Program Transfor mationsfor Cache L ocality Enhancement
on Shared-memory Multiprocessors

by

Naraig Manjikian

A thesis submitted in conformity with the requirements

for the degree of Doctor of Philosophy

Graduate Department of Electrical and Computer Engineering
University of Toronto

(© Copyright by Naraig Manjikian 1997

Abstract

Program Transformations for Cache Locality Enhancement

on Shared-memory Multiprocessors

Naraig Manjikian
Doctor of Philosophy
Graduate Department of Electrical and Computer Engineering
University of Toronto
1997

This dissertation proposes and evaluates compiler techniques that enhance cache locality
and consequently improve the performance of parallel applications on shared-memory multi-
processors. Thesetechniquestarget applicationswithloop-level parallelismthat can be detected
and exploited automatically by acompiler. Novel program transformations are combined with
appropriate loop scheduling in order to exploit data reuse while maintaining parallelism and
avoiding cache conflicts.

First, this dissertation proposes the shift-and-peel transformation for enabling loop fusion
and exploiting reuse across parallel loops. The shift-and-peel transformation overcomes depen-
dence limitations that have previously prevented loops from being fused legally, or prevented
legally-fused loops from being parallelized. Therefore, this transformation exploits all reuse
across loops without loss of parallelism.

Second, this dissertation describes and evaluates adaptations of static loop scheduling
strategies to exploit wavefront parallelism while ensuring locality in tiled loops. Wavefront
parallelism results when tiling is enabled by combining the shift-and-peel transformation with
loop skewing. Proper scheduling exploits both intratile and intertile data reuse when indepen-

dent tiles are executed in parallel on alarge number of processors.

Third, this dissertation proposes cache partitioning for preventing cache conflicts between
data from different arrays, especially when exploiting reuse across loops. Specifically, cache
partitioning prevents frequently-recurring conflicts in loops with compatible data access pat-
terns. Cache partitioning transforms the data layout such that there are no conflicts for reused
data from different arrays during loop execution.

Ananalytical model isalso presented to assessthe potential benefit of locality enhancement.
Thismodel estimates the expected reduction in execution time by parameterizing the reduction
in the number of memory accesses with locality enhancement and the contribution of memory
accesses towards execution time.

Experimental results show that the proposed techniques improve paralel performance
by 20%-60% for representative applications on contemporary multiprocessors. The results
also show that significant improvements are obtained in conjunction with other performance-
enhancing techniques such as prefetching. The importance of the techniques described in this
dissertation will continue to increase as processor performance continues to increase more

rapidly than memory performance.

Acknowledgements

First and foremost, |1 would like to thank my supervisor, Dr. Tarek S. Abdelrahman. For
five years, he has maintained the right balance between providing close supervision and giving
me the freedom to pursue my ideas, and he has given me much-appreciated encouragement and
advice along the path of graduate studies. His attention to my work ultimately helped ensure
itsfinal quality.

| would also like to thank the members of my examination committee, Dr. David A. Padua,
Dr. Zvonko G. Vranesic, Dr. Kenneth C. Sevcik, Dr. Todd C. Mowry, and Dr. Stephen D.
Brown, for their careful reading and critical evaluation of my dissertation.

Access to the multiprocessor systems used in this research was provided by the University
of Michigan Center for Parallel Computing. In particular, | would like to acknowledge the
assistance of Andrew Caird of the Center of Parallel Computing.

| am grateful for the financial support that | have received during the course of my doctoral
studies. | have been supported by a Postgraduate Scholarship from the Natural Sciences and
Engineering Research Council of Canada, a University of Toronto Open Doctoral Fellowship,
andaV. L. Henderson Memoria Fellowship. Additional financial support for thisresearch was
provided by the Natural Sciences and Engineering Research Council, and by the Information
Technology Research Centre of Ontario.

| am also grateful for the opportunity to have participated in the NUM Achine M ultiprocessor
Project at the University of Toronto. | would liketo thank thefaculty, staff, and studentsinvolved
in the NUMA chine Project for providing me with arewarding experience.

| would like to thank the members of my extended family for their kindness and support,
and for always providing me with a home away from home during the entire course of my
university education.

To my parents, Hagop and Dirouhie, my brother, Sevak, and my sister, Lalai, words alone
cannot convey my heartfelt gratitude. Despite my long absences, you supported al of my
scholarly endeavors. You accepted the importance of my education, and you respected my
decisions, although you gave me advice so that my direction was always clear. Let us aways

celebrate our successes together.

Contents

1

I ntroduction

1.1 Large-Scae Shared-memory Multiprocessors

1.2 Loop-level Paralelism and Parallelizing Compilers

13
14
15
16

Background

DataReuseand CachelLocality

CachelLocdlity Enhancement

Research Overview

ThesisOrganization

21 LoopsandLoopNests

2.2 LoopDependence Analysis

2.3

24

221
222
2.2.3
224
2.25

Iteration Spaces, Iteration Vectors, and Lexicographical Ordering . . .
Definitionand Useof Variables
DataDependence
TheDependenceProblem
DependenceTests

Loop Paralelization and Concurrentization

231
2.3.2
2.3.3
234

DOALL Loopsand DOACROSSLoOpS o v oo oo . .
Data Expansion and Privatization to Enable Parallélization
Recognition of Induction and Reduction Variables

Scheduling Loop Iterations

Loop Transformationsfor Locality and Parallelism

241

DataReuseand Locality

o o g ~ W Bk P

(o]

24.2 Degreeand Granularity of Parallelism
243 Unimodular Transformations
244 Tiling ...
245 LoopDidtribution
246 LoopFuson
25 DataTransformations
251 Memory Alignment oL
252 ArrayPadding
253 ArrayElementReordering
254 Array Expansonand Contraction
255 ArrayMerging
2.6 Effectivenessof Locality Enhancement withinLoopNests
26.1 Surveyof Selected Studies.

26.2 Conclusionsand Implications

Quantifying the Benefit of L ocality Enhancement

3.1 Overview of Model and Underlying Assumptions
3.2 Quantifying Memory Accessesfor Arrays
3.3 Quantifying the Reduction in Memory Accesses with Locality Enhancement .
3.4 Quantifying the Impact of Locality Enhancement on Execution Time
3.5 Potential Limitationsof theModel
3.6 Chapter Summary

The Shift-and-peel Transformation for L oop Fusion

41 LoopFusion
411 Granularity of Parallelism and Frequency of Synchronization
4.1.2 Quantifying the Benefit of Enhancing Locality with Fusion
4.1.3 Dependence Limitationson the Applicability of Loop Fusion
414 RelatledWork

4.2 The Shift-and-peel Transformation
421 Shiftingto EnableLegal Fusion

Vi

36
37
38

4.2.2 Pedlingto Enable Parallelization of Fused Loops 49

4.2.3 Derivationof Shift-and-ped 50
4.2.4 Implementation of Shift-and-peel 54
4.25 Legdity of the Shift-and-peel Transformation 57
4.3 Multidimensional Shift-and-peel 65
431 Motivation 65
432 Derivation 65
433 Implementation 66
4.3.4 Legdity of Multidimensional Shift-and-peed 69
4.4 Fusionwith Boundary-scanningLoopNests 69
45 Chapter Summary 72
Scheduling Wavefront Parallelism in Tiled Loop Nests 73
51 Wavefront ParallelisminTiledLoopNests 73
511 Loop SkewingtoEnableLega Tiling 73
5.1.2 Enabling Tiling with the Shift-and-Peel Transformation. 74
513 Wavefront Parallelismafter Tiling 77
5.1.4 Exploiting Wavefront Parallelism: DOALL vs. DOACROSS 78
52 DataReuseinTiledLoopNests 79
521 IntratileandIntertileReuse oL 79
5.2.2 Quantifying the Locality Benefitof Tiling 80
523 TileSize Paraldlism,andLocality 83
53 ReaedWork 83
531 Tiling 83
532 LoopScheduling.o 84
533 SchedulingVectors, 85
5.4 Scheduling Strategies for Wavefront Parallelism 85
54.1 Dynamic Self-scheduling oL 86
54.2 StaticCyclicScheduling L. 87
543 StaticBlock Schedulingo oo 88

Vii

5.4.4 Comparison of Scheduling Strategies

54.4.1
54.4.2
5.4.4.3
5.4.4.4

Runtime Overhead for Scheduling
Synchronization Requirements
Parallelism and Theoretical Completion Time

Locality Enhancement

6 Cache Partitioning to Eliminate Cache Conflicts

6.1 Cache Conflicts

6.1.1 Cache Organization and IndexingMethods

6.1.2 CacheConflictsfor ArraysinLoops.

6.1.3 DataAccess Patternsand CacheConflicts
6.1.4 ReaedWork
6.2 CachePartitioning

6.2.1 Overview

6.2.2 One-dimensional Cache Partitioning.
6.2.3 Multidimensional Cache Partitioning
6.2.4 Cache Partitioning for MultipleLoopNests

6.3 Chapter Summary

7 Experimental Evaluation

7.1 Prototype Compiler Implementation

7.1.1 Compiler Infrastructure

7.1.2 Enhancementsto Infrastructure

7121
7.1.2.2
7123

Support for High-level Code Transformations
Dependence Distance Information Across Loop Nests . . .

Manipulation of Array DataLayout

7.2 Experimental Platforms
7.2.1 Hewlett-Packard/Convex SPP1000 and SPP1600
7.2.2 Silicon Graphics Power ChallengeR10000
7.3 CodesUsedinExperiments

7.4 Effectivenessof Cache Partitioning

7.5 Effectiveness of the Shift-and-peel Transformation 133

751 ResultsforKemnels 134
75.1.1 Derived Amountsof ShiftingandPeeling 135
75.1.2 Multiprocessor Speedups 136

7.5.1.3 Impact of Problem Size on the Improvement from Fusion . 136
7.5.1.4 Comparison of Shift-and-peel with Alignment/replication . 138

7.5.2 Comparing Measured Performance ImprovementswiththeModel . . 139

7521 DeterminingtheSweep Ratios 139

7.5.2.2 Determining f,, and ApplyingtheModel 143

75.3 Resultsfor Applications 144

7.5.4 Combining Shift-and-peel with Prefetching 146

7541 ResultsforKernels 146

75.4.2 Resultsfor Applications. 150

755 Summary for the Shift-and-peel Transformation. 153

7.6 Evaluation of Scheduling for Wavefront Parallelism 153
761 Resultsfor SOR 154

7.6.2 ResultsforJacobi 156

7.6.3 ResultsforLL18 160

7.6.4 Comparison of Sweep Ratiosfor Tiling 160

7.6.5 Summary for Evaluation of Scheduling Strategies 162

8 Conclusion 163
8.1 Summary of Contributions 164
82 FutureWork 165
Bibliography 167

List of Tables

5.1 Comparison of scheduling strategiesfor tiling 89
7.1 Kernelsand applicationsfor experimental results 130
7.2 Kernelsand applicationsused in experimentsfor the shift-and-pedl transformation134
7.3 Amountsof shiftingand peelingforkernels 135
7.4 Characteristicsof loopnestkernels 140
7.5 Revised sweep ratiosto account for upgraderequests 142
7.6 Cachemissesfor parallel execution on Convex SPP1000 142
7.7 Comparison of estimated and measured improvement from fusion 143
7.8 Expected and measured cache misses for uniprocessor execution on Power

Challenge 147
7.9 Expected and measured writebacks for uniprocessor execution on Power Chal-

lenge 148
7.10 Cache missesfor parallel execution on Convex SPP1600 149

7.11 Cache misses and sweep ratios for Jacobi on Convex SPP1000 (16 processors)161

List of Figures

11
12
13
14

21
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10

31
3.2
3.3

4.1
4.2
4.3
4.4
4.5

L arge-scale shared-memory multiprocessor architecture 2
Parallelisminloops 3
Datareuseinloops. 4
Exampleof loop permutation 5
Classification of loop nest structure 10
A two-dimensional iterationspace 12

Example formulation of the dependence problem for subscripted array references 15

A DOACROSS loop with explicit synchronization for loop-carried dependences 17

Scalar expansion to eliminate loop-carried antidependences 18
Induction variablerecognition 19
Reduction variablerecognition. 19
Unimodular transformations 22
Exampleof tiling. 24
Loop distributionand loopfusion 25
[llustration of memory accessesfor arraysinloopnests 36
Graphical representation of 7' = T, + T,, and effect of locality enhancement . 39

Examples of loop nests accessing arrays with differing dimensionalities . . . 41
Exampleto illustrate fusion-preventing dependences 46
Exampletoillustrate serializingdependences 46
Shifting iteration spacesto permitlegal fusion. 49
Peeling to retain paralelismwhen fusing parallel loops 50
Algorithm for propagating shiftsalong dependencechains 52

Xi

4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15

6.1

Representing dependences to derive shiftsfor fuson
Algorithm for propagating peeling along dependence chains
Derivingtherequired amountof peeling
Dependence chain graph with dependences between non-adjacent |oops
Alternativesfor implementing fusion with shift-and-peel
Complete implementation of fusion with shift-and-peel
Legality of the shift-and-peel transformation.
Resolution of alignment conflictswith replication
Fusion with multidimensional shifting
Enumerating the number of cases for multidimensional shift-and-peel
Parallelization with multidimensiona peeling
Independent blocks of iterations with multidimensional shift-and-peel

Fusing aloop nest sequence with a boundary-scanningloopnest

Stepsintilingthe SORloopnest
Graphical representation of skewing and tilingintheiterationspace
Enabling tiling with the shift-and-peel transformation
Dependencesand wavefrontso
Exploiting paralelismwithinner DOALL loops.
Datareusein atiled loop nest that requiresskewing
Amount of data accessed per tilewithskewing
Impact of tilesizeonlocality
Static cyclic schedulingof tiles oL
Static block schedulingof tiles. L oL
Wavefronts for dynamic and cyclic scheduling (n, =4,P =2)
Wavefrontsfor block scheduling (n, =4,P=2)
Variation of completiontimeratio R = Ty /Teye - - - - - o o o o o oo o
Number of dataelementswithinatile

Fraction of misslatency pertile

Cacheorganizations

Xii

6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

7.1
7.2
7.3
74
7.5
7.6
1.7
7.8
7.9
7.10
711
7.12

7.13
7.14
7.15
7.16
7.17

Cacheconflictsfor arraysinloops 100

Taxonomy of data access patternsfor arraysinaloopnest. 101
Freguency of cross-conflicts for compatible data access patterns 102
Frequency of cross-conflicts for incompatible data access patterns 103
Example of cache partitioning to avoid cache conflicts 107
Conflict avoidance as partition boundaries move during loop execution 108
Greedy memory layout algorithm for cache partitioning 109
Memory overheadfor 8 N x NV arraysfrom cache partitioning (cachesize=131,072) 110
Multidimensional cache partitioning 112
Interleaving partitionsin multidimensional cache partitioning 113
The use of padding to handle wraparound inthecache 116
Greedy memory layout algorithm for multipleloopnests 120
PassesinthePolariscompiler 123
Architecture of theConvex SPP1000 127
Speedups for cache partitioning alone on Convex multiprocessors. 131
Cache partitioning vs. array padding for LL.18 on Convex SPP1000 132
Impact of cache partitioning with fusion on Convex SPP1000/SPP1600 133
Speedup and misses of kernelson Convex SPP1000 137
Improvement in speedup with fusion for L.1.18 and calc on Convex SPP1000 138
Performance of shift-and-peel vs. alignment/replication for LL18 139
Codefor L.18 loopnestsequence 140
Speedup for applicationson Convex SPP1000 145
Uniprocessor speedupson Power Challenge 147
Multiprocessor speedups on Convex SPP1000 and SPP1600 (computed with

respect to one processor on Convex SPP1000) 149
Average cache miss latencieson Convex SPP1600. 150
hydro2d on Convex SPP1000and SPP1600 151
hydro2d on SGI Power ChallengeR10000. 151
CachemissesfortiledSOR 155
Executiontimesfortiled SOR 155

7.18 Speedupfortiled SOR 156

719 TheJacobikene 157
7.20 Cachemissesfortiled Jacobi 158
7.21 Normalized executiontimesfortiledJacobi 158
7.22 Speedupfordacobi 159
7.23 Normalized executiontimesfor tiled LL18 159
724 Speedup for LL18 160

Xiv

Chapter 1

| ntroduction

Thisdissertation presentsnew compiler techniquesto improvethe performance of automatically-
parallelized applications on large-scal e shared-memory multiprocessors. These techniques are
motivated by key architectural features of large-scale multiprocessors—namely alarge number
of processors, caches, and a physically-distributed memory system—that must be exploited
effectively to achieve high levels of performance. The proposed techniques focus on cache
locality enhancement because caches are essential for bridging the widening gap between pro-
cessor and memory performance, especialy in large-scale multiprocessors. The techniques
are designed specifically to enhance cache locality while maintaining the parallelism detected
automatically by a compiler.

The remainder of this chapter is organized as follows. First, the architecture of large-
scal e shared-memory multiprocessorsis presented. Next, loop-level parallelism and therole of
parallelizing compilers are examined. Datareuse and cachelocality inloops are then described.
Thelimitationsof existing techniquesfor cachelocality enhancement arethen outlined. Finaly,

an overview of the research conducted to overcome these limitationsis presented.

1.1 Large-Scale Shared-memory Multiprocessors

Large-scale shared-memory multiprocessor systems have emerged in recent years as viable
high-performance computing platforms [Bel92, LW95]. Built using high-speed commodity

microprocessors, these systems are cost-effective platforms for a variety of applications rang-

CHAPTER 1. INTRODUCTION 2

Q Interconnection Network

- Mem o o o Mem

Cache {/ Cache {/ Cache {7
Local Remote Remote
memory memory memory

Procr Procr Procr

Figure 1.1: Large-scale shared-memory multiprocessor architecture

ing from scientific computation to on-line transaction processing. Examples of commercial
multiprocessors include the HP/Convex Exemplar [Con94], the SGI/Cray Origin [Sil96a],
and the Sun Ultra HPC [Sun96]. Examples of research multiprocessors include the Stanford
FLASH [HKO"94] and the University of Toronto NUMAchine [VBS*95].

The architecture of large-scale shared-memory multiprocessors consists of processors,
caches, physically-distributed memory, and an interconnection network. This architecture
is shown in Figure 1.1. The memory is physically distributed to provide scalability as the
number of processors is increased. Although the memory is physically distributed, the hard-
ware supports a shared address space that allows processors to transparently access remote
memory through the network. Because the remote access latency increases with distance, these
multiprocessors have a non-uniform memory access (NUMA) architecture. High-speed caches
are used to mitigate the long latency for accessing both local and remote memory, and hardware
enforces coherence for copies of the same data in multiple caches.

A key factor that affects application performance on large-scale multiprocessors is the
degree of parallelism[LW95]. Parallelism indicates that operations are independent and can be
distributed among processors for simultaneous execution. A larger degree of parallelism allows
more processors to be used, with commensurate reductions in execution time. Application
performance on large-scale multiprocessors also depends on cache locality [LW95]. Locality

ensures that processors access data from the nearby, high-speed cache, rather than the distant,

CHAPTER 1. INTRODUCTION 3

DO I =1, N DO I = 2, N-1

A[I] = S * A[I] A[I] = (A[I-11+A[I1+A[I+1]1) / 3
END DO END DO

(a) Parallel loop (b) Serial loop

Figure 1.2: Parallelism in loops

slow memory. Although caches have long been used in uniprocessor systems, they are especially

important for avoiding the large remote memory latency in large-scale multiprocessors.

1.2 Loop-level Parallelism and Parallelizing Compilers

Parallelism in programs, especially scientific programs, is often found in loops [ZC91], and this
loop-level parallelismis exploited by distributing independent loop iterations among processors
for simultaneous execution in order to reduce execution time.

Consider the loop shown in Figure 1.2(a). For any pair of different iterations i, and i,
from the I loop, the elements A [4;] and A [i,] that are read and written in each iteration are
different. Consequently, all iterations are independent of each other. The loop iterations may
be distributed among multiple processors and executed simultaneously without violating the
loop semantics. Loops whose iterations are independent of each other are called parallel loops.

In contrast, consider the loop shown in Figure 1.2(b). For successive pairs of iterations i
and i + 1, the value read from element A [i] in iteration 7 4+ 1 is the same value written to
element A [¢] in iteration . Hence, a dependence is said to exist between iterations i and i + 1.
Successive iterations may not be executed simultaneously without violating the loop semantics.
Loops with dependences between successive iterations are called serial loops.

Parallelizing compilers are software tools that detect and exploit loop-level parallelism.
Many techniques have been developed to detect the absence of dependences and identify paral-
lel loops [BGS94]. Therefore, these compilers can convert a sequential program into a parallel
program by generating code in which independent iterations are distributed among processors
for simultaneous execution. By automating parallelization, these compilers promote portability

and allow programming in a machine-independent manner. Examples of commercial paral-

CHAPTER 1. INTRODUCTION 4

reuse within loops

DO I =2, N-1
B[I]l = (A[I-11+A[I+1]1) / 2
END DO
reuse across loops
DO I = 2, N-1
A[I] BI[I]
END DO

Figure 1.3: Data reuse in loops

lelizing compilers include KAP [Kuc] and VAST [Pac]. Examples of parallelizing compilers
used for research include SUIF [WFW94] and Polaris [BEF95].

1.3 Data Reuseand CacheL ocality

Loops commonly exhibit data reuse, i.e., they read or write the same data elements multiple
times. Performance is improved when this reuse is converted into locality in the cache.
Locality reduces execution time by retaining data in the cache between uses in order to avoid
long memory access latencies.

There are two types of data reuse for loops: reuse withinloops and reuse acrossloops [BGS94,
KM94, Wol92]. Figure 1.3 depicts sample code to illustrate the two types of reuse. In the first
loop, iteration 7 reads array elements A[i — 1] and A [i + 1]. In iteration i 4+ 2, elements
A[i+ 1] and A [+ 3] are read. The array references cause element A [7 + 1] to be read in
both iterations ¢ and : + 2. Because the same element is read in successive iterations of the
same loop, this data reuse is said to be within a loop. In contrast, consider the references to
array B. Iteration 7 of the first loop in Figure 1.3 writes array element B [i] . The value written
to B [¢] is subsequently read in iteration i of the second loop. Because the same element is
referenced in iterations of different loops, this form of data reuse is said to exist across loops.

Although data reuse is common in loops, it may not necessarily lead to locality because of
limited cache capacity and associativity [PH96]. If the amount of data accessed between uses

exceeds the cache capacity, data is displaced from the cache before it is reused. Even when

CHAPTER 1. INTRODUCTION 5

DO I = 2, N-1 DO J =1, M
DO J =1, M DO I = 2, N-1
B[I,J]=A[I-1,J]+A[I+1,J] B[I,J]=A[I-1,J]+A[I+1,J]
END DO END DO
END DO END DO
M M
. AU Y
N |17 — N
1= AL
(a) Original loops and access order in array A (b) Permuted loops and access order in array A

Figure 1.4: Example of loop permutation

the cache capacity is not exceeded between uses, reused array elements may still be displaced
from the cache because of cache conflicts, which occur when cache lines containing different
array elements are mapped into the same location in the cache because of limited associativity.
Consider once again the example loops shown in Figure 1.3. The reuse of elements from
array B is separated by a large number of iterations in different loops. If the cache capacity is
not sufficient to contain all the elements of array B between uses, there is no locality. Even if
the cache capacity is sufficient, locality may still be lost for the reuse of array B if the mapping

in the cache for elements of array A conflicts with elements of array B between uses.

1.4 CacheLocality Enhancement

In order to enhance cache locality, compilers apply a variety of loop transformations such as
permutation and tiling [BGS94]. These transformations reorder loop iterations to reduce the
number of iterations between uses of the same data. Reuse often implies the existence of
dependences between iterations, as described in Section 1.2. A transformation is legal if and
only if the reordering of iterations obeys dependence constraints. Even if a transformation is
legal, it is beneficial only if reordering of iterations improves cache locality.

Figure 1.4 depicts the effect of reordering iterations with loop permutation. In the original
loops shown in Figure 1.4(a), the references A [TI-1,J] andA[I+1, J] reuse elements in the

same column of array A. However, the inner J loop reads elements in rows of the array. As a

CHAPTER 1. INTRODUCTION 6

result, reuse of elements in the same column is separated by 2 - M inner loop iterations. The
reuse is not converted into locality if the cache capacity is insufficient to hold elements of array 2
accessed between uses. However, if the loops are permuted to make the I loop innermost, as
shown in Figure 1.4(b), reuse of an element in the same column is now separated by only 2
inner loop iterations, which increases the likelihood of achieving locality. Permutation is legal
in this case because there are no dependences between iterations.

Despite the promise of locality-enhancing loop transformations, compilers using them
often fail to improve performance [CMT94, Wol92]. The scope of transformations such as
permutation is limited to exploiting the reuse within an individual loop. However, caches often
generate locality for reuse within loops without requiring any compiler assistance [MT96]. In
such cases, applying an iteration-reordering loop transformation provides no locality benefit.

On the other hand, caches normally cannot generate locality from reuse across loops
because of the larger number of iterations between uses [MT96]. However, transformations
for exploiting reuse across loops are restricted by dependences between iterations in different
loops that may render transformation illegal [KM94]. Consequently, reuse across loops remains
unexploited.

Even when a loop transformation to exploit reuse within or across loops is legal, parallelism
may be reduced or lost as a result of iteration reordering [Wol92, KM94]. Consequently, there
is a tradeoff between maintaining sufficient parallelism for many processors and enhancing
locality with little or no resultant parallelism. Compilers seeking to parallelize applications for
a large number of processors may therefore abandon locality for the sake of parallelism.

Finally, the locality benefit of any loop transformation is diminished by the occurrence of
cache conflicts [CMT94, Wol92]. Conflicts displace data from the cache, and if the displaced
data is later reused, the missing data must be reloaded into the cache. The latency of cache

misses to reload data into the cache therefore increases execution time unnecessarily.

1.5 Research Overview

This dissertation proposes new techniques that improve parallel performance on large-scale

multiprocessors by enhancing locality across parallel loops. These techniques enable trans-

CHAPTER 1. INTRODUCTION 7

formations to exploit reuse across loops and allow subsequent parallelization, even when
dependences would otherwise prevent legal transformation or result in a serial loop. At same
time, the benefit of locality enhancement is ensured by avoiding cache conflicts for reused data.

The techniques are listed below with underlying assumptions.

e A code transformation called shift-and-peel is proposed for overcoming dependence lim-
itations and exploiting reuse across a sequence of loops without sacrificing parallelism—
specifically when the reuse within loops is captured by the cache on its own. This

technique assumes uniform dependences between the loops in the sequence.

e An evaluation is provided for loop scheduling strategies for executing transformed loops
on a large number of processors in a manner that ensures that the full benefit of locality
enhancement is realized. The strategies are appropriate when the degree of available
parallelism varies in the scheduled loops, and there is little or no variability in the units

of work assigned to different processors.

e A data transformation called cache partitioning is proposed to prevent cache conflicts
between data from different arrays, particularly when exploiting reuse across loops. This
technique assumes that the arrays in the loops of interest are similarly-sized and traversed

in the same manner, which is typical in most applications.

An analytical performance model is also presented to assess the impact of locality enhance-
ment across loops on execution time and guide the application of the proposed techniques. The
model assumes that loops have iteration space bounds that match array bounds, and that the
computation performed in a loop accesses all elements in an array. A prototype implemen-
tation of the proposed techniques is described to demonstrate the feasibility of incorporating
the techniques within a compiler. Finally, experimental results for representative applications
on contemporary multiprocessors confirm that the proposed techniques provide substantial

improvements in parallel performance.

CHAPTER 1. INTRODUCTION 8
1.6 ThesisOrganization

The remainder of this dissertation is organized as follows. Chapter 2 provides background and
surveys previous work on the effectiveness of existing locality enhancement techniques. Chap-
ter 3 presents an analytical model to assess the impact of locality enhancement across loops on
execution time. Chapter 4 presents the shift-and-peel transformation. Chapter 5 discusses loop
scheduling strategies for parallel execution. Chapter 6 describes cache partitioning for conflict
avoidance. Chapter 7 presents the results of an experimental evaluation to demonstrate the
effectiveness of the proposed techniques. Finally, Chapter 8 offers conclusions and directions

for future research.

Chapter 2

Background

This purpose of this chapter is twofold. First, it provides background on loop parallelization,
loop transformations, and data transformations. Second, it reviews work on the effectiveness
of existing locality-enhancing loop transformations.

This chapter is organized as follows. First, the structure and semantics of loops are defined.
Dependence analysis is then described. Loop parallelization techniques are then described,
followed by a review of loop transformations for enhancing locality and parallelism. Various
data transformation techniques for arrays accessed in loop nests are described next. Finally, this
chapter concludes by reviewing the effectiveness of existing technigues for enhancing locality

within loops.

2.1 Loopsand Loop Nests

A DO-loop (hereafter referred to simply as a loop) is a structured program construct consisting

of a loop header and a loop body,

doi = bo, by, s < header
<body> (i)
end do

where < is the loop index variable, and by, by, s are integer-valued expressions that evaluate to
constants on entry to the loop. The index variable takes on values beginning at b, in steps of
s until the value b is exceeded, and each value represents one loop iteration. The loop body
contains statements in which the variable : may appear, hence the body may be parameterized

by i. A statement S within the loop body may also be parameterized as S(7).

CHAPTER 2. BACKGROUND 10

dot=1,T
do j=2,N-1
do i=2,N-1
a[ij] = (afi-1,j]+a[i+1,j]+a[i,j-1]+a[i,j+1]+a[i j])/5
end do
end do
end do
(a) A perfectly-nested loop nest
dot=1T
. do j=2,N-1
do 'd‘olzﬁll \ do i=2,N-1
JS": 0 b[i.,j] = (afi-1,j]+a[i+1,j]+a[i j-1]+a[i j+1])/4
end do
dok=1N . all end do
s =s+ b[i,k] * a[k,j] do i=
end do 0J=2,N-1
cfij] = s doi=2N-1
end d(; en da([jI(;J] = b[i.j]
end do end do
end do
(b) An imperfectly-nested loop nest (c) An arbitrarily-nested loop nest

Figure 2.1: Classification of loop nest structure

A loop nest L is a set of loops and their respective bodies structured such that exactly one
loop 4, € L encloses all of the remaining loops, and no enclosing loop uses the same index
variable as one of the loops it encloses. The level of a loop is the number of loops which enclose
it. For example, the level of Z,,;..- is 0, since no other loop encloses it. The depth of the loop nest
is one larger that the maximum level of any component loop, i.e., depth= (r?EaLx level (E)) + 1.

A perfectly-nested loop nest consists of loops (g, ¢4, . . ., £,,—1 Such that:
level(¢;) =4, VO <i<m—1, and body(¢;) = {¢;+1}, VO <i<m—1

The level of each loop is unique, and the body of each loop except the innermost loop consists
of exactly one loop. All non-loop statements are in the body of the innermost loop. An example
of a perfect loop nest is given in Figure 2.1(a).

An imperfectly-nested loop nest consists of loops ¢g, ¢4, . . ., £,,—1 such that:
® |e‘\/e|(€l) =1, VO<i<m-— l, bOdy(&) = {€i+1} U SZ', VO<i<m-—1,

e J0<i<m—-1> SZ7£®,

CHAPTER 2. BACKGROUND 11

where S; is a set of zero or more non-loop statements. Hence, the only distinction between
an imperfectly-nested loop nest and a perfectly-nested loop nest is the presence of at least one
non-loop statement in the body of any loop except the innermost. An example of an imperfect
loop nest is given in Figure 2.1(b).

An arbitrarily-nested loop nest consists of loops /g, /1, . . ., £,, 1 Ssuch that:
e level(ly) =0, leve(4;) >0, V1<i<m-—1,
e 3i,j > (I<i<m—-DAQL<Lj<m—=1)A(>IF#))A (level(l;) = level (¢;)).

Hence, there are at least two loops with the same level. Apart from the requirement for exactly
one outermost enclosing loop and the proscription against an enclosing loop using the same
index variable as one of the loops it encloses, there are no other restrictions on the nesting
structure of an arbitrarily-nested loop nest or the presence of non-loop statements. An example
of an arbitrarily-nested loop nest is given in Figure 2.1(c).

This dissertation centers on perfectly-nested loop nests, and arbitrarily-nested loop nests

with inner loop nests that are perfectly-nested, as shown in Figure 2.1(c).

2.2 Loop Dependence Analysis

The legality of loop parallelization or loop transformation is dictated by dependences between
loop iterations. These dependences reflect the semantics of the original program. Conse-
quently, loop dependence analysis to uncover these dependence relationships is an essential
prerequisite for loop parallelization and transformation. The remainder of this section defines

data dependence, formulates the dependence problem, and describes various dependence tests.

2.2.1 Iteration Spaces, Iteration Vectors, and Lexicographical Ordering

The loop bounds in a perfectly-nested loop nest of depth m define a set of points in an m-
dimensional iteration space Z. It is assumed that the lower bound is one and the step is one

for all loop variables.! The iteration vector 7= (i, i1, .. .,i,_1) € Z™ identifies points in Z,

LA transformation called loop normalization [ZC91], which is always legal, converts a loop into this form.

CHAPTER 2. BACKGROUND 12

L)
doj=1.4 T 44
dOi=1,4 \‘\‘\‘
<body> (1,2)0 & &,
end do 1 * # # (4,1)
end do
T T >j
1 4
(a) Two—dimensional loop nest (a) Corresponding iteration space

Figure 2.2: A two-dimensional iteration space

where i, i1, . . ., i, 1 denote loop variables, and iq is the outermost loop variable. Figure 2.2
illustrates a representative two-dimensional iteration space; the iteration vector is (j, 7).

The loop headers and their nesting order in a loop nest specify the sequence in which the
points are traversed in the iteration space Z. The sequence of vectors corresponding to these
points is called the lexicographical order of iterations [Wol92]. A pair of iteration vectors
P, ¢ is ordered with the relation p" < ¢ to reflect this lexicographical order. For example, the

lexicographical order for the iteration space in Figure 2.2 is given by
(1,1)<(1,2)<--<3,4)<(41) <---< (4,4

and is represented by the path taken by the dashed line.

2.2.2 Definition and Use of Variables

Statements in the body of a loop may write (define) or read (use) program variables in each
loop iteration. These program variables may be scalars or subscripted arrays. In the latter
case, subscript expressions may contain index variables. For each statement instance S(z) in
the body of a perfectly-nested loop nest with iteration vector 7, DEF'(S(7)) denotes the set of
variables that are written, and US E(S(7)) denotes the set of variables that are read. These sets

identify the memory locations read or written in each instance of the loop body.

2.2.3 Data Dependence

Data dependence is a relationship between statements that reference the same memory location.

Let S and S’ denote statements in the body of a perfectly-nested loop nest (the statements need

CHAPTER 2. BACKGROUND 13

not be distinct), and let p and ¢ denote points in the iteration space. The statement instance

S’(g) is data dependent on the statement instance .S(p) if the following conditions hold:?
L.(P=<q Vv (F=9N(S#S") A (S appears before S’ in the body))

2. (DEF(S(5) n USE(S'(@) # 0)v (USE(S() n DEF(S'({) # 0)V
(DEF(S(p)) N DEF(S'(7)) # 0)

The notation S(p)d.S’(¢) indicates a data dependence. S(p) is the dependence source, and S'(¢)
is the sink. Similarly, p’ ¢’ are the source and sink iterations, respectively.

Dependences may be further categorized based on condition 2 above. A true dependence
S(p)otS'(q) existsif DEF(S(p))NUSE(S'(q)) # 0 (write precedes read). An antidependence
S(p)6*S'(q) exists if USE(S(p)) N DEF(S'(7)) # 0 (read precedes write). Finally, an output
dependence S(p)°S’(q) exists if DEF(S(p)) N DEF(S'(q)) # 0 (write precedes write).

The dependence distance vector is given by d= q—p. Ifp= ¢, then d = 0. Otherwise,
P < ¢ by definition and d must be lexicographically positive. The dependence direction vector
is given by § = sig(cf) and is also lexicographically positive.

If S(p)0S’(¢) and p’ # ¢, then the dependence is loop-carried between the source and sink
iterations. The level of a loop-carried dependence is given by scanning the dependence vector
for the first non-zero component, starting with the element for the outermost loop. For a loop
nest of depth m, the level ranges from 0 to m — 1. 1f S(p)d.S’(¢) and p = ¢, then the dependence

is loop-independent because it exists within one instance of the loop body. The dependence

level of a loop-independent dependence is oo, since there are no non-zero components.

2.2.4 The Dependence Problem

The goal of dependence analysis is to solve the dependence problem: for two statement instances
S(p) and S’(q), determine whether the statement instances access the same memory location.
The solution is trivial for scalar variables because a data dependence will always exist if at
least one of the statements writes the scalar variable. However, when S(p) and S'(¢) access

the same array variable, a mathematical formulation of the dependence problem is used to

2These conditions are conservative and may generate a superset of the actual dependences. Greater precision
is obtained with an additional covering condition for writes [ZC91], although it is often ignored in practice.

CHAPTER 2. BACKGROUND 14

determine if the same array element is accessed. In other words, the formulation determines if
array subscript expressions are equal for any pair of statement instances.

The problem is simplified when the array subscripts consist only of affine expressions of
the loop index variables. Affine expressions are linear combinations of variables with integer
coefficients. For example, an affine expression for the iteration vector ©' = (i, i1, ..., %y 1) IS
ag - lo+ a1 - i1+ -+ Q1 - bm1 + ¢, Where ag, ay, ..., a, 1 and c are integer constants.
Affine subscripts for multidimensional arrays may be expressed as matrix-vector products. For

example, the array reference a[2iy — 2, 3i; — ip + 1] is represented by [f(7)], where

2 0 io -2
f@) = +
-1 3 i1 1
For a reference a[f(7)] in S(7) and a reference a[f'(7)] in S’(2) in a normalized perfectly-
nested loop nest, the dependence problem is formulated succinctly as follows: find a pair of

points p’, ¢ € Z such that
f() = f(a). (2.1)

Equation 2.1 expands into a system of linear equalities consisting of elements from ;' and
¢. Since p, ¢must lie in the iteration space, solutions are constrained by inequalities that reflect
the iteration space bounds. In addition, solution vectors must consist of integers. Figure 2.3
illustrates the dependence problem formulation for an example two-dimensional loop nest (i.e.,
m = 2). with two statements that reference a one-dimensional array a.

