohibited without the prior written consent of the 1394 Trade Association.

1394 Trade Association Specifications are developed with Working Groups of the 1394 Trade Association, a non-profit industry association devoted to the promotion of and growth of the market for IEEE 1394 computer products. Participants in working groups serve voluntarily and without compensation from the Trade Association. Most participants represent member organizations of the 1394 Trade Association. The specifications developed within the working groups represent a consensus of the expertise represented by the participants.

Use of a 1394 Trade Association Specification is wholly voluntary. The existence of a 1394 Trade Association Specification is not meant to imply that there are not other ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the 1394 Trade Association Specification. Furthermore, the viewpoint expressed at the time a specification is approved and issued is subject to change, brought about through developments in the state of the art and comments received from users of the specification. Users are cautioned to check to determine that they have the latest revision of any 1394 Trade Association.

Comments for revision of 1394 Trade Association Specifications are welcome from any interested party, regardless of membership affiliation with the 1394 Trade Association. Suggestions for changes in documents should be in the form of a proposed change of a proposed change of text, together with appropriate supporting comments.

Interpretations: Occasionally, questions may arise about the meaning of specifications in relationship to specific applications. When the need for interpretations is brought to the attention of the 1394 Trade Association, the Association initiates action to prepare appropriate responses.

Comments on specifications and requests for interpretations should be addressed to:

Editor, 1394 Trade Association Regency Plaza Suite 350 2350 Mission College Blvd. Santa Clara, California 95054, USA

1394 Trade Association Specifications are adopted by the 1394 Trade Association without regard to patents which may exist on articles, materials or processes or to other proprietary intellectual property which may exist within a specification. Adoption of a specification by the 1394 Trade Association does not assume any liability to any patent owner or any obligation whatsoever to those parties who rely on the specification documents. Readers of this document are advised to make an independent determination regarding the existence of intellectual property rights which may be infringed by conformance to this specification.

Introduction

The 1394TA II-WG DC-SWG was formed with the following charter:

• Investigate command set specific to 1394 based digital camera device.

Committee Membership

DC-SWG Chairman: Andreas Schloissnik Company: Yokogawa Corporation of America Email: <u>andreas.schloissnik@yca.com</u> Phone: (480) 783-8990

DC-SWG Secretary: Yasutoshi Onishi Company: HAMAMATSU PHOTONICS K.K. Email: <u>onishi@sys.hpk.co.jp</u> Phone: +81(53) 435-1560

DC-SWG Editor: Toshihiko Kubo Company: Sony Email: <u>Toshihiko.Kubo@jp.sony.com</u> Phone: +81(46) 230-5366

II-WG DC-SWG Reflector: '1394-camera@1394TA.org'

The following individuals are acknowledged for their contributions to this standard:

Toshiaki Shinohara Shoji Araki Hiroshi Tsutsui

1

TABLE OF CONTENTS

1. DIGITAL CAMERA CONTROL COMMAND REGISTER	1
1.1 CAMERA INITIALIZE REGISTER	
1.2 INOURY REGISTER FOR VIDEO FORMAT/MODE/FRAME RATE	1
1.2.1 Inquiry register for video format	1
1.2.2 Inquiry register for video mode	2
1.2.3 Inquiry register for video frame rate and base address of the Video Mode CSR for t	he Partial Image Size
Format 3	0
1.3 INQUIRY REGISTER FOR BASIC FUNCTION	7
1.4 INQUIRY REGISTER FOR FEATURE PRESENCE	8
1.5 INQUIRY REGISTER FOR FEATURE ELEMENTS	9
1.6 STATUS AND CONTROL REGISTERS FOR CAMERA	
1.6.1 Storage Media CSR (only for Format_6)	12
1.6.2 Stored Image CSR (only for Format_6)	13
1.7 STATUS AND CONTROL REGISTER FOR FEATURE	14
1.7.1 Inquiry register for Absolute value CSR offset address	17
1.7.2 Feature control error status register	18
1.8 REGISTER MAP	19
1.9 VIDEO MODE CSR FOR FORMAT_7	20
1.9.1 MAX_IMAGE_SIZE_INQ register	21
1.9.2 UNIT_SIZE_INQ and UNIT_POSITION_INQ register	21
1.9.3 IMAGE_POSITION and IMAGE_SIZE register	22
1.9.4 COLOR_CODING_ID and COLOR_CODING_INQ registers	22
1.9.5 PIXEL_NUMBER_INQ and TOTAL_BYTE_INQ registers	22
1.9.6 PACKET_PARA_INQ and BYTE_PER_PACKET register	23
1.9.7 PACKET_PER_FRAME_INQ register	24
1.9.8 VALUE_SETTING register	24
1.10 CSRs Advanced Features	
1.11 ABSOLUTE VALUE CSR FOR FEATURE ELEMENTS	
2. ISOCHRONOUS PACKET FORMAT	
	20
2.1 ISOCHRONOUS PACKET FORMAT FOR FORMAT_0, FORMAT_1 AND FORMAT_2	
2.1.1 Video Isochronous packet structure	28
2.1.2 Video data payload atmisture	29
2.1.5 Video data payloda structure	30
2.1.4 Data structure 2.2 Inocurrence between the properties in the properties of the properties $(\text{Format}, 7)$	32
2.2 ISOCHRONOUS PACKET FORMAT FOR PARTIAL IMAGE SIZE VIDEO FORMAT (FORMAT_/)	
2.2.1 Video Isochronous packet structure	33
2.2.2 Video data payloda structure	33 25
2.2.5 Data structure	
3. SERIAL BUS MANAGEMENT	
3.1 BUS MANAGEMENT	
3.2 ASYNCHRONOUS TRANSFER CAPABILITIES	
3.3 ISOCHRONOUS TRANSFER CAPABILITIES	37
3.4 IFFE 1394 SPECIFIC ADDRESS SPACE	37
3.4.1 Implemented CSR's	38
3.4.2 Configuration ROM	38
3 4 3 Format of Vendor Name and Model Name Leaves	30
A. APPENDIX A (FEATURE DEFINITION AND SPECIFICATION)	41
A.1 BRIGHTNESS CONTROL	41
A.2 AUTO EXPOSURE CONTROL	41
	1394 TRADE
Page iv Convright © 2001 1394 Trade Association All rights reserved	

A.3	SHARPNESS CONTROL	41
A.4	WHITE BALANCE CONTROL	41
A.5	HUE CONTROL	
A.6	SATURATION CONTROL	
A.7	GAMMA CONTROL	
A.8	Shutter Control	
A.9	GAIN CONTROL	43
A.10	Iris Control	43
A.11	Focus Control	43
A.12	TEMPERATURE CONTROL	43
A.13	TRIGGER CONTROL	44
A.14	ZOOM CONTROL	45
A.15	Pan Control	45
A.16	TILT CONTROL	45
A.17	OPTICAL FILTER CONTROL	45
B. AP	PPENDIX B (UNIT OF VALUE FOR ABSOLUTE VALUE CONTROL)	46
B.1 Fi	EATURE ELEMENTS HIGH	
B.2 Fi	eature elements Low	

This page intentionally left blank.

1. Digital camera control command register

Base address for all digital camera command registers is:

Bus_ID, Node_ID, FFFF Fxxx xxxx (initial units space)

This address is contained in the configuration ROM in the camera unit directory.

The following sections define the entire camera CSR registers. The offset field in each of the tables is the byte offset from the above base address.

1.1 Camera initialize register

Offset	Name	Field	Bit	Description
000h	INITIALIZE	Initialize	[0]	If you assert this bit,, Camera will re-set to initial
				(factory setting value) state.
		-	[131]	Reserved (All zero)

0-7	8-15	16-23	24-31
i	Reserved		

Initial values	Zeros
Read values	Zeros
Write effect	If '0' no effect If '1' set initial state (Factory setting)

1.2 Inquiry register for video format/mode/frame rate

Each bit in the inquiry fields specifies the availability of a given feature. A value of '1' indicates that the corresponding feature is implemented; a value of '0' indicates that the corresponding feature is not implemented. The following sections define the inquiry registers.

1.2.1 Inquiry register for video format

Offset	Name	Field	Bit	Description
100h	V_FORMAT_INQ	Format_0	[0]	VGA non-compressed format.
				(Maximum 640x480)
		Format_1	[1]	Super VGA non-compressed format (1)
		Format_2	[2]	Super VGA non-compressed format (2)
		Format_x	[35]	Reserved for other format.
		Format_6	[6]	Still Image Format
		Format_7	[7]	Partial Image Size Format
		-	[831]	Reserved. (All zero)

0-7	8-15	16-23	24-31
Format		Reserved	

Initial values	System dependent.
Read values	System dependent. Same value to Initial value.
Write effect	Ignored.

1.2.2 Inquiry register for video mode

Offset	Name	Field	Bit	Description
180h	V_MODE_INQ_0	Mode_0	[0]	160 X 120 YUV(4:4:4) Mode (24bit/pixel)
	(Format_0)	Mode_1	[1]	320 X 240 YUV(4:2:2) Mode (16bit/pixel)
		Mode_2	[2]	640 X 480 YUV(4:1:1) Mode (12bit/pixel)
		Mode_3	[3]	640 X 480 YUV(4:2:2) Mode (16bit/pixel)
		Mode_4	[4]	640 X 480 RGB Mode (24bit/pixel)
		Mode_5	[5]	640 X 480 Y (Mono) Mode (8bit/pixel)
		Mode_6	[6]	640 X 480 Y (Mono16) Mode (16bit/pixel)
		Mode_x	[7]	Reserved for another Mode
		-	[831]	Reserved. (All zero)
184h	V_MODE_INQ_1	Mode_0	[0]	800 X 600 YUV(4:2:2) Mode (16bit/pixel)
	(Format_1)	Mode_1	[1]	800 X 600 RGB Mode (24bit/pixel)
		Mode_2	[2]	800 X 600 Y (Mono) Mode (8bit/pixel)
		Mode_3	[3]	1024 X 768 YUV(4:2:2) Mode (16bit/pixel)
		Mode_4	[4]	1024 X 768 RGB Mode (24bit/pixel)
		Mode_5	[5]	1024 X 768 Y (Mono) Mode (8bit/pixel)
		Mode_6	[6]	800 X 600 Y (Mono16) Mode (16bit/pixel)
		Mode_7	[7]	1024 X 768 Y (Mono16) Mode (16bit/pixel)
		-	[831]	Reserved. (All zero)
188h	V_MODE_INQ_2	Mode_0	[0]	1280 X 960 YUV(4:2:2) Mode (16bit/pixel)
	(Format_2)	Mode_1	[1]	1280 X 960 RGB Mode (24bit/pixel)
		Mode_2	[2]	1280 X 960 Y (Mono) Mode (8bit/pixel)
		Mode_3	[3]	1600 X 1200 YUV(4:2:2) Mode (16bit/pixel)
		Mode_4	[4]	1600 X 1200 RGB Mode (24bit/pixel)
		Mode_5	[5]	1600 X 1200 Y (Mono) Mode (8bit/pixel)
		Mode_6	[6]	1280 X 960 Y (Mono16) Mode (16bit/pixel)
		Mode_7	[7]	1600X 1200 Y (Mono16) Mode (16bit/pixel)
		-	[831]	Reserved. (All zero)
18Ch				
:		Reserved for	r other V_M	IODE_INQ_x for Format_x.
197h		N4 ·		
198h	V_MODE_INQ_6	Mode_0	[0]	Exit format
	(Format_6)	Mode_x	[17]	Reserved for another Mode
400		-	[831]	Reserved. (All zero)
19Ch	V_MODE_INQ_7	Mode_0	[0]	Format_7 Mode_0
	(Format_7)	Mode_1	[1]	Format_7 Mode_1
		Mode_2	[2]	Format_7 Mode_2
		Mode_3	[3]	Format_7 Mode_3
		Mode_4	[4]	Format_7 Mode_4
		Mode_5	[5]	Format_7 Mode_5
		Mode_6	[6]	Format_7 Mode_6
		Mode_7	[7]	Format_7 Mode_7
		-	[831]	Reserved. (All zero)