A solution for Equation 2.1 that satisfies all constraints indicates the existence of a pair
of statement instances that reference the same memory location. However, it is necessary to
establish the order of the statement instances to properly establish the dependence relation.
From Section 2.2.3, S(p)d.S'(¢) implies that p’ < ¢. If the solution to Equation 2.1 is such that
P < ¢, then the dependence relation must be S(p)d.S’(¢). On the other hand, if the solution is
such that ¢ < p, then the dependence relation must be S'(§)0S(p). If p'= ¢, then the order of

S and S’ within the loop body determines the dependence relation.

2.25 Dependence Tests

Techniques for obtaining solutions to Equation 2.1 are called dependence tests. Some depen-

dence tests apply only to restricted forms of the dependence problem, while others are generally

CHAPTER 2. BACKGROUND 15

2po+p1i—1 = @+a

do 10=1,5
do i;=1,10 Po,P1,90, 1 € Z
S: a[2ip+ig-1] = . ..
S ... = aigti] 1 < po p < 5
end do 1 < o < 5
end do 1 < p pr < 10
1 < ¢ q < 10
(a) Two-dimensional loop nest (b) Dependence problem

Figure 2.3: Example formulation of the dependence problem for subscripted array references

applicable. All dependence tests must correctly report independence when they are applicable.
The following paragraphs briefly describe a number of dependence tests.

Approximate dependence tests assume that a dependence exists whenever they are unable
to prove independence. This assumption is required because approximate tests ignore or relax
integer constraints in order to reduce the complexity of finding a solution.

The gcd (greatest common divisor) test [ZC91] examines the divisibility of the integer
constants and coefficients in Equation 2.1 to prove independence. However, it requires a con-
servative assumption whenever it cannot prove independence because it ignores the inequality
constraints bounding the iteration space.

The Banerjee test [Ban88] does consider the inequality constraints, hence it is useful
whenever the gcd test is inclusive. However, the Banerjee test relaxes the integer solution
constraints to provide a necessary and sufficient condition for the existence of a real solution
within the bounds of iteration space. If no real solution exists, then independence is proven.
However, the test is inclusive when a real solution does exist because the solution may not
satisfy the original integer solution constraints.

Exact tests provide necessary and sufficient conditions for the existence of integer solutions.
They do not require conservative assumptions because they either prove independence, or
provide conditions for a data dependence.

The separability test [ZC91] is an exact test for a restricted form of the dependence problem

where corresponding elements of f () and f'(z) in Equation 2.1 contain only one (and the

CHAPTER 2. BACKGROUND 16

same) index variable. In this restricted form, this test either proves independence, or provides
minimum and maximum dependence distances when a dependence exists. However, other tests
must be used for those cases in which it is not applicable.

The Omega test [Pug92] is an efficient exact test for the general dependence problem. It
proves independence, or provides distance information when a dependence exists. It also solves
problems with symbolic constants to obtain conditions for the existence of a dependence; these

conditions may be used as run-time dependence tests.

2.3 Loop Parallelization and Concurrentization

Loop parallelization and loop concurrentization designate loops whose iterations are executed
on different processors [ZC91]. Parallelizable DOALL loops do not require synchronization be-
tween iterations, whereas concurrentized DOACROSSIoops do require synchronization between
iterations. In some cases, DOALL loops are obtained by variable expansion and privatization
or by recognizing induction and reduction variables. Finally, loop scheduling specifies the
execution order of iterations on each processor. The remainder of this section discusses these

topics in more detail.

2.3.1 DOALL Loopsand DOACROSS L oops

Let DEP(L) denote all dependence distance or direction vectors for a perfectly-nested loop nest
L. Aloop ¢ € Ldoesnotcarry adependence if and only if level (d) # level (¢), ¥ d € DEP(L).
Suchaloopisa DOALL loop and may be parallelized by distributing iterations arbitrarily among
processors with no synchronization between iterations.

Although DOALL loops carry no dependences, they may be enclosed by other loops that
carry dependences, or they may be preceded or followed by statements that must be executed
serially. Synchronization outside the DOALL loop is required to preserve the original program
semantics. This synchronization is normally provided before and after the loop with a barrier
that forces each processor to wait until all processors are ready to proceed.

The iterations of a loop that carries a dependence may still be distributed among parallel
processors through loop concurrentization. Such a loop is a DOACROSS loop and requires ex-

plicit synchronization between dependent iterations to preserve the original program semantics.

CHAPTER 2. BACKGROUND 17

doacross i=4,N

do i=4,N if (i>6) wait(i-3)
alil = fa[i-8) — alil=f@[i-3)
end do if (i<N-2) signal(i)
end do

Figure 2.4: A DOACROSS loop with explicit synchronization for loop-carried dependences

Semaphores provide the required synchronization, with one semaphore per dependence edge.
A semaphore wait operation immediately before the sink statement instance of a loop-carried
dependence is paired with a semaphore signal operation immediately after the source of the
dependence. The wait operation suspends execution until the corresponding signal operation
has been performed. Figure 2.4 provides an example of a DOACROSS loop with explicit
synchronization that allows three loop iterations to be executed in parallel at any time. In the

worst case, dependences may serialize all iterations in a DOACROSS loop.

2.3.2 Data Expansion and Privatization to Enable Parallelization

A true loop-carried dependence S()4'S’(¢) implies that the memory location written in it-
eration p' is subsequently read in iteration ¢. This inherently-serial dependence relationship
prevents the iterations 7 and ¢ from being executed simultaneously.

On the other hand, a loop-carried antidependence S(p)0%S’(¢) implies that a memory loca-
tion is read in iteration p'and then overwritten with new data in iteration ¢. The antidependence
would cease to exist if the read and write were performed on different memory locations. This
observation provides the key insight into variable expansion and privatization.

Scalar expansion removes loop-carried antidependences caused by a scalar variable. The
scalar variable is replaced with an array containing as many elements as loop iterations, as shown
in Figure 2.5. Each array element is accessed by only one iteration, hence the loop-carried
antidependence is eliminated without violating any dependences within a single iteration. Array
expansion extends this technique to arrays by increasing array dimensionality and introducing
as many elements in the new dimension as loop iterations.

Scalar privatization eliminates loop-carried antidependences by associating a private vari-

CHAPTER 2. BACKGROUND 18

do i=1,N doall i=1,N
S=.. s_exp[i] = ...
afi] =s — ai] = s.exp[i]
end do end do

Figure 2.5: Scalar expansion to eliminate loop-carried antidependences

able with each loop iteration. When multiple iterations are assigned to the same processor,
multiple private variables are collapsed into one variable per processor. Array privatization is
a similar technigue where a private array is associated with each loop iteration. Once again,
multiple private arrays may be collapsed into a single private array per processor.

Both expansion and privatization must preserve true dependences flowing outside the loop.
For sequential loop semantics, there is a final value associated with each scalar or array element.
When a loop is parallelized, final values for privatized or expanded variables must be preserved
by copying each value from the expanded array or the appropriate private version before

executing any code following the loop.

2.3.3 Recognition of Induction and Reduction Variables

An induction variable is a variable that causes a loop-carried dependence, but whose value is
implicitly a function of enclosing loop index variables. An example of an induction variable
is given in Figure 2.6(a). The variable k& causes a true loop-carried dependence because it is
read then written in each iteration. However, the sequence of values for £ is easily expressed
as a function of 7. Once this relationship is recognized, the assignment to % is replaced with a
function of ¢, as shown in Figure 2.6(b). There is still a loop-carried dependence for k£, but now
it is an antidependence that is easily resolved with privatization.

An reduction variable is a variable whose value is computed in each loop iteration using
an associative operator. An example of an reduction variable is given in Figure 2.7(a). The
variable s causes a true loop-carried dependence by summing elements from array a. However,
partial sums may be computed in parallel on each processor, as shown in Figure 2.7(b), because

addition is associative. After all partial sums are computed, one processor performs the final

CHAPTER 2. BACKGROUND 19

k=7 k=7
doi=1,N doi=1,N
k=k+2 = k=2*+7
alk]=... alk] =...
end do end do
(@) & is an induction variable (b) Transformation of £ as a function of ¢

Figure 2.6: Induction variable recognition

s=0 partial_s[proc_id] =0
doi=1,N N do i=istart(proc_id),iend(proc_id)
s=s+a]i] partial _s[proc_id] = partial_s[proc_id] + a[i]
end do end do
(@) s is a reduction variable (b) Computing partial sums to allow parallelization

Figure 2.7: Reduction variable recognition

addition of all partial sums.® Reductions involving other associative operators such as minimum

or maximum are treated similarly.

2.3.4 Scheduling Loop Iterations

Scheduling of DOALL and DOACROSS loop iterations specifies the distribution and execution
order on each processor. DOALL loops have no constraints on execution order. However,
a subset of DOACROSS loop iterations assigned to the same processor must be executed
in lexicographical order to ensure that one processor can always execute the iteration that
lexicographically precedes any dependent iterations. Irrespective of any constraints, a schedule
should balance the workload for best performance.

In static scheduling, the distribution and execution order of iterations are determined at

compile-time, hence no run-time overhead is incurred. Static scheduling is most effective when

3Although addition is mathematically associative, changing the order of summation may produce slightly
different numerical results on real hardware due to rounding in floating-point arithmetic.

CHAPTER 2. BACKGROUND 20

there is no variance in the amount of computation between iterations, or when the variance
is known at compile time. The most common schedules are block, cyclic, and block-cyclic.
For n iterations and p processors (with n > p), block distribution assigns a contiguous subset
of |n/p] iterations to each processor except the last, which is assigned n — (p — 1) - [n/p]
iterations. Cyclic distribution assigns the i iteration to processor (i mod p). Block-cyclic
distribution assigns contiguous subsets of fewer than |n/p]| iterations to p processors in a cyclic
manner.

Loop iterations may also be scheduled dynamically at run time. The most common approach
is self-scheduling, where processors extract iterations atomically from one or more subsets of
iterations. Self-scheduling is most effective when the variance in the amount of computation
for different iterations is high, or when the variance is unknown at compile time. There are a
number of self-scheduling algorithms [HSF92]. In the simplest algorithm, processors obtain
one iteration at a time from a single set. More elaborate algorithms provide one subset of
iterations per processor and permit iterations to be transferred between subsets to balance

workloads.

2.4 Loop Transformationsfor Locality and Parallelism

A loop transformation reorders loop iterations in order to enhance locality or parallelism [PW86,
ZC91]. The legality of loop transformations is dictated by dependences, just as it is for
parallelization. This section first describes the relationship between data reuse and locality, then
characterizes the degree and granularity of parallelism in loops. Various loop transformations

for enhancing locality and parallelism are then discussed.

24.1 DataReuseand Locality

Data reuse is an inherent characteristic of programs. Locality in the memory hierarchy results
when processors obtain reused data from nearby (i.e., faster) levels of the hierarchy, specifically
the cache. Locality reduces the effective memory access latency and thereby reduces total
execution time. Temporal locality results from reuse of the same data item, whereas spatial
locality results from reuse of different data items in the same cache line.

There are, however, a number of obstacles for achieving cache locality. First, the cache

CHAPTER 2. BACKGROUND 21

capacity is limited, hence reused data may be displaced from the cache if the cache capacity is
exceeded between uses. Second, the cache associativity is limited, hence reused data may be
displaced by mapping conflicts in the cache, even if there is sufficient cache capacity. Finally,
false sharing occurs when two different processors write different elements of the same cache
line, and the affected cache line is repeatedly exchanged between the two processor caches.

In a loop, temporal and spatial reuse may occur between iterations as well as within
iterations. The goal of locality enhancement is to increase the likelihood of converting reuse
into locality by: (a) reducing the number of iterations between uses, (b) reducing the occurrence

of the cache conflicts, or (c) limiting the extent of false sharing.

2.4.2 Degreeand Granularity of Parallelism

The degree of parallelism in a DOALL loop is equal to the number of iterations because the
iterations are independent of each other. For DOACROSS loops, the degree of parallelism
is constrained by synchronization; in the worst case, there is no parallelism (i.e., degree of
parallelism is 1). The granularity of parallelism is the amount of computation per parallel loop
iteration. For example, the nesting level of a single DOALL loop within a perfectly-nested loop
nest dictates the granularity of parallelism.

Loop transformations for enhancing parallelism control the degree and granularity of par-
allelism that is actually exploited. For example, positioning two or more DOALL loops in a
perfectly-nested loop nest adjacent to each other makes the total available parallelism equal
to the product of the degrees of parallelism of each DOALL loop. Furthermore, positioning

DOALL loops at outer nesting levels increases the granularity of parallelism.

2.4.3 Unimodular Transformations

Unimodular transformations [Ban93, Wol92] are applied to perfectly-nested loop nests with
affine loop bounds and array subscripts. These transformations are represented as invertible
unimodular matrices whose determinants are +1. Three elementary loop transformations—
permutation, reversal, and skewing—may be represented with unimodular matrices, as shown
in Figure 2.8. A compound transformation is formed with a product of elementary unimodular

matrices, and the resulting matrix remains unimodular. A unimodular transformation is applied

CHAPTER 2. BACKGROUND 22

doi=1,L doi=1,L
do j=1,M do k=1,N
do k=1,N do j=1,M [1 00]
<body> — <body> 0 01
end do end do [O 1 OJ
end do end do
end do end do

(a) Loop permutation and corresponding unimodular matrix

doi=1,L doi=1,L
do j=1,M doj=—M,-1
do k=1,N do k=1,N 1 0 O
<body> — <body> [0 -1 0]
end do end do 0O 0 1
end do end do
end do end do
(b) Loop reversal and corresponding unimodular matrix
doi=1,L doi=1,L
do j=1,M do j=1+i,M+i
do k=1,N do k=1,N 100
<body> — <body> [110]
end do end do 0 01
end do end do
end do end do

(c) Loop skewing and corresponding unimodular matrix

Figure 2.8: Unimodular transformations

by multiplying the corresponding matrix with the iteration vector to yield the new iteration
vector. Loop bounds are transformed in a similar manner. However, array subscript expressions

are transformed by using the inverse of the matrix.

Unimodular transformations enhance locality and parallelism, primarily by permuting or
skewing loops in a loop nest. Loop permutation enhances locality by reducing the number
of iterations between uses of the same data. Permutation also enhances the granularity of
parallelism by moving DOALL loops to the outermost position. When a loop nest contains

no DOALL loops, but parallelism exists along wavefronts in the iteration space, loop skewing

CHAPTER 2. BACKGROUND 23

obtains a new iteration space where the parallelism is captured in a DOALL loop.

Testing the legality of a unimodular transformation is straightforward. Dependence vectors
are transformed in the same manner as the iteration vector with a matrix-vector product. Since
iterations in the transformed space are traversed in lexicographical order, the transformed

dependence vectors must remain lexicographically positive for the transformation to be legal.

24.4 Tiling

Tiling (also known as blocking) combines strip-mining of inner loops with loop permuta-
tion [BGS94, Wol92]. Strip-mining encloses a loop with a new control loop that iterates
between the original loop bounds in steps of B. The original loop executes B iterations starting
at each value of the enclosing loop index variable. Tiling is completed by permuting the control
loop to the outermost level, as shown in Figure 2.9(b).

Tiling is legal if and only if the strip-mining and loop permutation are legal. Strip-mining
alone is alwayslegal; the loop nest dimensionality is increased, but the iterations are traversed in
the same order. Strip-mining expands each dependence vector by inserting a zero in the position
corresponding to the control loop index. Furthermore, for each original vector with a non-zero
element for the original loop index, a new vector is introduced. The new dependence vector is
copied from the transformed dependence, then the element corresponding to the control loop
index is set to B or —B, depending on the sign of the component corresponding to the original
loop index.

The legality of permutation is determined just as in unimodular transformations. If any
transformed dependence vector after permutation is not lexicographically positive, then tiling
is not legal. Since permutation moves control loops to the outermost level, tiling is legal only
if strip-mining does not introduce negative elements into the transformed dependence vectors.

Tiling enhances locality by reducing the number of iterations between uses of the same
data, as shown in Figure 2.9. The outermost loop in Figure 2.9(a) carries reuse, and tiling inner
loops as shown in Figure 2.9(b) exploits this reuse. Figures 2.9(c) and (d) graphically illustrate
the reuse before and after tiling. Locality is enhanced with tiling because fewer data elements
are accessed between uses.

Tiling enhances the granularity of parallelism by permuting parallel control loops to the

CHAPTER 2. BACKGROUND 24

do jj=1,N,B
doii=1,N,B
dot=1T
do j=jj,min(jj+B—1,N)
dot=1,T do i=ii,min(ii+B—1,N)
do j=1,N .= aij]
doi=1,N end do
o= afl] end do
end do end do
end do end do
end do end do
(@) Original loop nest (b) Loop nest after tiling loops j and i

s S

i) (]
TR ik

]]]

(c) Original data accesses in array a (d) Tiled data accesses in array a

Figure 2.9: Example of tiling

outermost level. For example, if loops j and 7 in Figure 2.9(a) are parallel, the control loops
jj and i are also parallel, but each control loop iteration executes many inner loop iterations.
However, the degree of parallelism in each control loop is reduced by a factor of B. Hence,

there is a tradeoff between the degree and granularity of parallelism.

245 Loop Distribution

Loop distribution transforms a single loop into one or more loops containing statements from
the original loop body, as illustrated in Figure 2.10. As a result, the order of statement instances
is altered substantially from the original loop.

Loop distribution is primarily used to enhance parallelism by obtaining one or more DOALL
loops from a serial loop that carries dependences. If the dependences flow between different
statements, then loop distribution places the source statement in one loop and the sink statement

in another loop, and the resulting loops no longer carry dependences. Loop distribution also

CHAPTER 2. BACKGROUND 25

doi=1,N
. Sl
do ;LN distribution Sgdiff N
S, - %
gi fusion endS(310
end do = doi=1,N
Sy
end do

Figure 2.10: Loop distribution and loop fusion

enhances locality by reducing the amount of data accessed in any one loop, hence reducing
the likelihood of cache conflicts. On the other hand, loop distribution also reduces locality by
increasing the number of iterations between uses of the same data.

Loop distribution is legal if and only if there are no dependence cycles in the original loop
with at least one loop-carried dependence. For example, the loop in Figure 2.10 could not
be distributed in the manner shown if S;(7)0.52(¢), S2(7)dS4(7), and S4(:)dS1(7). Statements

involved in a cycle must appear in the same loop.

2.4.6 Loop Fusion

Loop fusion is the opposite of loop distribution; it combines the bodies of adjacent loops, as
shown in Figure 2.10. The loops to be fused must have compatible loop headers. Renaming of
index variables and peeling of boundary iterations may be used to make headers compatible.
Alternatively, the fused loop bounds may be set to the minimum lower bound and maximum
upper bound from the original loops, and conditional guards may be used to prevent statements
from being executed in iterations not included in their original loops.

Loop fusion enhances both locality and parallelism. Locality is enhanced after fusion by
reducing the number of intervening iterations between uses of the same data. However, fusion
may also reduce locality because increasing the amount of data accessed in each fused loop
iteration increases the potential for cache conflicts. If the loops being fused are parallel, then

fusion increases the granularity of parallelism when the resulting fused loop is also parallel.

CHAPTER 2. BACKGROUND 26

However, fusion may also reduce the degree of parallelism by resulting in a serial loop.

The legality of fusion is dictated by dependences between iterations in the loops being
fused. If a dependence flows from statement S; in one loop to statement .S, in another loop,
but after fusion the dependence becomes S,(i)d.5:1 (i), then fusion is not legal because the sense
of the dependence has been reversed from the original semantics. If fusion of a sequence of
parallel loops is legal, the resulting fused loop may not be parallel if dependences originally

between iterations in different loops become loop-carried in the fused loop.

2.5 Data Transfor mations

In addition to loop transformations, there are a number of data transformations, primarily
for array data, that may also enhance locality within loops. The legality of all of the data
transformations described in this section is contingent upon the ability to identify all array
references and alter them where necessary to match the data transformation. Features such
as pointers and aliasing may make it impossible to guarantee that all references are modified
appropriately. However, in numeric programs that operate on arrays, data transformations are
often feasible [AAL95, BGS94, LW94].

25.1 Memory Alignment

Memory alignment [BGS94] is a general data transformation that seeks to enhance spatial
locality within cache lines by aligning data to cache line boundaries in memory. For example,
if a cache-line-sized portion of data structure is referenced in a program, aligning the data
structure such that the data to be accessed begins at a cache line boundary, rather than straddling
two cache lines, reduces the number of cache lines that are referenced. Memory alignment
can be useful in reducing false sharing in parallel execution. However, the benefit of memory
alignment diminishes when the data size is much larger than a single cache line, and there is

no benefit if data is accessed with a stride that exceeds the cache line size.

2.5.2 Array Padding

Array padding [BGS94] increases the size of inner array dimensions to reduce cache conflicts

between elements from the same array. Since caches sizes are powers of two, conflicts may

CHAPTER 2. BACKGROUND 27

occur frequently when array dimension sizes are also powers of two. Padding introduces unused
array elements that serve only to alter the memory layout of the array. Since the mapping of
data from memory into the cache depends on the memory layout, array padding may enhance

locality by altering the mapping sufficiently to reduce the occurrence of cache conflicts.

2.5.3 Array Element Reordering

Array element reordering [AAL95] modifies the storage order for elements within the same
array without consuming additional storage. Modifying the storage order can enhance spatial
locality for cache lines. The simplest transformation for array element reordering is permutation
of array dimensions. If the dimension that is traversed in the innermost loop of a loop nest
is aligned with the storage order for cache lines, then spatial locality is maximized. A more
complicated transformation is increasing the dimensionality of the array while holding the total
number of elements constant. This transformation may be used to create smaller blocks of
contiguous array elements to enhance spatial locality. For example, given an n x n array, a
subblock of b x b elements (where b < n) is not contiguous in memory. However, restructing the
array into a three-dimensional k x b x b array (where k = n?/b?) results in k two-dimensional
contiguous subblocks of b x b, and the amount of storage needed remains the same. The
drawback of this approach is that all array references and their subscript expressions must be

modified to reflect the element reordering.

2.5.4 Array Expansion and Contraction

Array expansion was discussed earlier in Section 2.3.2 in the context of eliminating loop-carried
dependences to enable loop parallelization. Because array expansion increases the amount of
data accessed in a loop, it is not likely to enhance locality, and may instead diminish locality.
On the other hand, the opposite transformation, array contraction [War84], reduces the
array dimensionality and eliminates the storage needed by the dimensions being eliminated,
and hence reduces the amount of data accessed in a loop. Array contraction is applicable when
a value written to an array element in one loop iteration is not used in other iterations, and
also not used after exiting the loop. In such circumstances, the array may be contracted to

eliminate the dimension containing the unused data. In the best case, the array is contracted

CHAPTER 2. BACKGROUND 28

into a single scalar variable to substantially reduce the amount of data accessed in the loop.
However, contraction to a single scalar variable may then introduce loop-carried dependences

that prevent parallelization. Hence, there is a tradeoff between parallelism and locality.

255 Array Merging

Array merging [LW94] interleaves data from two or more arrays used in the same loop in order
to enhance spatial locality for cache lines. For example, the conventional memory layout for
two arrays x and y consists of all elements of x, followed by all elements of y. With array
merging, the new layout consists of the first element of x, followed by the first element of y,
then second element of x, then the second element of y, and so on. When executing a loop,
this layout causes corresponding elements from both arrays to be loaded in the same cache line
with one memory access. With the conventional layout, two separate cache lines are loaded.
Although array merging may avoid back-to-back memory accesses for cache lines, the total

number of cache lines accessed is the same with either layout.

2.6 Effectivenessof Locality Enhancement within Loop Nests

This section surveys a representative set of studies that provide insights into the effectiveness of
locality enhancement. There exists a large body of literature on locality-enhancing techniques
such as unimodular transformations, tiling, loop distribution, and loop fusion [BGS94]. In past
research, loop permutation and tiling within loops have been studied frequently and evaluated
extensively [Ban93, CMT94, 1T88, KM92, NJL94, WL91]. Other techniques such as loop
distribution and loop fusion have received less attention [KM94, War84], and have been viewed
as transformations that enable permutation [CMT94]. Hence, the survey will focus primarily

on evaluating the effectiveness of loop permutation and tiling within loops.

2.6.1 Survey of Selected Studies

The studies selected for the survey in this section are the works by Porterfield [Por89];
Wolf [Wol92]; Carr, McKinley, and Tseng [CMT94]; and McKinley and Temam [MT96].
These studies consider programs from well-known benchmark suites such as SPEC [Sta] and

Perfect Club [BCK*89], as well as other representative numerical programs. The loop nests

CHAPTER 2. BACKGROUND 29

in these programs exhibit two common characteristics. First, the majority of loop nests have
rectangular iteration spaces, and on occasion, triangular iteration spaces [MT96, Wol92]. Rect-
angular iteration spaces reflect the bounds of rectangular arrays accessed in loop nests. Second,
the majority of array references in loop nests have subscript expressions that induce regular data
access patterns [Por89, MT96, Wol92]. This regularity in turn induces uniform data reuse and
dependence relationships. The following paragraphs summarize the results and conclusions

from each of these studies.

Porterfield [Por89] performs cache simulations to evaluate the effectiveness of loop per-
mutation, tiling, and loop fusion, and proposes a model to guide the application of these loop
transformations. The model makes use of dependence information (including input depen-
dences) for array references in a loop body to determine the number of iterations before the data
accessed in the loop exceeds the available cache capacity. Dependence distances and the level
of loops carrying dependences are used to compute the amount of data resident in the cache.
The same information is then used to identify individual array references that are likely to incur
cache misses once the cache capacity is exceeded. The intent is to guide the application of

appropriate transformations for reducing the number of misses for these array references.

Porterfield presents simulated cache hit ratios for a collection of 12 numerical programs.
The simulations employ a 32-Kbyte cache with 4-way set-associativity. Prior to applying
transformations for locality enhancement, Porterfield reports that the average hit ratio for the
programs is 76% with one-word cache lines. After applying the transformations, the average
hit ratio increases to 81%. Only 3 of the 12 programs could be transformed to show a significant
improvement in hit ratio with one-word cache lines. Two of the programs contained matrix
multiplication kernels whose cache hit ratios were improved substantially with tiling. The
third program benefited from applying a sequence of loop permutation, distribution, and fusion
transformations to a pair of loop nests that were executed frequently. Porterfield also reports
that when the cache line size is increased to 8 or 16 words, the average hit ratio for the original
programs increases to 95%. Thus, the average hit ratio for the original programs with long
cache lines is better than the hit ratio for the transformed programs with one-word cache lines.

No performance results are given for the transformed programs with long cache lines.

Wolf [Wol92] describes techniques that combine unimodular loop transformations with

CHAPTER 2. BACKGROUND 30

tiling. He also proposes a model to guide the application of the loop transformations. The
model estimates the expected reduction in the number of cache misses per iteration of the
innermost loop. When tiling is applied to exploit temporal reuse, the model assumes that the
number of cache misses is reduced by the number of uses of the same data. In other words,
the underlying assumption is that in the absence of tiling, none of the reuse is converted into
temporal locality. In conjunction with tiling, Wolf also describes an algorithm for tile-size
selection to limit the occurrence of conflicts between reused elements from the same array in

low-associativity caches.

Experimental results are presented for 8 application programs in which 171 loop nests were
considered for transformation. Tiling was applied to 50% of the loop nests, permutation was
applied to 20% of the loop nests, and the remaining loop nests were not transformed. Loop
skewing was never applied. The performance results are speedups given by the ratio of original
and enhanced execution times for each program on a uniprocessor. On a system with a 64-Kbyte
direct-mapped cache, the speedup for one program was 15%, and the speedup for two others
was 5%. The five remaining programs either showed no improvement or performed worse.
Results are also provided for 7 kernels. Out of 11 loop nests in these kernels, 8 were tiled
and 2 were permuted; none were skewed. Tiling resulted in a speedup of 200% for a kernel
containing a loop nest for LU decomposition. The speedup for a kernel loop containing matrix

multiplication improved by 15%. The remaining kernels showed little or no improvement.

Carr, McKinley, and Tseng [CMT94] study the effectiveness of loop permutation to
enhance spatial locality for cache lines. They also consider the use of loop distribution and
loop fusion as supplementary transformations to enable loop permutation. A cost model is used
to estimate the number of cache lines accessed when a given loop is positioned innermost in a
loop nest. This cost model determines a permutation that positions loops from outermost level

to innermost level in decreasing order of the number of cache lines accessed.

Experimental results are reported for a collection of 35 application programs to ascertain
whether loop permutation driven by the cost model described above provides significant per-
formance improvements. The performance results are speedups that represent reductions in
execution time for each program on a uniprocessor. Results obtained on a system with a

64-Kbyte, 4-way set-associative cache indicate that the speedup for one program was 115% as

CHAPTER 2. BACKGROUND 31

a result of permuting the loops in the two most frequently executed loop nests. The speedup
with loop permutation for a kernel containing a loop nest for Gaussian elimination was 768%
because the original loop nest did not conform to the array element order enforced by the source
language. Seven other programs showed speedups ranging from 1% to 13%. The remaining
27 of 35 programs experienced no benefit or degradation in performance. Their analysis of the
1400 loop nests considered in the 35 programs indicates that 74% of the loop nests are already
coded with the best loop in the innermost position for spatial locality, hence loop permutation
is not needed in the majority of loop nests. Only 11% of the loop nests were permuted, while
the remaining 15% could not be permuted.

McKinley and Temam [MT96] perform cache simulations for 8 application programs to
classify and measure spatial and temporal locality. They simulate a modest 8-Kbyte, direct-
mapped cache with 32-byte cache lines. These results are obtained only for the original
programs without applying any locality enhancement techniques. Nonetheless, they do provide
a number of insights that are relevant for locality enhancement.

First, they report that overall cache hit ratio for all programs is high; no program had a hit
ratio below 90%. Second, the results indicate that the majority of the cache misses are incurred
for data reused between loop nests, i.e., data accessed in one loop nest does not remain cached
for reuse in a subsequent loop nest. They indicate that the cache hit ratio for data reused within
loop nests is high, and that both spatial and temporal locality have equal significance within
loop nests.* Finally, they conclude that the relatively small number of cache misses for data
reused within the same loop nest is due primarily to cache conflicts between different array
references, rather than due to insufficient cache capacity. This behavior persists even for 2-way

set-associative caches.

2.6.2 Conclusionsand Implications

A number of conclusions can be drawn from the survey of previous studies. These conclusions

are enumerated and explained in detail below.

“1t should be noted that McKinley and Temam disabled loop unrolling when compiling programs, which
potentially increases the number of accesses to the cache across loop iterations. This increase may potentially
overstate the extent of temporal locality in the cache. In contrast, an unrolled loop provides opportunities to reuse
data from registers within the unrolled loop body and thereby reduce the number of accesses to the cache.

CHAPTER 2. BACKGROUND 32

1. Loop permutation and tiling provide limited performance improvements for the majority
of loop nestsin representative applications. Carr et al. demonstrate that loop permutation
is frequently unnecessary because the majority of representative loop nests are already
coded with the best permutation. The results of Porterfield suggest that long cache lines
provide adequate locality without requiring additional transformations. Wolf and Porter-
field demonstrate that tiling provides significant improvements only for distinguished
kernels such as matrix multiplication and LU decomposition that are characterized by
significant temporal reuse. For the majority of loop nests in more representative appli-
cation programs, tiling does not provide any significant benefit. Finally, McKinley and
Temam conclude that locality from data reuse within representative loop nests is high.
They also report that the failure to capture reuse between loop nests causes the majority

of cache misses; this reuse cannot be converted into locality by permutation or tiling.

2. Techniques for avoiding cache conflicts when applying locality-enhancing transforma-
tions have not received adequate attention. Carr et al. and Porterfield conducted their
experiments on 4-way set-associative caches that decrease the likelihood of conflicts,
hence they do not discuss techniques for conflict avoidance and rely instead on the cache
associativity. McKinley and Temam conclude that relatively few misses are incurred for
reuse within loop nests, and conflicts cause the majority of these misses, even for a 2-way
set-associative cache. However, they do not propose a conflict avoidance technique be-
cause their study does not evaluate transformations for locality enhancement. Only Wolf
discusses a technique for conflict avoidance in conjunction with a locality-enhancing loop
transformation. Although he proposes a tile-size selection algorithm to prevent conflicts
within the same array in a tiled loop nest such as matrix multiplication, the benefit of

tile-size selection is not demonstrated for loop nests in more representative applications.

3. Existing models for guiding loop transformations do not adequately reflect the potential
benefit of locality enhancement on execution time. Failure to properly gauge the impact
of a particular transformation on execution time is evident in the lack of performance
improvement and leaves the utility of the transformation open to question. The surveyed

models establish criteria for applying individual transformations, but these criteria do not

CHAPTER 2. BACKGROUND 33

necessarily reflect the true locality benefit. The model of Porterfield seeks to identify
array references that incur cache misses within a loop nest, but such cache misses are
caused largely by failing to capture data reuse between loop nests. The model of Wolf
assumes that there is no temporal locality within a loop nest prior to tiling, but since
reuse within loop nests is frequently converted to locality, this assumption can overstate
the benefit of tiling. Finally, the model of Carr et al. provides a measure for ranking loop

permutations, but representative loop nests do not normally require permutation.

The implications of the survey presented in this section are that reuse across loops must be
exploited, that cache conflicts must be eliminated to ensure the benefit of locality, and that more
effective models are required to reflect the impact of locality enhancement on execution time.
The remainder of this dissertation addresses each of these implications. The issue of enhancing
locality across loop nests is addressed in Chapters 4 and 5, while the issue of eliminating cache
conflicts to ensure the benefit of locality is addressed in Chapter 6. In the interim, Chapter 3
describes a new model for quantifying the impact of locality on execution time. The model is

used in the subsequent chapters to assess the potential benefit of locality enhancement.

Chapter 3

Quantifying the Benefit of L ocality
Enhancement

The benefit of locality enhancement must be assessed with reasonable accuracy in order to
effectively guide the application of appropriate transformations and also to verify that the
actual performance gains meet expectations. This chapter proposes a model to assess the
potential reduction in execution time from enhancing cache locality across nested loops.

This chapter is organized as follows. First, an overview of the proposed model is outlined
along with underlying assumptions. Next, the benefit of locality enhancement is expressed as a
ratio of the number of memory accesses before and after applying a transformation. This ratio
is then used to model the impact of locality enhancement on execution time. Finally, potential

limitations of the model are briefly discussed.

3.1 Overview of Model and Underlying Assumptions

The purpose of the model proposed in this chapter is twofold. First, the model enables a
compiler to better assess the extent to which locality enhancement will reduce execution time.
Second, the model provides a useful estimate for the expected reduction in execution time for
comparison with the measured reduction in execution time. Chapters 4 and 5 use the model
to assess the benefit of locality-enhancing transformations (namely fusion and tiling), and
Chapter 7 uses the model to compare expected and measured reductions in execution times.
The model accounts for two factors that together determine the potential benefit of locality
enhancement: (a) the reduction in the number of memory accesses from locality enhancement,

and (b) the contribution of memory accesses towards the total execution time prior to locality

34

CHAPTER 3. QUANTIFYING THE BENEFIT OF LOCALITY ENHANCEMENT 35

enhancement. The model seeks to quantify each of these factors such that the extent of the
reduction in execution time can be assessed.

The underlying assumptions for the model are enumerated below along with justifications.

1. Data reuse within representative loop nests is assumed to be converted into locality by the
cache without the aid of any transformation. The justification for this assumption is the
lack of significant performance improvement from existing transformations and evidence

for high locality from reuse within loop nests, as described in Section 2.6.

2. Data reuse between loop nests is assumed not to be converted into locality. The validity
of this assumption depends on the total data size for a specific program and the cache
size of the system on which the program is executed. The expectation is that problems
of greatest interest to application programmers will have sufficiently large data sizes
to require locality enhancement across loop nests. Furthermore, the evidence cited in

Section 2.6 indicated that reuse between loop nests is often unexploited.

3. Loop nests are assumed to have rectangular iteration spaces to reflect the bounds of
similarly-sized arrays accessed in loop bodies. As a result, it is assumed that loop nests
read or write all elements of the accessed arrays (or nearly all elements, if boundary
regions are excluded). The justification for this assumption follows from the common

characteristics of loop nests in numeric programs, as described in Section 2.6.

4. It is assumed that cache conflicts do not diminish locality after applying transformations
for locality enhancement. The cache conflict avoidance techniques to be presented in
Chapter 6 will allow transformations to fully realize their benefits and ensure the validity

of this assumption.

5. The cache policy for writes is assumed to be write-allocate and write-back [PH96].
Cache lines must first be loaded, or allocated, in the cache in order for writes to proceed.
Furthermore, modified data is written back to memory only on replacement in the cache.
This policy performs well in multiprocessor systems [PH96] and is standard for caches

in contemporary high-speed microprocessors [CHK*96, MWV92, Yea96].

CHAPTER 3. QUANTIFYING THE BENEFIT OF LOCALITY ENHANCEMENT 36

cache lines read from memory

array a[M,N], b[M,N] araya arayb
do j=1,N cache lines written back to memory
doi=1,M
ali,j] =b[i,j]+1
endgg] [11] N L [Joee
end do array a array b
(a) Example loop nest (b) Memory accesses for cache linesin arrays

Figure 3.1: Illustration of memory accesses for arraysin loop nests

3.2 Quantifying Memory Accessesfor Arrays

To assess the benefit of locality enhancement, the model discussed in this chapter relies on
guantifying memory accesses for arrays in loop nests. Since processors access memory in
units of cache lines, the number of memory accesses per array is a function of the array size
and cache line size. A k-dimensional array with dimensions N; x N, x - -+ x N, normally
consists of contiguously-allocated elementsin memory. For acacheline size of s;;,. elements,

the number of cachelinesinthearray isgivenby [(Ny - Ny - -+ Ni)/Stine |-

A loop nest referencing an array often has regular data access patterns and iteration space
bounds that reflect the array bounds. Reuse of array elements arising from the data access
patterns within the loop nest is normally captured by the cache (see Section 2.6). As aresult,
each cachelineinthe array isideally accessed only once from memory to load the lineinto the
cache. If the loop nest modifies a cache line (i.e., writes to array elements in the cache line),
the line must subsequently be written back to memory. The total number of memory accesses
per array istherefore given by the number of cache lines read from and written to memory for

the array.

An examplefor illustrating memory accesses for arraysinloop nestsisshownin Figure 3.1.

The loop nest in Figure 3.1(a) references two arrays whose dimensionality and bounds match

CHAPTER 3. QUANTIFYING THE BENEFIT OF LOCALITY ENHANCEMENT 37

the dimensionality and bounds of the loop nest. Arraysa and b are read in the body of the loop
nest, hence cache lines for these arrays are loaded into the cache as they are needed. Since
elements of array a are modified in the body of theloop nest, the affected cache linesfor array a
are eventually written back to memory as they are replaced by new data later in the execution
of the loop nest. The transfer of cache linesto and from memory is shown in Figure 3.1(b).
When the arrays accessed in a collection of loop nests are similar in size and the iteration
space bounds reflect the array bounds (as in Figure 3.1), memory accesses may be quantified
in amanner that isindependent of array size and cache line size. Throughout this dissertation,
reading or writing the cache lines for a single array during the execution of a loop nest is
designated a sweep through the region of memory allocated for that array. When arrays are
similarly-sized, sweepsfor different arraysrepresent an equival ent number of memory accesses.
For example, in Figure 3.1(b), loading the cache lines for arrays a and b from memory results
in 2 sweeps (each accessing atotal of M - N array elements), and writing back the cache lines

for array a to memory resultsin 1 additional sweep, for atotal of 3 equivalent sweeps.

3.3 Quantifying the Reduction in Memory Accesses with L o-
cality Enhancement

The goal of locality enhancement across a loop nest sequence is to reduce the number of
memory accesses for cache lines by retaining datain the cache between uses. The reductionin

the number of memory accesses for cache linesis expressed asthe ratio

#memory accesses before locality enhancement
Tm = - .
#memory accesses after locality enhancement

(3.1)

Thisratio indicates the potential benefit of enhancing locality across loops; the larger the ratio,
the greater the potential reduction in execution time.

When the loop nest sequence under consideration contains references to similarly-sized
arrays, as described in Section 3.2, theratio r,, may be expressed using the number of sweeps
before and after locality enhancement. Thisis because the total number of memory accesses
for cache linesis directly proportional to the number of sweeps. Before locality enhancement,
each array that is referenced in a loop nest contributes one sweep for the numerator of the

ratio for r,,. Each array that is modified in a loop nest contributes an additional sweep for

CHAPTER 3. QUANTIFYING THE BENEFIT OF LOCALITY ENHANCEMENT 38

writebacks. Locality enhancement to exploit array reuse across loop nests reduces the number
of memory accesses, and hence the number of sweeps. The expected number of sweeps after
locality enhancement is indicated in the denominator of the ratio for r,,. When expressed in
terms of sweeps, r,, is designated the sweep ratio for convenience. A compiler can compute
thisratio to assessthe potential benefit of enhancing locality for aloop nest sequence (Chapter 4

and Chapter 5 provide the details on computing r,,, for different transformations).

3.4 Quantifying the Impact of Locality Enhancement on Ex-
ecution Time

A reduction in the number of memory accesses with locality enhancement, as embodied by the
ratio r,, in Equation 3.1, can reduce execution time. The potential reduction in execution time
depends on the relative contribution of memory accesses towards total execution time. In the
simplest case where the processor stalls on each memory access, the total execution time T for

a sequence of loop nests before locality enhancement is represented as
T=T.+1T,,

where T, isthe total computation time, and 7;,, is the time during which computation is stalled
to access memory for cache lines. This formulation does not consider concurrency between
computation and memory accesses; thisissue is addressed at the end of this section.

The contribution of memory accesses towards execution time s reflected in the fraction

T+ T

fm

Figure 3.2 illustrates the relationship between T, T,,, and f,, for a hypothetical sequence of
computation and memory accesses for cache misses. For illustrative purposes, the computation
and memory accesses shown in Figure 3.2(a) are lumped together in Figure 3.2(b) without
changing 7. or 7,,,.

A locality-enhancing transformation reduces the number of memory accessesby afactor r,,,,
which should also reduce 7,,, by afactor of r,, without affecting 7,.. For example, Figure 3.2(c)

showsthe effect of reducing 7,, by r,,, = 2. Sinceonly afraction f,, of thetotal executiontime

CHAPTER 3. QUANTIFYING THE BENEFIT OF LOCALITY ENHANCEMENT 39

o 1 2 3 4 5 6 7 8 9 10
_—

() Computation and memory access time

» time

—
1

10

conpucion I 10
Memory access |

T=4 T=6
C m

Lé fm= 0.6 éJ

(b) Lumped computation and memory access time

computation T=7
memory access |

T=4 T/r=6/2=3
c m o m

(c) Reduction in execution timewhenr =2

Figure 3.2: Graphical representation of 7' = 1. + T,,, and effect of locality enhancement

T isreduced by r,,, the improvement in performance due to locality enhancement is given by

To+T, 1
T+ Tofrm (L= fo) + fim (32)

Thisimprovement indicates a reduction in execution time on one processor, but also appliesfor

parallel execution with abalanced workload; in this case, al processors see the same reduction

in execution time.

Although Equation 3.2 assumes for simplicity that a processor stalls on memory accesses,

CHAPTER 3. QUANTIFYING THE BENEFIT OF LOCALITY ENHANCEMENT 40

modern processors are now designed with support for prefetching [CHK™ 96, Yea96]. Prefetch-
ing hides memory latency by initiating multiple memory accesses in advance of data usage to
overlap memory accesses with computation [MLG92]. The performance improvement from
prefetching depends on the extent of this overlap and the memory system bandwidth available
for concurrent memory accesses.

Locality enhancement can increase the performance improvement with prefetching by
reducing the number of memory accesses and hence making more bandwidth available to
overlap theremaining memory accesses[MLG92, BAM*96]. If thetimefor concurrent memory
accesses with prefetching still exceeds the time for computation, execution time is governed
by memory access time. In this case, combining prefetching with locality enhancement to
reduce the memory accesses by a factor of r,, should ideally reduce execution time by r,,, over
prefetching alone, provided that the remaining memory accesses still determine execution time
(equivaent to f,,, = 1 in Equation 3.2).

However, the actual improvement may belessthanr,,, for anumber of reasons. First, locality
enhancement may reduce the number of memory accesses to the point that the computation
time, rather than the reduced memory time, dominatestotal executiontime. Hence, overlapping
the remaining memory accesses with computation will not result in commensurate reductions
in execution time. Second, with software-controlled prefetching, instruction overhead may
also reduce the improvement [MLG92]. Finally, prefetch requests may not be scheduled early
enough in some cases to hide all memory latency [BAM*96, SMP*96]. In generd, the ratio

rm Provides a useful bound for the improvement of locality enhancement with prefetching.

3.5 Potential Limitations of the M odel

Capturing reuse within loop nests The model assumes that reuse of data within loop nests
is captured by the cache. This assumption may not be valid for loop nests that access a large
volume of data and have considerable tempora reuse separated by a large number of loop
iterations. Such loop nests may benefit from being tiled individually; one example is matrix
multiplication, asdiscussed in Section 2.6. However, the model presented in thischapter targets
more representative loop nest sequences, rather than isolated loop nests, and the intent of the

model is to assess the benefit of enhancing locality across these loop nests, rather than tiling

CHAPTER 3. QUANTIFYING THE BENEFIT OF LOCALITY ENHANCEMENT 41

array a[M,N], b[N] array a[M,N], c[M]
doj=1,N doj=1,N
do i:_l_,M _ do i:_l_,M _
a[i,j] = b[j] +1 afi,j] =cfi] +1
end do end do
end do end do
(a) Reuse carried by inner loop (b) Reuse carried by outer loop

Figure 3.3: Examples of loop nests accessing arrays with differing dimensionalities

them individually. As discussed in Section 2.6, the majority of loop nests in representative

applicationsdo not benefit from tiling because most unexploited reuse occurs across |oop nests.

Memory sweeps for differing array sizes The determination of memory sweeps is based
on the assumption of rectangular loop bounds that reflect the bounds of similarly-sized arrays
accessed in the loop body. However, loop nests may access arrays of different size, most often
when array dimensionalities differ. Figure 3.3 provides examples of such loop nests.

Differences in array Sizes do not present a serious limitation for two reasons. First, the
significance of memory accesses for lower-dimensionality arrays diminishes rapidly with in-
creasing array sizes. For example, consider the loop nest shown in Figure 3.3(a). The elements
of array b are reused within the inner loop, hence each element may be register-allocated and
the N elementsin array b should ideally be loaded once. At the sametime, atotal of M - N
elements in array a are both read and written. Two memory sweeps are required for array a,
and for large M, the memory accesses for array b become insignificant.

The second reason is that even when reuse of a lower-dimensional array is carried by an
outer loop, asin Figure 3.3(b), the available cache capacity may permit reused data to remain
cached between uses. For example, the data from array ¢ occupies a fixed region of the cache,
while the datafrom array a sweeps through the cache asthe loop is executed. Although array a
will occasionally displace elements of array ¢ from the cache, the elements of ¢ will often be

reused from the cache.

CHAPTER 3. QUANTIFYING THE BENEFIT OF LOCALITY ENHANCEMENT 42
3.6 Chapter Summary

The model proposed in this chapter provides a means of assessing the potential benefit of
locality enhancement by quantifying the reduction in the number of memory accesses. The
model can al so estimate the expected reduction in execution time by quantifying the contribution
of memory accessestowardstotal executiontime. Theestimates provided by themodel can then
be compared against experimental measurements. Chapters 4 and 5 of this dissertation use the
model to assess the benefit of locality enhancement, while Chapter 7 compares experimental
results with estimates obtained with the model to demonstrate that the benefits of locality

enhancement are realized.

Chapter 4

The Shift-and-peel Transformation for
L oop Fusion

This chapter proposes a technique called the shift-and-peel transformation to fuse multiple
parallel loops in order to enhance cache locality. With existing techniques, fusion is limited
by dependences that either render fusion illegal or force the fused loop to be executed serially.
The shift-and-peel transformation overcomes these limitations in order to fully exploit reuse
across loops without sacrificing parallelism.

This chapter isorganized asfollows. First, motivation for the shift-and-peel transformation
isprovided. The shift-and-peel transformation isthen described in detail, including algorithms

for the required analysis and methods for implementing the transformation.

4.1 Loop Fusion

This section provides motivation for the shift-and-peel transformation by first describing and
guantifying the benefits of fusion, then explaining how data dependences|imit the use of fusion.

Related work is then outlined to highlight shortcomings of existing fusion techniques.

4.1.1 Granularity of Parallelism and Frequency of Synchronization

Loop fusion combines the bodies of parallel loopsinto a singleloop body. When the resulting
loop isaso parallel, then the granularity of parallelismislarger than the granularity in each of
the original loops prior to fusion. A large granularity of parallelism reduces the overhead of
parallelization, particularly for large-scale multiprocessors.

Furthermore, barrier synchronization is normally required between parallel 1oops to ensure

43

CHAPTER 4. THE SHIFT-AND-PEEL TRANSFORMATION FOR LOOP FUSION 44

that data dependences between loops are respected. In a large-scale multiprocessor, frequent
global synchronization with barriers after every parallel oop reduces parallél efficiency when-
ever one slow processor forces all othersto wait. By combining loop bodiesinto asingleloop,
fusion reduces the number of barriersto only one. Hence, the frequency of synchronization is
reduced, and parallel efficiency isincreased.

4.1.2 Quantifying the Benefit of Enhancing L ocality with Fusion

Loop fusion enhances locality by combining loop bodies to reduce the number of iterations
between uses of the same data. In this section, the model proposed in Chapter 3 is used to
guantify the locality benefit of fusion. Let £ denote a sequence of loop nests that reference
similarly-sized arrays. Hence, memory accesses may be quantified conveniently as sweeps, as
discussed in Section 3.2. Prior to fusion, amemory sweep isrequired for each array referenced
in each loop nest. Let A(¢) denote the set of arrays referenced (read or written) in each loop
nest ¢ € L. For theoriginal sequence of loop nests, the total number of memory sweepsto load
data into the cache before applying fusionis

S, = ;;IA(K)I-

Modified data in the cache must be written back to memory as it is replaced by incoming
data in each loop nest. Thus, there is a writeback sweep each time an array is modified in
aloop nest. Let A, (¢) denote the set of arrays that are modified in each loop nest ¢ € £
(A, (£) C A(0)). The number of writeback sweeps for the original loop nest sequenceis given
by the number of times arrays are modified:

sy =2 [Auw(0)].
lel

When the loop nestsin £ are fused, only one read sweep should be incurred for each array.
Hence, the total number of sweepsto load data into the cache after applying fusionis

U A

lel

ro_
Sq =

Clearly, si < s;, since each array isreferenced in at least oneloop nest prior to fusion. Indeed,

s! is the minimum number of read sweeps that can be achieved with fusion: one per array.

CHAPTER 4. THE SHIFT-AND-PEEL TRANSFORMATION FOR LOOP FUSION 45

Writebacks still occur after fusion. However, an array that is modified in two or more of
the original loop nests before fusion generates only one writeback sweep after fusion because
the data remains cached between writes. Consequently, the number of writeback sweeps after

fusion is given by the number of arrays modified in any of the original loop nests,

wo__
Sg =

U Au(0)

LeLl

Clearly, s < sy, since each modified array incurs at |least one writeback sweep prior to fusion.
Indeed, s¥ is the minimum number of writeback sweeps. one per modified array.

The sweep ratio for loop fusion is given by

> AW@]+ > [Au(0)]

T fusion = SZ i S})U — eL res . (41)
So T 84
U A@0)] + U Au(0)
lel lel

Since s, < s, and sy < sy, itisclear that 74,0, > 1. A compiler may assess the profitability
of fusion by computing this sweep ratio. If it is close to one, then the locality benefit is not
significant, and fusion may not be profitable. However, as the sweep ratio increases, the benefit

from fusion increases because fewer cache misses and writebacks are incurred.

4.1.3 DependencelLimitationson the Applicability of Loop Fusion

Despite the benefits of loop fusion, it isnot always applicable. Reuse across|oops oftenimplies
the existence of data dependences between iterations in different loops. After applying loop
fusion, these dependences now flow within asingleloop. Dependencesthat flow between state-
ment instances in the same loop iteration are loop-independent. However, those dependences
that flow between statement instances in different loop iterations are loop-carried.

Fusion is legal if and only if none of the loop-carried dependences flow backwards with
respect to theiteration execution order [Wol89]. In other words, the corresponding dependence
distance or direction vectors must not be lexicographically negative. For example, both loopsin
Figure4.1(a) referencethearray a. Thisreuseimpliesdependencesbetween theiteration spaces,
as shown graphically in Figure 4.1(a), where individual iterations are represented by circles,
and dependences are represented by arrows. Fusion combines the iteration spaces as shown

in Figure 4.1(b), where the overlapping circles indicate that computation originaly in separate

CHAPTER 4. THE SHIFT-AND-PEEL TRANSFORMATION FOR LOOP FUSION 46

L1 L2 L1+L2
doi=...
CN —|—
D>< .
o[3w i) = . R
< . RN
< e(x}. .= a[i+1] +di-1] k/!e)<>
o= ai+1] + di-1] o e end do Rmta
backward dependences with
end do respect to execution order
(a) Loop neststo be fused (b) Illegal fusion of loop nests

Figure 4.1: Exampleto illustrate fusion-preventing dependences

L1 L2 L1+L2
G\\ >0 serlal\/ ’@D
G N Do doi=... ™e<—
ol e ail = ... B %
~~ ~
Gt+the .o=ai] +ai-1] 7
\ N
. =ai] +di-1] G\\\~ end do _
end do o——he L
(a) Loop nests to be fused (b) Legal fusion with serializing dependences

Figure 4.2: Exampleto illustrate serializing dependences

loop iterations is now performed in a single loop iteration. Dependences now flow within
the same loop and are loop-carried. Half of the dependences are lexicographically positive,
hence they are not violated by fusion. However, the remaining loop-carried dependences are
lexicographically negative, indicating that the sink iteration of each dependence would be
executed before the source iteration. Consequently, fusion is not legal because it has violated
the original program semantics. Dependences that become loop-carried and lexicographically

negative after fusion are referred to as fusion-preventing dependences.

Even when there are no fusion-preventing dependences, |exicographically-positive |oop-

CHAPTER 4. THE SHIFT-AND-PEEL TRANSFORMATION FOR LOOP FUSION 47

carried dependencesinthefused loop prevent parallel execution. ThisisillustratedinFigure4.2.
The two loops in Figure 4.2(a) individually have no loop-carried dependences; the iterations
within each loop may be executed in parallel. Only a barrier synchronization is required
between the loops to ensure that all iterations of the first loop have been executed before any
iterations of the second loop are executed. However, fusion of the two loops results in loop-
carried dependences, as shown in Figure 4.2(b). Explicit synchronization is required between
dependent iterations executed by different processors. When blocks of iterationsfrom the fused
loop nest are assigned to different processors, the required synchronization effectively serializes
the execution of the blocks of iterations. Consequently, |exicographically-positiveloop-carried
dependences are referred to as serializing dependences.

Thus, fusion to exploit reuse and enhance locality is not applicable in the presence of
fusion-preventing dependences that arise from reuse. Furthermore, serializing dependences
also limit the applicability of fusion for multiprocessors. Hence, the goal of this chapter isto

overcome these dependences and enable fusion and subsequent parallelization.

414 Related Work

Existing techniques do not adequately addressthe dependence limitationsdiscussed above. The
following paragraphs present a survey of related techniques to highlight their shortcomings.

Warren [War84] discusses the use of fusion to enhance locality in vector registers, and to
permit contraction of temporary arrays into scalars. However, fusion is not permitted in the
presence of |oop-carried dependences or incompatible loop bounds.

Kennedy and McKinley [KM94] use loop fusion and distribution to enhance locality and
maximize parallelism. They focus on enhancing register locality with fusion, and describe a
fusion algorithm that preventsfusion of parallel loopswith serial loops. However, they disallow
fusion when loop-carried dependences result or when loop bounds are incompatible.

Porterfield [Por89] suggests a “peel-and-jam” transformation in which iterations are peeled
from the beginning or end of one loop nest to allow fusion with another loop nest. However,
no systematic method is described for fusion of multipleloop nests, nor is parallelization of the
fused loop nest considered.

Ganesh [Gan94] suggests an extension of Porterfield’s peel-and-jam transformation to the

CHAPTER 4. THE SHIFT-AND-PEEL TRANSFORMATION FOR LOOP FUSION 48

inner loops for a pair of multidimensional loop nests. However, dependences preventing
parallelization are not addressed, nor is a systematic method described.

Callahan [Cal87] proposes loop alignment within a single loop to remove loop-carried
dependences that prevent parallel execution. Code replication is advocated for resolving
any conflicts in alignment requirements. However, replication to address alignment conflicts
contributes significant execution overhead.

Appelbe and Smith [AS92] present a graph-based algorithm for deriving the required
alignment, replication, and statement reordering to permit parallelization of an individual loop
nest with loop-carried dependences. This work extends the techniques of Callahan, but still
incurs significant overhead due to replication.

Pugh [Pug9l] derives affine schedules for individual statements within a loop nest to
guide transformations for parallelization. It is claimed that this method produces a compound
transformation that is equivalent to applying any sequence of elementary transformations to
the component loops within a loop nest, including fusion of inner loops. The intent of this
method is to optimize for parallelism, hence fusion is not allowed if it generates loop-carried

dependences. Asaresult, thistechnique may fail to enhance locality.

4.2 The Shift-and-pedl Transformation

This section provides the details of the shift-and-peel transformation. The basic idea of the
techniqueisdescribed first, followed by adescription of the procedure for deriving and applying
the transformation on sequences of parallel loop nests. The legality of the transformation is

also discussed, with aformal proof provided to substantiate the discussion.

4.2.1 Shiftingto Enable L egal Fusion

Shifting enables|egal fusion despite the uniform backward |oop-carried dependences discussed
in Section 4.1.3. Thistechnique ensures that backward dependences become |oop-independent
in the fused loop by shifting theiteration space containing the sink iterations with respect to the
iteration space containing the sourceiterations. Shifting issimilar to alignment of dependences
withinaloop [Cal87], but isappliedto different iteration spaces. Theamount by whichto shiftis
determined by the dependence distance. Shifting isillustrated in Figure 4.3, using the iteration

CHAPTER 4. THE SHIFT-AND-PEEL TRANSFORMATION FOR LOOP FUSION 49

L1 Lo L1 L1+L2
SRR (b
o[[3e .
ol o » | o i’ﬁa::D o
o % o—ye =

“ e
(a) Shifting of iteration spaces to make (b) Legal fusion after shifting
backward dependences |oop-independent iteration spaces

Figure 4.3: Shifting iteration spaces to permit legal fusion

spaces shown earlier in Figure 4.1. Theiteration space of the second loop in Figure 4.3(a) must
be shifted by one iteration because of the backward dependence with a distance of one. The
shift increases the distance of the forward dependences, but these dependences do not prevent
fusion. After shifting, the loops may then be legally fused, as shown in Figure 4.3(b). The
algorithm for deriving the required amount of shifting for arbitrary sequences of loop nestsis
discussed in Section 4.2.3.

4.2.2 Pedingto Enable Parallelization of Fused L oops

Peeling enables parallelization of afused loop with uniform forward |oop-carried dependences.
This technique assumes static, blocked scheduling when parallelizing the fused loop. Static
scheduling is not aserious limitation, asit isthe most efficient approach when the computation
is regular (see Section 2.3.4). This technique identifies iterations from the original loop
nests that become sinks of cross-processor dependences' in the fused loop, then peels these
iterations from their respective iteration spaces. After fusion, there are no longer any cross-
processor dependences between blocks of iterations that are assigned to different processors.
The peeled iterations are executed after all fused loop iterations have been executed. Since
the dependences are uniform and block scheduling is used, the peeled iterations are located at
block boundaries. The number of iterations that must be peeled is determined by the forward

1Cross-processor dependences are loop-carried dependences for which the source and sink iterations are
executed by different processors.

CHAPTER 4. THE SHIFT-AND-PEEL TRANSFORMATION FOR LOOP FUSION 50

L1 L2 L1+L2
e I
\\\~ parallel mi
olae » <l
1~ parallel "o
G be //e—§
~ *\
o——be ™™g

Figure 4.4: Peeling to retain parallelism when fusing parallel 1oops

dependence distance. This procedure is illustrated in Figure 4.4 using the iteration spaces
shown previously in Figure 4.2. The forward dependences require peeling one iteration from
the second loop at each block boundary. After fusion, the blocksof iterations are independent of
each other and may be executed in parallel on different processors. Loop-carried dependences
still exist, but are contained entirely within a block. Once the blocks of iterations have been
executedin paralel, the peeled iterations may themsel vesbe executed in parallel. Thealgorithm
for deriving the required amounts of peeling for arbitrary sequences of paralel loop nests is
givenin Section 4.2.3.

4.2.3 Derivation of Shift-and-peel

In general, two or more loop nests may be considered for fusion, and fusion-preventing or
serializing dependences may result from any pair of loop nestsin the candidate set. Dependence
relationshipsexist in the form of dependence chains passing through iterationsin different loop
nests. These dependence chains are dictated by the reuse of array elements in different loop
iterations and constitute ordering constraints that must be satisfied for correctness. If shifting
or peeling is applied to one loop nest, all subsequent loop nests along al dependence chains
that pass through the affected loop nest must also be shifted or peeled in order to satisfy the
ordering constraintsfor the affected iterations. That is, shifting and peeling must be propagated

along dependence chains. Itistherefore advantageousto treat candidate loop nests collectively

CHAPTER 4. THE SHIFT-AND-PEEL TRANSFORMATION FOR LOOP FUSION 51

for fusion rather than incrementally one pair at atime.

Thissection presentsalgorithmsto determine the amounts of shifting and peeling needed for
each iteration space to enable legal fusion of a sequence of parallel loops, and subsequent par-
allelization of the fused loop. The algorithms assume uniform dependences between the loops
being fused. Because the dependences are uniform, the dependence chains are al'so uniform.
Consequently, all dependence chains may be represented with a single acyclic dependence
chainmultigraph G(V, E'). Eachloop isrepresented by avertex, and each dependence between
a pair of loops is represented by a directed edge weighted by the corresponding dependence
distance. Since fusion combines multiple loop bodies into a single loop body, all statements
in afused loop will share the same loop index variable. This fact can be exploited in order to
obtain dependence distance information by assuming that the index variables of the different
loops are the same [WoI89]. A forward dependence has a positive distance, and results in an
edge with a positive weight. Conversely, a backward dependence has a negative distance, and
resultsin an edge with anegative weight. A multigraph isrequired since there may be multiple

dependences between the same two loops.

In deriving the required amounts of shifting, the dependences of interest are fusion-
preventing dependences with negative distances. The multigraph G(V, E) is reduced to a
simpler dependence chain graph G, (V, E;) by replacing multiple edges between two vertices
by a single edge whose weight is the minimum from the original edges. A negative edge
weight determines the amount of shifting required to remove backward dependences. This
graph reduction preserves the acyclic structure of the original dependence chains. A traversal
algorithm is then used to propagate shifts along dependence chainsin G,(V, E). Each vertex
is assigned a weight, which is initialized to zero, and the vertices are visited in topological
order to accumulate shifts along chains. Note that the original loop order gives the topological
order, hence there is no need to perform atopological sort. Only edges with a negative weight
contribute shifts; all other edges are treated as having a weight of zero and serve only to prop-
agate any accumulated shifting. At each vertex, the minimum value for al accumulated shifts
through that vertex is always selected to ensure that al backward dependences are removed.
Theagorithmisgivenin Figure 4.5. Since each edge istraversed exactly once, the complexity

of theagorithmislinear in the size of the graph, and upon termination, the final vertex weights

CHAPTER 4. THE SHIFT-AND-PEEL TRANSFORMATION FOR LOOP FUSION 52

TRAVERSEDEPENDENCECHAINGRAPHFORSHIFTING(G) ::
foreach v € V[G,] do
shift. weight(v) = 0
endfor
foreach v € V[G,] in topological order do
foreach e = (v,v.) € E;[G;] do
if weight(e) < Othen _ _ _ _ _
shift weight(v.) = min(shift_weight(v,..), shift weight(v) + weight(e))

else
OIs_?ift_wei ght(v.) = min(shift_ weight(v.), shift weight(v))
endi

endfor
endfor

Figure 4.5: Algorithm for propagating shifts a ong dependence chains

L1: dg[iiTérE)—[il] @ @ 0 @

end do 1 -1 -1 -1
L2: doi=2,n-1 .
G () O
end do
L3: doi=2,n-1 1 -1 -1 -1
dli] = c[i+1]+c[i-1]
end do -2
(@) Exampleloop (b) Dependence (c) Dependence (d) Shifts derived
nest sequence chain multigraph chain graph from traversal

Figure 4.6: Representing dependences to derive shiftsfor fusion

indicate the amount by which to shift each loop relative to the first loop to enable legal fusion.
Figure 4.6 illustrates the above procedure for deriving shifts.

In deriving the required amounts of peeling, the origina dependence chain multigraph is
reconsidered. Thistime, the edgesof interest are serializing dependenceswith positiveweights.
Themultigraphisreduced to asimpler dependence chain graph G, (V, E,,) by replacing multiple
edges between two vertices with a single edge whose weight is the maximum from the original
set of edges between these two vertices (as opposed to the minimum as in the case of shifting).
When this maximum weight is positive, it indicates the amount of peeling needed to remove

cross-processor dependences between the loops corresponding to the vertices for the edge. As

CHAPTER 4. THE SHIFT-AND-PEEL TRANSFORMATION FOR LOOP FUSION 53

TRAVERSEDEPENDENCECHAINGRAPHFORPEELING(G)p)
foreachv € V[G,] do
Joeel_weight(uf —0

endfor

foreach v € V[G,] in topological order do
foreach e = (v,v.) € E,[G,] do
if weight(e) > Othen
o peel_weight(v.) = max(peel _weight(v.), peel_weight(v) + weight(e))

se
c]c_)?el_weight(vc) = max(peel _weight(v.), peel _weight(v))
endi

endfor
endfor

Figure 4.7: Algorithm for propagating peeling along dependence chains

before, the reduced graph preserves the dependence chains from the original multigraph and
remains acyclic. A similar graph traversal algorithm is used to propagate the required amounts
of peeling along the dependence chains. The only modification is to consider edges with a
positive weight, since only they require peeling to remove cross-processor dependences; all
other edges are treated as having a weight of zero to propagate any accumulated amounts of
peeling. At each vertex, the maximum value for all accumulated peeling through that vertex is
selected to ensure that all cross-processor dependences will be removed. Upon termination, the
final vertex weights are the number of iterationsto peel relative to the first loop. The agorithm
isprovided in Figure 4.7, and Figure 4.8 illustrates its application using the dependence chain
multigraph shown in Figure 4.6(b).

The dependence chain graphsin Figure 4.6 and Figure 4.8 represented dependences flowing
between adjacent loops in a sequence. In general, dependences may flow between any pair of
loops. For example, the code shown in Figure 4.9(a) has a dependence flowing from L1to L3
with a distance of 2. The dependence chain graph for this example is shown in Figure 4.9(b).
Applying the derivation algorithm for peeling in the absence of the dependence between L1
and L3 would result in a final weight of 1 for the vertex representing L3. However, with this
dependence, the derivation algorithm assigns a final weight of 2 to reflect the maximum of

accumulated amounts of peeling passing through L 3.

CHAPTER 4. THE SHIFT-AND-PEEL TRANSFORMATION FOR LOOP FUSION 54

(W ® o (W)
1—1 1 1
(2 (2 1(12)
1-1 1 1

2
(a) Dependence chain (b) Dependence (c) Pedling derived
multigraph chain graph from traversal

Figure 4.8: Deriving the required amount of peeling

L1: doi=2,n-1 @ 0

a[i] = bfi] 1
end do
L2: doi=2,n-1
il = di-1] 2 @ !
end do 0
L3: doi=2,n-1
d[i] = c[i]+a[i-2]
end do 2
(a) Loop sequence (b) Dependence chain graph for peeling

Figure 4.9: Dependence chain graph with dependences between non-adjacent loops

4.2.4 Implementation of Shift-and-peel

Once the required amounts of shifting and peeling have been derived, the loop nests must be
transformed to complete the legal fusion. There are two methods to implement shift-and-peel.
In the direct method, the original loop bodies are combined into a single body. The iterations
of the fused loop are then divided into blocks to be executed in parallel on different processors.
To implement shifting, array subscript expressions in statements from shifted loop nests must
be adjusted wherever the index variable of the shifted |loop appears. To implementing peeling,
guards must be introduced for each statement from aloop that requires peeling. Figure 4.10(a)

CHAPTER 4. THE SHIFT-AND-PEEL TRANSFORMATION FOR LOOP FUSION 55

doii=istart,iend,s
do i=ii,min(ii+s-1,n-1)

o enddo V)
v do i=max(ji~1istart+1),minii+s-2,iend-1)
if (i >= istart+1) c[i-1] = &[i]+a[i-2] cfi] = gi+1]+a[i-1]
s T LT Al . end do
g >= istart+2) di-2] = c[i=1J+c[i-3] do i=max(ii~2,istart+2) min(ii+s-3,iend-2)
d[i] = cli+1]+c[i-1]
c[iend] = aliend+1] + afiend-1] engf:jdodo
doi=iend-1,iend o .
0l = 41+ c[i-1] Chend) = Aisna: L+aliend-1]
end do d[i] = c[i+1] +c[i~1]
end do
(a) Direct method (b) Strip—mined method

Figure 4.10: Alternatives for implementing fusion with shift-and-peel

illustrates this approach for ablock of iterations istart...iend executed by one processor.

Note that a small number of iterations from shifted loops are executed outside the fused loop.

The alternative to the direct method is to use strip-mining. This approach assumes that the
number of iterations exceeds the number of processors, a reasonable assumption when locality
enhancement isrequired. The original loops are strip-mined by afactor of s, then the resulting
outer control loops are fused, as shown in Figure 4.10(b). In thismethod, shifting only requires
adjustments to inner loop bound expressions, leaving the subscript expressions unchanged.
Peeling is also implemented by adjusting inner loop bound expressions. Strip-mining also
accommodates differing iteration spaces by modifying the min, max expressions in the inner
loop bounds. Finaly, the strip-mined method may also reduce register pressure. The only
drawback to strip-mining is that it may incur more loop overhead in comparison to the direct
approach. However, a larger strip size s reduces this overhead. But the choice of s is aso
constrained by the cache capacity because s determines the amount of data that must remain
cached for reuse; thisissue is addressed in Chapter 6. Nonetheless, in light of its advantages,
strip-mining is selected as the implementation method for shift-and-peel in thisthesis.

Theonly remaining issueistheexecution of theiterations peeled to enable parallel execution.

CHAPTER 4. THE SHIFT-AND-PEEL TRANSFORMATION FOR LOOP FUSION 56

doii=istart,iend,s
do i=ii,min(ii+s-1,iend)
a[i] = bfi]
end do
do i=max(ii—1,istart+1),min(ii+s-2,iend-1)
cfi] = gi+1]+a[i-1]
end do

do i=max(ii—2,istart+2),min(ii+s-3,iend-2)
d[i] = c[i+1]+c[i-1]
end do
end do
<BARRIER>
doi=iend,iend+1
c[i] = afi+1]+a[i-1]
end do
doi=iend-1,iend+2

d[i] = c[i+1]+c[i-1]
end do

Figure 4.11: Complete implementation of fusion with shift-and-peel

These iterations are peeled from the start of each block on different processors and can only
be executed after all preceding iterations have been executed; a barrier synchronization can be
inserted to ensure that this condition is satisfied. Iterations peeled from the same block are
grouped into sets. There are no dependences between different sets of peeled iterations (proved
later in Section 4.2.5), athough there may be dependences within each set. As aresult, these
sets of peeled iterations may also be executed in parallel without synchronization.

Shifting causesanumber of iterationsto be executed outsidethefused loop. Theseiterations
are at the end of blocks assigned to different processors. Because there may be dependences
between the iterations at the end of a block assigned to one processor, and the iterations peeled
from the start of the adjacent block assigned to another processor, these iterations are collected
into subsets such that all dependences are contained entirely within each set. In this manner,
these subsets of iterations may be executed in parallel. Figure 4.11 illustrates the complete
code that implements fusion with shift-and-peel. Peeled iterations are executed after a barrier
to ensure all preceding iterations have been executed. The iterations executed after the barrier
include those excluded fromblock i start. . .iend because of shifting, and also those peeled

from the start of the block beginning at iend+1. Note that the implementationin Figure 4.11

CHAPTER 4. THE SHIFT-AND-PEEL TRANSFORMATION FOR LOOP FUSION 57

L1 L1
L1 L2 Q L2 €} L2
ol |g® qd e p q gf=e p
@(x> qd & :\ > q Q\TN > .
@(x). d & :\ > -<-a§ﬁ-5- ‘\
L1: doall i=2,n-1 @(x). qd & :\ﬁo > qd & :E > \ =N
a[i] = b[i-1] G\/x:’ d & '_& > q Q\T& > <}_ /
end do >4] - - - - \ /
o< [qd & _\ﬁo > q c\ﬁ > / A
L2: doall i=2,n-1 o] 5o d = b d o =] b ! /
eng[clilo: ai-1] @(:/> d o b d o= b < a Y
o1 Tae Ny LS o T v j//
(a) Adjacent loops (b) Dependences (c) Shifting (d) Cross—processor (e) Paralel blocks of fused
to be fused between loops for fusion dependences and peeled iterations

Figure 4.12: Legality of the shift-and-peel transformation

is essentially independent of the number of processors. The values of istart and iend
may be calculated at runtime based on the loop bounds and number of processors available for
parallel execution on entry to the fused loop.

Finally, theimplementation must al so account for minor differencesin the transformed code
for processors executing blocks at the boundaries of the full iteration space. For the processor
executing the block containing iterations from the beginning of the iteration space of the fused
loop, there are no iterations to be peeled; only shifting is implemented in the fused loop.
However, this processor does execute the peeled iterations for the adjacent block following the
barrier synchronization. The processor executing the block containing iterations from the end
of the iteration space does not execute any iterations peeled for parallelization after the barrier

synchronization because there is no subsequent block of iterations.

4.25 Legality of the Shift-and-pedl Transformation

This section first presents an intuitive argument for the legality of the shift and peel transfor-
mation. Thisargument is then substantiated with a formal proof.

Consider the example sequence of paralel loopsin Figure 4.12(a); this example contains
both forward and backward dependences between the two loops. The dependences are illus-

trated in Figure 4.12(b). Because each loop is parallel, there are no loop-carried dependences

CHAPTER 4. THE SHIFT-AND-PEEL TRANSFORMATION FOR LOOP FUSION 58

within theindividual loops. The antidependence between L, and L, caused by referencesto the
array b isuniform with adistance of —1, and hence it preventsfusion. In general, there may be
several such fusion-preventing dependences with different distances. The derivation algorithm
in Figure 4.5 aways selects the amount of shifting according to the minimum dependence
distance between the loops. Similarly, the flow dependence for array « is aso uniform with a
distance of 1, henceit serializes execution if the backward dependence isignored and the loops
arefused. In general, there may be several serializing dependences with different distances. In
the derivation algorithm, the amount of peeling is aways determined by the dependence with

the maximum distance, as discussed in Section 4.2.3.

Based on the antidependence with the distance of —1, L, is shifted by one iteration with
respect to L, topermitlegal fusion. ThisisshowninFigure4.12(c). Thecomputation performed
in each pair of iterations identified by the shading in Figure 4.12(c) would be performed in
one loop iteration if the two loops were to be fused directly. The original dependence distance
of —1 istransformed to O, since it is the minimum distance. All other dependence distances,
including the forward dependence distance of 1, are increased, but this does not prevent legal
fusion. Henceitisawayslegal to perform fusion after shifting by the amount needed to satisfy

the minimum dependence distance.