0-7	8-15	16-23	24-31
V_MODE_INQ		Reserved	

Initial values	System dependent
Read values	System dependent. Same value to Initial value
Write effect	Ignored

1.2.3 Inquiry register for video frame rate and base address of the Video Mode CSR for the Partial Image Size Format

Offset	Name	Field	Bit	Description
200h	V RATE INQ 0 0	FrameRate 0	[0]	Reserved
	(Format 0,Mode 0)	FrameRate 1	[1]	Reserved
	(· · · · · · · · · · · · · · · · · · ·	FrameRate 2	[2]	7.5fps
		FrameRate 3	[3]	15fps
		FrameRate 4	[4]	30fns
		FrameRate x	[57]	Reserved for another frame rate
		-	[831]	Reserved (All zero)
204h	V RATE INQ 0 1	FrameRate 0	[0]	Reserved
20	(Format 0.Mode 1)	FrameRate 1	[1]	3 75fps
	(" • • • • • • • • • • • • • • • • • • •	FrameRate 2	[2]	7.5fps
		FrameRate 3	[3]	15fps
		FrameRate 4	[4]	30fns
		FrameRate x	[5.,7]	Reserved for another frame rate
		-	[8.,31]	Reserved (All zero)
208h	V RATE INQ 0 2	FrameRate 0	[0]	Reserved
	(Format 0.Mode 2)	FrameRate 1	[1]	3 75fps
	(, , , , , , , , , , , , , , , , , , ,	FrameRate 2	[2]	7.5fps
		FrameRate 3	[3]	15fps
		FrameRate 4	[4]	30fps
		FrameRate x	[5.,7]	Reserved for another frame rate
		-	[831]	Reserved (All zero)
20Ch	V RATE INQ 0 3	FrameRate 0	[0]	Reserved
	(Format 0,Mode 3)	FrameRate 1	[1]	3.75fps
	(**************************************	FrameRate 2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_x	[57]	Reserved for another frame rate
		-	[831]	Reserved (All zero)
210h	V_RATE_INQ_0_4	FrameRate_0	[0]	Reserved
	(Format_0,Mode_4)	FrameRate_1	[1]	3.75fps
		FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_x	[57]	Reserved for another frame rate
		-	[831]	Reserved (All zero)
214h	V_RATE_INQ_0_5	FrameRate_0	[0]	Reserved
	(Format_0,Mode_5)	FrameRate_1	[1]	3.75fps
		FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_5	[5]	60fps
		FrameRate_x	[67]	Reserved for another frame rate
		-	[831]	Reserved (All zero)
218h	V_RATE_INQ_0_6	FrameRate_0	[0]	Reserved
	(Format_0,Mode_6)	FrameRate_1	[1]	3.75fps
		FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_x	[57]	Reserved for another frame rate
		-	[831]	Reserved (All zero)
21Ch	_			
:	R	eserved V_RATE	_INQ_0_x (fo	r other Mode_x of Format_0)
21Fh				

220h	V_RATE_INQ_1_0	FrameRate_0	[0]	Reserved
	(Format_1,Mode_0)	FrameRate_1	[1]	3.75fps
		FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_x	[57]	Reserved for another frame rate
		-	[831]	Reserved (All zero)
224h	V_RATE_INQ_1_1	FrameRate_0	[0]	Reserved
	(Format_1,Mode_1)	FrameRate_1	[1]	Reserved
		FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_x	[47]	Reserved for another frame rate
		-	[831]	Reserved (All zero)
228h	V_RATE_INQ_1_2	FrameRate_0	[0]	Reserved
	(Format_1,Mode_2)	FrameRate_1	[1]	Reserved
		FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_5	[5]	60fps
		FrameRate_x	[67]	Reserved for another frame rate
		-	[831]	Reserved (All zero)
22Ch	V_RATE_INQ_1_3	FrameRate_0	[0]	1.875fps
	(Format_1,Mode_3)	FrameRate_1	[1]	3.75fps
		FrameRate_2	[2]	7.5tps
		FrameRate_3	[3]	15tps
		FrameRate_x	[47]	Reserved for another frame rate
020h		-	[831]	
2300	V_RATE_INQ_T_4 (Format_1_Mada_4)	FrameRate_0	[0]	2.75fpg
	(Format_1,Mode_4)	FrameRate_1	[1]	7.5fpc
		FrameRate v	[2]	Reserved for another frame rate
			[37]	Reserved (All zero)
234h	V RATE INO 1.5	FrameRate 0	[0.101]	1.875fps
20111	(Format 1 Mode 5)	FrameRate 1	[0]	3 75fps
	(FrameRate 2	[2]	7.5fps
		FrameRate 3	[3]	15fps
		FrameRate 4	[4]	30fps
		FrameRate x	[57]	Reserved for another frame rate
		-	[831]	Reserved (All zero)
238h	V_RATE_INQ_1_6	FrameRate_0	[0]	Reserved
	(Format_1,Mode_6)	FrameRate_1	[1]	3.75fps
		FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_4	[4]	30fps
		FrameRate_x	[57]	Reserved for another frame rate
		-	[831]	Reserved (All zero)
23Ch	V_RATE_INQ_1_7	FrameRate_0	[0]	1.875fps
	(Format_1,Mode_7)	FrameRate_1	[1]	3.75fps
		FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_x	[47]	Reserved for another frame rate
		-	[831]	Reserved (All zero)

240h	V_RATE_INQ_2_0	FrameRate_0	[0]	1.875fps
	(Format_2,Mode_0)	FrameRate_1	[1]	3.75fps
		FrameRate_2	[2]	7.5fps
		FrameRate_x	[37]	Reserved for another frame rate
		-	[831]	Reserved (All zero)
244h	V_RATE_INQ_2_1	FrameRate_0	[0]	1.875fps
	(Format_2,Mode_1)	FrameRate_1	[1]	3.75fps
		FrameRate_2	[2]	7.5fps
		FrameRate_x	[37]	Reserved for another frame rate
		-	[831]	Reserved (All zero)
248h	V_RATE_INQ_2_2	FrameRate_0	[0]	1.875fps
	(Format_2,Mode_2)	FrameRate_1	[1]	3.75fps
		FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_x	[47]	Reserved for another frame rate
		-	[831]	Reserved (All zero)
24Ch	V_RATE_INQ_2_3	FrameRate_0	[0]	1.875fps
	(Format_2,Mode_3)	FrameRate_1	[1]	3.75fps
		FrameRate_2	[2]	7.5fps
		FrameRate_x	[37]	Reserved for another frame rate
		-	[831]	Reserved (All zero)
250h	V_RATE_INQ_2_4	FrameRate_0	[0]	1.875fps
	(Format_2,Mode_4)	FrameRate_1	[1]	3.75fps
		FrameRate_x	[27]	Reserved for another frame rate
		-	[831]	Reserved (All zero)
254h	V_RATE_INQ_2_5	FrameRate_0	[0]	1.875fps
	(Format_2,Mode_5)	FrameRate_1	[1]	3.75fps
		FrameRate_2	[2]	7.5fps
		FrameRate_3	[3]	15fps
		FrameRate_x	[47]	Reserved for another frame rate
		-	[831]	Reserved (All zero)
258h	V_RATE_INQ_2_6	FrameRate_0	[0]	1.875fps
	(Format_2,Mode_6)	FrameRate_1	[1]	3.75fps
		FrameRate_2	[2]	7.5fps
		FrameRate_x	[37]	Reserved for another frame rate
		-	[831]	Reserved (All zero)
25Ch	V_RATE_INQ_2_7	FrameRate_0	[0]	1.875fps
	(Format_2,Mode_7)	FrameRate_1	[1]	3.75fps
		FrameRate_2	[2]	7.5fps
		FrameRate_x	[37]	Reserved for another frame rate
		-	[831]	Reserved (All zero)

260h : 2BFh	Reserved V_RATE_INQ_y_x (for other Format_y,Mode_x)					
2C0h	V_REV_INQ_6_0	revision_0	[0]	Exif format revision 2.0		
	(Format_6,Mode_0)	revision_x	[17]	Reserved for other revision		
		-	[831]	Reserved (All zero)		
2C4h : 2DFh	Я	Reserved V_REV_	INQ_6_x (fo	r other Mode_x of Format_6)		
2E0h	V_CSR_INQ_7_0	Mode_0	[031]	CSR quadlet offset for Format_7 Mode_0		
2E4h	V_CSR_INQ_7_1	Mode_1	[031]	CSR quadlet offset for Format_7 Mode_1		
2E8h	V_CSR_INQ_7_2	Mode_2	[031]	CSR quadlet offset for Format_7 Mode_2		
2ECh	V_CSR_INQ_7_3	Mode_3	[031]	CSR quadlet offset for Format_7 Mode_3		
2F0h	V_CSR_INQ_7_4	Mode_4	[031]	CSR quadlet offset for Format_7 Mode_4		
2F4h	V_CSR_INQ_7_5	Mode_5	[031]	CSR quadlet offset for Format_7 Mode_5		
2F8h	V_CSR_INQ_7_6	Mode_6	[031]	CSR quadlet offset for Format_7 Mode_6		
2FCh	V_CSR_INQ_7_7	Mode_7	[031]	CSR quadlet offset for Format_7 Mode_7		

For Format_0, Format_1, Format_2:

0-7	8-15	16-23	24-31
FrameRate		Reserved	

For Format_6:

0-7	8-15	16-23	24-31
revision		Reserved	

For Format_7 (Partial Image Size Format):

0-7	8-15	16-23	24-31
Base add	Iress of the Video	Mode CSR (quadl	et offset)

"Base address of the Video Mode CSR" is the quadlet offset from the base address of initial register space.

Initial values	System dependent
Read values	System dependent (Same as initial value)
Write effect	Ignored

1.3 Inquiry register for basic function

		(011101 474114		
Offset	Name	Field	Bit	Description
400h	BASIC_FUNC_INQ	Advanced_Feature_ Inq	[0]	Inquiry for advanced feature. (Vendor Unique)
		Vmode_Error_Status _Inq	[1]	Inquiry for existence of Vmode_Error_Status register
		Feature_Control_Error_ Status_Inq	[2]	Inquiry for existence of Feature_Control_Error_Status register
			[315]	Reserved
		Cam_Power_Cntl	[16]	Camera process power ON/OFF capability
			[1718]	Reserved
		One_Shot_Inq	[19]	One shot transmission capability
		Multi_Shot_Inq	[20]	Multi shot transmission capability
			[2127]	Reserved
		Memory_Channel	[2831]	Maximum memory channel number (N) Memory channel no 0 = Factory setting memory 1 = Memory Ch 1 2 = Memory Ch 2
				If 0000, user memory is not available.

The entire field except "Memory_Channel" is bit assignment for inquiry. (0:Not available 1:Available)

0-7			8-1	5			16	-23	3	24	-31
av f	R	eser	ved		С	r	0	m	Res	served	mem

"Advanced Feature" is vendor unique features. Vendor shall prepare CSR's for these additional features and write base address of these CSR's at 480h as a quadlet offset value from the base address of initial register space.

Initial values	System dependent
Read values	System dependent (Same as initial value)
Write effect	Ignored

1.4 Inquiry register for feature presence

The following registers show presence of the features. Each bit is corresponding to the feature. The camera which supports multiple video formats and video modes might change presence of feature.