Now, consider parallel execution of the fused loop as shown in Figure 4.12(d), where
each processor is assigned a contiguous block of iterations. There are now cross-processor
dependences flowing between processors, hence the blocks must be executed serially. The
iterations from L, identified with a square in Figure 4.12(d) are the sink iterations of these
cross-processor dependences. In the absence of shifting, some of these sink iterations would
otherwise be executed in the same processor astheir corresponding sourceiterations. However,
shifting moves each of these sink iterations to an adjacent processor. The number of such
iterations per block is equal to the amount of shifting. The remaining sink iterations would
still generate cross-processor dependences even without shifting and therefore require peeling.
The number of such iterations is equal to the maximum distance among al original forward

dependences. For the examplein Figure 4.12, there is one such iteration per block.

To permit paralel execution, iterations that would otherwise become sinks of cross-

processor dependences are peeled out of L, prior to fusion. Of each pair of iterations peeled

CHAPTER 4. THE SHIFT-AND-PEEL TRANSFORMATION FOR LOOP FUSION 59

L1+L2 (L1+L2)’

e o (L1+L2)"
-r -y > Lo |g®
] D Pae > Z/ >
- P> , b ol

> i LO: doal i=1,n-2 .
c;e(z e ObO[iI]:bFi] ? i
-l o] end do > >
- 4 R . e
-4l Py (L2 'doalilfl (i1>’r1]) 1a[i] = bo[i-1] A
Clef| BT if (i<n—1) bli+1]=4[i] L Amasl >

& ~No end do O 92 NS 3N
seria loop illegal aignment A

(a) Alignment conflicts (b) Array replication (c) Parallel loop after replication

Figure 4.13: Resolution of alignment conflicts with replication

fromtheblocksof iterationsin Figure 4.12(d), oneiteration must be peel ed out asaconsequence
of shifting, and the other due to the origina forward dependence with a distance of 1. The
shift-and-peel transformation thus groups the computationsinto the blocks of fused and peeled
iterations shown in Figure 4.12(e). The blocks of fused iterations are executed in parallel, then

the blocks of peeled iterations are executed in parallel after a barrier.

Based on Figure 4.12, the shift-and-peel transformation is always legal. First, no de-
pendences flow between blocks of fused iterations by virtue of peeling iterations that would
otherwise serialize execution. Within each block of fused iterations, shifting to satisfy the min-
imum dependence distance ensures that the fusion isindeed legal, as shown in Figure 4.12(c).
Second, no dependences flow between blocks of peeled iterations. Dependences either flow
from a block of fused iterations to a block of peeled iterations, or they flow within the same
block of peeled iterations, and are satisfied by the execution order within the block of peeled
iterations. Finaly, since dependences only flow from blocks of fused iterations to blocks of

peeled iterations, the barrier synchronization ensures that these are always satisfied.

It is interesting to note that dependence relationships in the fused loop shown in Fig-
ure4.12(c) lead to an alignment conflict that requiresreplication if parallel executionisenabled
using the techniques proposed by Callahan[Cal87] and Appelbe and Smith [AS92]. This con-

CHAPTER 4. THE SHIFT-AND-PEEL TRANSFORMATION FOR LOOP FUSION 60

flictisillustrated in Figure 4.13(a). The loop that results from fusion is seria due to aforward
loop-carried dependence. This forward dependence is the flow dependence for array a. If
the computations in the loop are aligned as shown in Figure 4.13(a) such that the forward
dependence is made loop-independent, a backward dependence results, hence the alignment is
illegal. Alignment for parallel execution is not possible because the alignment requirements of
the different dependences conflict with each other. To resolve this alignment conflict, replica-
tion isrequired. In Figure 4.13(b), a new loop Ly replicates the array b into a new array 50,
and the values of array 00 are read in the aligned version of the fused loop, rather than array
b. Asaresult, the backward loop-carried dependence is removed, and the aligned loop is not
only legal, but may also be executed in parallel, since it no longer contains any |oop-carried
dependences. The new loop Lo may also be executed in parallel. However, Lo may not be
fused with the aligned loop because the original alignment conflict would then reappear.
Ingeneral, both dataand computation replication arerequired to addressalignment conflicts.
Replicating computation contributes execution time overhead, whilereplicating datacontributes
memory overhead. Incontrast, the shift-and-peel transformation doesnot requireany replication

to enhance locality while preserving parallelism.

Formal Proof of L egality

For simplicity, thisproof is presented for sequences of parallel loopswithidentical loop bounds.

First, anumber of definitions are provided.

Definition 1 A sequence of loops L, ..., L, isan admissible parallel loop sequence if there
is no intervening code between the loops, if each loop Ly, (1 < k£ < n) isparallel, and if all
loops use the same integer index variable T with the same integer lower/upper bounds ¢ and
u (¢ < u) and a step of 1. The loop sequence is totally ordered, i.e., L1 < Ly < -+ < L,.
The computation performed for an iteration I=i (¢ < ¢ < w) within the body of a loop Ly
(1 < k < n) isdenoted by Sy (7).

Definition 2 For a loop L, in a parallel loop sequence L, ..., L,, the set of all memory
locations read in a given iteration i of the loop body Sy (7) is denoted by Ry (:). Smilarly, the

set of all memory locations written is denoted by W (7).

CHAPTER 4. THE SHIFT-AND-PEEL TRANSFORMATION FOR LOOP FUSION 61

Definition 3 For apair of loops L,, L, inaparallel loop sequence Ly, . . ., L, where L, < Ly,

an interloop dependence S, (i1).S,(i2) exists between iteration iy in L, and iteration i, in Ly if
[Ra(i2) N Wy(iz) # 0] V [Walia) N Ry(iz) # 0] V [Walin) N Wi(i2) # 0],

where ¢/ < i; < wuand/ < i, < u. The dependence distance is given by i, — i,, and may be

positive, negative, or zero.

Definition 4 Let L, and L, denote a pair of loopsin a parallel loop sequence L, . . ., L, such
that L, < L. Let DEP,; denote the set of all interloop dependences S, (i1)d.5,(i2) between
L,and L,. Let DEP, ,(d) denote the subset of all interloop dependences between the loops L,
and L, with distance d. Let DIST, , denote the set of all distances d such that DEP, ,(d) # 0.

DEP, ; isa set of uniform interloop dependences if:

Ve<i<u-—d, ifd>0,
Vd € DIST,,, 35,(1)0Sy(i +d) € DEP,,(d),

Vli—d<i<wu, ifd<DO.
Uniformity requires interloop dependences with distance d to flow fromall iterationsi in L, to

i+ din Ly, subject to the loop bound constraints.

Definition 5 For a parallel loop sequence Ly, .. ., L, in which all interloop dependences are
uniform, let shift(k) < 0 and peel(k) > O denote the amounts of shifting and peeling derived
for each loop Ly (1 < k < n) by the shift-and-peel derivation algorithm. Let P denote the
number of processors to be used for parallel execution. Let istart(p) and iend(p) denote the
starting and ending iterations for a subset of consecutive iterations fromthe original iteration
space bounded by ¢ and « to be executed by a processor p (1 < p < P), i.e,

u—~0+1
P

U, p:P

u—~0+1

| - J ~1 1<p<P,
istart(p) = (+ {TJ (p—1), iend(p) =

istart(p) + {

The shift-and-peel transformation produces a fused loop whose iterations are executed in
parallel on P processors, followed by a barrier synchronization, which is then followed by
peeled loop iterations that are also executed in parallel on P processors. For each processor
p (1 <p < P),FUSED(p) isthe subset of computations from the fused loop, i.e.,

~f {Sk(i) | istart(p) < i < iend(p) + shift(k), 1<k <mn}, =1,
FUSED(p)—{ (Su(0) | istart(s) + pesl(k) < i < iend(p) + shift(h), 1<k <n}, 1<p< P

CHAPTER 4. THE SHIFT-AND-PEEL TRANSFORMATION FOR LOOP FUSION 62

Smilarly, PEELED(p) is the subset of peeled computationsfor a processor p, i.e.,

PEELED(p) — { [Sk(i) | iend(p) + shift(k) + 1 < i < iend(p) + peed(k), 1<k <n}, 1<p<P,
{Sk(7) | iend(p) + shift(k) + 1 < i <iend(p),1 < k < n}, p=P.
Definition 6 For a parallel loop sequence Ly, .. ., L, in which all interloop dependences are
uniform, let shift(k) < 0 and peel(k) > O denote the amounts of shifting and peeling derived
for each loop Ly (1 < k < n) by the shift-and-peel derivation algorithm. The iteration count

threshold [V, for the parallel loop sequence is defined as

N; = max (peel(k) — shift(k)) .

1<k<n

Definition 6 is a consequence of the implementation of the shift-and-peel transformation
discussed in Section 4.2.4, which assumesthat the number of iterations per original loopismuch
greater than the number of processors (which in turn implies that locality enhancement with
fusion is required). The iteration count threshold asserts that shifting and peeling for a given
original loop do not remove more computations from the resulting FUSED (p) subsets than the
number of iterations per processor. Exceeding thisthresholdindicatesthat all computation from
one of the original loops is excluded from the fused loop, which clearly defeats the purpose of
loop fusion for locality.

With the preceding set of definitions, the following theorem on the legality of the shift-and-
pedl transformation and the implementation discussed in Section 4.2.4 may now be proved.

Theorem 1 The shift-and-peel transformation is always legal for a parallel loop sequence
Ly,..., L, inwhich all interloop dependences are uniform, provided that

u—0+1
P

where P isthe number of processors used in parallel execution of the resulting loop, v — ¢ + 1

JZNta

is the number of iterationsin each of the loops of the original parallel loop sequence, and /V,

is the iteration count threshold in Definition 6.

Proof First, all of the original computation is performed in the transformed code. Using
Definition 5, this condition is satisfied by noting that the lower and upper bounds for the fused
loop in each processor together with the peeled iterations cover the original computation, i.e.,

|J (FUSED(p) UPEELED(p)) = {Si(i) | (<i<wu, 1<k<n}.
1<p<P

CHAPTER 4. THE SHIFT-AND-PEEL TRANSFORMATION FOR LOOP FUSION 63

Second, there is no redundancy in the computation. To show that each component of the
original computation is performed by exactly one processor, it is necessary to show that the
subsets of computation assigned to different processors are digoint. Because these subsets
contain computation from consecutive iterations, it is sufficient to show that for processors p
andp + 1,

PEELED(p) N PEELED(p + 1) = 0,

for which Definition 5 implies that the following condition must be satisfied:
V1< p< P,Y1<k <n,iend(p) + peel(k) < iend(p + 1) + shift(k) + 1.
Substituting for iend(p) and iend(p + 1) using Definition 5 and simplification resultsin
V1< k<n, V‘TWJ + 1> peel (k) — shift(k).

Since it must be true for all loops, it must be true for the loop for which peel (k) — shift(k) is
the largest, and thisis given by theiteration count threshold /V;. Since both {%ﬁlj and NV, are
integers, the condition may be smplified to

u—0+1
P

With this condition satisfied, it can also be shown using Definition 5 that FUSED(p) N
FUSED(p + 1) = 0, PEELED(p) N FUSED(p + 1) = 0, and PEELED(p + 1) N\FUSED(p) =
0,V1i<p<P.

JZNt.

Third, none of the original uniform interloop dependences are violated when the FUSED (p)
subsetsareexecutedin parallel on P processors. For interloop dependences S, (7)d.S,(i+d) such
that S, (7), Sp(i+d) € FUSED(p) and d < 0, shiftingtrivially ensuresthat the dependencesare
satisfied internally within each subset. Dependences with d > 0 are always satisfied internally
evenwith shifting. Furthermore, no dependences flow between the FUSED (p) subsets executed
in parallel on different processors. Thisis shown with the following proof by contradiction.

For S,(i)0Sy(7 + d), assumethat S, (i) € FUSED(p;) and Sy(i + d) € FUSED(p,), where
p1 # p2. For d > 0, assume that p, > p;. The shift-and-peel derivation algorithm resultsin
peel(b) > d. If S,(i) € FUSED(p1), the maximum value of i isi = iend(p1) + shift(a) by
Definition 5. If S,(i + d) € FUSED(p,), where p, > p,, then by Definition 5,

i + d = iend(p) + shift(a) + d > istart(ps + 1) + pesl (b).

CHAPTER 4. THE SHIFT-AND-PEEL TRANSFORMATION FOR LOOP FUSION 64

Substituting for iend(p;) and istart(p; + 1) from Definition 5 and rearranging resultsin

d — 1+ shift(a) > peel(b).

Since shift(a) < 0, and peel(b) > d,

d—1>d— 1+ shift(a) > peel(b) > d.

But d — 1 < d, hencethisis a contradiction. Since the maximum iteration i such that S, (i) €
FUSED(p,) wasused, thiscontradictionistruefor all iterations: suchthat S, (i) € FUSED(p;).
A similar contradiction results from assuming that p, < p; for d < 0. Thus, no dependences

flow between the FUSED (p) subsets for any pair of processors.

Fourth, noneof theoriginal uniforminterloop dependencesareviolated whenthe PEELED (p)
subsets are executed in parallel on P processors. Any interloop dependences S, (7)0.5,(i + d)
such that S, (i), Sy(i + d) € PEELED(p) are always satisfied because iterations peeled from
loop L, are executed before iterations peeled from L,,. Furthermore, no dependences flow be-
tween different PEELED (p) subsets. This may be shown with a similar proof by contradiction
asfor the FUSED (p) subsets; it is omitted here for brevity.

Finally, none of the original uniform interloop dependences are violated across the synchro-
nization point between the execution of FUSED (p) and PEELED (p) on each processor because
all interloop dependences either flow interally within each fused or peeled subset of iterations,
or from afused subset to a peeled subset. The total ordering impliesthat al dependences flow
forward in the origina sequence. For those dependences that require peeling, it is aways the
sink iteration that is peeled. Any other iterations that depend on a peeled iteration are also
peeled by virtue of the shift-and-peel derivation algorithm. Thus, dependences never flow from
a peeled subset to a fused subset. The synchronization point ensures that those dependences
flowing from a fused subset to a peeled subset are always satisfied.

Since the transformed code executes all of the original computation without redundancy
(providedthat theiteration count thresholdis satisfied), and none of theoriginal interloop depen-
dences are violated internally within the subsets of iterations executed by different processors

or externally between the subsets, the shift-and-peel transformation islegal.0l

CHAPTER 4. THE SHIFT-AND-PEEL TRANSFORMATION FOR LOOP FUSION 65

4.3 Multidimensional Shift-and-peel
4.3.1 Motivation

For a sequence of parallel loop nests, fusion of outermost oops produces a single loop nest,
and the shift-and-peel transformation enables legal fusion and parallelization. However, there
are two reasons why fusion of outermost loops may not be sufficient.

First, although fusion increases the granularity of parallelism in the outermost loop, it does
not increase the degree of parallelism. For parallel execution on large-scale multiprocessors, a
greater degree of parallelismistypically required to fully utilize alarge number of processors.
By fusing inner parallel loops in addition to the outermost loop, the degree of parallelism may
beincreased,? although the granularity of the resulting parallelism isreduced as a consequence.

Second, fusion of multiple loops increases the amount of data accessed in the resulting
fused loop. A significant portion of this data may have to remain cached for reuse. If only the
outermost loop isfused in a sequence of 1oop nests, the amount of datathat must remain cached
across iterations of the fused outermost loop may overflow the cache capacity. By fusing inner
loops as well as the outermost loop, the execution order of the computation is further modified
to reduce the amount of data that must remain cached for reuse.

In both cases, dependences flowing between iterations of inner loops may become loop-
carried after fusion, and hence these dependences may render fusion illegal or prevent paral-
lelization. However, the shift-and-pedl transformation may also be applied to the inner loop

levelsin order to overcome such dependences.

4.3.2 Derivation

The derivation of the appropriate amounts of shifting and peeling to enable fusion and paral-
Ielization of inner loops uses the same approach as the derivation for the outermost loop. The
same algorithms are used, but the dependence distances at each inner loop level are considered,
rather than the distances at the outermost loop level.

Rather than reapplying the derivation algorithms at each level, it is possible to modify

the algorithms for only one application. Instead of maintaining just one weight at each vertex

2Section 2.4.2 discussed how to increase the degree of parallelism by making all parallel loops adjacent in a
loop nest.

CHAPTER 4. THE SHIFT-AND-PEEL TRANSFORMATION FOR LOOP FUSION 66

representing the accumulated shift or peel amounts, it ispossibleto maintain avector of weights,
with one element for each loop level. In one traversal of the dependence chain graph, shift or
peel amounts are propagated at all loop levels as each vertex is visited by the algorithm. The
original algorithm is linear in the graph size, and the computation at each vertex increases by

only a constant amount, hence the complexity remains linear in the graph size.

4.3.3 Implementation

Fusing multidimensional loop nests with strip-mining for serial execution does not present
difficulties since only shifting is required. The loops being fused are strip-mined, the control
loops are moved to the outermost level, and then the control loops are fused. Asbefore, shifting
isreflected in the inner loop bounds. New loop nests are then introduced to execute iterations
that are excluded from the fused computation as a result of shifting; more than one loop nest
is required because these iterations do not constitute a simple rectangular region. Fusion with
multidimensional shifting isillustrated using the loop nest sequence shown in Figure 4.14(a).
The dependences between the two loop nests require shifting by one iteration in both inner
and outer loops to enable fusion. The fused loop nest sequence (with shifting only) is shown
Figure 4.14(b). Theiteration spaces after shifting to enable fusion are shown in Figure 4.14(c).

However, multidimensional peeling to enable parallel execution is more complicated. The
multidimensional iteration spaceisdivided into blocksof iterationsthat are executed by different
processors. For those processorsthat execute blocks on the boundariestheiteration space, there
are dlight differences in the loop code (as discussed in Section 4.2.4). For a one-dimensional
iteration space, there are only three cases, as shown in Figure 4.15(a). This number is small
enough to permit generating three different versions of the code. However, when fused inner
loops are parallelized with peeling, the number of cases increases dramatically. For fusion of
atwo-dimensional iteration space, there are atotal of 9 cases, as shown in Figure 4.15(b). For
athree-dimensional iteration space, there are 27 cases, as shown in Figure 4.15(c). Generating
27 different versions of the code is unnecessary because the differences are quite minor.

The differences between the various cases center on the execution of the iterations peeled
to enable parallel execution. Instead of generating multiple versions, only one set of loopsis

generated, with the different cases reflected in a number of variables that control peeling in

CHAPTER 4. THE SHIFT-AND-PEEL TRANSFORMATION FOR LOOP FUSION 67

dojj=2,n-1,§
doii=2,n-1,s
. do j=jj,min(jj+§-1,n~1)
doj=2,n-1 do i=ii,min(ii+si~1,n-1) doj=2,n-2
doi=2n-1 bli j] = (ali j-1]+ali j+1] o1 n-1
b[I!J] - (a[l,J_1]+a[|,J+1] +a[|_1,J]+a[|+1,J])/4 a[| J] — ’b[l J]
+eli=1j]+ali+1,])/4 end do oAl = b,
end do end do end do
end do do j=max(jj-1,2),min(jj+§-2,n-2) doj=n-1,n-1
_ do i=max(ii—1,2),min(ii+si—2,n-2) doi=2 ﬁ—l
doj=2,n-1 ali,j] = bli,j] ali.j] = bi,]
doi=2,n-1 end do end ao '
ali.j] = bfi,j] end do end do
end do end do
end do end do

(a) Original loop nest sequence (b) Fused loop nest sequence with iterations excluded due to shifting
j

O 0O 0O OO0 O0OO0OOo
Q929999 Qe _ _
i 009392393929 ale o=|terat!onfromf|rstloopnest

Q99993999 e =lteration from second loop nest
Iterations performed ©Q999393993Q]e
infusedloopnest — =[(°0 93 3939393 Qfe

©2999999e Excluded iterations

©Q9999990Q]e due to shifting

o 6 06 06 06 0 0 0

(c) Iteration spaces after shifting to enable fusion
Figure 4.14: Fusion with multidimensional shifting

———t

(a) Onedimension: 3 cases (b) Two dimensions: 9 cases (c) Three dimensions. 27 cases
Figure 4.15: Enumerating the number of cases for multidimensional shift-and-peel

the fused loops and the subsequent execution of peeled iterations. The values for these control
variables are determined by a prologue to the fused loop nest that computes the case that this
instance of the code represents. The prologue determines which boundary or boundaries the

block of iterationsincludes, then setsthe flags to control the peeled iterationsaccordingly. This

CHAPTER 4. THE SHIFT-AND-PEEL TRANSFORMATION FOR LOOP FUSION 68

JINPROCS = <#processors aong j—dimension> dojj=jstart,jend,g
INPROCS = <#processors al ong i—dimension> doii=igtart,iend,s
jp = mypid / INPROCS do j=jj,min(jj+5—1,jend)
ip=mypid % INPROCS doi=ii,min(ii+si-1,iend)
jblksz =j_trip_count / INPROCS bli,j] = (i ,j—1]+di,j+1]
iblksz =i_trip_count / INPROCS +ai-L1j]+di+1,j])/4
jstart = 2+jp * jblksz end do
istart = 2+ip * iblksz end do
if jp==JINPROCS - 1) do j=max(jj—1,jstart+jfpeel),min(jj+5-2,jend-1)
jend=n-1 do i=max(ii—1,istart+ifpeel),min(ii+si—2,iend-1)
dse i jl = blij]
jend = jstart + jblksz end do
endif end do
if (ip==INPROCS - 1) end do
iend=n-1 end do
else <BARRIER>
iend = istart + iblksz do j=jstart,jend-1
endif do i=iend,iend+ipped
left = (ip==0) i jl = bfi,]
right = (ip==INPROCS-1) end do
top = (jp==0) end do
bottom= (jp == INPROCS - 1) do j=jend,jend+jppeel
ifpeel = (left) ?0: 1 do i=istart,iend+ipped
ifped = (top)?0:1 a[i,j] = b[i,j]
ippeel = (right) ?0:1 end do
ippeed = (bottom) ?0:1 end do

Figure 4.16: Paralelization with multidimensional peeling

o o []
ocoooof||loooo L L4
©QQQ||looQaaQ Al d

. 0933 allooaaqg oo 000 e o0
' 033 allooaqg oo 000 e o0
O O O ©O O O OO
ocoooo|loooo L L4
© Q2QQflcoaqaq Al o
033 allooaqg o0 000 e o0
(&) Independent blocks of fused iterations (b) Independent blocks of peeled iterations

Figure 4.17: Independent blocks of iterations with multidimensional shift-and-peel

approach is shown for the example in Figure 4.16. The dependences between the two loop
nests require peeling by one iteration in both inner and outer loops. Iterations are grouped into
independent blocks for distribution on a grid of processors, as shown in Figure 4.17. Note
that the blocks in Figure 4.17(b) include iterations excluded from the fused |oops as a result of
shifting, as well as iterations peeled for parallelization.

CHAPTER 4. THE SHIFT-AND-PEEL TRANSFORMATION FOR LOOP FUSION 69

4.3.4 Legality of Multidimensional Shift-and-peel

The legality for multidimensional shift-and-peel follows directly from the legality of shift-
and-peel for outermost loops. Just as shifting of outermost loops ensures that there are no
backward-flowing dependences at the outermost level, shifting of inner loops ensures that there
are no backward-flowing dependences carried by inner loops. Similarly, peeling iterationsfrom
inner loops removes cross-processor dependences. Peeled iterations are executed only after all

fused loop iterations have been executed, and no dependences are viol ated.

4.4 Fusion with Boundary-scanning L oop Nests

A final issue affecting loop fusion is the presence of boundary-scanning loop nests within
a candidate sequence for fusion. A boundary-scanning loop nest accesses elements from
a boundary region of a multidimensional array, which normally implies that the loop nest
dimensionality islessthan the array dimensionality. For example, aone-dimensional |oop may
access one of following boundary regions of atwo-dimensional array: the first column, the last
column, thefirst row, and thelast row. Arrayswith higher dimensionality have correspondingly
more boundary regions.

A boundary-scanning loop nest normally appearsin sequence with other full-dimensionality
loop nests (i.e., loop nests whose dimensionality matches the array dimensionality). For
example, the loop nest labelled ¢, in Figure 4.18(a) writes all elements of array a, except
elementsin the first column. The loop labelled £4,544r, then writes only the first column of
with values that are computed differently than those computed in ¢;. Finaly, the loop nest
labelled ¢, reads all values written to array a by both loops ¢; and £oundary -

A loop nest sequence that includes a loop nest such as ¢y,unqary N Figure 4.18(a) cannot
be fused directly because of the differences between loop headers in the sequence. Fusionis
limited to the subsets of 10op neststhat either precede or follow a boundary-scanning loop nest.
As a result, opportunities to exploit data reuse across the entire loop nest sequence are lost.
For example, arrays a and b in Figure 4.18(a) are reused across loop nests ¢, and /5, but the

presence of £y,unaar, Preventsthe application of direct fusion to exploit that reuse

3Although £poundary May be moved ahead of ¢4 in Figure 4.18(a), code mobility isin general more restricted.
A boundary-scanning loop nest may depend on data written by a preceding full-dimensionality loop nest, and the

CHAPTER 4. THE SHIFT-AND-PEEL TRANSFORMATION FOR LOOP FUSION 70

¢1: doj=2,N
doi=1,M
a[i,j] = f(oli,j])
end do
end do
Looundary - dO i=;|.,|\/| _
ai,1] = g(b[i,1])
end do
l>: doj=1,N
doi=1,M
c[i,jl = r(@i,j],bli,j])
end do
end do

(a) Original loop nest sequence

¢, : doj=1,N
if (j>1) then
doi=1,M
ai,j] = f(b[i,j])
end do
ese
doi=1,M
ai,1] = g(b[i,1])
end do
end if
end do
l,: doj=1,N
doi=1,M
c[i,j] = h(@i,j],b[i,j])
end do

end do

(c) Combining ¢1 and £ty ngary INtO £

l1: dOj:2,N
doi=1,M
ai,j] = f(b[i,j])
end do
end do
doj=11
doi=1,M
ai,1] = g(b[i,1])
end do
end do
(. doj=1,N
doi=1,M
cfi,j] = h(@i,j],b[i,j])
end do

end do

/ .
boundary -

(b) Transformation of fuoundary INtO Lo ngary

lused © dOj=1,N
if (j>1) then
doi=1,M
ai,j] = f(bli,j])
end do
ese
doi=1,M
ai,1] = g(b[i,1])
end do
end if
doi=1,M
cfi,j] = h(@i,j],b[i,j])
end do

end do

(d) Fusion of #; and ¢, into {syse

Figure 4.18: Fusing aloop nest sequence with a boundary-scanning loop nest

However, fusion of loop sequences is still possible, even in the presence of boundary-

scanning loops. The key to enabling fusion is determining the array regions that are written

by a boundary-scanning loop nest and the regions written by neighboring loop nests. If these

regions are digoint, a straightforward transformation incorporates the computation performed

data written by the boundary-scanning loop nest may also be read by a subsequent loop nest.

CHAPTER 4. THE SHIFT-AND-PEEL TRANSFORMATION FOR LOOP FUSION 71

in the boundary-scanning loop nest into a fused loop without violating loop semantics.

The transformation to enable fusion is illustrated using the loop nest sequence in Fig-
ure 4.18(a). To exploit the reuse of arrays a and b, the outermost j loops must be fused. The j
loop headers for ¢, and /, differ by oneiteration, namely j; = 1. Howeve, {y,unqary effectively
performs the computation for j = 1. Hence, (yundary IS transformed into a two-dimensional

loop nest with an outer j loop of only one iteration, as shown in Figure 4.18(b).

Theregionsof array a written by ¢, and ¢},,,,..4,,,, in Figure 4.18(b) are digoint because the
j-loop iteration values do not overlap. This feature is exploited by forming the union of the
separate iteration spaces to produce a new loop #. The body of ¢; includes the computations
from both ¢; and ¢},,,,,,4,,,» @ shown in Figure 4.18(c); a guard selects the appropriate inner i
loop. Note that this combination of loop bodies does not correspond to fusion; it is effectively

the inverse of loop peeling.

Loops ¢, and /, in Figure 4.18(c) are now fused directly to result in theloop ¢4,,.q shownin
Figure4.18(d). Theboundsof ¢y, rangefrom 1to N. When j is 1, the computation originally

iN100P £poundary 1S performed. When j > 1, the computation from loop ¢, is performed.

Figure 4.18 illustrated a case in which direct fusion was applied after generating outermost
loops with the same index variable. More generally, array references in loop nest sequences
generate interloop dependences that require shift-and-peel. The approach illustrated in Fig-
ure 4.18 for boundary-scanning loop nests is still applicable in such cases. Once outermost
loops with the same index variable are obtained, the dependence distances required for shift-
and-pesd are obtained for the core computation from the full-dimensionality loop nests. When
the shift-and-peel transformation is applied with strip-mining as described in Section 4.2.4, the
computation from boundary-scanning loop nests is automatically included in the appropriate
block of iterations. The guard ensures that the boundary-scanning computation is performed
only for the appropriate loop iteration. Thisis because strip-mining does not affect the loop

body; only the bounds of the loop are modified.

Hence, the presence of boundary-scanning loop nests does not preclude the shift-and-
ped transformation. Instead, the ability to incorporate boundary-scanning loop nests into a

collection of full-dimensionality loop nests results in longer loop nest sequences for fusion.

CHAPTER 4. THE SHIFT-AND-PEEL TRANSFORMATION FOR LOOP FUSION 72

45 Chapter Summary

This chapter has described the shift-and-peel transformation for enabling legal loop fusion and
subsequent parallelization. The primary motivationfor fusion of parallel |oop nest sequencesis
locality enhancement, and the model described earlier in Chapter 3 has been used to quantify the
benefit of locality enhancement. However, the motivation for the shift-and-peel transformation
is the presence of dependences that either render fusion illegal or force a fused loop to be
executed serialy. Shifting and peeling have been shown to overcome such dependences and
allow all reuse across a sequence of parallel loop nests to be exploited with fusion. The
legality of the shift-and-peel transformation has been established with a formal proof. The
transformation has also been described for fusion of inner loops as well as outermost loops.
Finally, the presence of boundary-scanning loop nests within a candidate loop nest sequence

for fusion has been addressed to ensure that all available reuse can be exploited.

Chapter 5

Scheduling Wavefront Parallelism in Tiled
L oop Nests

Thischapter describes scheduling strategiesfor tiled loop nestswith wavefront parallelism, and
analyzes the parallelism and locality provided by each strategy. Tiling aloop nest for cache
locality enhancement introduces loop-carried dependences that limit parallelism to wavefronts
in the tiled iteration space. These dependences result from using the shift-and-peel transfor-
mation and loop skewing to enable tiling. Scheduling the execution of atiled loop nest with
wavefront parallelism involves a tradeoff between the degree of parallelism in wavefronts and
the extent of locality enhancement.

This chapter is organized as follows. First, the use of loop skewing and the shift-and-peel
transformation to enable tiling is described. Next, the emergence of wavefront parallelism in
tiled loop nestsis discussed, followed by the tradeoff between parallelism and locality. Related
work on tiling and loop scheduling isthen outlined. Finally, scheduling strategiesfor wavefront
parallelism are described and evaluated analytically.

5.1 Wavefront Parallelism in Tiled L oop Nests
5.1.1 Loop Skewingto EnableLegal Tiling

A perfectly-nested loop nest can be legaly tiled if it is fully permutable, i.e., if none of its
loop-carried dependence vectors have negative elements [Wol92]. Negative vector elements
that are permuted to the outermost loop level result in lexicographically-negative dependence
vectors that violate the original loop semantics. Loop skewing enables legal loop permutation

by eliminating any negative elements in loop-carried dependences.

73

CHAPTER 5. SCHEDULING WAVEFRONT PARALLELISM IN TILED LOOP NESTS 74

dot=1,T dot=1,T
doj=2,N-1 do j=2+t,N-1+t
doi=2,N-1 do i=2+t,N-1+t
alij] = (alij]+a[i+1,]+a[i—1,] ali-tj—t] = (ali-t,j-t] +afi+1-t, -] +afi-1-t,~]
+ai,j+1]+di,j-1]) /5 +a[i-t,j+1-t]+di-t,j-1-t]) / 5
(a) Original SOR loop nest (b) Skewing inner two loops
dot=1,T dojj=2,N-1+T,B
do jj=2+t,N-1+t,B doii=2,N-1+T,B
do j=jj,min(jj+B—-1,N-1+t) dot=1T
doii=2+t,N-1+t,B do j=max(jj,2+t),min(jj+B—1,N-1+t)
doi=ii,min(ii+B-1,N-1+t) do i=max(ii,2+t),min(ii+B-1,N-1+t)
ali-t,j—t] = (a[i-t,j—t]+a[i+1-t,j—t]+ali—1-t,j—t] ali-t,j—t] = (a[i-t,j—t]+a[i+1-t,j—t]+ali—1-t,j—t]
+a[i-t,j+1-t]+a[i-t,j-1-t]) / 5 +a[i-t,j+1-t]+a[i-t,j-1-t]) / 5
(c) Strip—mining inner two loops (d) Permuting control 1oops

Figure 5.1: Stepsintiling the SOR loop nest

The SOR loop nest in Figure 5.1(a) is used to illustrate the use of loop skewing to enable
tiling. Thisloop nest isacandidatefor tiling because the outermost |oop carries the dependence
(1,0,0), henceit carriesreuse. The complete set of dependence distance vectorsfor thisloop nest
is: {(1,0,0), (1,—1,0), (1,0,—1), (0,1,0), (0,0,2)}. Hence, theloop nest is not fully permutable,
and loop skewing must be applied, as shown in Figure 5.1(b), in order to remove the negative
elements in the distance vectors. Both inner loops i and j are skewed by one iteration with
respect to loop ¢, resulting in the transformed distance vectors: {(1,1,1), (1,0,1), (1,1,0), (0,1,0),
(0,0,1)}. Theloop nest can be then tiled legally by first strip-mining the skewed i and j loops
by afactor of B, asshownin Figure 5.1(c), and then by permuting the resulting iz and j j control
loops to the outermost level, as in Figure 5.1(d). The effects of skewing on dependences and

the grouping of iterations into units of tilesare illustrated graphically in Figure 5.2.

5.1.2 Enabling Tiling with the Shift-and-Peel Transfor mation

This section demonstrates how the shift-and-peel transformation proposed in Chapter 4 enables
tiling. Figure 5.3 isused toillustrate the procedure. For simplicity, only one-dimensional tiling
isillustrated. However, the following discussion can be extended to two or more dimensions.
The outermost loop in Figure 5.3(a) carriestemporal reuse. Theiteration spacesfor each of
the component loops L1 and L, areillustrated for each iteration ¢ of the outermost loop, along

with all dependences. Tiling of inner loopsis not possible because there are two inner loops at

CHAPTER 5. SCHEDULING WAVEFRONT PARALLELISM IN TILED LOOP NESTS

A
dootlz'l'TzN 1
0 j=2,N-
A 7 éou =2 N-1
1 e aij] = (i j]+ali+1,j]+ali-1,]
P +ai,j+1]+a[i,j-1]) /5
| L
et pd
|~ L pd
1 | pd
L1 1 L1
A1 LA
|~ L1 L j
L1 L
// P .
§/ -
|~
(a) Three—dimensional iteration space with /
dependences for original SOR |loop nest
dojj=2,N-1+T,B
doii=2,N-1+T,B
~ dot=1T
>~ do j=max(jj,2+t),min(jj+B-1,N-1+t)
N do i=max(ii,2+t),min(ii+B-1,N-1+t)
~_ ~_ a[i-t,j~t] = (a[i~t,j~t]+afi+1-t,j~t]+ali~-1-t,j~t]
~ - +a[|—tJ+1—t]+a[|—t,J—l—t]) /5

L

Vi

/

WA AR
/
/

\/
/ /
/
L

/
TI"»‘!V,A!!/
AN

a’s

=

WiVANNA

N

:
\\\‘\\

/
/

/
/
/

/
/

~
>~ > ~
~ > ~
~ S
(b) Iteration space after skewingwith ™~
two representative tiles of iterations > -

Figure 5.2: Graphical representation of skewing and tiling in the iteration space

CHAPTER 5. SCHEDULING WAVEFRONT PARALLELISM IN TILED LOOP NESTS 76

dot=1,2
L1: doi=14
b[i] = di-1]+a[i+1]
end do
L2: doi=14
a[i] = bli]
end do

end do

(a) Origina arbitrarily—nested loop nest with outermost loop
carrying data reuse, and corresponding iteration spaces

doii=1,6,2 doii=1,8,2
doii=14,2 dot=12 = dot=12 -
dot=1,2 do i=max(ii,1),min(ii+1,4) do i=max(1,ii—2*t+2), min(ii-2*t+3,4)
do il ji+1 bii] = ali~1]+a[i+1] bii] = ali~1]+4{i+1]
bli] = afi-1]+a[i+1] enddo - enddo .~ N
ai] = b[i] do i=max(ii—1,1),min(ii,4) do i=max(1,ii—2*t+1),min(ii-2*t+2,4)
end do a[i] = bfi] a[i] = bfi]
end do end do end do
end do end do end do
end do end do

t=1 t=2 t=1 t=2
L1+L2 L1+L2

(b) Illegal tiling after illegal fusion (c) lllegal tiling after shifting of (d) Legal tiling after shifting iteration
iteration spaces for legal fusion spaces for legal fusion and skewing
with respect to outermost loop

Figure 5.3: Enabling tiling with the shift-and-peel transformation

the same level. Theinner loops must first be fused to enable tiling.

Figure 5.3(b) illustrates direct fusion without regard for dependences, followed by tiling.
The dashed boxes are tiles of iterations indexed by iterations of the i loop. Within each tile,
iterations corresponding to ¢ = 1 are executed first, followed by iterations correspondingtot =
2. However, this transformation isillegal. There are lexicographically-negative dependences
in the fused loop for the same iteration of the ¢ loop, as well as between different iterations of

the ¢ loop. The order in which tiles are executed does not preserve the original semantics.

Now consider applying the shift-and-peel transformation. In thisinstance, legal fusion is
enabled by shifting the iteration space of L, by one iteration with respect to L,, asillustrated

CHAPTER 5. SCHEDULING WAVEFRONT PARALLELISM IN TILED LOOP NESTS 77

in Figure 5.3(c). However, tiling is still not legal because there are still backward dependences
between tiles. Loop skewing must now be applied to enable tiling. In this case, the required
skewing factor is 2. The effect of skewing on theiteration spacesisillustrated in Figure 5.3(d).

There are no longer any backward dependences between tiles, hence tiling is now legal.

5.1.3 Wavefront Parallelism after Tiling

Enabling tiling with the shift-and-peel transformation and loop skewing transforms the de-
pendences into a form that leads to wavefront parallelism in the tiled loop nest. The SOR
loop nest in Figure 5.1(a) is used to illustrate the emergence of wavefront parallelism. Con-
sider the dependence distance vector (¢, j,i) = (1,0, 0) for the original loop nest; this vector
indicates that the outermost loop carries reuse. The inner loops must be tiled in order to
exploit this reuse. If it were possible to tile the SOR loop nest directly, then the distance
vector would first betransformed into (¢, jj, 7, i,4) = (1,0, 0, 0, 0) after strip-mining, and then
into (jj,14i,t,7,i) = (0,0,1,0,0) after loop permutation. Hence, the outer loops would be
parallelizable because they do not carry dependences.

However, direct tiling isnot legal because other dependences require loop skewing in order
to produce a fully permutable loop nest. Skewing of the inner loops transforms the original
distance vector that reflects the outer loop reuse into (¢, 7,4) = (1,1,1). Now, strip-mining
results in (t,jj,7,41,1) = (1, B,1, B, 1), and permutation finally produces (jj,ii,t,j,i) =
(B, B,1,1,1).! Hence, skewing of the inner loops converts a dependence (i.e., reuse) carried
by the original outermost loop into aloop-carried dependence in the outermost loop after tiling.
Sinceall of thevector componentsare nonzero, permutation of any other loop into the outermost
position also resultsin aloop-carried dependence.

Similar transformations of the remaining distance vectors for the SOR loop nest introduce
additional loop-carried dependencesin the outer loops after tiling (although these are redundant
in relation to the primary dependence discussed above). Hence, both ii and jj loopsin thetiled
loop nest of Figure 5.1(d) carry dependences. These |oop-carried dependences are represented
graphically by the arrowsin Figure 5.4. Thisfigure is atwo-dimensional representation of the

five-dimensional iteration space of the tiled loop nest. Each square corresponds to an iteration

1The effect of strip-mining on dependences was discussed in Section 2.4.4, specifically the introduction of the
factor B in the transformed dependence vector.

CHAPTER 5. SCHEDULING WAVEFRONT PARALLELISM IN TILED LOOP NESTS 78

st e S
7

i

Figure 5.4: Dependences and wavefronts

(774, 14i) from the outer loops, and representsa B x B x T tileof iterationsfrom the original j,,
and t loops. Since the two outer loops carry dependences, they are not parall€elizable.
However, exploitable paralelism exists, even in the presence of these loop-carried de-
pendences. The parallelism is along the diagonal wavefronts shown by the dashed lines in
Figure5.4. Tileswithin each wavefront are independent from one another and may be executed
in parallel, although the wavefronts must be executed in proper sequence to satisfy the depen-
dences. The existence of wavefront parallelism follows from previous research that asserts
that a fully-permutable loop nest of depth . can always be transformed into another loop nest
of depth m such that there are at least m — 1 parallel (or DOALL) loops [Wo0l92]. However,
in the presence of loop-carried dependences, these parallel loops may be inner loops, and the

outermost loop may remain sequential.

5.1.4 Exploiting Wavefront Parallelism: DOALL vs. DOACROSS

There are two general approaches for exploiting wavefront parallelism. The first is to apply
a wavefronting transformation to obtain the inner DOALL loops [Wol92]. This wavefronting
transformation corresponds to applying additional loop skewing at the outer loop levelsto align
independent tiles in each wavefront such that their execution may be expressed in a DOALL
loop. For the SOR example, applying additional skewing to the tiled iteration space shown in
Figure 5.4 yieldstheiteration space shown in Figure 5.5. Independent tilesin the skewed space
are aligned with the i: loop and may be executed in paralel. The outermost j; loop remains
sequential, requiring global synchronization of all processors between successive iterations.

The drawback of the DOALL approach isthat processors may not be fully utilized between

CHAPTER 5. SCHEDULING WAVEFRONT PARALLELISM IN TILED LOOP NESTS 79

| | |
) zZl ™11 ™7 |
dojj=2,2*(N-1+T)-B,B i i I
doall ii=max(2,jj—(N-1+T)+1),min(jj,N-1+T),B |
dot=1,T . | . | _>V|
do j=max(jj—ii,2+t),min(jj—ii+B-1,N-1+t) I Y! |
do i=max(ii,2+t),min(ii+B—1,N—-1+t) [: I
ai-tj-t] = (i j]+ali+1-t- t]+a[l -1-tj-] ' '
+afi—t,+1-t]+ai-tj—-1-1]) / 5 ! g *x!

Figure 5.5: Exploiting parallelism with inner DOALL loops

global synchronizations because the number of independent tiles variesin each wavefront. For
example, the middle wavefront in Figure 5.5 has three tiles labelled X, Y, and Z. With two
processors executing in parallel, both processors are initially busy executing tiles X and Y.
However, one processor must remain idle until the remaining tile Z is executed because of the
global synchronization required for the DOALL loop.

The aternative approach for exploiting wavefront parallelism isto treat the two outer |oops
as DOACROSS loops and introduce explicit synchronization between dependent tiles. This
approach avoids global synchronization and effectively utilizes idle processors by allowing
concurrent execution of tiles in different wavefronts, although local synchronization is now
required between tiles. For example, after tiles X and Y in Figure 5.5 have been executed,
tilesV and Z may be executed concurrently because the dependences for tile V are satisfied.
Since the DOACROSS approach provides the opportunity for improved processor utilization,
itisused later in this chapter for scheduling the execution of tiled loop nests.

5.2 DataReusein Tiled Loop Nests
5.2.1 Intratileand Intertile Reuse

In this chapter, data reuse in a tiled loop nest is categorized as intratile or intertile reuse.
Intratile reuse results from capturing the reuse from the original outer loop within asingletile.
In the tiled loop nest, data referenced in each tile is ideally loaded only once into the cache,
then reused from the cache for locality within the same tile. However, when loop skewing is

required to enable tiling, the data access patterns in the original loop nest are modified. When

CHAPTER 5. SCHEDULING WAVEFRONT PARALLELISM IN TILED LOOP NESTS 80

the skewed loop nest istiled, thereis still reuse of datawithin tiles, but the modified data access
patterns also introduce reuse between tiles, i.e., intertile reuse.

Thetwo categories of reuse areillustrated for the example SOR loop nest in Figure 5.6. The
iteration and data spaces for the original SOR loop nest are shown in Figure 5.6(a). With loop
skewing and tiling, successive iterations of the original outer loop that are executed within the
same tile access overlapping regions of the array, as shown in Figure 5.6(b). This constitutes
intratile reuse. However, iterations from adjacent tiles also access overlapping regionsin the
data space as aresult of loop skewing, as shown in Figure 5.6(c), and it is this overlap between
tiles that resultsin intertile reuse.

When executing a tiled loop nest on a multiprocessor, an individual tile is executed to
completion by one processor. As a result, intratile reuse is converted to locality on each
processor if reused data remains cached during the execution of the tile. When adjacent tiles
are executed by the same processor, and datain the overlapping regionsfor thosetilesisretained
in the cache between tiles, intertile reuse is converted to intertile locality. That is, datain the
overlapping regions is loaded only once into the cache, then reused from the cache not only
within the same tile for intratile locality, but also in adjacent tiles. On the other hand, when
adjacent tiles are executed by different processors, cache missesare incurred by each processor
to load al the datareferenced within each tile, including the datain the overlapping regions. In

thiscase, thereisno intertile reuse, and the opportunity to convert the reuse into locality islost.

5.2.2 Quantifying the L ocality Benefit of Tiling

The sweep ratio in Chapter 3 can quantify the locality benefit of tiling. Let ¢ denote aloop nest
with an outermost loop that carries temporal reuse, let A(¢) denote the set of similarly-sized
arrays referenced in the loop nest ¢, and A,,(¢) denote the subset of arrays that are modified.
Prior to tiling, each iteration of the outermost loop requires a complete memory sweep for
each of the arraysin A(¢), and an additional writeback sweep for each of the arraysin A, (¢).
Hence, the total number of memory sweeps for the entire loop nest before tiling is given by
sy =T (JA(C)| + |Aw(€)]) , where T" isthe number of iterations of the outermost loop.

First, consider tiling without loop skewing. Eachtile performsall 7" iterationsof the original

outermost loop. Cache missesare incurred at the start of each tile to load the required datainto

CHAPTER 5. SCHEDULING WAVEFRONT PARALLELISM IN TILED LOOP NESTS 81

dot=1T
doj=2,N-1
doi=2,N-1
ai,j] = (@i jl+ai+1,j]+ai-1j]+ai,j+1]+ai,j-1]) / 5

s =

T

iteration space data space

t. %
L2

(a) Iteration and data spaces for origina SOR loop nest

skewed, tiled iteration space data space
(b) Skewed data access patterns within atile

t

L ==
- —

skewed, tiled iteration space data space

(c) Intertile reuse for adjacent tiles

Figure 5.6: Datareusein atiled loop nest that requires skewing

CHAPTER 5. SCHEDULING WAVEFRONT PARALLELISM IN TILED LOOP NESTS 82

B B
— —
T=B } B } B
T=B
7
- I

total datainregion= 3*B*B total datainregion= 5*B*B

(a) Data accessed per tilewhen s=1 (b) Data accessed per tile when s=2

Figure 5.7: Amount of data accessed per tile with skewing

the cache, then the same datais reused from the cache for the remainder of thetile. In addition,
writebacks occur only when modified datain the cacheisreplaced by new datafor the next tile.
Consequently, the total number of memory sweeps with tiling is s, = |A(¢)| + |A,(¢)]. The
sweep ratio for tiling without skewing is therefore

b o T (AWD]+ Au(0)
T e T A + AL (0)]

Now, consider tiling with loop skewing. Skewing alters data access patterns within atile;

=T.

rather than reusing a fixed portion of data, the amount of data accessed per tile is proportional
to 7. Figure 5.7(a) illustrates this relationship when tiling two inner loopswith 7" = B and a
skewing factor of s = 1. The number of elements accessed in theregion shownin Figure 5.7(a)
is(2-(T'/B)+1)-(B-B)=3-B- B. Figure 5.7(b) illustrates the region resulting from a
larger skewing factor s = 2. Thisregion encloses (2 (s-7/B)+1)-(B-B)=5-B B
elements. Compared with idedl tiling that references only B - B elements per tile, skewing
effectively reducestheideal sweep ratio of 7" by afactor of 2- (s-7'/B) + 1. Hence, the sweep
ratio for tiling with skewing is given by

Hiting = 5 (s T/B) + 1

Thisresult assumesthat only intratilereuse isexploited; Section 5.4.4.4 will discussthe impact

(5.1)

of exploiting intertile reuse.
Finally, consider the combined effect of the shift-and-peel transformation and tiling. As
discussed in Section 5.1.2, the shift-and-peel transformation enables tiling by fusing inner

CHAPTER 5. SCHEDULING WAVEFRONT PARALLELISM IN TILED LOOP NESTS 83

loops. In addition to enabling tiling, fusion reduces the number of memory sweeps by a
factor of ry,.i0n, = (SWeeps before fusion) /(sweeps after fusion). Tiling reduces the number
of sweeps by a factor of r,,, = (Sweeps before tiling) /(sweeps after tiling). Since fusion is
performed first, the number of sweeps after fusion is equal to the number of sweeps before
tiling. Hence, the overall sweep ratio r .., 1S given by

sweeps beforefusion sweepsbeforefusion sweeps before tiling
sweepsafter tiling ~ sweepsafter fusion sweeps after tiling

= T'fusion * Ttiling -

(5.2)

T overall =

5.2.3 TileSize, Parallelism, and Locality

Thetilesizehasasignificant impact on the performance of atiled|oop nest becauseit determines
both the degree of parallelism and the extent to which locality is enhanced. With wavefront
paralelism, a smaller tile size increases the number of wavefronts and, more importantly,
increases the number of independent tiles in each wavefront. Hence, the degree of parallelism
increases with smaller tile sizes, although the frequency of synchronization also increases.
Thetile size al so dictates the extent of locality enhancement when loop skewing is required
for tiling. The impact of tile size on intratile and intertile locality is illustrated in Figure 5.8.
The shaded regions represent the data accessed by adjacent tiles, as in Figure 5.6(c). The
overlapping regions correspond to the intersection of the data accessed by different tiles. For
a given number of iterations in the original outer loop, the amount of data in the overlapping
regionsis relatively small compared to the total amount of data accessed by the tile when the
tile sizeislarge. Consequently, alarge tile size enhances intratile locality and diminishes the
impact of intertile locality. In contrast, for the same number of iterations and a small tile size,
the amount of data in the overlapping regions is a much larger fraction of the total amount of

data accessed by thetile. Hence, a small tile size increases the importance of intertile locality.

5.3 Redated Work
5.3.1 Tiling

An extensive formal treatment of tiling is given by Wolf [Wol92], building on the work of
Porterfield [Por89], Irigoin and Triolet [IT88] and Abu-Sufah et al. [ASKL81]. However,

CHAPTER 5. SCHEDULING WAVEFRONT PARALLELISM IN TILED LOOP NESTS 84

overlap regions for intertile locality

smaller tilesin array larger tilesin array

Figure 5.8: Impact of tile size on locality

there are two shortcomings in the work of Wolf. First, Wolf does not study the effects of
loop skewing on data reuse, although his theory incorporates skewing. Hence, he does not
distinguish between intratile and intertile locality. Second, Wolf’s experiences with tiling are
limited to small-scale multiprocessors with uniform memory access. Satisfactory performance
isachieved withrelatively largetilesthat exploit intratile reusefor locality with amodest degree
of paralelism. However, large-scale multiprocessors require the use of small tiles to provide
sufficient parallelism on a large number of processors. Furthermore, when loop skewing is

required to enable tiling, intertile locality becomes more important with small tiles.

5.3.2 Loop Scheduling

There exists a large body of work dealing with scheduling of parallel, or DOALL, loops on
shared-memory multiprocessors. Many scheduling strategies have been proposed to strike a
bal ance between load balance and scheduling overhead. Static scheduling [BGS94] minimizes
overhead, but may not provide sufficient load balance. Dynamic techniques, such as self-
scheduling [BGS94], guided self-scheduling [PK87], and factoring [HSF92], seek to improve
load balance at the expense of increased overhead. Some scheduling strategies also consider
memory locality for nonuniform memory access by attempting to distribute loop iterationsin a
manner that matches the distribution of the data accessed by those iterations. Examplesinclude
affinity-based scheduling [ML94] and locality-based dynamic scheduling [LTSS93].

There are two problems when considering the use of existing scheduling strategies for

exploiting wavefront parallelism in tiled loop nests. First, the strategies cited above address

CHAPTER 5. SCHEDULING WAVEFRONT PARALLELISM IN TILED LOOP NESTS 85

individual DOALL loops in which there no restrictions on the manner in which iterations are
distributed and executed among multiple processors. Greater care is needed when scheduling
multiple DOACROSS loops with explicit synchronization in order to satisfy loop-carried de-
pendences; iterations must be executed in lexicographical order on each processor, otherwise
deadlock may occur. Second, the scheduling strategies cited above do not address the issue of
exploiting intertile reuse for cache locality. Since the importance of intertile locality increases

whentiling loop nestsfor large-scale multiprocessors, new scheduling approaches are required.

5.3.3 Scheduling Vectors

In the presence of wavefront parallelism in a loop nest, the loop-carried dependences define
the scheduling vector [DR94] that determines the sequence in which the wavefronts must be
executed. By definition, the scheduling vector is orthogonal to the wavefronts.

Hodzic and Shang [HS96] present an analytical method for deriving the optimal granularity
(i.e, tile size) for tiling loop nests with loop-carried dependences that require interprocessor
communication on message-passing multiprocessors. Their derivation assumes that the startup
cost for communication is high and that transmission time after startup is negligible, hence
they seek the optimal tradeoff between the frequency of communication and the degree of
parallelism to minimize execution time. They conclude that the optimal scheduling vector that
minimizes execution time does not vary with the optimal granularity.

In contrast, the scheduling of tiled loop nests considered in this chapter addresses shared-
memory multiprocessors in which cache locality, rather than communication startup cost, has
the greatest impact on performance. As a result, the optimal tradeoff to minimize execution
timeis between the degree of locality enhancement and the degree of parallelism. In particular,
consideration must be given to intertile locality when tile sizes are reduced to increase paral-
lelism. The next section will show that the optimal tradeoff betwen locality and parallelismto

minimize execution time may in fact require a subobtimal scheduling vector.

5.4 Scheduling Strategiesfor Wavefront Parallelism

This section discusses three scheduling strategies—namely dynamic self-scheduling, static

cyclic scheduling and static block scheduling—for exploiting wavefront parallelism in tiled

CHAPTER 5. SCHEDULING WAVEFRONT PARALLELISM IN TILED LOOP NESTS 86

loop nests when the outer loops are treated as DOACROSS loops. The first strategy, dynamic
self-scheduling, is a straightforward adaptation of the existing technique for DOALL loops to
DOACROSS loops by controlling the order in which loop iterations are assigned to processors.
The other two techniques are adaptations of static scheduling for DOACROSS loops with
maodifications to the manner in which iterations are distributed and ordered among processors.
The strategies are evaluated on the bases of runtime overhead, synchronization requirements,

degree and granularity of parallelism, and locality enhancement.

54.1 Dynamic Self-scheduling

In normal dynamic self-scheduling of DOALL loops, processors obtain iterations in some ar-
bitrary order from a shared work pool. Dynamic self-scheduling is most effective inimproving
load balance when thereishigh variability in the amount of computation within the independent
iterations assigned to each processor. Since there are no dependences between iterationsin a
DOALL loop, there is no need for synchronization between iterations. For the DOACROSS
loopsin tiled loop nests, the iterations represent individual tiles, and there is explicit synchro-
nization to enforce dependences between tiles in different wavefronts. Dynamic scheduling
for tile execution must be modified such that idle processors obtain tiles in an order that re-
spects these dependences. Prior to executing atile, interprocessor synchronization is required
to ensure that tiles in the preceding wavefront have been executed. Dynamic scheduling aso
balances the workload for the variability in the degree of parallelism in successive wavefronts.

This form of dynamic self-scheduling is adequate for exploiting wavefront parallelism
in tiled loop nests for small-scale shared-memory multiprocessors. With a limited number of
processors, alargetile size generally provides an adequate degree of parallelism. Consequently,
intratilelocality isenhanced because alargetile size captures most of the reuse fromtheoriginal
loop nest within asingletile, and intertile locality has little impact on performance.

However, with little or no variability in the amount of computation per tile, dynamic
self-scheduling is not an appropriate strategy for large-scale shared-memory multiprocessors
for two reasons. First, a large number of processors requires a relatively small tile size for
sufficient parallelism. A small tile size reduces intratile locality and places greater importance

on intertile locality. Dynamic self-scheduling is not likely to enhance intertile locality since

CHAPTER 5. SCHEDULING WAVEFRONT PARALLELISM IN TILED LOOP NESTS 87

S &3

S 338

Figure 5.9: Static cyclic scheduling of tiles

tiles are assigned arbitrarily to idle processors. The second reason is that cache misses that
result from the reduced intertile locality with small tile sizes are likely to be incurred for
remote, rather than local, memory due to the arbitrary assignment of tiles to processors. The

performance degradation resulting from these misses may be significant.

54.2 Static Cyclic Scheduling

In normal static scheduling for DOALL loops, the assignment of iterations to processors is
determined in advance and remains fixed. Since DOALL loop iterations are independent, no
synchronization is required. To exploit wavefront parallelism, static cyclic scheduling for the
DOACROSS loops assigns rows of horizontally-adjacent tiles to the same processor, as shown
in Figure 5.9. In this manner, intertile reuse within rows of tilesis exploited by one processor
to enhance intertile locality. The cyclic mapping of rows of tiles to processors distributes the
workload in each wavefront evenly among processorsto fully exploit the available parallelism.
However, explicit synchronization between dependent tilesis still required.

Static cyclic scheduling improves over dynamic self-scheduling in three ways. First, cyclic
scheduling enhances intertile locality for horizontally-adjacent tiles by statically assigning
them to the same processor, whereas dynamic self-scheduling does not necessarily exploit any
intertile reuse due to the arbitrary assignment of tiles. Second, interprocessor synchroniza-
tion to enforce loop-carried dependences is required only for vertically-adjacent tiles, since
horizontally-adjacent tiles are executed in the correct order by the same processor. Third,
the scheduling overhead is reduced since the assignment of tiles to processors is determined

statically. However, cyclic scheduling still requires synchronization for each tile to enforce

CHAPTER 5. SCHEDULING WAVEFRONT PARALLELISM IN TILED LOOP NESTS 88

P3
P2
P17 PL S
PZ RN e
AULEANUL
PO y PO T AT VS [V [V]"
7 7~
(a) Original wavefronts (b) Modified wavefronts

Figure 5.10: Static block scheduling of tiles

dependences, and not all of the intertile reuse is exploited.

54.3 Static Block Scheduling

Static block scheduling for the DOACROSS loop iterations in a tiled loop nest assigns con-
tiguous blocks of tiles to the same processor, as shown in Figure 5.10. In this manner, all of
the intertile reuse within a block of horizontally- and vertically-adjacent tiles is exploited by
one processor to enhance intertile locality. Since the loops are DOACROSS, the tiles must
be executed in an order that respects the dependences. However, the available paralelism in
each wavefront is not exploited efficiently for the original wavefronts shown in Figure 5.10(a)
because a portion of the processorsis|eft idle for the few initial and few final wavefronts. The
block assignment of tiles to processors precludes the use of additional processors even when
there are tiles that can be executed. Consequently, it takes longer for all processors to become
active, and it takes longer for execution to complete.

Block scheduling requires the use of modified wavefronts as shown in Figure 5.10(b)
to provide greater paralelism. This involves rotating wavefronts such that the number of
independent tiles in the largest wavefront is exactly equal to the number of processors. This
rotation corresponds to the selection of a different scheduling vector. The scheduling vector
is (1,1) for the original wavefronts in Figure 5.10(a); in fact, this is the optimal scheduling
vector for dynamic and cyclic scheduling. The scheduling vector for the modified wavefronts
in Figure 5.10(b) isgivenby (| (N +T)/(B - P)], 1), where N + T isthe number of iterations

(with skewing), B isthe tile size, and P is the number of processors. The new scheduling

CHAPTER 5. SCHEDULING WAVEFRONT PARALLELISM IN TILED LOOP NESTS 89

Table 5.1: Comparison of scheduling strategiesfor tiling

| | Dynamic \ Cyclic \ Block |
runtime overhead yes no no
synch. reg’d. horizontal/vertical tiles vertical tiles vertical processors
#oounters {%1 [%1 P
completion time [%12/P+P—1 [%12/P+P—1 ([%1 +P—1) - [%1
intertile locality none horizontal tiles horizontal/vertical tiles

vector preserves the loop-carried dependencesin block scheduling, but reduces the time before
all processors become active in parallel execution and reduces the completion time.

Static block scheduling improves over both dynamic and cyclic scheduling in two ways.
First, block scheduling exploitsall intertilereuse, except at block boundaries. Second, interpro-
cessor synchronization to enforce loop-carried dependences is required only for tiles on block
boundaries; no synchronizationis required for adjacent interior tiles, since they are executed in
the correct order by the same processor. Similar to cyclic scheduling, the scheduling overhead

isaso reduced since the assignment of tilesto processorsis determined statically.

5.4.4 Comparison of Scheduling Strategies

The scheduling strategies are compared on the bases of runtime overhead, synchronization,

parallelism, and intertile locality enhancement. These features are summarized in Table 5.1.

54.4.1 RuntimeOverhead for Scheduling

Dynamic self-scheduling incurs runtime overhead in order to assign tilesto processors as they
becomeidle. The overhead hastwo components. The first ismaintaining the set of iterationsto
be assigned. Since the wavefronts governing the order of tile assignment have aregular pattern,
only two countersarerequired for ths purpose; one counter identifiesthe current wavefront, and
the second identifies the last tile assigned in that wavefront. The cost of updating the counters
islow in comparison to the computation in each tile.

The second component of runtime overhead for dynamic self-scheduling arises from pro-

cessors competing for access to the counters governing tile assignment. For correctness, the

CHAPTER 5. SCHEDULING WAVEFRONT PARALLELISM IN TILED LOOP NESTS 90

counters must updated atomically, hence they must be protected with an appropriate synchro-
nization construct such as alock. If more than one idle processor seeks to obtain anew tile at
the same time, contention for the lock and counters contributes overhead.

Static cyclic and static block scheduling incur no runtime overhead for scheduling since
the assignment of tiles to processors is determined in advance. The only overhead is due to

synchronization to satisfy dependences, which is discussed bel ow.

5.4.4.2 Synchronization Requirements

DOACROSS loopsrequire explicit synchronization between dependent iterations; Section 2.3.1
discussed the use of semaphores for this purpose. In tiled loop nests, rather than using one
semaphorefor eachindividual tile, itispossibleto employ acounter for each row of horizontally-
adjacent tiles. The counter isincremented aseach tilein that row iscompleted, and hencetracks
the progress of the wavefronts through that row. The dependences between tiles are such that
only onetilein any given row may be executed at any time. Hence, the corresponding counter
will never be updated by more than one processor at any time and no locking is required.

Dynamic self-scheduling requires synchronization for both horizontally- and verticaly-
adjacent tiles. In other words, prior to executing atilein agiven row, a processor must read the
counters for the same row and an adjacent row to verify that it is safe to execute the tile. Thus,
aprocessor must wait for both counter values to reach a safe valueif it cannot begin executing
the tileimmediately. Static cyclic scheduling requires interprocessor synchronization only for
vertically-adjacent tiles, hence only one counter for the adjacent row needs to be read.

Finally, static block scheduling requires interprocessor synchronization only for vertically-
adjacent tileson block boundaries. Asaresult, the number of synchronization countersrequired
isequal to the number of processors, rather than the number of rows. The counter between two

blocksis checked only before executing tiles at the block boundary.

5.4.4.3 Parallelism and Theoretical Completion Time

In ideal circumstances, greater parallelism implies reduced execution time, hence the degree

of paralelism for the different scheduling strategies may be evaluated by determining the

CHAPTER 5. SCHEDULING WAVEFRONT PARALLELISM IN TILED LOOP NESTS 91

theoretical completion time? for a given number of processors P. A unit time step is defined
asthe theoretical execution timefor onetile (i.e., neglecting the impact of synchronization and
locality); the completion time is expressed in these units. For simplicity, it is assumed that
there is no variance in the amount of computation per tile.3

The following analysis assumes that there are [V iterations in each of the tiled inner loops
of the original loop nest, and that there are 7' iterations in the outer loop that carries reuse.
Skewing theinner loops by oneiteration, then tiling theinner loopsby B, yieldsatiled iteration
space with n, = [(N + T')/B] tiles in each of the new outer loops. This value of n; aso
represents the number of synchronization counters required for dynamic and cyclic scheduling,
and appearsin Table 5.1. The final assumptionisthat P < n,, i.e., there are more tilesin the
largest wavefront than there are processors in order to ensure high processor utilization.

For dynamic self-scheduling, idle processors are assigned new tiles arbitrarily in an order
governed by the wavefronts, hence the processors are fully utilized with maximal exploitation
of the available parallelism, except when dependences for atile force a processor to wait. In
the absence of scheduling and synchronization overhead, the theoretical completion time is
determined only by the ordering requirements for the tiles. Since there are P processors, the
initial P wavefrontsshownin Figure5.11 contain P - (P +1)/2tilesand requireexactly P time
units to execute in parallel, since there are no more than P independent tiles per wavefront.
The same argument applies for the final P wavefronts shown in Figure 5.11. The number of
tilesin the remaining interior wavefronts shown in Figure 5.11 is given by

P-(P+1)
——

2
ny —2-

Since there are more tiles per wavefront than processors in the interior wavefronts, tiles in
different wavefronts may be executed concurrently, hence the parallel execution time for the

interior is given simply by dividing the number of tiles by the number of processors,

Finally, the completion time for dynamic scheduling is given by the sum of the execution times

°Note that theoretical completion time s distinct from ideal schedule length [DR94] because it is determined
for afinite number of processors.

SVariances may exist between tiles from the boundaries of the iteration space and interior tiles; these variances
are not significant when the total number of tilesislarge.

CHAPTER 5. SCHEDULING WAVEFRONT PARALLELISM IN TILED LOOP NESTS 92

1N
interior AN F AN N\ final
wavefronts wavefronts
| AN A ANNN\ A |
NN RN T AN TN AN
NNSEIRNEIRAA
initial AN
wavefronts N _» \\
. NN
NN N\
A\l

Figure 5.11: Wavefronts for dynamic and cyclic scheduling (n; = 4,P = 2)

for theinitia P wavefronts, the final P wavefronts, and the interior wavefronts,

2 2

Tdyn:%—(P+1)+2-P:%+P—1.

In static cyclic scheduling, the independent tiles in each wavefront are evenly distributed
among P processors (or fewer if the number of independent tiles per wavefront islessthan P).
In the absence of overhead, the theoretical completion time is determined only by the ordering
requirementsfor thetiles. The cyclic distribution of independent tiles providesthe same degree
of processor utilization as dynamic scheduling, hence the execution times for the initial, final,
and interior wavefronts are the same as for dynamic scheduling. As a result, the completion

time for static cyclic scheduling is the same as for dynamic scheduling:

ni ni
Tcyc:F—(P+1)+2-P:F+P—1.

In static block scheduling, the modified wavefronts shown in Figure 5.12 are different than
the wavefronts for dynamic and cyclic scheduling. Assuming that »; is evenly divisibleby P,

the number of initial wavefronts with fewer than P independent tilesis given by

%-(P—l).

Since the number of independent tiles in each initial wavefront is less than P, the execution
timeis equal to the number of initial wavefronts, and a similar argument applies for the final

wavefronts as well. The number of interior wavefrontsis given by

(ne— (P=1))- 3.

CHAPTER 5. SCHEDULING WAVEFRONT PARALLELISM IN TILED LOOP NESTS 93

| N S AT Y
o] \ b\ B\ \ final
t
:/\r/] a(\a/rtle?rronts 4\\ 4\\ 4\\ 4\ wavefronts
NT A\ AT N \ |
N\ P\ P\ BN
W, W W
iritial VA MY MY
w!cnllefronts \ RN b \\
. A\UNRUARY L
\\ NigBN iz
(U | WY N N

Figure 5.12: Wavefronts for block scheduling (n; = 4,P = 2)

Since the number of independent tiles on each of the interior wavefronts is exactly P, the
execution timefor the interior wavefrontsis exactly equal to the number of interior wavefronts.
The completion time for block scheduling on P processors is therefore given by the sum of
timesfor theinitia, interior, and final wavefronts, i.e.,

n n n
TblkZZ'Ft-(P—l)—l—(nt—(P—l))-Ft:(nt+p_1).Ft_

Since Ty, = Teye., it suffices to compare 1., with 7}, To make this comparison, let

_Tbllc _(nt—i-P—l)% _nf—l—nt-P—nt

R =
Toye %%er_l n?+pP2—p

i.e., the ratio of completion times. Figure 5.13(a) illustrates the variation of R for n; = 32
and 1 < P < 32. Since R > 1, thisindicates that 173, > 1., i.e., block scheduling does
not provide as much parallelism as cyclic scheduling, even with the modified wavefronts.
Figure 5.13(b) illustrates the variation of R for P = 32 and 32 < n, < 256. Once again,

R > 1. Thereisclearly amaximum for R, and it may be shown that

Pmam|g_§:0:1_nt+\/2'ng_nta

hence,
B 1

Rmax|g_§:0— 1 1 .
—_2422- =
N N

For n, = 32, R, = 1.19 (which agrees with Figure 5.13), indicating that at best, cyclic

scheduling is 19% faster than block scheduling. However, this large discrepancy is easily

CHAPTER 5. SCHEDULING WAVEFRONT PARALLELISM IN TILED LOOP NESTS 94

2 T T T T T T 2 T T T I ,
18 . 18 | _
16 . 16 | _
14 . 14 | _
12 5 1.2 7

@ 1] 4 1k =
08 . 0.8 _
0.6 . 0.6 _
04 . 04 + _
02 . 02+ _
0 | | | | | | 0 | | | | |
5 10 15 20 25 30 50 100 150 200 250
P n_t
@n =32 1<P <32 (b) P =32, 32< n, < 256

Figure 5.13: Variation of completiontimeratio R = Ty /7%y

avoided by choosing smaller tile sizestoincrease the degree of parallelismfor block scheduling.
This corresponds to increasing n;, hence the ratio approaches 1 again, asin Figure 5.13(b).

Completion times may also be used to establish a criterion for sufficient parallelism when
selectingtilesizes. Thecompletiontimesarefunctionsof P, hencethetimesat P = 1 represent
sequential execution. For example, Ty, (P = 1) = n?/1+ 1— 1 = n?. Itistherefore possible
to express the speedup using P processors over sequential execution as

2

n
den = ng :
—t+P-1
P +
and the parallel efficiency as
E . den nf . 1
WP T+ P2-P PZ— P’

assuming no variance in the amount of computation per tile and no overhead.
Since 0 < Eyy, < 1, it is possible to specify 0 < e;, < 1 as the minimum desired
parallel efficiency. It istherefore possible to determine, for a given number of processors P,

the requirements for the tile size to produced the desired efficiency. Hence,

fmin = pT_p

CHAPTER 5. SCHEDULING WAVEFRONT PARALLELISM IN TILED LOOP NESTS 95

that after substitution for n; may be simplified to

B< N+T
J— 6 | .
PZ—P . min
\/() 1_€min

For instance, if atarget of ¢,,;, = 0.75isset for aproblemwhere N + T = 1024 and P = 32
(i.e., minimum speedup of 0.75 - 32 = 24), then

1024

Bs 075’
\/(1024_32)'T25

or B < 18. The smallest possible value of B is 1, which would yield an efficiency of
1 B 1
pP2_p Jr1024—32

(N +T)2 10242

— 0.999,
1+

but achieving such high efficiency is unlikely in practice. The overhead from synchronization

would diminish the achieved level of efficiency.

5.4.4.4 Locality Enhancement

The extent of intertile locality enhancement for each scheduling strategy is shownin Table 5.1.
The importance of enhancing intertile locality can be demonstrated by estimating the total
latency for cache hits and missesthat occur during the execution of asingletile. Thefollowing
estimates are relative to one array in a skewed, tiled loop nest. For atilesize of B x B, and
T iterations in the original outer loop of the loop nest being tiled, the number of accesses to
the cache for an array within each tileis given by B?T". Each access to the cache has alatency
of C clock cycles. Some fraction of these references miss in the cache and incur a memory
latency M. For dynamic self-scheduling, there is no intertile locality, and in the worst case,
misses areincurred for all data elements accessed for the first time within the tile. The number
of such elementsisgiven by B? + (2B — 1)(T — 1), asshown in Figure 5.14(a). This number
must then be divided by L, the cache line size, to arrive at an estimate for the number of
cache misses. The latency in clock cycles for memory accesses is then given by multiplying
by the cache miss penalty M. Finaly, the total latency, including ache accesses is given by
B?TC + (B?+ (2B — 1)(T — 1))(M/L). To measure the extent of locality enhancement for

CHAPTER 5. SCHEDULING WAVEFRONT PARALLELISM IN TILED LOOP NESTS 96

us)

B*T

}

;“f“j\:

~~2B-1
elements BT
(a) Elements per tile (b) Elements per overlap region

Figure 5.14: Number of data elements within atile

different values of B and 7', it is useful to express the fraction f of the total memory access

latency per tilethat is due to cache misses, which is given by

(B?+ (2B - 1)(T — 1))(M/L)
B2TC + (B2 + (2B — 1)(T — 1))(M/L)’

fdyn -

A similar derivation can be made for static cyclic scheduling and static block scheduling.
Because there is intertile locality for adjacent tiles, fewer misses are incurred per tile. The
reduction in the number of misses is determined by the number of elementsin one or both of
the overlap regions shown in Figure 5.14(b). Once again, the fraction of the latency due to
misses can be determined. Hence,

(B2+ BT —2B T +1)(M/L)

Jewe = BorC (B2 + BT — 2B — T + 1)(M/L)

and
(B>- 2B+ 1)(M/L)
B2TC + (B2 —2B + 1)(M/L)’

Note that for block scheduling, each tileincurs cache missesonly for the squareregion of B - B

fbllc =

elements in Figure 5.14(a); the remaining data accesses in the tile are satisfied by the cache.
Hence, block scheduling incurs the same number of cache misses as tiling without skewing to
result in theideal sweep ratioof T'.

Figure 5.15 plots the fraction f for different tile sizes B and different values of 7. The
cache line size is . = 4 elements, the cache access latency is C' = 1 clock cycle, and the
cache misslatency is M = 50 clock cycles. AsT increases, f decreasesfor all three strategies
because reuse carried by the original outer loop is captured within the tile through intratile

locality. However, f decreases far more rapidly for block scheduling. This is because block

CHAPTER 5. SCHEDULING WAVEFRONT PARALLELISM IN TILED LOOP NESTS 97

04 . el el
< ~~ . BIkB=32
02 e BikB-s
0 I I I I I L3

5 10 15 20 25 30 35 40
T

Figure 5.15: Fraction of misslatency per tile

scheduling benefits from enhancing intertile locality by reducing the number of cache misses
by an amount proportional to the overlap regionsin Figure 5.14(b). Furthermore, for a given
value of T, f isfurther reduced with a smaller tile size for block scheduling because intertile
locality ismore critical when thetile sizeissmall (see Figure 5.8). In contrast, for agiven value
of T', f increases when thetile sizeis reduced for both dynamic and cyclic scheduling. Thisis
because dynamic and cyclic scheduling do not enhance intertile locality to the same extent for
small tile sizes as block scheduling.