Offset	Name	Field	Bit	Description
404h	Feature_Hi_Inq	Brightness	[0]	Brightness Control
		Auto Exposure	[1]	Auto Exposure Control
		Sharpness	[2]	Sharpness Control
		White_Balance	[3]	White Balance Control
		Hue	[4]	Hue Control
		Saturation	[5]	Saturation Control
		Gamma	[6]	Gamma Control
		Shutter	[7]	Shutter Speed Control
		Gain	[8]	Gain Control
		Iris	[9]	IRIS Control
		Focus	[10]	Focus Control
		Temperature	[11]	Temperature Control
		Trigger	[12]	Trigger Control
			[1331]	Reserved
408h	Feature_Lo_Inq	Zoom	[0]	Zoom Control
		Pan	[1]	PAN Control
		Tilt	[2]	TILT Control
		Optical Filter	[3]	Optical Filter Control
			[415]	Reserved
		Capture_Size	[16]	Capture image size for Format_6
		Capture_Quality	[17]	Capture image quality for Format_6
			[1831]	Reserved
40Ch				
: 47Fh			Reserved	
480h	Advanced_Feature_	Advanced_Feature	[0 31]	Quadlet offset of the advanced feature
	Inq	_Quadlet_Offset		CSR's from the base address of initial
	-			register space. (Vendor unique)

The entire field is a bit assignment for inquiry. (0:Not available 1:Available)

offset	0-7	8-15	16-23	24-31			
404h	beswhsgs	g l f t t	Reserve	d			
408h	zpto	Reserved	sq Re	served			
480h	Quadlet offset of the advanced feature CSR						

Initial values	System dependent
Read values	System dependent (Depending on video format and video mode)
Write effect	Ignored

1.5 Inquiry register for feature elements

The following registers show the presence of feature, modes, maximum value and minimum value for each feature. The camera which supports multiple video formats and video modes might change this registers. It is strongly recommended to check this register every time when change the video format and/or video mode. All the fields named xxx_Inq are bit assignments for inquiry. (0:Not available 1:Available)

(Definition and specification of each feature is described in Appendix A.)

Offset	Name	Field	Bit	Description		
500h	BRIGHTNESS_INQ	Presence_Inq	[0]	Presence of this feature		
		Abs_Control_Inq	[1]	Capability of control with absolute value		
			[2]	Reserved		
		One_Push_Inq	[3]	One push auto mode (Controlled automatically by		
				camera only once)		
		ReadOut_Inq	[4]	Capability of reading the value of this feature		
		On/Off_Inq	[5]	Capability of switching this feature ON and OFF		
		Auto_Inq	[6]	Auto mode (Controlled automatically by camera)		
		Manual_Inq	[7]	Manual mode (Controlled by user)		
		Min_Value	[819]	Minimum value for this feature control		
		Max_Value	[2031]	Maximum value for this feature control		
504h	AUTO_EXPOSURE_INQ		Same de	efinition to BRIGHTNESS_INQ		
508h	SHARPNESS_INQ		Same de	efinition to BRIGHTNESS_INQ		
50Ch	WHITE_BAL_INQ		Same de	efinition to BRIGHTNESS_INQ		
510h	HUE_INQ	Same definition to BRIGHTNESS_INQ				
514h	SATURATION_INQ	Same definition to BRIGHTNESS_INQ				
518h	GAMMA_INQ	Same definition to BRIGHTNESS_INQ				
51Ch	SHUTTER_INQ	Same definition to BRIGHTNESS_INQ				
520h	GAIN_INQ	Same definition to BRIGHTNESS_INQ				
524h	IRIS_INQ	Same definition to BRIGHTNESS_INQ				
528h	FOCUS_INQ	Same definition to BRIGHTNESS_INQ				
52Ch	TEMPERATURE_INQ		Same de	efinition to BRIGHTNESS_INQ		
530h	TRIGGER_INQ	Presence_Inq	[0]	Presence of this feature		
		Abs_Control_Inq	[1]	Capability of control with absolute value		
			[23]	Reserved		
		ReadOut_Inq	[4]	Capability of reading the value of this feature		
		On/Off_Inq	[5]	Capability of switching this feature ON and OFF		
		Polarity_Inq	[6]	Capability of changing polarity of the trigger input		
			[715]	Reserved		
		Trigger_Mode0_Inq	[16]	Presence of Trigger Mode 0		
		Trigger_Mode1_Inq	[17]	Presence of Trigger Mode 1		
		Trigger_Mode2_Inq	[18]	Presence of Trigger Mode 2		
		Trigger_Mode3_Inq	[19]	Presence of Trigger Mode 3		
			[2031]	Reserved		
534h		_				
:		Reserve	ed for other F	EATURE_HI_INQ		
57Ch						

580h	ZOOM_INQ	Presence_Inq	[0]	Presence of this feature		
		Abs_Control_Inq	[1]	Capability of control with absolute value		
			[2]	Reserved		
		One_Push_Ing	[3]	One push auto mode (Controlled automatically by		
				camera only once)		
		ReadOut_Inq	[4]	Capability of reading the value of this feature		
		On/Off_Inq	[5]	Capability of switching this feature ON and OFF		
		Auto_Inq	[6]	Auto mode (Controlled automatically by camera)		
		Manual_Inq	[7]	Manual mode (Controlled by user)		
		Min_Value	[819]	Minimum value for this feature control		
		Max_Value	[2031]	Max value for this feature control		
584h	PAN_INQ		Sar	ne definition to ZOOM_INQ		
588h	TILT_INQ		Sar	ne definition to ZOOM_INQ		
58Ch	OPTICAL_FILTER_INQ		Sar	ne definition to ZOOM_INQ		
590h						
:		Reserve	d for other F	EATURE_LO_INQ		
5BCh						
5C0h	CAPTURE_SIZE_INQ	Same definition to ZOOM_INQ				
5C4h	CAPTURE_QUALITY_INQ	Same definition to ZOOM_INQ				
5C8h						
:	Reserved for other FEATURE_LO_INQ					
5FCh						

For TRIGGER_INQ

offset	0-7	8-15	16-23	24-31
530h	pa r Ro r	Reserved	0 1 2 3	Reserved

For others

offset	0-7	8-15	16-	-23	24-31
5xxh	parORoAm	Min_Value	9	Ν	/lax_Value

Initial values	System dependent
Read values	System dependent (Depend on video format and video mode)
Write effect	Ignored

1.6 Status and control registers for camera

Offset	Name	Bit	Description
600h	Cur_V_Frm_Rate /	[02]	Current frame rate or revision for Format_6
	Revision		FrameRate_0 FrameRate_7 / revision_0 revision_7
		[331]	Reserved
604h	Cur_V_Mode	[02]	Current video mode
			Mode_0 Mode_7
		[331]	Reserved
608h	Cur_V_Format	[02]	Current video format
			Format_0 Format_7
		[331]	Reserved
60Ch	ISO_Channel	[03]	Isochronous channel number for video data transmission
			(Except for Format_6)
		[45]	Reserved
	ISO_Speed	[67]	Isochronous transmit speed code.
		10.041	(Except for Format_6)
04.01		[831]	Reserved
610h	Camera_Power	[0]	1 = power-up camera
		[4 04]	0 = power-down camera.
61.4h		[131]	Reserved
01411	Continuous Shot	[U]	L = start ISO transmission of video data
	Continuous_Shot		0 = start ISO transmission of video data
			For Format 6:
			1 = start continuous shot and save to storage device.
			0 = stop continuous shot
			If storage device becomes full, self cleared.
		[131]	Reserved
618h	Memory_Save	[0]	1 = current status and modes are saved to Mem_Save_Ch
		[4 04]	(Self Cleared)
61Ch	One Shot	[131]	Reserved
01011	One_Shot	[U]	1 – only one frame of video data is transmitted
			(Self cleared after transmission)
			(
			For Format_6:
			1 = capture one image and save to storage device.
			(Self cleared)
			Ignored if ISO_EN = 1
	Multi_Shot	[1]	Except for Format_6:
			1 = N frames of video data is transmitted (Self cleared after
			For Format 6
			1 = Capture N images and save to storage device
			(Self cleared) N is image number. See below.
			Ignored if ISO_EN = 1 or One_Shot = 1
		[215]	Reserved
	Count_Number	[1631]	Count number for Multi shot function.
620h	Mem_Save_Ch	[03]	Write channel for Memory_Save command
			Must be ≥ 0001 (0 is factory settings, which cannot be
		[4 04]	(Joee DAGIC_FUNC_INQ)
1		431	I Reserved

624h	Cur_Mem_Ch	[03]	When read from, returns Current Memory Channel number	
			When written to, loads status, modes, and values from the	
			specified memory channel	
		[431]	Reserved	
628h	Vmode_Error_Status	[0]	Error status of combination of Video format, mode, frame rate	
			and ISO_Speed setting.	
			0: no error	
			1: error	
			This flag will be updated every time at one of the above setting	
			is changed by writing new value.	
			(Except for Format_6 and Format_7)	
		[131]	Reserved	

Initial values	System dependent.
Read values	Last update (Reserved bits are always zero)
Write effect	As indicated in table above

During ISO_EN = 1 or One_Shot = 1 or Multi_Shot =1, the register value which reflects the Isochronous packet format cannot change. Writing value should be ignored.

1.6.1 Storage Media CSR (only for Format_6)

Offset	Name	Field	Bit	Description
680h	Media_Status	Media_Presence	[0]	Presence of the Media. 1=presence (Read only)
		Write_Protect	[1]	1 = Write Protected, 0 = Writable
			[27]	Reserved
		Occupied_Rate	[815]	Percentage of occupied rate.(0x64=100d is full) (Read only)
			[1631]	Reserved
684h	Number_Of_Images	Expected_Remain	[015]	Expected number of images can store If value is 0xffff, must ignore this field. (Read only)
		Number_Of_Images	[1631]	Number of stored images. (Read only)
688h	Media_Initialize	Initialize_Keyword	[031]	If the value that is equal to 'Initialize_Keyword' is
				written, media will be initialized.
				Initialize_Keyword = 0x46726D74 = 'Frmt'
68Ch	Image_ID for_Delete	Image_ID	[015]	Image_ID value to delete one image.
			[1631]	Reserved
690h	Delete_Image	Delete_Keyword	[031]	If the value that is equal to 'Delete_Keyword' is written, one image it's ID is equal to "Image_ID" in 68Ch register will be deleted. Initialize_Keyword = 0x 44656C74 = 'Delt'

1.6.2	Stored	Image	CSR	(only	for	Format_	6))
-------	--------	-------	-----	-------	-----	---------	----	---

Offset	Name	Field	Bit	Description
6C0h	Image_Number	Image_Number	[015]	Select one of the stored images. "Image_Number"
				must be less than "Number_Ot_Images" in 684n
			[16 31]	Reserved
6C4h	Image Status	Write Protect	[1001]	1 = Write Protected 0 = Writable
00	5-2		[17]	Reserved
		Number_Of_Quality	[815]	This value shows number of image quality level in the
				selected image file. It must be more than Zero. See "Load_Image_Quality" register. (Read Only)
		Image_ID	[1531]	ID number of selected image. This is unique value in
				the same storage media. (Read only)
6C8h	Image_Information_Address		[015]	Reserved
		Address_Hi	[1631]	Direct base address of the Image Information data. Upper 16 bits. (Read only)
6CCh	Image_Information_Address	Address_Lo	[031]	Direct base address of the Image Information data. Lower 32 bits. (Read only)
6D0h	Bytes_Of_Image_Information	Total_Bytes	[031]	Total amount of bytes of Image information data. If this value is Zero, information data for selected
00.41			10 451	Image is not available.
6D4n	Inditibilati_Address	Addroop Hi	[015]	Reserved
		Address_hi	[1031]	Unper 16 bits (Read only)
6D8h	Thumbnail Address	Address Lo	[0_31]	Direct base address of the thumbnail image data
02011		//dd/000_20	[001]	Lower 32 bits. (Read only)
6DCh	Bytes_Of_Thumbnail	Total_Bytes	[031]	Total amount of bytes of thumbnail image data.
				If this value is Zero, thumbnail image of the selected
				image is not available. (Read only)
6E0h	Load_Image_Quality	Image_Quality	[07]	Select image quality level.
				0 = whole data of the selected image file.
				1 = lowest quality image data
				Rigger value means higher quality
6E4b	Image Address		[0 15]	Beserved
02411	inage_, idaleee	Address Hi	[16 31]	Direct base address of the image data
		/////////////	[1001]	Upper 16 bits. (Read only)
6E8h	Image_Address	Address Lo	[031]	Direct base address of the image data.
-	-			Lower 32 bits. (Read only)
6ECh	Bytes_Of_Image	Total_Bytes	[031]	Total amount of bytes of the image data.
				If this value is Zero, image is not available.

1.7 Status and control register for feature

The user can control each feature through "Status and control register for feature". The controllable items are mode and value.

Mode:

Each CSR has three bits for mode control, ON_OFF, One_Push and A_M_Mode. Feature can have four states corresponding to the combination of mode control bits.

One_Push	ON_OFF	A_M_Mode	State
Х	0	X	Off state.
			Feature will be fixed value state and uncontrollable.
v	1	1	Auto control state.
Λ	1	1	Camera controls feature by itself continuously.
0	1	0	Manual control state.
0	1	0	User can control feature by writing value to the value field.
1			One-Push action.
l (Salf alaar)	1	0	Camera controls feature by itself only once and return to Manual control
(Sell clear)		1	state with adjusted value.

(X:don't care)

Value:

If ReadOut_Inq bit of the "Inquiry register for feature elements" is one, the value field is valid and can be used for controlling feature. The user can write control value to value field only at the Manual control state. At the other states, the user can only read the value. The camera always has to show the real setting value at the value field if ReadOut_Inq is one.

The camera which supports multiple video formats and video modes might change presence, capability mode, Min_Value and Max_Value of the feature. It is strongly recommended to check "Inquiry register for feature elements" register every time when you change the video format and/or video mode.

Offset	Name	Field	Bit	Description
800h	BRIGHTNESS	Presence_Inq	[0]	Presence of this feature
				0:N/A 1:Available
		Abs_Control	[1]	Absolute value control
				U: Control with value in the Abachute value CSP
				If this bit – 1, value in the Value field is ignored
			[2-4]	Reserved
		One Push	[5]	Write '1' begin to work (Self cleared after operation)
			[0]	Read: Value='1' in operation
				Value='0' not in operation
				If A_M_Mode =1, this bit is ignored.
		ON_OFF	[6]	Write: ON or OFF this feature,
				Read: read a status
				U: OFF, 1: ON
		A M Mode	[7]	Write: set the mode
		A_IVI_IVIOUE	[/]	Read: read a current mode
				0: Manual, 1: Auto.
			[8-19]	Reserved.
		Value	[20-31]	Value.
				Write the value in Auto mode, this field is ignored.
				If "ReadOut" capability is not available, read value
00.41				
804h			Sam	te definition to BRIGHTNESS
0000		Prosonco Ing	581	Process of this feature 0:N/A 1:Available
00011	WHITE_DALANCE	Abs Control	[0]	
		Ab3_0011101	[']	0: Control with value in the Value field
				1: Control with value in the Absolute value CSR
				If this bit = 1, value in the Value field is ignored.
			[2-4]	Reserved.
		One_Push	[5]	Write '1': begin to work (Self cleared after operation)
				Read: Value='1' in operation
				Value= 0 not in operation
		ON OFF	[6]	Write: ON or OFF this feature
			[0]	Read: read a status
				0: OFF, 1: ON
				If this bit =0, other fields will be read only.
		A_M_Mode	[7]	Write: set the mode,
				Read: read a current mode
			[8-10]	U. Manual, T. Auto.
		B Value	[0-19]	Write the value in ALITO mode, this field is ignored
		D_Value		If "ReadOut" capability is not available, read value
				has no mean
		V_Value /	[20-31]	V Value / R_Value
		R_Value		Write the value in AUTO mode, this field is ignored.
				If "ReadOut" capability is not available, read value
810h				
814h	SATURATION		Jan San	ne definition to BRIGHTNESS
818h	GAMMA		Sam	ne definition to BRIGHTNESS
81Ch	SHUTTER		Sam	ne definition to BRIGHTNESS
820h	GAIN		Sam	ne definition to BRIGHTNESS
824h	IRIS		Sam	ne definition to BRIGHTNESS
828h	FOCUS		Sam	ne definition to BRIGHTNESS

82Ch	TEMPERATURE	Presence Ind	[0]	Presence of this feature 0.N/A 1.Available
02011		Abs Control	[0]	Absolute value control
		Abs_Control	[']	0: Control with value in the Value field
				1: Control with value in the Absolute value CSR
				If this hit -1 value in the Value field is ignored
			[2 4]	Posonuod
		One Duch	[2-4]	Neserveu.
		One_Push	[5]	Read: Value-11' in operation
				Value = 0 for in operation
			[6]	Write: ON or OEE this feature
			[0]	Read: read a status
				0: OFF 1: ON
				If this hit -0 other fields will be read only
		A M Mode	[7]	Write: set the mode
			[']	Read: read a current mode
				0: Manual 1: Auto
		Target	[8-19]	Aimed value of the temperature
		Temperature	[0 10]	10 times of the absolute temperature
		Temperature	[20-31]	Temperature at the present time (Read only)
		remperature	[20 01]	10 times of the absolute temperature
830h	TRIGGER MODE	Presence Ing	[0]	Presence of this feature. 0:N/A 1:Available
		Abs Control	[1]	Absolute value control
			1.1	0: Control with value in the Value field
				1: Control with value in the Absolute value CSR
				If this bit = 1, value in the Value field is ignored.
			[2-5]	Reserved.
		ON OFF	[6]	Write: ON or OFF this feature.
		—		Read: read a status
				0: OFF, 1: ON
				If this bit =0, other fields will be read only.
		Trigger_Polarity	[7]	If Polarity_Ing is "1",
				Write to change polarity of the trigger input
				Read to get polarity of the trigger input.
				If Polarity_Inq is "0",
				Read only.
				(0: Low active input, 1: High active input)
			[8 – 11]	Reserved
		Trigger_Mode	[12-15]	Trigger mode. (Trigger_Mode_0 – 15)
			[16 – 19]	Reserved
		Parameter	[20-31]	Parameter for trigger function, if required. (Optional)
834h				
:		Reser	ved for oth	er FEATURE_HI
87Ch				
880h	Zoom		Sam	ne definition to BRIGHTNESS
884h	PAN		Sam	ne definition to BRIGHTNESS
888h	TILT		Sam	ne definition to BRIGHTNESS
88Ch	OPTICAL_FILTER		Sam	ne definition to BRIGHTNESS
890h				
:		Reser	ved for othe	er FEATURE_LO
8BCh				
8C0h	CAPTURE_SIZE		Sam	ne definition to BRIGHTNESS
8C4h	CAPTURE_QUALITY		Sam	ne definition to BRIGHTNESS
8C8h		-		
: 8FCh		Reser	ved for othe	er FEATURE_LO

For WHI	TE_BALAN	NCE							<u>.</u>	
	offset		0-7	7	8	-15	16-	·23	24-31	
	80Ch	ра	r	ooa	U_V	alue / B_\	/alue	V_V	alue / R_Value	
For TEM	PERATUR	E								
	offset		0-7	7	8	-15	16-	·23	24-31	
	82Ch	ра	r	ooa	Targe	et_Tempe	rature T		emperature	
For TRIC	GGER_MOI	DE								
	Offset		0-7	7	8	-15	16-	·23	24-31	
	830h	ра	r	ор	r	r T_Mode r		F	Parameter	
For other	S								-	
	Offset		0-7	7	8	-15	16-	·23	24-31	
	8xxh		r	ooa		Reserved	ł	Value		
-										
Initial	values	System dep	end	ent						
Read	values	Last update	e vali	ues						
Write	effect	Stored (bit	0] is	read on	ly)					

1.7.1 Inquiry register for Absolute value CSR offset address

Offset	Name	Bit	Description
700h	ABS_CSR_HI_INQ_0	[031]	Quadlet offset of the Absolute value CSR for Brightness
704h	ABS_CSR_HI_INQ_1	[031]	Quadlet offset of the Absolute value CSR for Auto Exposure
708h	ABS_CSR_HI_INQ_2	[031]	Quadlet offset of the Absolute value CSR for Sharpness
70Ch	ABS_CSR_HI_INQ_3	[031]	Quadlet offset of the Absolute value CSR for White Balance
710h	ABS_CSR_HI_INQ_4	[031]	Quadlet offset of the Absolute value CSR for Hue
714h	ABS_CSR_HI_INQ_5	[031]	Quadlet offset of the Absolute value CSR for Saturation
718h	ABS_CSR_HI_INQ_6	[031]	Quadlet offset of the Absolute value CSR for Gamma
71Ch	ABS_CSR_HI_INQ_7	[031]	Quadlet offset of the Absolute value CSR for Shutter
720h	ABS_CSR_HI_INQ_8	[031]	Quadlet offset of the Absolute value CSR for Gain
724h	ABS_CSR_HI_INQ_9	[031]	Quadlet offset of the Absolute value CSR for Iris
728h	ABS_CSR_HI_INQ_10	[031]	Quadlet offset of the Absolute value CSR for Focus
72Ch	ABS_CSR_HI_INQ_11	[031]	Quadlet offset of the Absolute value CSR for Temperature
730h	ABS_CSR_HI_INQ_12	[031]	Quadlet offset of the Absolute value CSR for Trigger
734h			
:	Reserved		
77Fh			
780h	ABS_CSR_LO_INQ_0	[031]	Quadlet offset of the Absolute value CSR for Zoom
784h	ABS_CSR_LO_INQ_1	[031]	Quadlet offset of the Absolute value CSR for Pan
788h	ABS_CSR_LO_INQ_2	[031]	Quadlet offset of the Absolute value CSR for Tilt
78Ch	ABS_CSR_LO_INQ_3	[031]	Quadlet offset of the Absolute value CSR for Optical Filter
790h			
:	Reserved		
7BFh			
7C0h	ABS_CSR_LO_INQ_16	[031]	Quadlet offset of the Absolute value CSR for Capture Size
7C4h	ABS_CSR_LO_INQ_17	[031]	Quadlet offset of the Absolute value CSR for Capture Quality
7C8h			
:	Reserved		
/FFh			

0-7	8-15	16-23	24-31
Base addr	ess of the Absolut	e value CSR (qua	dlet offset)

"Base address of the Absolute value CSR" is the quadlet offset from the base address of initial register space.

Initial values	System dependent
Read values	System dependent (Same as initial value)
Write effect	Ignored

1.7.2 Feature control error status register

Each field is an error or warning flag for the corresponding feature control register.

If bit = 1, mode and/or value of the feature control register has some error or warning. If bit = 0, no error or warning. Each flag will be updated every time when corresponding feature control register is updated.

It is strongly recommended to check feature register if bit = 1.