In conclusion, all of the scheduling strategies provide sufficient parallelism with small tile
sizes, but small tilesrequire exploiting intertile reuse for locality. Dynamic scheduling does not
exploit intertile reuse. Cyclic scheduling exploits some intertile reuse and provides the same
degree of parallelism for a given tile size as dynamic scheduling. Hence, cyclic scheduling
should perform better than dynamic scheduling. Block scheduling exploitsall intertilereuse, but
with less parallelism than either dynamic or cyclic scheduling for a given tile size. However,
the benefit of enhancing locality may outweigh the loss of paralelism and provide the best
performance. The relative performance of the three strategies for small tile sizes on a large

number of processors depends on the tradeoff between parallelism and locality.

Chapter 6

Cache Partitioning to Eliminate Cache
Conflicts

Thischapter proposes atechnique called cache partitioning to eliminate cache conflicts between
data from different arrays in aloop nest, especially after applying a locality-enhancing trans-
formation. Cache conflicts cause data to be displaced from the cache, and subsequent reuse of
displaced data incurs unnecessary cache misses to reload the data into the cache. Conflicts are
particularly undesirable when transformations such as fusion and tiling are used because the
failure to retain reused data in the cache diminishes the effectiveness of these transformations.

This chapter isorganized asfollows. First, adiscussion of cache conflictsis provided along
with related work in order to motivate conflict avoidance. The proposed cache partitioning

technique is then described in detail.

6.1 CacheConflicts

This section provides the motivation for cache conflict avoidance by discussing cache organi-
zations, classifying cache conflicts, and discussing how data access patternsin loop nests lead

to cache conflicts. Related work on cache conflict avoidance is then assessed.

6.1.1 Cache Organization and Indexing Methods

Contemporary processors use either a single-level or multilevel cache organization [PH96,
CHK 96, MWV 92, Yead6], as shown in Figure 6.1. In either case, the goal is to reduce the
number of main memory accesses becausethey incur thelargest latency. Hence, itisimperative

to maximizelocality by avoiding cache conflictsin thelevel of the cache closest to main memory.

98

CHAPTER 6. CACHE PARTITIONING TO ELIMINATE CACHE CONFLICTS 99

Processor

virtualy
indexed
virtually largest Lo largest
indexed latency physically latency
Lo / indexed - | Secondary Cache /
A | ~
| Main Memory | | Main Memory |
(a) Single-level cache organization (b) Multilevel cache organization

Figure 6.1: Cache organizations

As shown in Figure 6.1(a), a single-level cache normally uses virtual indexing, i.e., the
virtual address determinesthe cachelocation for each memory reference [PH96]. Thisapproach
improves performance by allowing the physical address translation to proceed in parallel with
the cache access. Virtual indexing is also used in the primary cache of a multilevel cache, as
shown in Figure 6.1(b). However, the secondary cache may use physical indexing because the
physical addresstranslation is complete by the time that amissis detected in the primary cache.

The indexing method determines the mapping of data from memory into the cache. The
occurrence of cache conflicts is therefore determined by the indexing method. Hence, cache
conflict avoidance requires knowledge of the indexing method. Fortunately, the indexing in

typical caches uses an easily-computed function of address bits [PH96].

6.1.2 Cache Conflictsfor Arraysin Loops

There are two types of cache conflicts for array data when executing loops [LRW91]. Self-
conflicts occur between elements from the same array. For example, in the loop nest shown
in Figure 6.2(a), the elements a[i, j] and ali, j — 1] conflict with each other because they map
to the same location in the cache. In contrast, cross-conflicts occur between elements from
different arrays. For example, in the loop nest shown in Figure 6.2(b), the elements a[i, j] and
bli, 7] conflict with each other in the cache.

The likelihood of self-conflicts depends on the separation between elements with respect to
the cachesize. For example, assumethat array a in Figure 6.2(a) hasdimensionsof 1024 x 1024.
Hence, elements a[i, j| and ai, j — 1] are separated by 1024 elements in memory. Current

caches are normally much larger than 1024 elements; for example, 1-Mbyte caches are now

CHAPTER 6. CACHE PARTITIONING TO ELIMINATE CACHE CONFLICTS 100

doj=2,N r
doi=1,N ; .:
.= a1 j~1] + i] ' ~ 0 cache
enddo , / array a ‘\\
enddo / /s doj=1,N]
/ doi=
4 / 01= 1.’ N .. A
i) 0 cache . = a1] + i] -
) 7 end do
| .7 end dO I_'/
araya | [l +—= array b
(a) Conflicts within the same array (b) Conflicts between different arrays

Figure 6.2: Cache conflictsfor arraysin loops

commonplace [CHK ' 96, Yea96]. If each array element is 8 bytes, a 1-Mbyte cache can hold
128 contiguous columns of 1024 elements from the same array without conflicting. Hence,
self-conflicts are unlikely to occur for typical array and cache sizes.

On the other hand, the likelihood of cross-conflicts depends on the separation between
elements from different arrays. For example, assume that both arrays a and b in Figure 6.2(b)
have dimensions of 1024 x 1024. If the two arrays are allocated contiguously in memory,
elements a7, j| and b[i, j] are separated by a distance of 1024 - 1024 = 1, 048, 576 elements.
Since this distance may well exceed current cache sizes and allow the two elements to map to
the same cache location, cross-conflicts are more likely to occur than self-conflicts.

More representative loop bodies include array references of the form a[i + ¢, j £ ¢,] and
bli £ c1,j % 2], where ¢y, ¢, are small integer constants. If afi, j — ¢;] and ali, j + ¢, appear in
aloop nest with j as the outer loop index, then many columns of array a must remain cached
for locality. As a result, the potential for cross-conflicts with other arrays increases. Even
if elements ai, j] and b]i, j] do not conflict, a conflict between ali, j +] and b[i, j] is still

undesirable. Consequently, this chapter is concerned with avoiding cross-conflicts.

6.1.3 Data Access Patternsand Cache Conflicts

L oop nests sweep through multidimensional arrays, and array subscript expressions dictate the

data access patterns for these arrays in memory. These data access patterns are characterized

CHAPTER 6. CACHE PARTITIONING TO ELIMINATE CACHE CONFLICTS 101

data access patterns
for arraysin loop nests

regular patterns irregular patterns
constant strides varying strides
compatible strides incompatible strides

Figure 6.3: Taxonomy of data access patternsfor arraysin aloop nest

by direction and stride. The direction of access is either negative or positive and indicates
whether data is accessed in order of increasing or decreasing addresses in memory during the
execution of aloop nest. Stride indicates the distance between successive memory addresses

generated by a given array reference during the execution of the loop nest.

Figure 6.3 proposes a taxonomy that collectively describes the data access patterns for
different arrays in a loop nest. Data access patterns may either be regular or irregular in
nature. Regular access patterns are further categorized as having constant or varying strides.
This distinction is significant because the magjority of array references in representative loop
nests generate regular data accesses with constant stride, with 1 being the most common stride

value[CMT94, MT96]. A constant stride of 1 isreferred to as unit stride.

In the taxonomy of Figure 6.3, constant-strided data access patterns for different arrays are
further classified as having compatible or incompatible strides. Compatible array references
have the same constant stride and direction, whereas incompatible references have differing
stride and direction. This distinction is significant because the frequency of cross-conflictsis
determined by whether or not the access patterns for different arrays are compatible. Since
thiswork only considersarray subscript expressionsthat are affine expressions[M T96, Wol92],

determining whether array accesses are compatible is straightforward.

The importance of compatibility isillustrated using the example loop nest shown in Fig-
ure 6.4(a). Assuming column-major storage order, each array reference generates unit stride
data accesses, as shown in Figure 6.4(b). Cache lines are accessed in the sequence they are

stored in memory, and elements within each cache line are accessed sequentially. All three

CHAPTER 6. CACHE PARTITIONING TO ELIMINATE CACHE CONFLICTS 102

\ _
doj=2,6 \
doi=16 | a b “cacheline
A bfi 1 +b[i -1 .
L s
end do elements
} Y Y
\

(b) Data access patterns in array representation

cache

—

|

2 1 a2 o201y T By [

2 2 a22 oAby A 1T B 1]

2 3 a32 32031 [A | B |

2 4 a42 oab4n [A 1T OBRE | B
2 5 a52 bs52b61] [T T B v
2 6 a6z beAbey [P 1 By Slicing
3 1 a13 b3p1 B T B 1]

3 2 a23 b23b22 X [V72 [|

3 3 a33 b33b32 [B | A]

34 a43 p4g b4 | 35953 [V7]

(c) Mapping of cache lines from memory into the cache during execution

Figure 6.4: Frequency of cross-conflicts for compatible data access patterns

array references are therefore compatible. Figure 6.4(c) illustrates the mapping of individual
cache lines from memory into a 12-element direct-mapped cache for each loop iteration. Note
that two different cache lines are accessed for array b in each iteration. One of these cache
lines always conflicts with the single cache line accessed for array a. As aresult, one of the
conflicting cache lines must be displaced from the cache in every loop iteration. Because there
are two elementsin each cache line, unnecessary misses are incurred to reload cache linesfrom

memory in order to access the remaining element in each cache line.

In contrast, consider the example loop nest for matrix transpose shown in Figure 6.5(a).
The data access patterns within each array are shown in Figure 6.5(b). Thereferenceto array a
generates unit-stride data accesses. However, the reference to array b does not generate unit-

stride data accesses. Instead, the mgjority of accesses to array b have a stride of 6. Clearly,

CHAPTER 6. CACHE PARTITIONING TO ELIMINATE CACHE CONFLICTS 103

\ __
doj=1,6 } = __
doi=16 | a b | ¥——1—=H cacheline
i,j] = blj,i] —T | | with two
end do ‘ —] elements
end do } Y e
|

(a) Loop nest for matrix transpose (b) Data access patterns in array representation

i i cache

101 a1y b1y B T 1T [T 7]

1 2 a2 b2 NN\WN [g [|

1 3 a3 h32 oY | [[|

1 4 a41 b42 [KXY P T] X
1 5 a51 b52 2 N [[] v
1 6 a6l be2 [N4 [] nfiding
7 - v I« <) R 7777 I \\\ I

2 2 &22 b23 [T T B T 1

2 3 a3 bu33 A 1 | XN\

f 4 a42 b43 [1 | AR\]

(c) Mapping of cache lines from memory into the cache during execution

Figure 6.5: Frequency of cross-conflicts for incompatible data access patterns

the access patterns for arrays a and b are incompatible. Figure 6.5(c) illustrates the mapping of
individual caches lines from memory into a direct-mapped cache for each loop iteration. The
frequency of cross-conflicts is substantially less than if the references were compatible. For
realistically large array and cache sizes, the frequency of cross-conflicts will be similarly low.

Because the majority of array references in representative loop nests generate unit-stride
dataaccesses[CMT94, MT96], compatibility among array referencesiscommon. Furthermore,
Figure 6.4 has demonstrated that compatibility leads to frequent cross-conflicts. Hence, this
chapter is concerned with conflict avoidance for compatible access patterns.

In the event that at least one array in a loop nest has incompatible data access patterns,
and compatibility is desired among all arrays, code and data transformations may be applied to

obtain compatibility. For example, loop distribution (Section 2.4.5) can isolate any statements

CHAPTER 6. CACHE PARTITIONING TO ELIMINATE CACHE CONFLICTS 104

referring toincompatiblearraysin separateloops, and array dimensioninterchange (Section 2.5)

can alter array element order to obtain compatibility.

6.1.4 Related Work

The most common hardware approach to reduce the adverse impact of cache conflicts is to
increase the cache associativity, even though this may increase hardware complexity [PH96].
However, increased associativity may not necessarily reduce the occurrence of cross-conflicts
for a large number of arrays and a large amount of reused data from each array that must
remain cached for locality. The latter condition may result from applying the shift-and-peel
transformation and tiling.

A related hardware approach isthe use of asmall fully-associative cache, known asavictim
cache or assist cache, to supplement a large direct-mapped cache [CHK* 96, Jou90]. The
additional cache temporarily holds cache lines that are displaced due to conflicts in the main
cache. If the displaced cache lines are reused shortly afterwards, the reuse is satisfied from the
victim cache, rather than from slow main memory. However, the limited capacity of avictim
cache may not be sufficient to hold large amounts of conflicting data.

As a software solution, Lam and Wolf [LRW91] present atile size selection algorithm to
prevent self-conflicts when tiling is used to exploit array data reuse. However, large cache
sizes reduce the occurrence of self-conflicts. Coleman and McKinley [CM95] describe an
improved tile size selection algorithm that they claim also reduces the likelihood of cross-
conflicts. However, a much stronger guarantee is needed when a large amount of data from
different arrays must remain cached for locality after applying an aggressive transformation
such as shift-and-ped!.

Temam et al. [TFJO3] study conflicts arising from array references in loop nests typical of
scientific applications. They analyze instances of self-conflicts and cross-conflicts, and suggest
the use of padding or careful placement of arrays in memory to reduce the occurrence of
conflicts. However, no concrete methodology is given for achieving this goal.

Bacon et a. [BCJ"94] discuss a method to determine the amount of padding needed to
avoid cache conflicts among individual array references in the innermost loop of a loop nest.

However, their approach is not adequate for locality-enhancing loop transformations because

CHAPTER 6. CACHE PARTITIONING TO ELIMINATE CACHE CONFLICTS 105

it does not consider data reuse in outer loops, and therefore cannot prevent conflicts for larger
amounts of reusable data that must remain cached.

Lebeck and Wood [LW94] present a case study of improving cache performance with a
variety of techniques including data transformations such as padding and memory alignment.
However, thesetransformationsare discussed i n the context of programmer tuning of application
performancewiththeaid of asimulationtool that profilescache behavior. Thereisno discussion
of how such transformations may be incorporated into a compiler.

Romer et al. [RLBC94] propose operating system policies for dynamic remapping of page
assignments during execution to prevent conflicts in physically-indexed caches. The operating
system recolors (i.e., relocates) pages in memory whenever conflicting pages are detected in
the address trandation buffer. The intent is to prevent future conflicts between data accessed
from the affected pages. However, recoloring of pages may incur execution time overhead.

Bugnion et al. [BAM*96] present a technique called compiler-directed page coloring that
customizes the page assignment at the start of program execution in order to prevent cache
conflicts in physically-indexed caches. Compile-time analysis of array usage in loops is used
to generate page-coloring hintsfor the operating system to reduce the likelihood that data from
different pages conflicts in the cache.

Page coloring schemes for physically-indexed caches have the advantage of being trans-
parent to the application, although compiler-directed coloring does requires compiler support.
The only limitation of page coloring by the operating system is that it is not applicable for
virtual caches, and some systems have been designed with a large, single-level virtual cache

for performance reasons [DWY F92, LH97].

6.2 CachePartitioning

This chapter proposes cache partitioning as a software technique that prevents cross-conflicts
for reused data during the execution of aloop nest, specifically for the common and important
case of compatible access patterns. The primary intent of cache partitioning is to ensure that
reused data remains cached for locality after applying a locality-enhancing transformation.
Cache partitioning modifies the array layout in memory in order to alter the mapping of data

from different arrays into the cache and prevent the occurrence of conflicts.

CHAPTER 6. CACHE PARTITIONING TO ELIMINATE CACHE CONFLICTS 106

This section presents an overview of cache partitioning, then discusses the technique in
more detail. The technique is presented initially for a single loop nest. The technique is then

extended to apply across multiple loop nests.

6.2.1 Overview

Consider the loop nest sequence shown in Figure 6.6(a). Data reuse across the loops can be
exploited by applying smple fusion. In the fused loop nest shown in Figure 6.6(a), each outer
loop iteration accesses two adjacent columns of data from each array. One column from each
array isthen reused in the subsequent iteration, and should remain cached for locality. However,
cross-conflicts occur when these columns map into overlapping regions of the cache, as shown
in Figure 6.6. Such conflicts displace data from the cache and diminish the benefit of fusion.

Cache partitioning removesthese confli cts by adjusting thememory layout of thearrays. The
cacheislogically partitioned into nonoverlapping regions, onefor each array, and thenthe array
starting addresses are adjusted in virtual memory to map data from each array into a different
partition, as shown in Figure 6.6(c). The partitioning is done entirely in software; no hardware
support isrequired. The array starting addresses are adjusted by inserting appropriately-sized
gaps between the arrays in memory. These gaps represent inter-array padding, rather than
the conventional intra-array padding [BGS94]. In comparison with other data transformation
techniques (as discussed in Section 2.5), cache partitioning does not require any modifications
of array references or subscript expressions because only the starting addresses are affected;
the internal array structure remains unchanged.

Although each array is assigned to a unique partition in the cache, the partitions are not
static during the execution of a loop nest. Partitions cycle in unison through the cache as
execution proceeds, as shownin Figure 6.7. Each partition contains datafrom adifferent array,
and compatible array references ensure that as the partition boundaries move, no conflicts occur
between data from different arrays. As new data from each array is brought into the cache, it
displaces data from other arrays that is no longer needed.

Cache partitioning assumes that arrays referenced in a loop nest are similar in size and
dimensionality. Some loop nests reference lower-dimensionality arrays, and there is often

temporal data reuse for these arrays (see Section 3.5). If thisreuseis carried by the innermost

CHAPTER 6. CACHE PARTITIONING TO ELIMINATE CACHE CONFLICTS

107

doj=2,N-1
doi=1,N
ai,j] =4i,j] +di,j-1]
end do
end do doj=2,N-1
doj=2,N-1 doi=1,N
doi=1,N ali,j] = dlij] + &i,j-1]
b[i,j] = &i,j] + b[i,j—1] — bli,j] = ai,j] + b[i,j-1]
end do cli,j] =b[i,)] +cli,j-1]
end do end do
doj=2,N-1 end do
doi=1,N
cfi,j] = b[i,j] + cfi,j-1]
end do
end do

(a) Application of simple loop fusion to exploit array reuse

arrays mapping

in_cache
a \
N data layout in memory
b —1= A AAZRTTIEINNN |oee
— arraya arrayb arrayc
.4
c /

(b) Occurrence of cache conflicts for data accessed in fused loop

arrays mapping

in cache
N —L N
N data layout in memory
b H —=H ooo| v L NN |oee
— — a | J b |) C
4 9ap gap
c /—'
.

(c) Cache partitioning to modify data layout and prevent conflicts

Figure 6.6: Example of cache partitioning to avoid cache conflicts

CHAPTER 6. CACHE PARTITIONING TO ELIMINATE CACHE CONFLICTS 108

8
Q
>
@

*S 7 g
wE-H —~ [FIN - A7
=’ 7 = SIS
Rz = N

Figure 6.7: Conflict avoidance as partition boundaries move during loop execution

loop, the reused data may be register-allocated, and the array may be excluded from the set of
arrays for cache partitioning. If the reuse is carried by an outer loop, the array may still be
excluded, although the potential for conflicts with this array may increase. The aternative is
to apply data transformations such as array expansion to make all of the arrays similar in size,
but this approach |eads to memory overhead and increases execution time because the temporal

reuse of the same element is spread among distinct array elements.

6.2.2 One-dimensional Cache Partitioning

The simplest form of cache partitioningisone-dimensional cache partitioning, where partitions
contain contiguous data from each array. One-dimensional partitioning limits the number of
indices from the outermost array dimension that reside simultaneously in the cache. For each
outermost index, all inner indices are present in the cache. One-dimensional cache partitioning
was illustrated earlier in Figure 6.6(c); each partition contains two columns (i.e., two outer
indices), and the columns are contiguous.

One-dimensional cache partitioningisgeneralized in thefollowing manner. Givenn,, arrays
with dimensions N; x N, x --- x N, and a cache capacity of ¢ elements, n, partitions are
required in the cache. The size of each partitioniss, = |¢/n,| elements. Assuming column-
major storage order, the V; elementsin the first dimension comprise a column and are stored
contiguously in memory. The outermost array dimension is k, hence each partition contains a
contiguous block of Ny - N, -+ N,_1 - B, elements. B, isthe limit on the number of indices

from the outermost dimension, and is given by By, = |s,/(/N1- Nz--- Ni_1)|. Notethat this

CHAPTER 6. CACHE PARTITIONING TO ELIMINATE CACHE CONFLICTS 109

GREEDYMEMORYLAYOUT(A):: Il A = set of arrays
ne = |A| Il number of arrays or partitions
Sp = ¢/ng /I partition size
C={0,5p,25p,...,(ng—1)-5,} /I partition starting addresses
P={01,...,n,— 1} Il available partition indices
q=qo Il qo =starting address of available storage
do
selecta € A Il selectionis arbitrary
mapped_cache address = CACHEMAP(q)
foreach p € P do /I determine gaps for available partitions

gap(p) = C(p)— mapped_cache address
if C(p) < mapped_cache_addressthen

gap(p) = gap(p) + cache size Il “wraparound” in the cache
endif
endfor
select p,,e € P where gap(popt) = ;réi n gap(p) /1 select minimum gap
P =P\ {pop} Il remove from available partitions
START(a) = q + gap(popt) Il insert gap
q = START(a) + SZE(a) Il adjust start for next array
A=A\ {a} Il remove from set of arrays
while A £ ()

Figure 6.8: Greedy memory layout algorithm for cache partitioning

assumesthat Ny - Ny - - Ni_1 < s,. If this condition is not satisfied, multidimensional cache

partitioning (to be discussed in Section 6.2.3) isrequired.

The starting addresses of the n, cache partitions must be separated by a distance s, to
ensure that they do not overlap. If the first partition begins at address O in the cache, the
partition starting addressesare 0, s, 2- sy, . . ., (n, — 1) - s,. Thearray starting addresses must
then be adjusted to map to unique partition starting addresses in the cache. This adjustment
is accomplished by inserting gaps between the arrays in memory, as shown in Figure 6.6(c).

These gaps represent memory overhead that should be minimized.

The greedy memory layout algorithm shown in Figure 6.8 performs three tasks: (a) it
assigns each array to a unique partition, (b) it inserts gaps in memory to enforce the partition
assignments, and (c) it attempts to minimize the overhead of the gaps. The arrays are selected

inan arbitrary order. A set of available partitions P ismaintained, and each array isassigned to

CHAPTER 6. CACHE PARTITIONING TO ELIMINATE CACHE CONFLICTS 110

2 ™ T T T
18 ", Probabilistic bound ----- .
16 Measured —
14 A
12
1 -
08 | :
06 [:
04 :
02 | :

0 | | | |
1 200 400 600 800 1000
Array dimension N

Normalized memory reguirement

Figure6.9: Memory overhead for 8 N x N arraysfrom cache partitioning (cache size=131,072)

a partition that minimizes the distance between the starting address required for that partition
and the end of the array most recently placed in memory. Although multiple memory addresses
map into the selected partition, the address in free memory closest to the end of the most
recently placed array is always used. Each partition selected in this manner is removed from
the set of available partitions to ensure that two arrays are not assigned to the same partition.
The algorithm assumes a single-level, virtually-indexed, direct-mapped cache with an index
function CACHEMAP(). The complexity of the algorithmis O(n?).

An upper bound for the overhead (or increase in memory usage) from the gaps introduced
by thisalgorithmisestimated asfollows. Using aprobabilistic argument, if thereare: partitions
remaining, the closest partition starting address is expected to be (1/i) - ¢ elements from the
end of the most recently positioned array. Hence, the total size of the gaps is expected to be
Yie1(1/7) - e. Thequantity >-7"2,(1/7) is bounded from above by In(n,) + 1. Hence, the bound
on the expected memory overhead is

(In(ny,) +1) - c
Ng - d ’

where c isthecachesize,and d = N; - N, - - - Ny, the size of each array.

To verify this upper bound on memory overhead, Figure 6.9 shows the cache-partitioned
memory requirements normalized to the requirements for contiguous array layout. Cache
partitioning isapplied to 8 arrays with dimensions V x IV, and NV isvaried from 1 to 1000. The
cachesizeis 131,072 elements (all 8 arraysfit inthe cachewhen N = 128). When compared to

the measured overhead from cache partitioning in each case, the probabilistic bound described

CHAPTER 6. CACHE PARTITIONING TO ELIMINATE CACHE CONFLICTS 111

above is reasonably tight, especially as N increases. Clearly, the overhead diminishes rapidly
as the array size increases relative to the cache size, which is the case in applications where
locality enhancement (and hence conflict avoidance) is required.

The algorithm in Figure 6.8 assumed a direct-mapped cache. A cache with an associativity
of m > 2 and capacity of ¢ may be viewed as a set of . memory banks, each with capacity
¢/m. Cache partitioning is still applicable in this case. Because m memory locations may be
mapped to the same cache location, there may be m cache partitions with the same starting
address. However, the partition size is still determined from the total capacity ¢. For example,
if n, = 4, the partition sizeis s, = ¢/4. For a 2-way associative cache (m = 2), the starting
addresses for 4 partitions are {0, 0, ¢/4, ¢/4}. Hence the only change for the algorithm is the
set of partition starting addresses.

The above discussion also assumed a single-level, virtually-indexed cache. In amultilevel
cache, conflicts must be avoided in the physically-indexed level closest to main memory. Cache
partitioningisstill appliedinthe sameway to virtual addresses. If the operating system mapsthe
virtual address space onto the underlying physical address space such that al non-conflicting
virtual addresses imply non-conflicting physical addresses, then cache partitioning applies
identically to both virtual and physical address spaces.

Finally, partition starting addresses can be adjusted to avoid conflicts in al levels of a
multilevel cache hierarchy. For example, consider atwo-level, direct-mapped hierarchy where
the primary cache has capacity c,, and the secondary cache has alarger capacity ¢, = 64-c,. If
n, = 4, then the partition starting addresses in the secondary cacheare {0, ¢, /4, ¢/ 2,3 ¢, /4}.
However, these starting addresses conflict in the small primary cache; they all map tolocation 0.
The starting addresses must be adjusted to separate them in the primary cache; since n, = 4,
additional offsets in multiples of ¢,/n, = ¢,/4 must be used. The conflict-free starting
addressesare {0, (¢; + ¢;,) /4, (¢s +¢,) /2,3 (cs + ¢,) /4}.

6.2.3 Multidimensional Cache Partitioning

Multidimensional cache partitioning is used when the cache capacity is not sufficient to
hold contiguous data from all arrays, or if the limit on the number of outermost indices is

insufficient to provide locality for reused data. Multidimensional cache partitioning reduces

CHAPTER 6. CACHE PARTITIONING TO ELIMINATE CACHE CONFLICTS 112

/

R
2R

So—
__\’ I
R
array B] l/\ I

S
cache cache
arrays
(a) A noncontiguous partition (b) Interleaving of noncontiguous partitions

Figure 6.10: Multidimensional cache partitioning

the number of indices from inner array dimensions that are in the cache in order to increase
the available cache capacity for indices from the outermost dimension. In this case, the data
in each partition is no longer contiguous because reducing the number of indices from inner
dimensions skips over portions of the array in memory. Multidimensional partitioning must be
accompanied with an appropriate code transformation to reduce the data accessed from inner

dimensions (an example is multidimensional shift-and-peel as discussed in Section 4.3).

Since the data is not contiguous in memory, the partitions containing this datain the cache
are not contiguous either, as shown in Figure 6.10(a). These noncontiguous partitions must be
carefully interleaved in the cache to ensure that they do not overlap and cause conflicts, asin
Figure 6.10(b). Hence, the goal of multidimensional partitioning is to determine the starting
addresses for these interleaved, noncontiguous partitions. These starting addresses are then

used to derive the memory layout using the greedy algorithm of Figure 6.8.

Multidimensional cache partitioningisgeneralized in thefollowing manner. For arrayswith
dimensions N; x N, x --- x N, the first task is to determine appropriate block dimensions
By x By x -+ X B, where B; < N;, 1 <i < k. Theblock dimensions must satisfy the cache
capacity constraint n, - By - B, - - - B, < ¢, where n, isthe number of arrays and ¢ isthe cache
size. A smple choiceisacommonblock size By = --- = By, = {\’/c/inaj. However, the data
access patterns for the arrays in aloop nest may dictate a minimum block size in one or more
dimensions. For example, the block size for the innermost dimension may be set equal to a
multiple of the cache line size. The block sizes for the remaining dimensions are then chosen

subject to the above capacity constraint.

CHAPTER 6. CACHE PARTITIONING TO ELIMINATE CACHE CONFLICTS

113

array N1
B3r\ A cache
_Bil H 81 <C NNTIITRNIIIIIIIIIIIIIIIII
Nl{ B \/2 -)
\)~ N3 \ N1*N2 ,
N2 M
N1*N2*N3
(a) Noncontiguous block of datain athree-dimensional array and its mapping in the cache
N1*B2
—
; ﬂ SOSERNNRSSENNRNNNRANRENRRARRAE
-
N1*N2

(b) First level of interleaving

T ﬁ N1*N2*B3
A
r R
SR B R BT TLTTIOTIITd
J
—
N1*N2*N3

(c) Second level of interleaving
[
FT r
[

HH N1*N2*B3
J_ B A

- - J
H r_— N1*N2*N3

(d) Final level of interleaving

Figure 6.11: Interleaving partitions in multidimensional cache partitioning

CHAPTER 6. CACHE PARTITIONING TO ELIMINATE CACHE CONFLICTS 114

Oncetheblock dimensionsare known, the interleaving of the partitionsis determined using
a set of interleaving factors n,, ..., n,. These interleaving factors specify how successively
larger groups of partitions can be interleaved without overlap. It is initialy assumed that
Ni - Np--- N, = c to derive the interleaving factors; this restriction is later relaxed. For a
three-dimensional array, Figure 6.11(a) shows how B, - Bz subblocks, each of size B;, are
mapped into the cache starting at address 0. For a given index in the second array dimension,
the starting addresses of two contiguous subblocks of size B; are separated by a distance /Vy,
as shown in Figure 6.11(8). In a space of size N;, n; = | N1/ B;] subblocks of size B; from
different arrays may be placed. Hence, n; partitions for n, different arrays are interleaved to
create a contiguous region of size NV; - B,, as shown in Figure 6.11(b). To prevent these n;
partitionsfrom overlapping, their starting addresses in the cache must be separated (i.e., shifted
in the cache) by a distance g; = B;. If the first partition begins at address 0, the remaining
starting addresses are ¢1,2 - g1,...,(n1 — 1) - g1. For example, in Figure 6.11(b), we have
B; = N;/2. Hence, the interleaving factor is ny = 2, and the starting addresses of the two

partitionsare 0 and g;.

After interleaving a group of n, partitionsin the cache, there are B3 contiguous regions of
size g, = N; - B, whose starting addresses are separated by adistance V; - N,, asillustrated in
Figure6.11(b). Identical groups of partitionsof may beintroduced into the space between these
contiguous regions. The number of groupsthat can be interleaved within adistance of NV; - IV,
is given by the interleaving factor n, = [(N1 - N2)/(N1- Bz)| = | N2/ Bz]. There are now a
total of n - ny partitions. To ensure that the n, groupsof n, partitionsdo not overlap, the groups
must be separated or shifted by a distance ¢, in the cache. For example, in Figure 6.11(c), we
have B, = N,/2. Hence, the interleaving factor is n, = 2. The total number of partitions to

thispointisn; - n, = 4, and the starting addresses are 0, g1, g2, g2 + 91.

After interleaving n, groups of n, partitions in the cache, there is a contiguous region
of size g3 = N1 - N, - B3 in the cache, as illustrated in Figure 6.11(c). The cache size is
Ny - N - N3 > g3, hence identical groups of partitions for other arrays may be introduced
into the remaining space. The number of such groups is determined by the interleaving factor
ng = [(Ny- N+ N3)/(N1- N, - B3)| = | N3/Bz|. The total number of partitions is now
ny - np - ng. 10 ensure that the nz groups do not overlap, they must be separated or shifted by

CHAPTER 6. CACHE PARTITIONING TO ELIMINATE CACHE CONFLICTS 115

adistance g3 in the cache. For example, in Figure 6.11(c), we have B; = N3/2. Hence, the
interleaving factor isnz = 2. Thetotal number of partitionsto thispointisn; - n,-nz = 8, and
the starting addresses of the partitionsare 0, g1, g2, g2 + 91, 93, 93 + 91, 93 + g2, g3 + g2 + g1

In general, interleaving for k-dimensional noncontiguous partitions resultsin

ny = |N1/Bi], n,=|N2/Bs|, ..., ng = | Ni/By|,
g1 = Bu, g2=N1-B, ..., gp=N1-Nz- - Nig_1- By,
where n; specifies the number of groups that can be interleaved at each point, and ¢; specifies
the separation between the groups to prevent overlapping. The base offset for agiven group is
t; - g;, where0 < t; < n;, and the starting address for each partition is determined by summing
the group offsets across all dimensions, Zk: ti* g;.

Upon completion of theinterleavi ng,ﬁlmust betruethatny-ny - - - ny > n,. Itispossiblefor
this condition to be violated even if the capacity constraint is satisfied because of the truncation
in the calculation of ng, ..., ng. In such cases, one or more of the block sizes By, . .., B, may
be decreased in order to increase the corresponding interleaving factors by a sufficient amount
to satisfy this condition.

Therestriction N1 - N5 - - - N, = cisnow removed, and thecaseof Ni- N, --- N, < ciShow
considered. In the preceding case of N; - N, - - - N, = ¢, the final interleaving factor is given
by ng = |(Ny- Na---Ni)/(Ny- Na--- Bg)| = | Nx/By|. Inthiscase, the cache sizeislarger
than N1 - N, - - - N,.. To usethe additional cache spacefor partitions, thefinal interleaving factor
iscomputed asny, = |¢/(N1- N, --- By)|. The preceding interleaving procedureis appliedin
the same way except for the change in computing n,. Note that the block dimensions are till
constrained by n, - B1- By -+ By, < c.

The final case to consider is N, - N,--- N > ¢. Since the array size exceeds the cache
size, wraparound occurs when mapping datainto the cache. In this case, padding isintroduced
in the array dimensions that cause wraparound to ensure that a partition for a given array does
not overlap with itself in the cache, and also to prevent partitions for different arrays from
overlapping with each other. The innermost dimension ¢ in which wraparound occurs, i.e. the
smallest i such that N1 - N,--- N; > ¢, isidentified. In this dimension, the largest index m;,
1 < m; < N;, that does not cause wraparound is determined. In other words, the largest m;

such that Ny - Np---m; < ¢, but Ny - Np---(m; + 1) > ¢, is determined. The restriction

CHAPTER 6. CACHE PARTITIONING TO ELIMINATE CACHE CONFLICTS 116

arrays
arrays
cache —
column l o= NS
larger N
than == = j_ I
cache “[padding
(a) Overlapping of interleaved partitions (b) Padding outer array dimension
due to wraparound in the cache to avoid overlapping in the cache

Figure 6.12: The use of padding to handle wraparound in the cache

B; < m, isthen introduced so that the contiguous subblocks of size Ny - N, - - - N;_; - B; that

result from interleaving do not exceed the cache size.

If wraparound occursin dimension ¢, then wraparound will also occur in al remaining outer
dimensions: < j < k becausethearray sizeincreases by afactor of V; in each outer dimension
j. Althoughit is possible to avoid the complications of wraparound for these outer dimensions
by requiring B, = 1, ¢ < j < k, this approach is highly restrictive and may not satisfy other
requirements on the block dimensions. To allow wraparound without overlap, an appropriate
amount of padding is introduced in each outer dimension such that contiguous segments of
data corresponding to adjacent indices in an outer dimension map to adjacent, nonoverlapping

regions of the cache, as shown in Figure 6.12.

For each of theouter dimensions: < j < k inwhichwraparound ispermitted, the procedure
for introducing padding isasfollows. First, the size of the contiguous data block corresponding
toasingleindex of dimension j isdeterminedasg;_1 = N1-Np - - - N;_1-B; - - - Bj_,. Werequire
gj—1 < cto prevent the contiguous data region from overlapping with itself. Assuming that the
start of this region maps to address 0 in the cache, the end of the region maps to address g;_;.
However, the next index in dimension j mapsto address¢;_; =CACHEMAP(N;- Ny - -+ N;_1)in
the cache, assuming the array starting address mapsto address 0. If ¢;_; # g;_1, then overlaps

will occur dueto wraparound for adjacent indicesof dimension ;. To prevent overlaps, apadding

CHAPTER 6. CACHE PARTITIONING TO ELIMINATE CACHE CONFLICTS 117

of p;_1 isrequired indimension j — 1 such that CACHEMAP(N1- Ny - -+ N; 5+ (N;_1+pj_1)) =
gj—1. The padding ensures that blocks of data corresponding to adjacent indices in dimension
J map to adjacent, nonoverlapping regions of the cache. Because the blocks are adjacent in the
cache after padding (i.e., there is no space between these blocks), the interleaving factor for
dimension j — 1isn;_; = 1. For all subsequent usesof dimension j — 1, N;_; isreplaced with
(Nj_1+ pj-1). Theblock sizein dimension j is B;, hence the block of data for B; adjacent
indices occupies acontiguousregionof sizeg; = N1-Ny--- N;_1-B;--- B;_1- B;. Theabove
procedure is then repeated for dimension j + 1.

The use of padding in the manner described above forces the interleaving factor to be 1 for
each outer dimension i < j < k. For the outermost dimension k, the interleaving factor is
ng = |c¢/(N1-Ny-+-N;_1-B;-+-Bg)|. Theinner dimensions1 < j < i — 1 are unaffected by
the padding, hence the interleaving factor is still determined asn; = | N;/B;|. As before, it
must be truethat ny - ny - - - ny > n, to ensure that a sufficient number of partitions are created.
If not, one or more of the block dimensions By, Bo, . .., B, are reduced to permit increasing

the interleaving factors to satisfy the condition.

6.2.4 Cache Partitioning for Multiple Loop Nests

Real applications consist of more than one loop nest, and several 10op nests may reference the
same set of arrays. Hence, cache partitioning should also be applicable for arrays referenced
in multiple loop nests. The goal is to derive an appropriate data layout such that there are
no conflicts among the arrays in any of the loop nests. This approach would be used, for
example, after fusing different loop nest sequences that accessed a common set of arrays.
Cache partitioning isextended for such cases by first determining the number of cache partitions
needed to satisfy all the resulting loop nests, then assigning the arrays to those partitions such
that no two arrays used in the same loop nest conflict with each other.