Offset	Name	Field	Bit	Description
640h	Feature_Control_Error_	Brightness	[0]	Brightness Control
	Status_HI	Auto Exposure	[1]	Auto Exposure Control
		Sharpness	[2]	Sharpness Control
		White_Balance	[3]	White Balance Control
		Hue	[4]	Hue Control
		Saturation	[5]	Saturation Control
		Gamma	[6]	Gamma Control
		Shutter	[7]	Shutter Speed Control
		Gain	[8]	Gain Control
		Iris	[9]	IRIS Control
		Focus	[10]	Focus Control
		Temperature	[11]	Temperature Control
		Trigger	[12]	Trigger Control
			[1331]	Reserved
644h	Feature_Control_Error_	Zoom	[0]	Zoom Control
	Status_LO	Pan	[1]	PAN Control
		Tilt	[2]	TILT Control
		Optical Filter	[3]	Optical Filter Control
			[415]	Reserved
		Capture_Size	[16]	Capture image size for Format_6
		Capture_Quality	[17]	Capture image quality for Format_6
			[1831]	Reserved

Offset	0-7	8-15	16-23	24-31
640h	beswhsgs	g I f t t	Reserve	d
644h	zpto	Reserved	sq Re	served

Initial values	All zero
Read values	Last update
Write effect	Ignored

Offset	Register
000h	<camera initialize="" register=""></camera>
	INITIALIZE
100b	Inquiry register for video formats
10011	V FORMAT INQ
180h	<inquiry for="" mode="" register="" video=""></inquiry>
	V_MODE_INQ_X
200h	<inquiry for="" frame="" rate="" register="" video=""></inquiry>
	V_RATE_INQ_y_x
300h	<reserved></reserved>
100h	den uim register for fosture processes
4001	<inquity for="" presence="" realure="" register=""></inquity>
	FFATURE HI INQ
	FEATURE_LO_INQ
500h	<inquiry elements="" feature="" for="" register=""></inquiry>
	xxxxxxxxx_INQ
600h	Status and control register for camera>
	CAM_STA_CTRL
640h	<feature control="" error="" register="" status=""></feature>
680h	<storage csr="" media=""> (Only for Format_6)</storage>
6C0h	<stored csr="" image=""> (Only for Format_6)</stored>
700h	<inquiry absolute="" address="" csr="" for="" offset="" register="" value=""></inquiry>
800h	<status and="" control="" feature="" for="" register=""></status>
	XXXXXXXXXXX
I	

1.8 Register map

1.9 Video Mode CSR for Format_7

Base address for each video mode command and status registers is:

Bus_ID, Node_ID, FFFF Fxxx xxxx (initial units space)

This address is contained in the Format_7 section of the "1.2.3 Inquiry register for video frame rate and base address of the Video Mode CSR for the Partial Image Size Format". This register shall be prepared for each video mode that is Format_7, Mode_x.

The offset field in each of the following table is the byte offset from the above base address.

Offset	Name	Field	Bit	Description	
000h	MAX_IMAGE_SIZE_INQ	Hmax	[015]	Maximum Horizontal pixel number	
	- · · · · · · · · · · · · · · · · · ·	Vmax	[1631]	Maximum Vertical pixel number	
004h	UNIT_SIZE_INQ	Hunit	[015]	Horizontal unit pixel number	
		Vunit	[1631]	Vertical unit pixel number	
008h	IMAGE_POSITION	Left	[015]	Left position of requested image region (r	pixels)
	!	Тор	[1631]	Top position of requested image region (pixels)
00Ch	IMAGE_SIZE	Width	[015]	Width of requested image region (pixels)	
	!	Height	[1631]	Height of requested image region (pixels))
010h	COLOR_CODING_ID	Coding_ID	[07]	Color coding ID from COLOR_CODING_IN	Q register
		-	[831]	Reserved (All zero)	
014h	COLOR_CODING_INQ	Mono8	[0]	Y only. Y=8bits, non compressed	ID=0
1		4:1:1 YUV8	[1]	4:1:1, Y=U=V= 8bits, non compressed	ID=1
	I	4:2:2 YUV8	[2]	4:2:2, Y=U=V=8bits, non compressed	ID=2
		4:4:4 YUV8	[3]	4:4:4, Y=U=V=8bits, non compressed	ID=3
		RGB8	[4]	R=G=B=8bits, non compressed	ID=4
	I	Mono16	[5]	Y only, Y=16bits, non compressed	ID=5
1		RGB16	[6]	R=G=B=16bits, non compressed	ID=6
	!	-	[731]	Reserved (All zero)	ID=7-31
018h	COLOR_CODING_INQ		Reserved f	or other Color_Coding.	ID=
:				-	32-255
033h	!				
034h	PIXEL_NUMBER_INQ	PixelPerFrame	[031]	Pixel number per frame	
038h	TOTAL_BYTES_HI_INQ	BytePerFrameHi	[031]	Higher quadlet of total bytes of image da frame	ita per
03Ch	TOTAL_BYTES_LO_INQ	BytePerFrameLo	[031]	Lower quadlet of total bytes of image dat	ta per
	!		<u> </u>	frame	
040h	PACKET_PARA_INQ	UnitBytePerPacket	[015]	Minimum bytes per packet	
		MaxBytePerPacket	[1631]	Maximum bytes per packet	
044h	BYTE_PER_PACKET	BytePerPacket	[015]	Packet size	
		RecBytePerpacket	[1631]	Recommended bytes per packet. If th	is value is
048b	DACKET PER ERAME	PacketPerFrame	[0 31]	Number of Packets per frame	
04011		Fackett en lame	[031]	Number of Fackets per manie.	
04Ch	UNIT_POSITION_INQ	Hposunit	[015]	Horizontal unit pixel number for position If read value of Hposunit is 0, Hposunit compatibility.	= Hunit for
		Vposunit	[1631]	Vertical unit number for position If read value of Vposunit is 0, Vposunit compatibility.	= Vunit for
050h : 07Bh	Reserved				

07Ch	VALUE_SETTING	Presence	[0]	If this bit is one, "Setting_1", "ErrorFlag_1" and "ErrorFlag 2" fields are valid. This bit is read only.
		Setting_1	[1]	If writing "1" to this bit, IMAGE_POSITION,
				IMAGE_SIZE, COLOR_CODING_ID and
				ISO_Speed register value will be reflected in
				PIXEL_NUMBER_INQ, IOTAL_BYTES_HI_INQ,
				IOTAL_BYTES_LO_INQ, PACKET_PARA_INQ
				and BTTE_PER_PACKET register.
				This bit is self cleared, must wait becoming "0" and
				also check ErrorFlag_1 is all zero before using
				value in the PIXEL_NUMBER_INQ,
				TOTAL_BYTES_HI_INQ,
				and BYTE PER PACKET register
		_	[27]	Reserved
		ErrorFlag_1	[8]	Combination of the values of IMAGE_POSITION,
				IMAGE_SIZE, COLOR_CODING_ID and
				ISO_Speed register is not acceptable.
				1: error
				0. No enoi This flag will be undated every time when
				Setting 1 bit returns to "0" from "1".
		ErrorFlag_2	[9]	BytePerPacket value is not acceptable.
		5-		1: error
				0: no error
			[1031]	Reserved (All zero)

During $ISO_EN = 1$ or $One_Shot = 1$ or $Multi_Shot = 1$, register value which reflects to the Isochronous packet format cannot change. Writing value should be ignored.

1.9.1 MAX_IMAGE_SIZE_INQ register

This register is an inquiry register for maximum image size.

Hmax (pixels) Vmax (pixels)	0-7	8-15	16-23	24-31
	Hmax (pixels)		Vmax ((pixels)

Initial values	System dependent
Read values	System dependent (Same as initial value)
Write effect	Ignored

1.9.2 UNIT_SIZE_INQ and UNIT_POSITION_INQ register

This register is an inquiry register for unit size.

Hmax = Hunit * n = Hposunit*n3 (n, n3 is integer)

Vmax = Vunit * m = Vposunit*m3 (m, m3 is integer)

If read value of Hposunit is 0, Hposunit = Hunit for compatibility with Rev 1.20. If read value of Vposunit is 0, Vposunit = Vunit for compatibility with Rev 1.20.

UNIT_SIZE_INQ

0-7	8-15	16-23	24-31
Hunit (pixels)		Vunit (pixels)

UNIT_POSITION_INQ

0-7	8-15	16-23	24-31	
Hposunit (pixels)		Vposuni	t (pixels)	

Initial values	System dependent
Read values	System dependent (Same as initial value)
Write effect	Ignored

1.9.3 IMAGE_POSITION and IMAGE_SIZE register

These registers determine an area of required data. All the data must be as follows:

Left = Hposunit * n1 Top = Vposunit * m1 Width = Hunit * n2 Height = Vunit * m2 (n1, n2, m1, m2 are integer)

Left + Width <= Hmax Top + Height <= Vmax

0-7	8-15	16-23	24-31
Left		Тор	
0-7	8-15	16-23	24-31
Width		Hei	ght

Initial values	All Zero
Read values	Last update value
Write effect	Stored

1.9.4 COLOR_CODING_ID and COLOR_CODING_INQ registers

COLOR_CODING_INQ register describes available color-coding capability of the system. Each coding scheme has its own ID number. Required color-coding scheme must be set to COLOR_CODING_ID register as the ID number.

COLOR_CODING_ID register

0-7	8-15	16-23	24-31
Coding_ID		Reserved	

Initial values	All Zero
Read values	Last update value
Write effect	Stored

COLOR_CODING_INQ registers

0-7	8-15	16-23	24-31	
Bit assignment is described in the table above				

Initial values	System dependent
Read values	System dependent (Same as initial value)
Write effect	Ignored

1.9.5 PIXEL_NUMBER_INQ and TOTAL_BYTE_INQ registers

PIXEL_NUMBER_INQ register includes total pixel number of required image area. TOTAL_BYTE_INQ register includes total data amount value of required image area as the bytes.

If Presence bit in the VALUE_SETTING register is zero, values of these registers will be updated by writing new value to IMAGE_POSITION, IMAGE_SIZE and COLOR_CODING_ID registers.

If Presence bit in the VALUE_SETTING register is one, values of these registers will be updated by writing one to the Setting_1 bit in the VALUE_SETTING register. If ErrorFlag_1 bit is zero after Setting_1 bit returns to zero, values of these registers are valid.

PIXEL_NUMBER_INQ register

0-7	8-15	16-23	24-31
PixelPerFrame			

Initial values	All Zero
Read values	Last update value
Write effect	Ignored

TOTAL_BYTE_HI_INQ and TOTAL_BYTE_LO_INQ registers

0-7	8-15	16-23	24-31
Higher part of BytePerFrame			
Lower part of BytePerFrame			

Initial values	All Zero
Read values	Last update value
Write effect	Ignored

1.9.6 PACKET_PARA_INQ and BYTE_PER_PACKET register

MaxBytePerPacket describes maximum packet size for one Isochronous packet. UnitBytePerPacket is the unit for Isochronous packet size.

RecBytePerPacket describes recommended packet size for one Isochronous packet. If RecBytePerPacket is zero, you must ignore this field.

If Presence bit in the VALUE_SETTING register is zero, values of these fields will be updated by writing new value to IMAGE_POSITION, IMAGE_SIZE and COLOR_CODING_ID registers with the value of ISO_Speed register (60Ch [6..7]).

At first, ISO_Speed register must be written. Then IMAGE_POSITION, IMAGE_SIZE and COLOR_CODING_ID registers should be updated.

If Presence bit in the VALUE_SETTING register is one, values of these fields will be updated by writing one to the Setting_1 bit in the VALUE_SETTING register. If ErrorFlag_1 bit is zero after Setting_1 bit returns to zero, values of these fields are valid.

BytePerPacket value determines real packet size and transmission speed for one frame image. BytePerPacket value must keep the following condition.

BytePerPacket = UnitBytePerPacket * n (n is integer) BytePerPacket <= MaxBytePerPacket

0-7	8-15	16-23	24-31
UnitBytePerPacket		MaxBytePerPacket	

Initial values	All Zero
Read values	Last update value
Write effect	Ignored

BYTE_PER_PACKET

EK_I HOHET				
0-7	8-15	16-23	24-31	
BytePerPacket		RecBytePerPacket		

For RecBytePerPacket field

Initial values	System dependent
Read values	Last update value
Write effect	Ignored

For BytePerPacket field

of 2 for on whether		
Initial values	All Zero	
Read values	Last update value	
Write effect	Stored	

1.9.7 PACKET_PER_FRAME_INQ register

If BytePerPacket * n != BytePerFrame (n is integer), you must use padding. The PacketPerFrame value is a number of packets per one frame. This register will be updated after BytePerPacket is written.

Total number of bytes of transmission data per one frame = BytePerPacket * PacketPerFrame

Number of bytes of padding = BytePerPacket * PacketPerFrame - BytePerFrame

Receiver must ignore above padding data in the last packet of each frame.

0-7	8-15	16-23	24-31
PacketPerFrame			

Initial values	All Zero
Read values	Last update value
Write effect	Ignored

1.9.8 VALUE_SETTING register

If Presence bit is one, this register is available and valid.

Purpose of Setting_1 bit is for updating TOTAL_BYTES_HI_INQ, TOTAL_BYTES_LO_INQ, PACKET_PARA_INQ and BYTE_PER_PACKET register. If one of the value in the IMAGE_POSITION, IMAGE_SIZE, COLOR_CODING_ID and ISO_Speed register is changed, Setting_1 bit must be set "1".

ErrorFlag_1 field will be updated when Setting_1 bit returns to "0". If ErrorFlag_1 field is zero, values of TOTAL_BYTES_HI_INQ, TOTAL_BYTES_LO_INQ, PACKET_PARA_INQ and BYTE_PER_PACKET register are valid.

After BytePerPacket value is written, ErrorFlag_2 field will be updated. If ErrorFlag_2 field is zero, can start Isochronous transmission without any problem.

0-7			8-31		
р	S	Reserved	e	e	Reserved

For Presence

Initial values	System dependent
Read values	System dependent (Same as initial value)
Write effect	Ignored

For Setting_1

¥	
Initial values	All zero
Read values	Last update value
Write effect	Stored and self clear

For ErrorFlag_1, ErrorFlag_2

Initial values	All zero
Read values	Last update value
Write effect	Ignored

1.10 CSRs Advanced Features

These CSRs are for vendor unique features. The vendor shall prepare CSRs for these additional features and write the base address of these CSRs at 480h as a quadlet offset value from the base address of initial register space. The first two quadlets are "Access Control Register"(ACR). The user has to write "Feature_ID" to ACR to unlock "CSRs Advanced Features". Each model that implements "CSRs Advanced Features" must have "Feature_ID". "Feature_ID" is advanced feature set unique value and consists of 48bits. The remaining structure of this area has to be determined by vendor.

The user can determine Time_Out value with the unlock operation. Time_Out value consists of 12 bits and the unit is millisecond. (Maximum 4.095 second)

If the user does not access "CSRs Advanced Features" within Time_Out value, the unlock operation will be canceled and ACR will return to its initial state. If the user access "CSRs Advanced Features" within Time_Out value, Time_out will be refreshed.

If the user node unlocks "CSRs Advanced Features" user node's Bus_ID and Node_ID value will be copied in the ACR. Then the other node cannot access nor unlock this CSR area. If bus reset occurs, ACR will be initialized.

Access Control Register

Write format

0-7 8-15		16-	23	24-31	
	Feature_ID_Hi				
Feature	0xf	-	Time_Out		

Read format

0-7	8-15	16-23	3	24-31
Bus_ID+		0x	ffff	
			Time_Out	

Initial values	All one (0xffffffffffffff)
Read values	Last update value
Write effect	If the upper 48 bits of written value is equal to "Feature_ID", store source Bus_ID+Node_ID(16 bits) value to upper 16bits area. Also, Time_Out value and lower 12 bits value are stored. The other bits will be one. If upper 48 bits of written value is not equal to "Feature_ID",
	write action is ignored and all bits will be one.
Bus Reset	All one

Feature_ID

0-7	8-15	16-23	24-31	32-39	40-47
Company_ID			Advanced	d feature set uni	que value

Each company has to manage lower 3 bytes value to keep advanced feature set uniqueness.

1.11 Absolute value CSR for Feature elements

Absolute value CSR is for absolute value control for each feature elements if available. Each CSR consists of three quadlet. Vendor shall prepare CSR and write base address of this CSR at "Inquiry register for Absolute value CSR offset address" as a quadlet offset value from the base address of initial register space.

Units of all elements are predefined. Please see appendix B for details. All value must be IEEE/REAL*4 Floating-point format.

Offset	Name	Field	Bit	Description
000h	Absolute value	Min_Value	[031]	Minimum value for this feature control
004h		Max_Value	[031]	Maximum value for this feature control
008h		Value	[031]	Absolute control value

0-7	8-15	16-23	24-31		
Floating-point value with IEEE/REAL*4 format					

IEEE/REAL*4 Floating-Point Value Notation:

Sign (S)	Exponent (exp)	Mantissa (m)
1bit	8bit	23bit

For Min_Value, Max_Value

Initial values	System dependent
Read values	System dependent (Same as initial value)
Write effect	Ignored

For Value

Initial values	System dependent
Read values	Real setting value
Write effect	Stored but adjusted to real setting value

2. Isochronous packet format

Every video format, mode and frame rate has different video data format.

2.1 Isochronous packet format for Format_0, Format_1 and Format_2

2.1.1 Video Isochronous packet structure

The following table shows the format of the first quadlet in the data field of each Isochronous data block.

0-7	8-15		16-23	24-	·31
data_	length	tg	channel	tCode	sy
	heade	r_CR	C		
Video data payload					
data_CRC					

Isochronous Data Block Packet Format

Where the following fields are defined in the IEEE 1394 standard: data_length : number of bytes in the data field

tg : (tag field) shall be set to zero

channel : isochronous channel number, as programmed in the iso_channel field of the cam_sta_ctrl register

- tCode : (transaction code) shall be set to the isochronous data block packet tCode
- **sy :** (synchronization value) shall be set to 0001h on the first isochronous data block of a frame, and shall be set to zero on all other isochronous data blocks

Video data payload: shall contain the digital video information, as defined in the following sections

2.1.2 Video mode comparison chart

Format_0

	Video Format	60fps	30fps	15fps	7.5fps	3.75fps
Mode_0	160x120 YUV(4:4:4)		1/2H	1/4H	1/8H	
	24bit/pixel		80p	40p	20p	
			60q	30q	15q	
Mode_1	320x240 YUV(4:2:2)		1H	1/2H	1/4H	1/8H
	16bit/pixel		320p	160p	80p	40p
			160q	80q	40q	20q
Mode_2	640x480 YUV(4:1:1)		2) 2H	1H	1/2H	1/4H
	12bit/pixel		1280p	640p	320p	160p
			480q	240q	120q	60q
Mode_3	640x480 YUV(4:2:2)		4) 2H	2) 1H	1/2H	1/4H
	16bit/pixel		1280p	640p	320p	160p
			640q	320q	160q	80q
Mode_4	640x480 RGB		4) 2H	2) 1H	1/2H	1/4H
	24bit/pixel		1280p	640p	320p	160p
			960q	480q	240q	120q
Mode_5	640x480 Y (Mono)	4) 4H	2) 2H	1H	1/2H	1/4H
	8bit/pixel	2560p	1280p	640p	320p	160p
		640q	320q	160q	80q	40q
Mode_6	640x480 Y (Mono16)		4) 2H	2) 1H	1/2H	1/4H
	16bit/pixel		1280p	640p	320p	160p
	-		640q	320q	160q	80q
Mode_7	Reserved					

Format_1

Mode	Video Format	60fps	30fps	15fps	7.5fps	3.75fps	1.875fps
Mode 0	800x600 YUV(4:2:2)		4) 5/2H	2) 5/4H	5/8H	5/16H	•
	16bit/pixel		2000p	1000p	500p	250p	
	·		1000g	500g	250g	125q	
Mode_1	800x600 RGB		•	4) 5/4H	2) 5/8H		
	24bit/pixel			1000p	500p		
				750q	375q		
Mode_2	800x600 Y (Mono)	4) 5H	2) 5/2H	5/4H	5/8H		
	8bit/pixel	4000p	2000p	1000p	500p		
	-	1000q	500q	250q	125q		
Mode_3	1024x768 YUV(4:2:2)			4) 3/2H	2) 3/4H	3/8H	3/16H
	16bit/pixel			1536p	768p	384p	192p
				768q	384q	192q	96q
Mode_4	1024x768 RGB				4) 3/4H	2) 3/8H	3/16H
	24bit/pixel				768p	384p	192p
	-				576q	288q	144q
Mode_5	1024x768 Y (Mono)		4) 3H	2) 3/2H	3/4H	3/8H	3/16H
	8bit/pixel		3072p	1536p	768p	384p	192p
			768q	384q	192q	96q	48q
Mode_6	800x600 Y (Mono16)		4) 5/2H	2) 5/4H	5/8H	5/16H	
	16bit/pixel		2000p	1000p	500p	250p	
			1000q	500q	250q	125q	
Mode_7	1024x768 Y (Mono16)			4) 3/2H	2) 3/4H	3/8H	3/16H
	16bit/pixel			1536p	768p	384p	192p
				768q	384q	192q	96q

Mode	Video Format	60fps	30fps	15fps	7.5fps	3.75fps	1.875fps
Mode_0	1280x960 YUV(4:2:2)				4) 1H	2) 1/2H	1/4H
	16bit/pixel				1280p	640p	320p
					640q	320q	160q
Mode_1	1280x960 RGB				4) 1H	2) 1/2H	1/4H
	24bit/pixel				1280p	640p	320p
					960q	480q	240q
Mode_2	1280x960 Y (Mono)			4) 2H	2) 1H	1/2H	1/4H
	8bit/pixel			2560p	1280p	640p	320p
				640q	320q	160q	80q
Mode_3	1600x1200 YUV(4:2:2)				4) 5/4H	2) 5/8H	5/16H
	16bit/pixel				2000p	1000p	500p
					1000q	500q	250q
Mode_4	1600x1200 RGB					4) 5/8H	2) 5/16H
	24bit/pixel					1000p	500p
						750q	375q
Mode_5	1600x1200 Y (Mono)			4) 5/2H	2) 5/4H	5/8H	5/16H
	8bit/pixel			4000p	2000p	1000p	500p
				1000q	500q	250q	125q
Mode_6	1280x960 Y (Mono16)				4) 1H	2) 1/2H	1/4H
	16bit/pixel				1280p	640p	320p
					640q	320q	160q
Mode_7	1600x1200 Y (Mono16)				4) 5/4H	2) 5/8H	5/16H
	16bit/pixel				2000p	1000p	500p
					1000a	500a	250a

Format_2

H	: Line / Packet
	Direct / Declark

2) : required S200 data rate

[---p : Pixel / Packet]

4) : required S400 data rate

[---q : Quadlet / Packet

1

]

2.1.3 Video data payload structure

Pn : Pixel number / packet

K : $Pn \times n$ (n = 0..N-1)

 $(Pn \times N = \text{Total pixel number / frame.})$

<YUV (4: 4: 4) format >

U-(K+0)	Y-(K+0)	V-(K+0)	U-(K+1)
Y-(K+1)	V-(K+1)	U-(K+2)	Y-(K+2)
V-(K+2)	U-(K+3)	Y-(K+3)	V-(K+3)
U-(K+Pn-4)	Y-(K+Pn-4)	V-(K+Pn-4)	U-(K+Pn-3)
Y-(K+Pn-3)	V-(K+Pn-3)	U-(K+Pn-2)	Y-(K+Pn-2)
V-(K+Pn-2)	U-(K+Pn-1)	Y-(K+Pn-1)	V-(K+Pn-1)

<YUV (4: 2: 2) format >

U-(K+0) U-(K+2)	Y-(K+0) Y-(K+2) Y-(K+4)	V-(K+0) V-(K+2) V-(K+4)	Y-(K+1) Y-(K+3) Y-(K+5)
			1 (1(13)
U-(K+Pn-6)	Y-(K+Pn-6)	V-(K+Pn-6)	Y-(K+Pn-5)
U-(K+Pn-4)	Y-(K+Pn-4)	V-(K+Pn-4)	Y-(K+Pn-3)
U-(K+Pn-2)	Y-(K+Pn-2)	V-(K+Pn-2)	Y-(K+Pn-1)