A program may containn, > 2 loop nests referencing acommon set of arrays. The number
of partitions required for each loop nest is equal to the number of arrays in the loop nest, and
isgenerally different for each loop nest. Consequently, deriving the cache-partitioned memory
layout for each loop nest individually resultsin different sets of starting addresses for the same

arrays. To avoid conflicting requirements on starting addresses, a single set of partitions and

CHAPTER 6. CACHE PARTITIONING TO ELIMINATE CACHE CONFLICTS 118

array-to-partition assignments is used for all loop nests. Not all of the arrays are used in any
one loop nest, hence the number of partitionsin this set may be larger than required for a given
loop nest. Furthermore, two arrays may be assigned to the same partition if they are not used in
the same loop nest, hence there may be fewer partitions than arrays. Therefore, the extension
of cache partitioning to multiple loop nests requires: (a) determining the number of partitions
that satisfiesal loop nests, and (b) assigning arraysto partitionswhen there are fewer partitions

than arrays. The remainder of this section addresses these two aspects of the problem.

The problem of finding the required number of partitions for multiple loop nests is formu-
lated as a graph-coloring problem. Let L denote a set of n, loop nests referencing a set A of
n, arrays. Let A(¢) denote the set of arrays referenced (read or written) in aloop nest ¢ € L.
The number of partitions required individually by each loop nest ¢ is|A(¢)|. A graph G(V, E)
is constructed with aset of vertices V[G] = A representing the arrays, and a set of edges E[G].
If arrays a;,a, are referenced in the same loop nest, then thereisan edge e = (ay, az) € E[G].
Consequently, the arrays referenced in aloop nest form a clique (a fully-connected subgraph)
of size |A(¢)| in the graph G(V,, E'). The goal isto label each vertex with a color such that no
vertices connected by an edge have the same color, and the number of colorsisminimized. The
number of colorsis then interpreted as the number of partitions n, required to satisfy all loop

nests, and similarly-colored vertices denote arrays that are assigned to the same partition.

Finding the minimum number of colors, or chromatic number, for an arbitrary graph isan
NP-complete problem [GJ79]. However, it ispossibleto specify alower bound for the solution
in this case, based on the construction of the graph described above. The lower bound for
the chromatic number is n, = max |A(¢)| because there is at least one clique of n, vertices
embedded in the graph. A clique of n, requires no fewer than n, colors. Any approximation
agorithm for graph coloring may be applied to find a solution n, for the entire graph. If

n, = n,, then the solution is optimal.

The number of colors n, obtained from graph coloring determines the required number
of partitions. Cache partitioning is then used to obtain the starting addresses for a set of 7,
partitionsin the cache. The problem isto map colorsin the graph to cache partitions and place
the arrays in memory such that the sizes of the gaps inserted to enforce the partition mappings

are minimized. The problem is constrained by the fact that identically-colored vertices in the

CHAPTER 6. CACHE PARTITIONING TO ELIMINATE CACHE CONFLICTS 119

graph represent arrays that share the same partition.

The greedy algorithm in Figure 6.13 is employed to reduce gap sizes using an approach
similar to that used in the algorithm shown in Figure 6.8. The input consists of the result of
graph coloring and the set of starting addresses for the partitionsin the cache. The outputisa
mapping of colorsto partitions and amemory layout for the arrays based on thismapping. The
algorithm selects arrays in an arbitrary order for placement in memory. If the color assigned
to the array has not yet been mapped to a partition, then one is chosen by computing gap sizes
for al available partitions, then selecting the partition yielding the smallest gap. This selection
implicitly determines the partition assignment for all remaining arrays sharing the same color.
When one of these remaining arrays is later selected by the algorithm, the size of the gap
inserted for the layout is computed using the previously-assigned partition since there is no
longer any choice for that array. The complexity of the algorithmisO(n, - n,).

To determine the memory overhead from the greedy algorithm for multiple loop nest, it is
important to note that n,, < n,. In other words, for n, — n, of the arrays, there is no choice
in the partition assignment; the coloring dictates a fixed assignment. A simple probabilistic
approach can be employed to arrive at areasonabl e estimate for the expected memory overhead.
When the color assigned to an array has not yet been mapped to a partition, the distance to the
closest available partition (i.e., the gap size) isassumed to be (1/i) - ¢, where i isthe number of
unassigned partitions remaining and c is the cache size. However, when the color has already
been mapped to a partition, the gap size is expected to be ¢/2. The expected overhead o,,, from

combining these two casesis

N —np &1
(2" %i)
Ng * d

OmN ,

whered = N; - N,--- N isthe array size. The overhead diminishes rapidly as the data size

increases relative to the cache size.

6.3 Chapter Summary

This chapter has described a conflict avoidance technique called cache partitioning. Cache

conflict avoidance is crucia for locality-enhancing transformations that rely on retaining data

CHAPTER 6. CACHE PARTITIONING TO ELIMINATE CACHE CONFLICTS

120

GREEDYMEMORY LAYOUT2(n,,,A,COLOR,C)::

Il A = set of arrays

/I COLOR: A — {0, 1,...,n, — 1} (output from graph coloring)
I1C = {co," -, cn,—1} (Starting addresses in cache)

pP={01,...,n, -1} // unassigned partition indices
q=qo Il qo =starting address of available storage
foreachp € P
partition(p) = —1 I initial partition mappings are undefined
endfor
do
selecta € A Il selection is arbitrary
¢ = COLOR(a) /1 get color for array
if partition(¢) = —1then /I not yet assigned to a partition

mapped_cache address = CACHEMAP(q)
foreach p € P
gap(p) = C(p)— mapped_cache address
if C(p) < mapped_cache_addressthen

gap(p) = gap(p) + cache_size

// determine gaps

endif
endfor
select p,p € P where gap(py) = rréi n gap(p) /I select minimum gap
p

gap = gap(popt)

P =P\ {pop} I remove from available indices
partition(¢) = pp /1 establish color-to-partition mapping

else
p = partition(?) /1 color aready assigned to partition

mapped_cache_address = CACHEMAP(q)

gap= C'(p)—mapped_cache_address

if C'(p) <mapped_cache_address then
gap = gap + cache_size

endif
endif
START(a) = ¢ + gap Il insert gap
q = START(a) + SZE(a) Il adjust start for next array
A=A\{a}
while A # ()

Figure 6.13: Greedy memory layout algorithm for multiple loop nests

CHAPTER 6. CACHE PARTITIONING TO ELIMINATE CACHE CONFLICTS 121

in the cache. Cache partitioning addresses the commonly-occurring case of compatible data
access patterns that can lead to frequent conflicts in loop nests. With one-dimensional cache
partitioning, data from each array is contiguous in the cache because data from all inner
dimensionsiscached. Multidimensional cache partitioning resultsin non-contiguous partitions
by reducing the amount of cached data from inner array dimensions, and is useful when
contiguity causes the cache capacity to be exceeded. Finally, cache partitioning has been

extended to apply across multiple loop nests accessing a common set of arrays.

Chapter 7

Experimental Evaluation

This chapter provides an experimental evaluation of the cache-locality-enhancing techniques
proposed in this dissertation. The objective isto demonstrate the feasibility and effectiveness
of the proposed techniques for representative applications on contemporary shared-memory
multiprocessors. In particular, the intent is to not only show that the proposed techniques
provide significant performance improvements, but also to examine the factors influencing

performance such as the number of cache misses and the latency for cache misses.

This chapter is organized as follows. First, the prototype implementation of the proposed
techniques within an existing compiler framework is described. Next, the multiprocessor ex-
perimental platforms are described. The remaining discussion is then devoted to reviewing
the experimental results. Improvementsin performance are reported along with detailed mea-
surements of cache behavior in order to explain the observed improvements. The measured
improvements in performance are also compared with estimated improvements obtained with

the model proposed in Chapter 3.

7.1 Prototype Compiler Implementation

This section outlines a prototype i mplementation of the proposed techniquesin an experimental
compiler infrastructure. An overview of the compiler infrastructure is given first, followed by

asummary of the enhancements and additions needed to support the proposed techniques.

122

CHAPTER 7. EXPERIMENTAL EVALUATION 123

These are global passesthat are | inlining within loop bodies
performed on the entire program{ i nterprocedural constant propagation

induction variable substitution
constant propagation

private variable recognition These are local passes that are applied
reduction recognition in sequence to each subroutine or function.

dependence testing
parallelizing backend

Figure 7.1: Passes in the Polaris compiler

7.1.1 Compiler Infrastructure

The prototypeimplementation of the proposed techniqueswas devel oped in the Polariscompiler
infrastructure[BEF+95]. Polarisisasource-to-sourcerestructuring tool whoseinput and output
are FORTRAN 77 programs augmented with directives embedded in comments. The primary
purpose of Polaris is to detect paralel loops. Polaris is implemented in an object-oriented
manner and provides classes of objects for constructing an internal representation of program

source code, along with functionality to manipulate the internal representation.

Polaris consists of several passes that are applied in sequence, as shown in Figure 7.1. The
dependence testing pass is the key pass. To enable more accurate dependence testing, the
global passes propagate constants and perform selectiveinlining of loop bodies. Theinduction,
reduction, and private variable recognition passes identify variables that generate serializing
dependences. Such variables are listed in annotations embedded in the internal representation,

and transformations such as array privatization are later used to remove these dependences.

Since Polaris is primarily intended to detect parallel loops, dependences are only tested

and represented within loop nests. Loop-carried dependences are represented with direction

CHAPTER 7. EXPERIMENTAL EVALUATION 124

vectors only; no distance information is maintained. Dependence analysis marks loops that do

not carry dependences for the benefit of the parallelizing backend.

The final pass in Polaris before generating the output source program is the parallelizing
backend. This pass searches for annotations identifying parallel loops, and annotations listing
variables that are privatizable or involved in reductions. The output program is then tailored
for the target machine by converting the parallel loop annotations to target-specific directives.
At the same time, transformations for private or reduction variables are applied, or appropriate

directives are generated if the target machine provides them.

7.1.2 Enhancementsto Infrastructure

A number of enhancements were required to incorporate the new techniques proposed in this
dissertation into Polaris. The enhancements and the implementation are summarized in the
following paragraphs. Altogether, the new code for the enhancements and core techniques

comprises over 4,000 lines of executable C++ code.

7.1.2.1 Support for High-level Code Transfor mations

Polaris is designed primarily to detect and exploit parallelism in loops with minimal change
to the source code. In contrast, the techniques proposed in this dissertation require structured,
high-level code transformations (e.g., strip-mining and fusion). To support these transforma-
tions, a new object library was incorporated into Polaris. Each object in thislibrary performs
a high-level transformation such as loop fusion or strip-mining in a structured manner. Com-
pound transformations are supported by collecting individual high-level transformation objects
into a special container object that specifies the affected code and the order in which the
transformations are to be applied. These compound transformations cannot be represented as
simple unimodul ar transformations because the component transformations include fusion and
strip-mining. However, the three elementary unimodular transformations (skewing, reversal,
and permutation) are included in the library, hence unimodular transformations are a proper

subset of the possible compound transformations.

CHAPTER 7. EXPERIMENTAL EVALUATION 125

7.1.2.2 Dependence Distance Information AcrossLoop Nests

The shift-and-pedl transformation proposed in Chapter 4 requires dependence analysis across
loop nests as well as accurate distance information. Polaris only performs dependence analysis
within loops and does not extract distance information. Consequently, a new dependence
testing pass was developed in Polaris to identify candidate |oop nest sequences for fusion, then
apply the Omega Test [Pug92] to pairs of array references in different loop nests to obtain
distance information. This distance information is then incorporated into a dependence graph,

as described in Chapter 4.

7.1.2.3 Manipulation of Array Data L ayout

Polaris is a source-to-source transformation tool, hence the final data layout is ultimately
determined by the native compiler on the target machine. To implement cache partitioning,
some control over data layout must be exercised at the source code level. Explicit control over
data layout at the source code level in FORTRAN 77 is limited to COMMON blocks since
compilers are required to preserve the order and content of COMMON blocks. Hence, the
prototype source-level implementation of cache partitioning islimited to arraysin COMMON
blocks, which may require modificationsto source codeto collect arraysinto COMMON blocks
where necessary. Furthermore, cache partitioning requires consistent definitions of the same
COMMON block in different parts of the program. Compilers may not be able to enforce this
consistency when different definitions of the same COMMON block cause memory aliasing. To

overcomethislimitation, source code modificationsmay al so berequired to enforce consistency.

A new passwasintroduced into Polarisfor cache partitioning. Thememory layout algorithm
described in Chapter 6 is applied to candidate arrays in order to determine the sizes of the gaps
to be introduced between arrays in order to enforce a conflict-free data layout. With this
information, a global pass is made over the entire program, where the COMMON blocks are
first restructured to collect arrays into the same COMMON block, then the required gaps are
introduced between arrays in each COMMON block.

CHAPTER 7. EXPERIMENTAL EVALUATION 126

7.2 Experimental Platforms

Theexperimentsdescribed in thischapter were conducted on two representative shared-memory
multiprocessor architectures: the HP/Convex SPP series and the SGI Power Challenge series.
These systems employ high-speed commodity microprocessors and provide a hardware cache-
coherent memory architecture. This section describes the features of these multiprocessors.
Earlier experimental results (reported by Manjikian and Abdelrahman [MA97]) were also
obtained on Kendall Square Research KSR1 and K SR2 multiprocessors [Ken91]. Theseresults
are not included in this chapter because their conclusions are the same as those from the results

obtained on the faster and more recent Convex and SGI multiprocessors.

7.2.1 Hewlett-Packard/Convex SPP1000 and SPP1600

TheHewlett-Packard/Convex SPP1000 multiprocessor [Con94] consistsof up to 16 hypernodes,
each containing 8 processors with a crossbar connection to 512 Mbytes of common memory, as
shown in Figure 7.2. The crossbar provides uniform access to the local memory for processors
within a hypernode. Each processor is a Hewlett-Packard PA7100 RISC microprocessor
running at 100 MHz with separate 1-Mbyte instruction and data caches [DWYF92]. The
caches are direct-mapped and virtually-indexed, hence cache partitioning must be used for
conflict avoidance. The cache access latency is 1 clock cycle or 10 nsec, and the cache line
size is 32 bytes. Hypernodes are connected together with the Coherent Toroidal Interconnect
(CTI), a system of rings based on the SCI standard interconnect, clocked at 250 MHz. The
CTI permits processors to access memory in any hypernode through coherent global shared
memory.

The Convex SPP1000 is a non-uniform memory access (NUMA) multiprocessor. Cache
misses to retrieve data from the local hypernode memory incur a nominal latency of 40 cycles,
or 400 nsec. However, misses to retrieve data from remote hypernode memory through the
CTI incur a larger latency of approximately 200 cycles, or 2 usec. A unique feature of the
Convex SPP1000 isthe CTlcache, whichisaportion of the memory in each hypernode reserved
for caching data from other hypernodes in order to reduce the effective memory latency for

remote memory accesses. Remote data is retrieved in units of 64 bytes, but supplied to

CHAPTER 7. EXPERIMENTAL EVALUATION 127

Hypernode 1 Hypernode 16

|Loca| men’i | CTIcache| |Loca| meni | CTIcache|

— —
Coherent Toroidal Interconnect (CTI)
based on SCI rings

Figure 7.2: Architecture of the Convex SPP1000

~~

processors in 32-byte cache lines from the CTlcache (i.e., processors do cache remote data).
The remote memory access latency is incurred once to load data into the CTlcache, and
subsequent accesses by any processor that hit in the CTlcache incur the same access latency as
thelocal memory, i.e., 40 cyclesinstead of 200 cycles. The Convex SPP1000 provideshardware
monitoring for accurate measurement of the number of cache misses and the corresponding

latenciesto local and remote memory.

The Convex SPP1600 is an enhancement of the SPP1000 to provide higher performance.
In the Convex SPP1600, each processor is a Hewlett-Packard PA7200 RISC microproces-
sor [CHK*96] running at 120 MHz, rather than a PA 7100 microprocessor running at 100 MHz
inthe SPP1000. Inadditionto afaster clock rate, the PA 7200 microprocessor incorporatesthree
major enhancements over the PA7100. First, there is an additional integer execution unit to
permit dual issue of integer instructions (integer and floating-point instructions are dual -issued
on both microprocessors). Second, a 2-Kbyte fully-associative assist cache supplements the
1-Mbyte direct-mapped data cache for the PA7200. The assist cache holds data that conflicts
with data in the main cache. Third, the PA7200 provides hardware-initiated prefetching. On
a cache miss for a normal memory access, the PA7200 issues a prefetch request for the cache
line adjacent to the missed cache line. Prefetching with arbitrary stride is also supported by
exploiting afeature of theinstruction set [CHK™96]. The HP/Convex native compiler generates
machine code using memory instructionsthat automatically increment the contents of an offset

register for array references in the body of aloop. Whenever a cache miss occurs for such

CHAPTER 7. EXPERIMENTAL EVALUATION 128

instructions, the hardware also issues a prefetch request using the autoincrement value as the
prefetch stride. A prefetched cache line is marked with a special tag as it is loaded into the
cache. On the first reference to a prefetch-tagged cache line using the autoincrement memory
instruction, the hardware issues a new prefetch request.

The SPP1600 also uses a four-state cache coherence protocol instead of the three-state
protocol in the SPP1000. The additional state for the SPP1600 is a clean-exclusive state that
avoids a cache miss to obtain write permission for a given cache line when there are no other
cached copies of the cache line. An example of code that benefits from this enhancement is a
statement suchasA[i] = A[i] + 1 appearing inthebody of aloop withinindex variable
i. To perform the computation in this statement, a read cache miss is first incurred to load
A[1i] intothe cache. On the SPP1000, an additional coherence miss isthen needed to obtain
permission from the memory to modify A [1]. On the SPP1600, the second missis avoided by
reading the cache line in the clean-exclusive state; the write is performed in the cache and the
state changes to dirty-exclusive without requiring a memory reference.

Apart from the higher speeds and additional features provided by the PA 7200, the archi-
tecture of the Convex SPP1600 is otherwise the same as the Convex SPP1000.

7.2.2 Silicon Graphics Power Challenge R10000

Experiments were conducted on an SGI Power Challenge multiprocessor consisting of super-
scalar MIPS R10000 microprocessors [Sil96b]. The Power Challenge is a bus-based, uniform
memory access (UMA) multiprocessor. The bus has a wide datapath of 256 bits and operates
at 47.6 MHz for an available bandwidth of over 1 Gbyte/sec. The bus supports up to 9 pro-
cessor boards, each containing 4 microprocessors that share a common interface to the system
bus. The shared memory is interleaved in units of cache lines to allow multiple outstanding
requests to be serviced concurrently. Up to 8 memory boards may be connected to the bus, for
amaximum memory of 16 Gbytes.

Each R10000 microprocessor runs at 196 MHz and issues up to 4 instructionsin each clock
cycle. The R10000 has separate on-chip 32-Kbyte caches for instructions and data, and a 1-
Mbyte external cache that is physically-indexed. All caches are 2-way set-associative, and the
external cache line sizeis 128 bytes. The R10000 supports software-controlled prefetching of

CHAPTER 7. EXPERIMENTAL EVALUATION 129

cache lines into the external cache using a dedicated prefetch instruction. The native compiler
automatically inserts and schedules prefetch instructions into the optimized executable code,
and also providesaflag to disablethisfeature. By disabling prefetching, its performanceimpact
can be measured.

The R10000 also providestwo internal countersthat may be configured to count avariety of
events, such asthe number of issued instructions or the number of cache misses. Unfortunately,
these counters cannot measure latency. The perfex [ZLTI96] software tool is used to select
the events to be counted during the execution of a given program. When the program being
measured terminates, per fex reports the accumulated event counts to the user.

Although the Power Challenge does not, strictly speaking, have a scalable architecture, the
R10000 microprocessors it employs are also used in the scalable SGI/Cray Origin multipro-
cessor [Si|96a]. Measurements indicate that the sustained memory bandwidth for the Origin
is comparable to the Power Challenge [McC]. Hence, the performance obtained on the Power

Challenge should reflect the expected performance on a comparable Origin multiprocessor.

7.3 CodesUsed in Experiments

Table 7.1 lists the codes used to evaluate the techniques proposed in this dissertation. The
codes are divided into two categories: kernels and applications. The kernels are excerpted
codes of manageable size for detailed study. The applications are complete codes that provide
an indication of the true performance impact of the proposed techniques for representative
programs. For the purposes of experimentation and overcoming limitations of the prototype
compiler implementation, certain modifications were performed to the code. These changes
are briefly described below.

The selected applications originate from uniprocessor environments, hence the problem
sizes reflect the limitations of uniprocessor execution. Since it is reasonable to expect that
larger problem sizesjustify in part the need for multiprocessor execution, array Sizeswere cor-
respondingly increased in order to justify the need for locality enhancement in amultiprocessor
environment. Array sizes were also decreased in some experiments to permit data to fit in
caches and hence measure the instruction overhead of the locality-enhancing transformations.

Where necessary, arrays in the applications were collected into COMMON blocks to facil-

CHAPTER 7. EXPERIMENTAL EVALUATION 130

Table 7.1: Kernels and applications for experimental results

Name Description Lines of code
SOR kernel of loopsfor PDE solver 8
Jacobi kernel of loopsfor PDE solver 11
LL18 kernel from Livermore Loops 24
calc kernel from ggbox [McC92] ocean model 186
filter subroutinein hydro2d 247
tomcatv SPEC95 benchmark (mesh generation) 190
swm256 SPEC92 benchmark (shallow water equations) 487
hydro2d SPEC95 benchmark (Navier-Stokes) 4292
spem ocean circulation model [Hed94] 26937

itate cache partitioning for conflict avoidance. All of the arraysin tomcatv had to be placed
inaCOMMON block. In the remaining applications, most of the arrays were already in COM-
MON blocks. For the hydro2d application, however, many COMMON block declarations
were inconsistent across subroutines in the original code. Compilers may not be able to en-
force consistency because of memory aliasing, hence the COMMON blocks were restructured
for consistent usage throughout the program. The usage of COMMON blocks in the spem
application was much more consistent, but minor changes were still applied; specifically, some
local automatic arrays were incorporated into COMMON blocks.

To increase the length of the candidate loop nest sequence in tomcatv for the shift-
and-peel transformation, a modification suggested by L ebeck and Wood [LW94] was applied.
This modification reorders the loop nests in tomcatv to increase the number of adjacent,
compatible loop nests. Although Lebeck and Wood apply loop fusion to these loop nests, they
target uniprocessorsonly; they do not address the serializing dependencesthat are present in the
fused loop nest sequence. Furthermore, there are also fusion-preventing dependences in this
loop nest sequence after reordering the loop nests. Lebeck and Wood fuse the loops directly,
but this violates the original program semantics. In contrast, our shift-and-peel transformation
ensures that the fusion islegal and that the resulting loop nest may still be parallelized.

Finally, all of the applications considered in this study are iterative in nature, consisting of
amain loop that repeatedly executes the core computation of the application. Because thereis

little or no variance in the computati on across successive iterations of the main loop, the number

CHAPTER 7. EXPERIMENTAL EVALUATION 131

B r—T—T—T7T T T T 7T 8 T T T T T T
14 With cache part. < _| 7L With cache part. ¢ _|
Without cache part. -2-- Without cache part. -2--
12 - 6 | _
g 10 e g 5| i
g 8L - g
2 6L o i @ AT Ean S
. I sl e]
4l e | T
T A -
2 —,,.,;'_’/'A . e
| | | | | | | 1 & | | | | | |
2 4 6 8 10 12 14 16 1 2 3 4 5 6 7 8
Number of processors Number of processors
(a) tomcatv on Convex SPP1000 (b) swm256 on Convex SPP1600

Figure 7.3: Speedups for cache partitioning alone on Convex multiprocessors

of iterations of the main loop was reduced in the larger applications. This modification was
required to reduce the time for experiments with restricted access to dedicated multiprocessor

systems without interference from other jobs.

7.4 Effectivenessof Cache Partitioning

This section provides results to demonstrate the importance of avoiding cache conflicts. Fig-
ure 7.3 illustrates the parallel speedup with and without cache partitioning on the Convex
multiprocessor for two applications, tomcatv and swm256. No locality-enhancing loop
transformations are used in these experiments; the difference in performance is attributable
solely to the data layout. All speedupsin Figure 7.3 are calculated with respect to the execu-
tion time for the cache-partitioned code on one processor, hence the increase in speedup for a
given number of processors also represents an improvement in absol ute performance. Both of
these applications display extreme sensitivity to the occurrence of conflicts because the array
dimensions are very close to powers of two (513 x 513 for tomcatv and 257 x 257 for
swm256). Even the assist cache in the SPP1600 is not sufficient to avoid undesirable conflict
misses. Cache partitioning improves performance at 8 processors by 25%in Figure 7.3(b). The
memory overhead from cache partitioning is 7% for tomcatv and 13% for swm256.

The next set of results compare cache partitioning with array padding when loop fusion is

applied. The measured number of cache misses on one processor during parallel execution of

CHAPTER 7. EXPERIMENTAL EVALUATION 132

16et06 T T T T T T T T 1
1.4e+06 No fusion, padding B _
Fusion, padding 1
1.2e+06 Fusion, cache partitioning ----
1e+06 .
800000 -
600000
400000 HiT

200000

Misses

1 35 7 9111315171921
Amount of padding

Figure 7.4: Cache partitioning vs. array padding for LL.18 on Convex SPP1000

the LL.18 kernel on 8 processors are shown in Figure 7.4. The array sizeis 1024 x 1024. The
number of misses obtained for various amounts of padding within array dimensions (shaded
bars) iscompared to the number of misses obtained from applying cache partitioning acrossthe
arrays (dashed line). Padding does not guarantee the elimination of all conflicts; it is difficult
to predict the amount of padding needed to achieve the smallest number of misses. In contrast,
cache partitioning directly results in the smallest number of misses. The memory overhead

from cache partitioning is under 2% in this case.

Figure 7.5(a) illustrates the parallel speedup with and without cache partitioning on the
Convex SPP1600 for the 1.1.1 8 kernel. The speedups are shown for the origina code and the
code with fusion enabled by shift-and-peel. Again, all speedups are computed with respect
to the execution time for the original code with cache partitioning on one processor, hence
the increase in speedup for a given number of processors also represents an improvement in
absolute performance. There are two features to note in Figure 7.5(a). First, the speedup for
the original code is higher with cache partitioning than without it. Second, the speedup of the
fused version of the code without cache partitioning is worse than the speedup of the original
version without cache partitioning. In other words, cache conflicts are negating any potential
performance benefit from fusion. Thisloss of performance is occurring despite the presence of
the assist cache in the SPP1600.

Finally, Figure 7.5(b) illustratestheimportance of conflict avoidance when fusing loop nests

inthehydro2d application. All speedups are computed with respect to the execution timefor

CHAPTER 7. EXPERIMENTAL EVALUATION 133

8 | | B 8 | | B
7k Orig., with cache part. < | 7L Orig., with cache part. < _|
Orig., no cache part. -A-- Orig., no cache part. -A--
6 Fused, no cache part. G-- _| 6 Fused, no cache part. G-- _|
%‘ 5 e %‘ 5+ ‘“J—Q
4l 4 al P
g o T g P =
3F ' e T . 3r // 2 =
2L g - 2F -
s e
1 VAl | | | | | | 1 & | | | | | |
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Number of processors Number of processors
(a) LL.18 on Convex SPP1600 (b) hydro2d on Convex SPP1000

Figure 7.5: Impact of cache partitioning with fusion on Convex SPP1000/SPP1600

the original code with cache partitioning on one processor in order to show improvementsin
absolute performance for a given number of processors. This application is not as sensitive to
conflicts as the applicationsin Figure 7.3. Nonetheless, the occurrence of conflicts still renders
loop fusion ineffective. The memory overhead is 12% in this case.

Given the importance of conflict avoidance, particularly when enhancing locality with
the shift-and-pedl transformation for loop fusion as in Figures 7.4 and 7.5, the remaining
experimental results presented in this chapter include cache partitioning for both the original
and enhanced code. Since cache partitioningimprovesthe performance of theoriginal program,
thereportedimprovementsin performancereflect the benefit of enhancinglocality intheabsence

of conflicts, and represent alower bound on the improvement in performance.

7.5 Effectiveness of the Shift-and-peel Transformation

This section presents results that demonstrate the effectiveness of the shift-and-peel transfor-
mation for the kernels and applications shown in Table 7.2. For each kernel or application,
Table 7.2 providesthe number of loop nest sequencesto which the shift-and-peel transformation
was applied, aswell asthe length of the longest sequence and the maximum shift/peel amounts
for any sequence. The loop nests of interest are analyzed and transformed using the prototype
compiler implementation discussed in Section 7.1. The only exception is the calc loop nest

sequence that was analyzed and transformed manually because the inner loops in two of the

CHAPTER 7. EXPERIMENTAL EVALUATION

134

Table 7.2: Kernels and applications used in experiments for the shift-and-peel transformation

Base Totd Cines [Uniproc. | Number of | Loopsin
array data of timeon loop longest | Maximum
Name size (Mbytes) | code | SPP1000 | sequences | sequence | shift/peel
Jacobi 400 x 400 24 11 — 1 2 1
LL18 1024 x 1024 72 24 3.99s 1 3 2/1
calc 1024 x 1024 48 186 3.02s 1 5 3/3
filter 1602 x 640 63 247 8.31s 1 10 5/4
tomcatv [513 x 513 16 190 132s 1 3 1
hydro2d | 802 x 320 50 4292 | 3820s 3 10 5/4
spem 60 x 65 x 65 70 26937 | 1197s 11 8 12

loop nests prevent the current implementation from obtai ning dependence distances.

For reference, Table 7.2 also provides uniprocessor execution times on the Convex SPP1000
multiprocessor for the unfused code with cache partitioning. These times are used to calculate
speedups for the experimental results. For each of the kernels, the reported time in Table 7.2
is for one iteration of the kernel code, with initialization time excluded. However, for the
applications, the times include initialization and many iterations of the main loop in each
application. For tomcatv and hydro2d, the uniprocessor times are for 100 iterations of the
main loop, and the time for spem isfor 50 iterations of the main loop. All uniprocessor times
(as well asthe multiprocessor timesto be reported later in this section) reflect elapsed real time
that is measured on dedicated systems to minimize any variability caused by interference from
other programs.

Theresultsto be presented in this section are organized as follows. First, the improvements
in performance provided by the shift-and-peel transformation will be demonstrated for the
kernels, supported by measurements of cache behavior to explain the observed improvements.
Measured improvementsin performance will also be compared with estimated improvements
obtained with the model presented in Chapter 3. Second, the benefit of the shift-and-peel
transformation will be demonstrated for parallel execution of application programs. Third, the

benefit of combining the shift-and-peel transformation with data prefetching will be considered.

75.1 Resultsfor Kernes

The presentation of the experimental results for the kernels is organized as follows. First,

the derived amounts of shifting and peeling will be presented to demonstrate the need for the

CHAPTER 7. EXPERIMENTAL EVALUATION 135

Table 7.3: Amounts of shifting and peeling for kernels
LL18 calc filter
Loop || shifts | peels || shifts | peels | shifts | peels
0 0 0 0 0 0
1 0
2 1

[EEN

0 0
2 2
3 3
3 3

O© oo ~NO O DWwWwNN

abr~rbBAwWMNMNNPEL OO
A A WDMNMNNPEFL OO

[
o

shift-and-peel transformation. Second, performance results will be provided, and the measured
performance improvements will be compared with the estimated improvements obtained with
the model proposed in Chapter 3. Third, the overhead of the shift-and-peel transformation
will then be characterized by measuring the effect of reducing problem sizes such that data
fits in caches. Finally, the performance obtained with the shift-and-peel transformation will
also be compared to the performance obtained with the alignment/replication techniques of
Callahan [Cal87] and Appelbe and Smith [AS92].

7.5.1.1 Derived Amountsof Shifting and Peeling

The amounts of shifting and peeling required to fuse the outermost loops of the kernels are
givenin Table 7.3. Shift-and-peel isindeed required in order to apply fusion legally across all
loops. Furthermore, shift-and-peel is required to enable parallel execution of the fused loops.
The complexity of the dependence rel ationshi ps across these representative loop nest sequences
requires a systematic approach to automate the derivation and application of the shift-and-peel
transformation. For example, the dependence chain multigraphfor £i 1 ter contains 149 edges
from which the shift and peel amountsin Table 7.3 are derived.

It should be noted that the dependences in these kernels necessitate replication with the
techniques proposed by Callahan [Cal87] and Appelbe and Smith [AS92] because alignment

CHAPTER 7. EXPERIMENTAL EVALUATION 136

conflicts exist (see Section 4.2.5). In contrast, our technique does not require any replication.

7.5.1.2 Multiprocessor Speedups

Figure 7.6 shows the parallel speedups and measured cache misses for the fused and unfused
versions of three of the kernels on the Convex SPP1000. Array sizes were 1024 x 1024 for
LL18 and calc, and 1602 x 640 for filter. For each kernel, speedups are computed
with respect to the execution time without fusion on one processor, hence the increase in
speedup for agiven number of processors represents an improvement in absol ute performance.
Furthermore, superlinear speedups may be expected from this choice of reference for speedups.
Cache partitioningisusedin all the experiments. Missesare measured on one processor and are
representative for all processors used in parallel execution. Fusion improves performance by at
least 30% for LL.18 and calc, and by 60% for £ i1ter. Theseimprovementsare attributable
entirely to enhanced locality, as evidenced by the reduction in the number of cache missesfor
agiven number of processors. Because misses are shown on alogarithmic graph in Figure 7.6,
the constant slopes reflect a constant ratio for the number of misses before and applying fusion
at a given number of processors. The larger the reduction in the number of cache misses, the

larger the improvement in performance.

7.5.1.3 Impact of Problem Size on the Improvement from Fusion

To study the impact of problem size with respect to cache size on theimprovement from fusion,
thearray sizesin LL.18 and calc werevaried. Theresultsfor the Convex SPP1000 are shown
in Figure 7.7. The horizontal axesin the graphs represent different array sizes, and the vertical
axes represent the performance improvement from fusion, which is computed as the ratio of
parallel executiontimes of the original loops and fused |oops, respectively. Any point abovethe
reference line at 1 indicates that fusion improves performance. As before, cache partitioning
is used throughout, hence any improvements represent lower bounds. Figure 7.7(a) indicates
that with 8 processors, the two larger array sizes are such that the data does not entirely fit in
the cache, hence fusion improves performance. With 16 processors, the total cache capacity
is doubled, and Figure 7.7(b) indicates that even the 512 x 512 array size permits data to fit

in the cache for calc, hence fusion does not improve performance. Note that because LL.18

CHAPTER 7. EXPERIMENTAL EVALUATION 137
Brr—T—T1—T1 T 1e+07 ¢ ———— 3
B With fusion o— C With fusion o— 1
10 Without fusion —+—- Without fusion +—-]
14 -1 L
12+ T -
: i
g or , I 2 1e+06 | E
& 8 ‘ - s :
6 . [
4+ i
2 - —
| 100000 L L MRS |
2 4 6 8 10 12 14 16 1 10
Number of processors Number of processors
(@) LL.18 speedup (b) LL18 misses
18 E7 T T T T T T 1e+07 T — T 3
With fusion o— With fusion <—
16 - Without fusion —+-- 7 L Without fusion —+--]
14 + A I
% 12 ////// - g
'g 10 L — 2 1e+06 E
(% gL ",,’//// _ = E
6 el - [
N -
2 _/f/ L L L L L L 100000 .
2 4 6 8 10 12 14 16 1 10
Number of processors Number of processors
() calc speedup (d) calc misses
24 T T T T T T 18+08,:\ T — e
22 - With fusion <— ET With fusion <—]
20 - Without fusion —+-- L . Without fusion —+--]
18 + . - >
a 16 7 3
> 14 + g g
-§ 12 | _ 0 1et07 e
& 10} . = :
8 - — L
6 L] L
4 - . —
247 | | | | L] 1e+06 L
2 4 6 8 10 12 14 16 1 10

Number of processors

(e) filter speedup

Number of processors
(f) filter misses

Figure 7.6: Speedup and misses of kernels on Convex SPP1000

CHAPTER 7. EXPERIMENTAL EVALUATION 138

2 T T T 2 T T T
c 181 LL18 (9arrays) -o-- c 18[LL18 (9 arrays) & -
S 16| cac (6 arrays) +— S 16 cac (6 arrays) +—
g 14 : é 14 -
S 12} — S 12 -
g 1r . g 1r 1
g 0.8 — g 08 _
3 06 — 3 06 -
g 04r s g o4l i
T02f - - o2} -
| | | 0 | | |
256x256 512x512 1024x1024 256x256 512x512 1024x1024
Array size Array size
(8) 8 processors (b) 16 processors

Figure 7.7: Improvement in speedup with fusion for L.1.18 and calc on Convex SPP1000

has nine arrays of the same size whereas calc hasonly six, fusion still improves performance
at 16 processors for L1.18 when the array size is 512 x 512 because al the data cannot
simultaneoudly fit in the caches. These observations suggest using knowledge of data sizes
and cache sizes to determine the profitability of applying the shift-and-peel transformation for
locality enhancement. A compiler can include both the original and transformed versions of
a loop nest sequence in executable code, with a run-time decision to select the appropriate
version based on the amount of data accessed per processor.

It must be stressed that the shift-and-peel transformation isapplied at the level of the source
code in these experiments. The transformed source code is then passed to the native compiler.
The ability of the native compiler to optimize more complex loop structures determines the
efficiency of the resulting executable code. Faced with more complex code, the compiler
is less aggressive in its optimizations, which then increases the instruction overhead. It is
reasonabl e to expect that integrating the shift-and-peel transformation within a native compiler
framework should result in better performance by permitting more aggressive optimizationsto

be performed in conjunction with loop fusion.

7.5.1.4 Comparison of Shift-and-peel with Alignment/replication

The shift-and-peel transformation avoids the overhead that results from the alignment and
replication techniques proposed by Callahan [Cal87] and Appelbeand Smith[AS92]. Figure7.8

CHAPTER 7. EXPERIMENTAL EVALUATION 139

Brr—T—T7T T T T 7
16 Shift-and-peel <©— 4
Original —+--
14 ~Alignment/replication -&t-- 3
o 121 //;,.gj
=1 T
-§ lO — /////," =
o 8k Pt -
6 - /i" -
4 fﬁ/f't/ —
2L ! ! ! ! ! L

2 4 6 8 10 12 14 16
Number of processors

Figure 7.8: Performance of shift-and-pedl vs. alignment/replication for LL.18

compares the speedup of the fused 1.1.1 8 loop nests parallelized using shift-and-peel with the
speedup of thefused loop nest parallelized using direct application of alignment and replication.
For thelatter case, it wasnecessary to replicate two arrays and two statementsfor parallelization.
All speedupsare computed with respect to the execution timefor the original loop nest sequence
on one processor, hence higher speedup also indicates better absolute performance. The figure
clearly indicates that superior performance is achieved with shift-and-peel by avoiding the
overhead associated with the replication of code and data.