<YUV (4: 1: 1) format >

U-(K+0)	Y-(K+0)	Y-(K+1)	V-(K+0)
Y-(K+2)	Y-(K+3)	U-(K+4)	Y-(K+4)
Y-(K+5)	V-(K+4)	Y-(K+6)	Y-(K+7)
			-
U-(K+Pn-8)	Y-(K+Pn-8)	Y-(K+Pn-7)	V-(K+Pn-8)
Y-(K+Pn-6)	Y-(K+Pn-5)	U-(K+Pn-4)	Y-(K+Pn-4)
Y-(K+Pn-3)	V-(K+Pn-4)	Y-(K+Pn-2)	Y-(K+Pn-1)

<RGB format >

R-(K+0)	G-(K+0)	B-(K+0)	R-(K+1)
G-(K+1)	B-(K+1)	R-(K+2)	G-(K+2)
B-(K+2)	R-(K+3)	G-(K+3)	B-(K+3)
R-(K+Pn-4)	G-(K+Pn-4)	B-(K+Pn-4)	R-(K+Pn-3)
G-(K+Pn-3)	B-(K+Pn-3)	R-(K+Pn-2)	G-(K+Pn-2)
B-(K+Pn-2)	R-(K+Pn-1)	G-(K+Pn-1)	B-(K+Pn-1)

<Y (Mono) format >

Y-(K+0)	Y-(K+1)	Y-(K+2)	Y-(K+3)
Y-(K+4)	Y-(K+5)	Y-(K+6)	Y-(K+7)
Y-(K+Pn-8)	Y-(K+Pn-7)	Y-(K+Pn-6)	Y-(K+Pn-5)
Y-(K+Pn-4)	Y-(K+Pn-3)	Y-(K+Pn-2)	Y-(K+Pn-1)

< Y (Mono16) format >

High byte	Low byte	
-		_
Y-	(K+0)	Y-(K+1)
Y-	(K+2)	Y-(K+3)
Y-(K+Pn-4)		Y-(K+Pn-3)
Y-(K+Pn-2)		Y-(K+Pn-1)

2.1.4 Data structure

<Y, R, G, B>

Each component has 8bit data. The data type is "Unsigned Char".

	Signal level (Decimal)	Data (Hexadecimal)
Highest	255	0xFF
	254	0xFE
	:	:
	1	0x01
Lowest	0	0x00

<U, V>

Each component has 8bit data. The data type is "Straight Binary".

	Signal level (Decimal)	Data (Hexadecimal)
Highest (+)	127	0xFF
	126	0xFE
	:	:
	1	0x81
Lowest	0	0x80
	-1	0x7F
	:	:
	-127	0x01
Highest (-)	-128	0x00

< Y(Mono16) >

Y component has 16bit data. The data type is "Unsigned Short (big-endian)".

Y	Signal level (Decimal)	Data (Hexadecimal)
Highest	65535	0xFFFF
-	65534	0xFFFE
	:	:
	1	0x0001
Lowest	0	0x0000

2.2 Isochronous packet format for Partial image size video format (Format_7)

2.2.1 Video Isochronous packet structure

The following table shows the format of the first quadlet in the data field of each Isochronous data block.

0-7	8-15		16-23	24-	31
data	_length	tg	channel	tCode	sy
	heade	r_CR	C		
Video data payload					
data_CRC					
Isochronous Data Block Packet Format					

Isochronous Data Block Packet Format

Where the following fields are defined in the IEEE 1394 standard:

data_length : number of bytes in the data field

tg: (tag field) shall be set to zero

channel : isochronous channel number, as programmed in the iso_channel field of the cam_sta_ctrl register

tCode : (transaction code) shall be set to the isochronous data block packet tCode

sy: (synchronization value) shall be set to 0001h on the first isochronous data block of a frame, and shall be set to zero on all other isochronous data blocks

Video data payload: shall contain the digital video information, as defined in the following sections

2.2.2 Video data payload structure

Pn : Pixel number / packet

$$\mathbf{K} : Pn \times n \quad (n = 0..N-1)$$

 $(Pn \times N = \text{Total pixel number / frame.})$

< Mono8 format (color coding ID = 0) >

Y component has 8bit data.

Y-(K+0)	Y-(K+1)	Y-(K+2)	Y-(K+3)
Y-(K+4)	Y-(K+5)	Y-(K+6)	Y-(K+7)
Y-(K+Pn-8)	Y-(K+Pn-7)	Y-(K+Pn-6)	Y-(K+Pn-5)
Y-(K+Pn-4)	Y-(K+Pn-3)	Y-(K+Pn-2)	Y-(K+Pn-1)

< 4:1:1 YUV8 format (color coding ID = 1)>

Each component has 8bit data.

U-(K+0)	Y-(K+0)	Y-(K+1)	V-(K+0)
Y-(K+2)	Y-(K+3)	U-(K+4)	Y-(K+4)
Y-(K+5)	V-(K+4)	Y-(K+6)	Y-(K+7)
U-(K+Pn-8)	Y-(K+Pn-8)	Y-(K+Pn-7)	V-(K+Pn-8)
Y-(K+Pn-6)	Y-(K+Pn-5)	U-(K+Pn-4)	Y-(K+Pn-4)
			$\mathcal{V}(\mathcal{U}, D, \mathcal{A})$

< 4:2:2 YUV8 format (color coding ID = 2) >

Each component has 8bit data.

U-(K+0)	Y-(K+0)	V-(K+0)	Y-(K+1)
U-(K+2)	Y-(K+2)	V-(K+2)	Y-(K+3)
U-(K+4)	Y-(K+4)	V-(K+4)	Y-(K+5)
U-(K+Pn-6)	Y-(K+Pn-6)	V-(K+Pn-6)	Y-(K+Pn-5)
U-(K+Pn-4)	Y-(K+Pn-4)	V-(K+Pn-4)	Y-(K+Pn-3)
U-(K+Pn-2)	Y-(K+Pn-2)	V-(K+Pn-2)	Y-(K+Pn-1)

< 4:4:4 YUV8 format (color coding ID = 3) >

Each component has 8bit data.

U-(K+0)	Y-(K+0)	V-(K+0)	U-(K+1)
Y-(K+1)	V-(K+1)	U-(K+2)	Y-(K+2)
V-(K+2)	U-(K+3)	Y-(K+3)	V-(K+3)
		1	1
U-(K+Pn-4)	Y-(K+Pn-4)	V-(K+Pn-4)	U-(K+Pn-3)
Y-(K+Pn-3)	V-(K+Pn-3)	U-(K+Pn-2)	Y-(K+Pn-2)
V-(K+Pn-2)	U-(K+Pn-1)	Y-(K+Pn-1)	V-(K+Pn-1)

<RGB8 format (color coding ID = 4) >

Each component has 8bit data.

R-(K+0) G-(K+1)	G-(K+0) B-(K+1)	B-(K+0) R-(K+2)	R-(K+1) G-(K+2)
B-(K+2)	R-(K+3)	G-(K+3)	B-(K+3)
R-(K+Pn-4)	G-(K+Pn-4)	B-(K+Pn-4)	R-(K+Pn-3)
G-(K+Pn-3)	B-(K+Pn-3)	R-(K+Pn-2)	G-(K+Pn-2)
B-(K+Pn-2)	R-(K+Pn-1)	G-(K+Pn-1)	B-(K+Pn-1)

< Mono16 format (color coding ID = 5) >

Y component has 16bit data.

High byte	Low byte]
Y-((K+0)	Y-(K+1) V-(K+3)
		1-(K+3)
Y-(K	+Pn-4)	Y-(K+Pn-3)
Y-(K	+Pn-2)	Y-(K+Pn-1)

< RGB16 format (color coding ID = 6) >

Each component has 16bit data.

High byte Low byte]	
R-(K+0)	G-(K+0)	
B-(K+0)	R-(K+1)	
G-(K+1)	B-(K+1)	
B-(K+Pn-2)	R-(K+Pn-1)	
G-(K+Pn-1)	B-(K+Pn-1)	

2.2.3 Data structure

< Mono8, RGB8 >

Each component (Y, R, G, B) has 8bit data. The data type is "Unsigned Char".

Y,R,G,B	Signal level (Decimal)	Data (Hexadecimal)
Highest	255	0xFF
-	254	0xFE
	:	:
	1	0x01
Lowest	0	0x00

< YUV8 >

Each component (Y, U, V) has 8bit data. The Y component is the same as in the above table. The data type is "Straight Binary" for U and V data.

U, V	Signal level (Decimal)	Data (Hexadecimal)
Highest (+)	127	0xFF
	126	0xFE
	:	:
	1	0x81
Lowest	0	0x80
	-1	0x7F
	:	:
	-127	0x01
Highest (-)	-128	0x00

< Mono16, RGB16 >

Each component (Y,R,G,B) has 16bit data. The data type is "Unsigned Short (big-endian)".

Y,R,G,B	Signal level (Decimal)	Data (Hexadecimal)
Highest	65535	0xFFFF
	65534	0xFFFE
	:	:
	1	0x0001
Lowest	0	0x0000

3. Serial bus management

This chapter describes the camera behavior on a given Serial Bus. (IEEE 1394 Digital Camera is in accordance with IEEE standard 1212-1991.)

3.1 Bus Management

The camera compliant with this specification is a peripheral for a personal computer or workstation. Another node on the IEEE 1394 bus, such as a computer, acts as the camera controller.

In order for the camera to perform any action, the camera controller must access the camera control registers, as described in this standard. A camera, which is compliant with this protocol standard, is a passive device. It initiates no actions of its own. The camera is neither Isochronous manager capable nor full bus manager capable. The camera is also not cycle master capable. The contents of the self_ID packet generated by the camera, and the contents of camera configuration ROM shall accurately reflect this level of capability.

In order for the camera to perform any action, it must be connected to other IEEE 1394 nodes. At a minimum, there must be a cycle master capable node and an Isochronous manager capable node. In addition, there must be some node that is running application software that implements the protocol described in this standard. Note that all of these capabilities could reside in a single node.

The camera controller is responsible for the following activities related to camera operation:

- 1) Force a cycle master capable node to be the root
- 2) Start cycle master operation
- 3) Initialize the camera control registers for a desired video mode, frame rate, etc.
- 4) Allocate Isochronous resources needed by the camera (Isochronous channel number and bandwidth, as needed for the selected video mode)
- 5) Program the Isochronous channel number and transmit speed into the camera control registers
- 6) Instruct the camera to start sourcing Isochronous video data

The camera continues sourcing Isochronous video data until the camera controller instructs the camera to stop. If a bus reset occurs during camera operation, the camera continues sourcing Isochronous data immediately after the bus reset.

3.2 Asynchronous Transfer Capabilities

The camera compliant with this specification shall be capable of sending and receiving the asynchronous packets with a payload of up to 32 quadlets. This protocol does not use any asynchronous transactions that exceed this limit. If a node sends a request packet to the digital camera between the request and corresponding response subaction, the digital camera will acknowledge that packet with a "busy" acknowledge code.

3.3 Isochronous Transfer Capabilities

The camera compliant with this specification is capable of being an Isochronous talker. The camera is not capable of listening to a channel of Isochronous data.

The digital camera is capable of transmitting Isochronous data on channels 0 to 15 only, inclusive.

3.4 IEEE 1394 Specific Address Space

The camera compliant with this specification shall be compliant with the IEEE 1394 and IEEE 1212 standards.

The following sections define all CSR and ROM locations that the camera shall implement. All information in these sections is intended to comply with the IEEE 1394 standard. Where discrepancies arise, the IEEE 1394 standard shall prevail. All address-offset locations in these sections are with respect to a base address of:

FFFF F000 0000h

3.4.1 Implemented CSR's

The digital camera implements the following core CSR's, as required by the IEEE 1394 standard:

Offset	0-7	8-15	16-23	24-31		
0000h		STATE	CLEAR			
0004h		STATE	E_SET			
0008h		NODE	_IDS			
000Ch		RESET	START			
0010h						
0014h						
0018h	SPLIT_TIMEOUT_HI					
001Ch	SPLIT_TIMEOUT_LO					

Core CSR's

The digital camera implements the following IEEE 1394 Serial Bus dependent CSR's:

Offset	0-7	8-15	16-23	24-31	
0200h	CYCLE_TIME				
0204h					
0208h					
020Ch					
0210h	BUSY_TIMEOUT				

Serial Bus Dependent CSR's

3.4.2 Configuration ROM

IEEE 1394 Digital Camera implements the Configuration ROM as defined in IEEE standard 1212-1991 and IEEE standard 1394-1995.

unit_sw_version = 0x000102 (for 1394 based Digital Camera specification version 1.30)

History:

- unit_sw_version = 0x000101 (for 1394 based Digital Camera specification version 1.20)

- unit_sw_version = 0x000100 (for 1394 based Digital Camera specification version 1.04)

	Offset	0-7	8-15	16-23	24-31
	400h	04h	crc_length	rom_cr	c_value
Bus	404h	31h	33h	39h	34h
Info	408h	0 0 1 0 rsv	FFh	max_rec	rsv
Block	40Ch	node_vendor_id			chip_id_hi
	410h	chip_id_lo			
	414h	000)4h	CF	2S
Root	418h	03h	1	module_vendor_ID)
Directory	41Ch	0Ch	rsv	1000011	1 1 0 0 0 0 0 0
	420h	8Dh indirect_offse			
	424h	D1h	l	unit_directory offse	et

Root Directory

	Offset	0-7	8-15	16-23	24-31
	0000h	0002h		CRC	
Node unique	0004h		node_vendor_id		chip_id_hi
ID leaf	0008h	chip_id_lo			

Node Unique ID leaf

	Offset	0-7	8-15	16-23	24-31				
	0000h	0003h C		0003h CR		0003h CR0			
Unit	0004h	12h	unit_spec_ID (=0x00A02D)						
Directory	0008h	13h	unit_sw_version						
	000Ch	D4h	unit_dependent_directory offset						

Unit directory

	Offset	0-7	8-15	16-23	24-31	
	0000h	unit_dep_i	_info_length CRC			
Unit	0004h	40h	command_regs_base			
Dependent	0008h	81h	vendor_name_leaf			
Info	000Ch	82h	model_name_leaf			

Where:

Unit Dependent Directory

command_regs_base is the quadlet offset from the base address of initial register space of the base address of the command registers defined in section 1 of this standard.

vendor_name_leaf specifies the number of quadlets from the address of the vendor_name_leaf entry to the address of the vendor_name leaf containing an ASCII representation of the vendor name of this node.

model_name_leaf specifies the number of quadlets from the address of the model_name_leaf entry to the address of the model_name leaf containing an ASCII representation of the model name of this node.

3.4.3 Format of Vendor Name and Model Name Leaves

The unit dependent directory may contain pointers to information leaves that contain the ASCII name of the vendor and model name for this node. The format of these leaves is shown in the following table:

	Offset	0-7	8-15	16-23	24-31
	0000h	leaf_l	ength	CF	RC
	0004h	00h 00 0000h			
	0008h	0000 0000h			
Name	000Ch	char_0	char_1	char_2	char_3
Leaf	af 0010h char_4		char_5	ar_5 char_6 char_	
	0014h char_8				
n+6h					char_n-3
	n+Ah	char_n-2	Char_n-1	NUL	NUL

Vendor Name/Model Name Leaves

A. Appendix A (Feature definition and specification)

A.1 Brightness Control

Black level of the picture.

Off state:

Brightness level will be fixed value.

Auto control state:

Camera controls brightness level automatically by itself continuously.

Manual control state:

Camera controls brightness level manually by writing value to value-field.

One-Push action:

Camera controls brightness level automatically by itself only once and returns to Manual mode with adjusted value.

A.2 Auto Exposure Control

This feature is similar to "Contrast control".

Off state:

Exposure will be controlled manually using "Gain", "Iris" and/or "Shutter" features.

Auto control state:

Camera controls reference level automatically by itself continuously

Manual control state:

Camera controls exposure level automatically, but user can change reference level by writing value to "Auto_Exposure" register.

One-Push action:

Camera controls reference level automatically by itself only once and returns to Manual control state with adjusted value.

A.3 Sharpness Control

Sharpness of the picture.

Off state:

Sharpness level will be fixed value.

Auto control state:

Camera controls sharpness level automatically by itself continuously.

Manual control state:

Camera controls sharpness level manually by writing value to value-field.

One-Push action:

Camera controls sharpness level automatically by itself only once and returns to Manual control state with adjusted value.

A.4 White Balance Control

Adjustment of the white color of the picture.

At the YUV video mode, controlled by U value and V value. At the RGB video mode, controlled by B value and R value.

Off state:

White balance will be fixed value. **Auto control state:** Camera controls white balance automatically by itself continuously. **Manual control state:**

Camera controls white balance manually by writing value to value-field.

One-Push action:

Camera controls white balance automatically by itself only once and returns to Manual control state with adjusted value.

A.5 Hue Control

Color phase of the picture.

Off state:

Hue will be fixed value.

Auto control state:

Camera controls hue automatically by itself continuously.

Manual control state:

Camera controls hue manually by writing value to value-field.

One-Push action:

Camera controls hue automatically by itself only once and returns to Manual control state with adjusted value.

A.6 Saturation Control

Color saturation of the picture.

Off state:

Saturation level will be fixed value.

Auto control state:

Camera controls saturation level automatically by itself continuously.

Manual control state:

Camera controls saturation level manually by writing value to value-field.

One-Push action:

Camera controls saturation level automatically by itself only once and returns to Manual control state with adjusted value.

A.7 Gamma Control

Define the function between incoming light level and output picture level.

y = f(x)

y : output picture level x : incoming light level

Off state:

Gamma will be fixed value.

Auto control state:

Camera controls gamma automatically by itself continuously.

Manual control state:

Camera controls gamma manually by writing value to value-field.

One-Push action:

Camera controls gamma automatically by itself only once and returns to Manual control state with adjusted value.

A.8 Shutter Control

Integration time of the incoming light.

Off state:

Integration time will be fixed value.

Auto control state:

Camera controls integration time automatically by itself continuously.

Manual control state:

Camera controls integration time manually by writing value to value-field.

One-Push action:

Camera controls integration time automatically by itself only once and returns to Manual control state with adjusted value.

A.9 Gain Control

Camera circuit gain control.

Off state:

Gain level will be fixed value.

Auto control state:

Camera controls gain level automatically by itself continuously.

Manual control state:

Camera controls gain level manually by writing value to value-field.

One-Push action:

Camera controls gain level automatically by itself only once and returns to Manual control state with adjusted value.

A.10 Iris Control

Mechanical lens iris control.

Off state:

Iris will be fixed value.

Auto control state:

Camera controls iris automatically by itself continuously.

Manual control state:

Camera controls iris manually by writing value to value-field.

One-Push action:

Camera controls iris automatically by itself only once and returns to Manual control state with adjusted value.

A.11 Focus Control

Lens focus control.

Off state:

Focus will be fixed value.

Auto control state:

Camera controls focus automatically by itself continuously.

Manual control state:

Camera controls focus manually by writing value to value-field.

One-Push action:

Camera controls focus automatically by itself only once and returns to Manual control state with adjusted value.

A.12 Temperature Control

Getting temperature inside of the camera and/or controlling temperature.

Off state:

Camera stops temperature control.

Auto control state:

Camera controls temperature by itself aims to "Target_Temperature" continuously.

User can get temperature at the present time from "Temperature" value.

Manual control state:

In this mode, camera controls temperature by itself. But "Target_Temperature" value will be ignored. User can only get temperature at the present time from "Temperature" value.

One-Push action:

Camera controls temperature by itself aims to "Target_Temperature" value only once. User can get temperature at the present time from "Temperature" value.

A.13 Trigger Control

If this feature is turned on, trigger function will work. If turned off, trigger input is ignored. In the following explanation, trigger input is Low Active. (Trigger_Polarity = 0)

Trigger mode 0:

Camera starts integration of the incoming light from external trigger input falling edge. Integration time is described in "Shutter" register. No parameter is needed.

"Shutter" register value

Trigger mode 1:

Camera starts integration of the incoming light from external trigger input falling edge. Integration time is equal to low state time of the external trigger input. No parameter is needed.

Trigger mode 2:

Camera starts integration of incoming light from first external trigger input falling edge. At the N-th (parameter) external trigger input falling edge, integration will be stopped. Parameter is required and must be two or more. $(N \ge 2)$

Trigger mode 3:

This is a internal trigger mode. Camera will issue trigger internally and cycle time is N times (parameter) of the cycle time of fastest frame rate. Integration time of incoming light is described in "Shutter" register. Parameter is required and must be one or more. $(N \ge 1)$

A.14 Zoom Control

Lens zoom control.

Off state:

Zoom will be fixed value.

Auto control state:

Camera controls zoom automatically by itself continuously.

Manual control state:

Camera controls zoom manually by writing value to value-field.

One-Push action:

Camera controls zoom automatically by itself only once and returns to Manual control state with adjusted value.

A.15 Pan Control

Camera pan control.

Off state:

Pan will be fixed value.

Auto control state:

Camera controls pan automatically by itself continuously.

Manual control state:

Camera controls pan manually by writing value to value-field.

One-Push action:

Camera controls pan automatically by itself only once and returns to Manual control state with adjusted value.

A.16 Tilt Control

Camera tilt control.

Off state:

Tilt will be fixed value.

Auto control state:

Camera controls tilt automatically by itself continuously.

Manual control state:

Camera controls tilt manually by writing value to value-field.

One-Push action:

Camera controls tilt automatically by itself only once and returns to Manual control state with adjusted value.

A.17 Optical filter Control

Changing optical filter of camera lens function.

Off state:

Optical filter will be fixed value.

Auto control state:

Camera controls optical filter automatically by itself continuously.

Manual control state:

Camera controls optical filter manually by writing value to value-field.

One-Push action:

Camera controls optical filter automatically by itself only once and returns to Manual control state with adjusted value.

B. Appendix B (Unit of value for Absolute value control)

The following tables describe unit of the value for absolute value control for each feature element.

Meaning of Value type:

Absolute: Value is absolute value.

Relative: Value is absolute value but reference point is system dependent.

B.1 Feature elements High

Feature element name	Function	Unit	Reference point	Value type
Brightness	Black level offset	%		Absolute
Auto Exposure	Auto Exposure	EV	0	Relative
White_Balance	White Balance	K		Absolute
Hue	Hue	deg	0	Relative
Saturation	Saturation	%	100	Relative
Shutter	Integration time	sec		Absolute
Gain	Circuit gain	dB	0	Relative
Iris	Iris	F		Absolute
Focus	Focus	m		Absolute
Trigger	External Trigger	times		Absolute

Definitions for other feature elements, which are not listed above, will be defined in the future.

B.2 Feature elements Low

Feature element	Function	Unit	Reference point	Туре
Zoom	Zoom	power	1 (Wide end)	Relative
Pan	Pan	deg	0	Relative
Tilt	Tilt	deg	0	Relative

Definitions for other feature elements, which are not listed above, will be defined in the future.

EV: exposure value K: kelvin

deg: degree

second

sec:

decibel dB: F number

F:

meter m٠

For the feature of "Hue", + means counterclockwise, - means clockwise on the vector scope. For the feature of "Pan", + means turning to clockwise, - means turning to counterclockwise. For the feature of "Tilt", + means turning to upward, - means turning to downward.