7.5.2 Comparing Measured Performance | mprovementswith the Model

This section compares the measured performance improvementsfor the kernels with estimates
obtained with the model discussed in Chapter 3. The following paragraphs determine sweep

ratios and the memory fraction of execution timein order to apply the model.

7.5.2.1 Determining the Sweep Ratios

Table 7.4 characterizes each loop nest kernel in terms of the number of arrays read from or
written to memory both before and after fusion. Because all arrays have the same size, memory
accesses can be quantified in terms of sweeps through memory for the arrays, as discussed in
Section 3.2. Assuming that the cache capacity is not sufficient to hold all of the data referenced
across the loop nests, locality enhancement with fusion is required, and a reduction in the

number of memory accesses is expected when fusion is applied.

CHAPTER 7. EXPERIMENTAL EVALUATION 140

Table 7.4: Characteristics of loop nest kernels

Num. Sweep statistics Sweep ratio
loop | Num. | beforefusion | after fusion | with | without
Kernel nests | arrays | read write | read write | writes| writes
Jacobi 2 2 4 2 2 2 1.50 2.00
calc 5 6 13 6 6 5 1.73 2.17
LL18 3 9 16 6 9 6 147 1.78
filter 10 8 33 14 8 6 3.36 413
DO K= 2, N-1
DO J= 2, N-1
ZA[J,K]: (zZP[J-1,K+1]+ZQ[J-1,K+1]-ZP[J-1,K]-2Q[J-1,K])
* (ZR[J,K] +ZR[J-1,K])/(ZM[J-1,K] +ZM[J-1,K+1])
ZB[J,Kl= (ZP[J-1,K]+ZQ[J-1,K]-ZP[J,K]-ZQI[J,K])
* (ZR[J,K] +ZR[J,K-1]1)/(ZM[J,K] +ZM[J-1,K])
END DO
END DO
DO K = 2, N-1
DO J = 2, N-1
ZU[J,Kl= ZU[J,K]+S* (ZA[J,K] *(Z2Z[J,K]-ZZ[J+1,K])
-ZA[J-1,K] *(ZZ[J,K]-ZZ[J-1,K])
-ZB[J, K] * (ZZ[J,K]-2Z[J,K-11)
+ZB[J,K+1] *(ZZ[J,K]-ZZ[J,K+11))
ZVI[J,Kl= ZVI[J,K]+S* (ZA[J,K] * (ZR[J,K] -ZR[J+1,K])
-ZA[J-1,K] *(ZR[J,K]-ZR[J-1,K])
-ZB[J, K] * (ZR[J,K] -ZR[J,K-11)
+ZB[J,K+1] *(ZR[J,K]-ZR[J,K+11))
ENDDO
ENDDO
DO K = 2, N-1
DO J = 2, N-1
ZR[J,K]= ZRI[J,K]+T*ZU[J, K]
ZZ[J,Kl= ZZ[J,K]+T*ZVI[J, K]
ENDDO
ENDDO

Figure 7.9: Code for LL18 loop nest sequence

When arrays have the same size, the sweep ratio can be used to express the reduction in
the number of memory sweeps, as discussed in Section 3.3. Equation 4.1 in Section 4.1.2
computes the sweep ratio for fusion using both reads and writebacks to assess the benefit of

reducing all memory accesses. However, in contemporary systems, the latency for writebacks

CHAPTER 7. EXPERIMENTAL EVALUATION 141

on replacement is often hidden by buffering the replaced cache line and initiating the read for
the new cache line first. The writeback to memory is performed while the read response is
being forwarded to the requesting processor. In this case, the effective sweep ratio is computed
by excluding the writebacks, which resultsin a larger sweep ratio. For comparison, Table 7.4
provides both variants of the sweep ratio. Clearly, there is significant potential for locality

enhancement because the sweep ratios are significantly larger than 1.

To understand how the sweep statisticsin Table 7.4 are obtained, consider the code for the
LL18 kernel shown in Figure 7.9. The first loop nest in Figure 7.9 references 6 arrays, the
second loop nest references 6 arrays, and the third loop nest references 4 arrays. Assuming
that the data does not remain cached between loop nests, atotal of 16 arrays will be read from
memory into the cache. Similarly, arrays are modified 6 times across the loop nests, hence
there will be 6 arrays written back to memory as new datais loaded into the cache. When the
loops are fused, each array should only be read once from memory and reused as needed from

the cache, for atotal of only 9 arrays. The number of arrays written back remains at 6.

The remaining statistics in Table 7.4 are obtained in a similar manner. It may be noted
that fusion reduces the number of effective number of writebacks for the calc and filter
kernels. Asdiscussed in Section 4.1.2, this reduction occurs when the same array iswritten in
more than one of the original loop nests being fused. With fusion, multiple writes to the same

array are performed in the cache, and only one writeback is performed to memory.

There is one additional factor that must be considered when quantifying the number of
memory accesses. The Convex SPP1000 employs a three-state cache coherence protocol that
generates additional coherence misses. These upgrade misses [PH96] occur when a cache
line is loaded into the cache in a read-only state, and later written while it is still cached.
The write may not proceed without an additional cache miss to upgrade the state of the line
to exclusive-modified, even if no other cached copies exist. For the Convex SPP1000, the
effective round-trip latency for the upgrade request, even without a data response, is essentially

the same as a normal cache miss because the memory directory must be accessed.

Upgrade misses occur when an array is both read and written in aloop body, with the read
occurring before the write. For the L.1.18 kernel in Figure 7.9, there are four such references

for arrays ZU, ZV, ZR, and ZZ. Hence, there are 4 upgrade references in addition to the 16

CHAPTER 7. EXPERIMENTAL EVALUATION 142

Table 7.5: Revised sweep ratios to account for upgrade requests

Sweep statistics Sweep ratio
before fusion after fusion (reads and
Kernel read upgrade | read upgrade | upgrades only)
Jacobi 4 0 2 1 133
calc 13 2 6 1 2.14
LL18 16 4 9 4 154
filter | 33 6 8 4 3.25

Table 7.6: Cache missesfor parallel execution on Convex SPP1000

Number of Origina Fused

Kernel | processors | expect. mess. expect. mess.
LL18 2 2621440 | 2629000 || 1703936 | 1717110
16 327680 | 320954 | 212992 | 214546

calc 2 1966080 | 1965820 || 917504 | 932760
16 245760 | 194001 | 114688 | 115443
filter 2 4998240 | 4633480 || 1537920 | 1653140
16 624780 | 528052 | 192240 | 217479

references in the original loop nest sequence. Even when the loops are fused, the reads till
precede the writes, hence there are still 4 upgrade requests. A similar analysis for the other
kernelsresultsin therevised statisticsgivenin Table 7.5. If theratiosin Table 7.5 are compared
with Table 7.4, it is clear that upgrade misses reduce the ratios.

Using the sweep statistics in Table 7.5, it is possible to verify that the expected number of
cache misses are being incurred in parallel execution. Given the number of read and upgrade
sweeps, the array size (number of elements), the cache line size, and the number of processors,
it is possible to compute the expected number of cache misses per processor as follows:

(#sweeps) - (array_size)
(cache_line_size) - (#processors)

#cache misses = (7.2)

The cache line size on the Convex SPP1000 is 32 bytes, whichisequivalent to 4 array elements
using 8-byte floating point values.
Using the above formula, the expected number of cache misses per processor and the

measured number of cache misses are compared in Table 7.6 for each of the kernelsin parallel

CHAPTER 7. EXPERIMENTAL EVALUATION 143

Table 7.7: Comparison of estimated and measured improvement from fusion

Measured f,, | Sweepratio | Perf. improvement
before (without with fusion
Kernel fusion writes) | estimated | measured
LL18 (2 proc.) 0.53 1.54 23% 30%
LL18 (16 proc.) 0.56 24% 30%
calc (2 proc.) 0.52 2.14 38% 55%
calc (16 proc.) 0.49 35% 32%
filter (2 proc.) 0.44 3.25 44% 63%
filter (16 proc.) 0.45 45% 53%

execution at 2 and 16 processors. There is agreement between the expected and measured
results in the majority of cases. There are only two significant discrepancies, and both are
easily explained. For calc and £i1ter, themeasured number of cache missesissignificantly
lower than the expected number of misses at 16 processors because the data is beginning to fit
in the cache, hence there is a reduction in the number of capacity misses across loop nests in
the original loop nest sequences. Nonetheless, fusion of the loop nests provides a much larger
reduction in the number of cache missesat 16 processors for both kernels. Furthermore, cache

conflict avoidance ensures that the full benefit of fusion is obtained.

7.5.2.2 Determining f,, and Applying the M odel

For the purpose of estimating the performance improvement from fusion using Equation 3.2
in Chapter 3, a reasonably-accurate value for f,,, (the memory fraction of execution time) is
required. This value may be obtained using the hardware monitoring features of the Con-
vex SPP1000. The accumulated cache miss latency on one processor can be measured for an
execution of the original loop nests before fusion, and this quantity may be divided by the
execution time for the original loop nests to obtain an estimate of f,,,.

Table 7.7 compares the estimated and measured improvementsin performance from fusion
for each of the kernels on 2 and 16 processors of the Convex SPP1000. The measured

improvements are computed from the execution times 7'(p) from parallel execution on p

CHAPTER 7. EXPERIMENTAL EVALUATION 144

[orocessors,

<Toriginal (p) N 1> % 100%7
Tfused (p)

wherep = 2 or p = 16. The estimated improvementsare obtained by substituting the measured

fm valuesand the sweep ratiosfrom Table 7.7 into Equation 3.2, then converting to a percentage,

((1 = fm)1+ fimlTm

Because the workload is balanced, the improvement applies equally to all processorsin parallel

— 1> x 100%.

execution.

Theintent of the comparison in Table 7.7 isto demonstrate that the measured performance
improvements are meaningful with respect to the expected benefit embodied in the sweep ratio.
In al but one case, the improvements obtained with the model underestimate the measured
improvements. For calc at 16 processors, the measured improvement isless than the estimate
because reused data begins to fit in the combined cache capacity when executing the original
loop nest sequence, as discussed earlier (see Table 7.6). The underestimated improvement
for the remaining cases in Table 7.7 can be explained by pointing out that the HP PA7100
microprocessors used in the SPP1000 implement hit-under-miss[DWY F92], which means that
processors do not stall immediately on a cache miss. Hit-under-miss alows a processor to
continue executing after an initial cache miss until the missing data is actually needed by a
subsequent instruction, or until a second cache miss occurs. This feature provides a small
degree of concurrency between computation and memory access, though certainly not as much
asfull prefetching. Recall that each 32-byte cache line containsonly four array elements. Prior
to fusion, the opportunities for hit-under-miss are limited by the fact that one of every four
unique array references in each loop nest incurs a cache miss. Reducing the number of cache
misses with fusion increases the effectiveness of hit-under-miss by allowing more instructions

to be executed before a stall isrequired.

7.5.3 Resultsfor Applications

The benefit of the shift-and-peel transformation with cache partitioning for applications on the
Convex SPP1000 is shown in Figure 7.10. For tomcatv, the array size is 513 x 513, and
the total data size is 16 Mbytes. For hydro2d, the array size is 802 x 320, and the total

CHAPTER 7.

EXPERIMENTAL EVALUATION

145

16
14

Speedup

With fusion &— _|
Without fusion ¢

2 4 6 8 10 12 14 16
Number of processors

(@) tomcatv

Speedup

16
14
12
10

With fusion &—
Without fusion -

4 6 8 10 12 14
Number of processors

(b) hydro2d

16 T
14 -

With fusion &—

Without fusion <
12 + -

10 - N

Speedup

8
6
4
2

2 4 6 8
Number of processors

10 12 14 16

() spem

Figure 7.10: Speedup for applications on Convex SPP1000

data size is 50 Mbytes. For spem, the array size is 60 x 65 x 65, and the total data size is
70 Mbytes. For each application, the speedups in Figure 7.10 are computed with respect to
the execution time of the original code with cache partitioning on one processor, hence the
increase in speedup for a given number of processors represents an improvement in absolute
performance. For tomcatv, the shift-and-peel transformation improves performance by 10%
to 12%. For hydro2d, the improvement is 23% on one processor, and diminishes to 8%
on eight processors. At 16 processors, the data begins to fit in the caches, so the overhead
of the shift-and-peel transformation degrades the fused performance. The improvement in
performance for spem is at least 20% up to eight processors because this application had
the largest number of transformed loop sequences, and these sequences constitute close to

half of total execution time. However, at 16 processors, remote memory accesses cause

CHAPTER 7. EXPERIMENTAL EVALUATION 146

the performance for both the fused and unfused versions to fall below the performance at 8
processors. Thisbehavior resultsin part from serial loopsthat the Convex compiler executeson
asingle processor and in part due to isolated loop nests for which the Convex compiler chooses
to apply loop permutation, causing excessive data movement between hypernodes. The loop
permutation, in particular, cannot be disabled in the compiler without disabling optimization
altogether. Nonetheless, thefused version still providesbetter performance, and would continue
to do so if this behavior could be counteracted with more control over the code produced by

the native compiler.

7.5.4 Combining Shift-and-peel with Prefetching
7.5.4.1 Resultsfor Kernels

Uniprocessor speedups These results are obtained on the SGI Power Challenge R10000
where prefetching can be disabled in software. The results are presented for uniprocessor
execution to focusinitially on the interaction of loop fusion and prefetching.

The uniprocessor kernel speedups on the Power Challenge are shown in Figure 7.11. For
each kernel, speedups are determined relative to the execution time without loop fusion or
prefetching. The reference timesin secondsare 4.67 for Jacobi (100 iterations of the kernel),
3.67 for LL.18 (20 iterations), and 3.87 (20 iterations) for filter. The array sizes are
400 x 400 for Jacobi and LL18, and 402 x 160 for £ilter; the total data size exceeds
the 1-Mbyte cache capacity in all cases. Figure 7.11 confirms that combining fusion with
prefetching results in the largest speedup by first reducing the number of memory accesses,
then hiding as much of the latency as possible for the remaining memory accesses. Reducing
the number of memory accesses makes more memory system bandwidth avail able and improves
the effectiveness of prefetching.

In order to confirm the extent of the reduction in the number of memory accesses, Table 7.8
compares the expected and measured number of cache misses in the external cache for the
original and fused loops. The expected number of cache missesisdetermined with Equation 7.1
in Section 7.5.2 using the number of read sweepsin Table 7.4. The measured number of cache
misses is obtained with the perfex tool [ZLTI96]. The measurements given in Table 7.8

are obtained without prefetching; measurements with prefetching are similar because prefetch

CHAPTER 7. EXPERIMENTAL EVALUATION

147

2 T T T 2 T T T T
15 = 15] =
=1 [] =1
§ o . i ot .
& &
0.5 . 05 - .
0 0
orig fused orig fused orig fused orig fused
[---no pref---| |-----pref-----| [---no pref---| [----- pref-----|
(@) Jacobi kernel (b) LL.18 kernel
25 T T T T
2 - —
%— 15 .
& 1t -
05 - a
0
orig fused orig fused
[-+-n0 pref-—-| |----pref--—|

(c) filter kernel

Figure 7.11: Uniprocessor speedups on Power Challenge

Table7.8: Expected and measured cache missesfor uniprocessor execution on Power Challenge

Origina Fused
Name | expected | measured | expected | measured
Jacobi || 40000 39659 20000 19770
LL18 160000 | 163314 90000 89728
filter || 132660 | 125132 32160 34811

requests are not distinguished from normal memory requests. The expected and measured

valuesin Table 7.8 for all three kernels agree closely.

CHAPTER 7. EXPERIMENTAL EVALUATION

Original Fused
Name | expected | measured | expected | measured
Jacobi | 20000 19308 20000 19129
LL18 60000 58376 60000 57407
filter | 56280 55252 24120 25183

148

Table 7.9: Expected and measured writebacks for uniprocessor execution on Power Challenge

Similarly, Table 7.9 compares the expected and measured number of writebacks. The
measured number of writebacks is obtained with the perfex tool [ZLTI96]. The expected
number of writebacksis calculated in amanner similar to the expected number of cache misses,
the only difference is that the number of written arrays in Table 7.4 is used. Once again, the

expected and measured resultsin Table 7.9 are in close agreement.

Multiprocessor speedups Multiprocessor kernel speedups obtained on the Convex SPP1000
and SPP1600 are presented in this section (parallel speedups for the kernels could not be
obtained on the Power Challenge due to restricted access). Figure 7.12 shows the speedups for
LL18 and filter. Array sizesare 1024 x 1024 for .1.18 and 1602 x 640 for filter.

All speedups in Figure 7.12 are relative to the execution time without fusion on one pro-
cessor of the SPP1000 (see Table 7.2). Hence, higher speedups in Figure 7.12 indicate better
absolute performance (i.e., reduced execution time). Figure 7.12 makes a direct comparison of
performance on the two multiprocessors, even though the processors used in the two systems
are different (see Section 7.2.1). This comparison is made only because prefetching on the
SPP1600 is hardware-initiated and cannot be disabled; speedups without prefetching can only
be obtained on the SPP1000. The results in Figure 7.12 confirm that hardware prefetching
on the SPP1600 combined with fusion provides the best performance. At 8 processors on the
SPP1600, fusion improves parallel speedup by approximately 50% for both kernels.

To verify that the expected number of memory accesses are being made by each processor
in parallel execution, Table 7.10 compares the expected and measured number of cache misses
for the origina and fused loops on the SPP1600. The expected number is determined from
the sweep statistics in Table 7.4 using Equation 7.1 in Section 7.5.2. The measured number

CHAPTER 7. EXPERIMENTAL EVALUATION 149

T T T T T T 20 T T T T T T

SPP1600, fused -X--- 18 | SPP1600, fused -x -- N
20 | SPP1600, original -+ -- s SPP1600, original -+ --

SPP1000, fused H5— 16 - SPP1000, fused B— .-~]

SPP1000, origina <— .-~ 14 |- SPP1000, original <&— .- i

§ 15 |-) £ g 2} i
o
10
& - & 4
B 6
4
2
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Number of processors Number of processors
(@) LL18 kernel (b) filter kernel

Figure 7.12: Multiprocessor speedups on Convex SPP1000 and SPP1600 (computed with
respect to one processor on Convex SPP1000)

Table 7.10: Cache missesfor parallel execution on Convex SPP1600

Number of Origina Fused
Name | processors | expect. mess. expect. mess.
LL18 2 2097152 | 2106030 || 1179648 | 1192240
4 1048576 | 1052390 || 589824 | 596249
8 524288 | 525588 | 294912 | 298289
filter 2 4229280 | 4122660 || 1025280 | 1298850
4 2114640 | 2059990 || 512640 | 653192
8 1057320 | 996078 || 256320 | 330362

of missesis obtained from the hardware performance monitor. This number includes prefetch
reguests because they are not distinguished from normal memory requests. Once again, thereis
close agreement between the expected and measured valuesin Table 7.10. The expected misses
withfusionfor £ilter are higher at 4 and 8 processors because the large amounts of shifting
and peeling for this kernel (as shown in Table 7.3) contribute a fixed number of cache misses
for the peeled iterations that are executed following the barrier in the transformed code (see
Section 4.2.4). Because there are no upgrade misses to increase the total number of misses, as
in the SPP1000, these additional misses become apparent on the SPP1600 as more processors

are used. Nonetheless, the application of fusion with the shift-and-peel transformation does

CHAPTER 7. EXPERIMENTAL EVALUATION 150

400 T T T T T 400 T T T T T
350 | SPP1600, original -+-- 350 SPP1600, original -+-- -
g SPP1600, fused -X--- 'g SPP1600, fused ->---
2 300 - . 2 300 - e |
3 250 - - 3 250 - It
5 5
® 200 | T ® 200 - X* .
4 - T — 8 Lo i
£ 150 2 150
9 100+ * . 9 100 .
< sF -3 < s -
0 ki S [n 1 1 1 0 1 1 1 1 1 1
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Number of processors Number of processors
(@) LL18 kernel (b) filter kernel

Figure 7.13: Average cache misslatencies on Convex SPP1600

provideasubstantial reductionin thetotal number of misses, with acorresponding improvement
in parallel speedup.

The hardware performance monitor was also employed to measure the average observed
cache miss latency on each processor of the SPP1600. Theresultsfor L1.18 and filter are
shown in Figure 7.13. The nominal miss latency is 400 nsec; hardware prefetching hides a
portion of thislatency. In all cases, the average latency increases as more processors are used
due to the increased load on the memory system. Since the average miss latency with fusion
in Figure 7.13(a) is significantly smaller than without it, fusion for L.L.18 alows hardware-
initiated prefetching to hide a larger portion of the memory latency. On the other hand, the
average miss latencies for £ilter do not show a similar decrease with fusion. Hence, the
simple hardware-initiated prefetching scheme is not as effective in hiding alarge portion of the

memory latency for £i1ter, and fusion provides most of the improvement at 8 processors.

7.5.4.2 Resultsfor Applications

This section describes the results for the complete hydro2d application fromwhich filter
was extracted. In addition to the 10-loop sequencein £filter, thehydro2d application also
contai nstwo sequences of threeloop neststhat are fused using the shift-and-peel transformation.
The array sizeis 802 x 320 for these experiments.

First, the performance results are given for the Convex SPP1000/SPP1600 multiprocessors.

CHAPTER 7. EXPERIMENTAL EVALUATION 151

3 T T T T 12 T T T T T T
SPP1600, fusion -<--
25 - - 10 FSPP1600, no fusion -+-- o
— SPP1000, fusion -&— -~ .-t
2 F] - SPP1000, no fusion &=~ _.--" 4
5 g °r AT
g 15t : g o |
& &
1 - -
4 _
05 |- -
21 .
0 K= 1
orig fused orig fused 1 2 3 4 5 6 7 8
[--SPP1000--| |--SPP1600--| Number of processors
(a) Uniprocessor speedup (b) Parallel speedup
Figure 7.14: hydro2d on Convex SPP1000 and SPP1600
2 T T T T 12 — T T T T
Prefetching, fusion -><--
- 10 Prefetching, no fusion -+ --
15 N Fusion 55—
g L No fusion & _|
Qo | Qo
=] =]
g 1r . i
& &
05 |- -
0 :
orig fused orig fused 2 4 6 8 10 12
|---no pref----| |-----pref-----| Number of processors
(a) Uniprocessor speedup (b) Parallel speedup

Figure 7.15: hydro2d on SGI Power Challenge R10000

Figure 7.14 showsthe uniprocessor and parallel speedupsfor thehydro2d application. Again,
all speedups are with respect to the execution time without fusion on one processor of the
SPP1000 (see Table 7.2). Hence, higher speedups indicate better absolute performance. This
allows a direct performance comparison between the SPP1600 with hardware prefetching and
the SPP1000 with no prefetching. Figure 7.14 showsthat the faster processors with prefetching
on the SPP1600 can improve performance significantly, but fusion combined with prefetching
on the SPP1600 provides the best performance.

Figure 7.15 shows the uniprocessor and parallel speedupsfor the hydro2d application on

CHAPTER 7. EXPERIMENTAL EVALUATION 152

the SGI Power Challenge R10000. All speedups are with respect to the execution time without
fusion or prefetching on one processor (700 seconds for 50 iterations) , hence the increase in
speedup for a given number of processors represents better absolute performance. Because
prefetching can be disabled in software, performance comparisons on the same microprocessor
are possible. In the uniprocessor results shown in Figure 7.15(a), combining loop fusion
with prefetching provides the best performance. Similar behavior occurs in multiprocessor
execution, asshownin Figure 7.15(b). For example, at 4 processors, prefetching aloneimproves
performance by 18%, and fusion alone improves performance by 29%. The combination of
both fusion and prefetching at 4 processors improves performance by 46% over execution
using neither technique. Fusion substantially enhances|ocality across|oop neststo make more

memory system bandwidth available and improve the effectiveness of prefetching.

In contrast, other research has primarily combined prefetching and individual loop nest
transformations such as tiling, with mixed results. Mowry [MLG92] reports that a kernel
for Gaussian elimination performed best when tiled with or without prefetching, while an-
other kernel performs best when loop permutation is combined with prefetching. Saavedra et
al. [SMP*96] consider tiling and prefetching for a matrix multiplication loop nest, and report
that prefetching alone provided the best performance. Finally, Saavedra et al. [SMP96] and
Bugnion et al. [BAM*96] indicate that prefetching is generally effective in hiding latency, but
in some cases, tiling reduces the effectiveness of software-controlled prefetching by inhibiting
software pipelining and preventing prefetch instructions from being scheduled early enough to

hide misslatency.

Figure 7.15 al so confirms one additional feature regarding performance improvementsfor a
fixed problem size. Adding more processors increases the total cache capacity while reducing
the amount of data accessed per processor. As a result, more of the data accessed by each
processor can remain cached, and there is less need for prefetching and locality enhancement
with fusion. However, it isstill necessary to avoid cache conflictsto retain datain the cache for
reuse, asshownin Section 7.4. Conflict avoidancein parallel execution has also been discussed

elsewhere by Manjikian and Abdelrahman [MA95] and by Bugnion et al. [BAM™96].

CHAPTER 7. EXPERIMENTAL EVALUATION 153

755 Summary for the Shift-and-ped Transformation
In summary, the resultsfor the shift-and-peel transformation provide the following conclusions:

e Representative loop nest sequences in application programs exhibit dependences that
require the shift-and-peel transformation to enable legal fusion and parall€elization.

e Thereductioninthenumber of cache misses provided by the shift-and-peel transformation
leadsto significant improvementsin performance. The measured improvementscompare

favorably with estimates obtained using the model discussed in Chapter 3.

e Combining the shift-and-peel transformation with prefetching on systems that support
it provides the largest performance improvement. By reducing the number of memory
accesses, the shift-and-pedl transformation improves the effectiveness of prefetching in

hiding memory latency.

In addition, the experimental results have demonstrated that the shift-and-peel transformation
avoids the unnecessary overhead of code and data replication used in other techniques. Finaly,
the results have also shown that the overhead of the shift-and-peel transformation degrades
performance when datafitsin the cache, which suggests using run-time knowledge of datasize

with respect to cache size for selecting execution of the original or transformed code.

7.6 Evaluation of Scheduling for Wavefront Parallelism

This section presents the results of experiments to evaluate the scheduling strategies discussed
in Chapter 5 for exploiting wavefront parallelism in tiled loop nests. The experiments seek to
establish theimportance of exploiting intertile reuse to enhance locality when the shift-and-peel
transformation and loop skewing are required to enabletiling. Intertilelocality enhancement is
especialy important when small tile sizes are used to provide sufficient parallelism for alarge
number of processors.

All of the results reported in this section were obtained on the Convex SPP1000 multi-
processor. The results are limited to the SOR, Jacobi, and LL18 kernels, as they contain
loop nest sequences embedded within an outer |oop that carries reuse. Tiling of the Jacobi

and LL18 kernels requires the application of fusion to inner loop nests, and the dependences

CHAPTER 7. EXPERIMENTAL EVALUATION 154

between these inner loop nests require the shift-and-peel transformation to enable legal fusion.
For both fusion and tiling, cache partitioning is employed to allow data from multiple arraysto

remain cached for reuse without conflicting.

7.6.1 Resultsfor SOR

The first results in this section are for the SOR loop nest that was discussed in Chapter 5. The
array size is 1024 x 1024 elements, and each element is 8 bytes. The number of iterations
in the original outer loop is7 = 40. Results are provided for tile sizes of 32 x 32, 16 x 16,
and 8 x 8 for each of the three scheduling strategies. Larger tile sizes are not considered
because they do not provide sufficient parallelism for alarge number of processors. Figure 7.16
shows the average number of cache misses and corresponding miss latencies per processor on
16 processors (i.e., 2 hypernodes). Both the number of misses and the latencies are broken
down into local and remote. Figure 7.16(a) indicates that block scheduling incurs far fewer
misses for agiven tile size than dynamic or cyclic scheduling, which agreeswith the analytical
observations in Section 5.4.4.4. The fraction of misses to remote memory is small for block
and cyclic scheduling (4% and 5% respectively for atilesize of 8). Thisfractionissignificantly
larger for dynamic self-scheduling (27% for atile size of 8). Hence, the impact of the remote
misses on the total cache misslatency shownin Figure 7.16(b) is more pronounced for dynamic
self-scheduling because of the higher cost of remote misses. Asthetile size is reduced, both
the number of cache misses and the total miss|atenciesincrease dramatically for both dynamic
and cyclic scheduling. The resulting miss latency for dynamic self-scheduling with a tile size
of 8 is 30 times larger than for block scheduling.! This clearly demonstrates the detriment of
failing to provide intertile locality when the tile size is small. Block scheduling is much less
sensitive to areduction in thetile size because it exploits all intertile reuse.

The effect of the cache behavior on executiontimefor tiled SOR isshown in Figure 7.17 for
16 processors, and aso for 30 processors. The results indicate that static scheduling performs
better than dynamic scheduling for a large number of processors, but only block scheduling
improves consistently when the tile size is reduced to provide greater paralelism. Although

the resultsindicate that cyclic scheduling with an intermediate tile size may perform better than

INote that because tiling significantly reduces the memory access component of execution time, the impact of
theincreased miss latency on execution time is much less than a factor of 30.

CHAPTER 7. EXPERIMENTAL EVALUATION 155

600000 . . 12 I I ,
Remote N
500000 Local i I . g Ir Remote -
R2) Loca 3
|
§4ooooo - - g 0.8 - -
E N | w® B |
% 300000 [0.6
8 200000 |- . E o4} .
R
100000 - O 02FfF ’-‘_ﬂ -
0 0 S
32168 32168 32168 32168 32168 32168
Blk Cyc Dyn Blk Cyc Dyn
(a) Avg. cache missesfor 16 processors (b) Avg. miss latency for 16 processors
Figure 7.16: Cache missesfor tiled SOR
3 T T 3 T T
tilesize=32 [tilesize=32 [
o5 L tilesize=16 &3 B o5 L tilesize=16 &3 B
— tilesize=8 N P tilesize=8 N
g 2 — g 2 _
[} I [}
£ £
z 15| - z 15| .
S S
g g
8 1r . 8 1r .
a a
05 - 05 -
0
Blk Cyc Dyn Blk Cyc Dyn
(a) 16 processors (b) 30 processors

Figure 7.17: Execution timesfor tiled SOR

block scheduling, it may be difficult to predict an optimal tile size for cyclic scheduling that
achieves the appropriate balance between sufficient parallelism and sufficient locality. Later
results in this section will confirm this observation. Furthermore, block scheduling simplifies
the selection of thetile size for alarge number of processors. It is sufficient to choose a small
tile size for greater parallelism; intertile locality is preserved with block scheduling. Hence,
the remainder of the results focus on comparing block scheduling with dynamic scheduling for

the largest and smallest tile sizes.

The parallel speedup of tiled SOR is shown in Figure 7.18; all speedups are computed with

CHAPTER 7. EXPERIMENTAL EVALUATION 156

30 T T T T T

Block, tilesize=8 -4&—
25 - Dynamic, tilesize=32 -&--
Block, tilesize=32 <—

20 | Dynamic, tilesize=8 -¢--

15

Speedup

10

| |
5 10 15 20 25 30
Number of processors

Figure 7.18: Speedup for tiled SOR

respect to theuntiled loop nest executed on asingle processor, hencetheincreasein speedupfor a
given number of processors represents an improvement in absol ute performance. The speedups
of block scheduling and dynamic self-scheduling are compared for the largest and smallest tile
sizes. When the number of processorsis 8 or less, all memory accesses are confined within a
single hypernode, i.e., there are no remote memory accesses. Dynamic self-scheduling with
alarge tile size generates sufficient parallelism for the relatively small number of processors,
and maximizes intratile locality. The larger tile size and the uniform memory access within
a hypernode diminish the impact of intertile locality. Consequently, dynamic self-scheduling
with the largest tile size performs the best. However, as the number of processors increases,
alarge tile size limits the speedup of dynamic self-scheduling due to insufficient parallelism.
In addition, memory accesses span hypernodes and become non-uniform, which limits the
speedup of dynamic self-scheduling, particularly when a smaller tile size is used to provide
greater paralelism. Intertilelocality iscritical for small tile sizes, and dynamic self-scheduling
does not exploit intertile reuse. In contrast, block scheduling with a small tile size provides
sufficient parallelism while enhancing intertile locality, improving the speedup by a factor of

1.4 over dynamic self-scheduling at 30 processors.

7.6.2 Resultsfor Jacobi

The Jacobi kernel consists of two loop nests surrounded by an outer loop, as shown in

Figure 7.19. There is reuse between the inner two loop nestsin addition to the reuse carried by

CHAPTER 7. EXPERIMENTAL EVALUATION 157

dot=1T
doj=2,N-1
doi=2,N-1
bli,j] = (@i+1,j]+ai-1,j]+i,j+1]+di,j-1]) / 4
end do

end do
doj=2,N-1
doi=2,N-1
a[i,j] = bfi,j]
end do
end do

end do)
Figure 7.19: The Jacobi kernel

the outer loop. Tiling requires fusion of the inner two loop nests to produce a single loop nest,
and dependences between the inner two loop nests require the application of the shift-and-peel
transformation to enable legal fusion. Once a single loop nest is obtained with fusion, loop
skewing is required just as for the SOR loop nest to enable tiling. The application of shift-
and-peel to enable fusion results in dependences that require skewing the inner loops by two
iterations with respect to the outer loop, rather than one as required for SOR. Once skewed, the

loop nest is then tiled to exploit the reuse carried by the outer loop.

Figure 7.20 shows the average number of cache misses and corresponding miss latencies
per processor for parallel execution of tiled Jacobi with the different scheduling strategies
on 16 processors. The array sizes are 2048 x 2048 and the number of iterationsin the original
outer loop isT = 10. Asbefore, the number of misses and the latencies are broken down into
local and remote. The results are similar to those obtained for SOR. Block scheduling incurs
the fewest cache misses as well as having the smallest fraction of remote misses. The cache
latency for block scheduling is also the lowest. Dynamic self-scheduling incurs the greatest
number of cache misses and a larger fraction of remote misses, which results in a dramatic

increase in cache miss latency asthetile sizeisreduced.

Normalized execution times for tiled Jacobi on 16 and 30 processors are shown in
Figure 7.17. All execution times are normalized with respect to time obtained with parallel
execution of the original code to facilitate comparison. The normalized execution time for
fusion of theinner loopswithout tiling isalso shown, since parallel execution of the fused loops

is enabled by the shift-and-pedl transformation. Once again, the resultsfor tiling are similar to

CHAPTER 7. EXPERIMENTAL EVALUATION 158
Remote I Remote I
Loca 3 ’g 4 Loca 3 _
1.5e+06 - 2
§ 3
8 % 3+ i
g
S 1e+06 - =
5 g LL 4
3 5
| <
S L LW
0 0
32168 32168 32168 32168 32168 32168
Blk Cyc Dyn Blk Cyc Dyn
(a) Avg. cache missesfor 16 processors (b) Avg. miss latency for 16 processors
Figure 7.20: Cache missesfor tiled Jacobi
2 T T 2 T T T
o 18 tilesize=32 1 o 18 tilesize=32 1 -
E 16L tilesze=16 &3 E 16L tilesze=16 I3 |
= tilesize=8 A = tilesize=8 A
S S 14 B B
2 g 121 -
5 3 1 g -1
E § 08 | .
I T 06 .
5 5 04 .
< < 02F -
0

Orig Fused BIk
|- Untiled -] ~ [-------

(a) 16 processors

Orig Fused BIk Cyc
|- Untiled --| |------- Tiled

(b) 30 processors

Figure 7.21: Normalized execution times for tiled Jacobi

those obtained for SOR. The dramatic increase in execution time for dynamic self-scheduling

correlates with the increase in the cache miss latency. Block scheduling with a small tile size

performs far better. Fusion exploits reuse between the inner two loops, but tiling goes further

to exploit the reuse carried by the outer loop. To ensure that the full benefit of tiling isrealized,

the tiled loop nest must be scheduled appropriately.

Finally, the parallel speedup of tiled Jacobi for various numbers of processors over the

original code executed on a single processor is shown in Figure 7.22. The increase in speedup

for a given number of processors represents an improvement in absolute performance. The

CHAPTER 7. EXPERIMENTAL EVALUATION

159

40
35
30

Speedup

T T T T

Block, tilesize=8 -&—
B Fused =--
| Original -¢--
Dynamic, tilesize=32 -x--

5 10 15 20 25

Number of processors

30

Figure 7.22: Speedup for Jacobi

Normalized execution time

18
16

Orig Fused Blk

T T T T
tilesize=32 1
tilesize=16 3

tilesize=8 Il

|- Untiled --| |-
() 16 processors

18
16
14
1.2

0.8
0.6
0.4
0.2

Normalized execution time
(=Y

Orig Fused Blk
[------- Tiled

T T T T
tilesize=32 1
tilesize=16 3

tilesize=8 Il

Cyc
|- Untiled --|

(b) 30 processors

Figure 7.23: Normalized execution timesfor tiled LL18

speedup for block scheduling and dynamic self-scheduling is compared to the speedup from

parallel execution of the original code and the fused version. The speedup for cyclic scheduling

is not shown because its performance for small tile sizes is worse than block scheduling. Once

again, dynamic self-scheduling with alarge tile size is only effective in the absence of remote

memory accesses, i.e., when the number of processorsis8 or less. In contrast, block scheduling

with a small tile size improves the speedup by a factor of 1.8 over dynamic self-scheduling

at 30 processors, and consistently outperforms even the parallel versions of the original and

fused code. Block scheduling improves paralel speedup by 53% over the original code at 16

processors, and by 36% at 30 processors.

CHAPTER 7. EXPERIMENTAL EVALUATION 160

40 T T T T
Block, tilesize=8 -&— L

35 — Fu%d -a--

30 Origind -¢-- i

[Dynamic, tilesize= 32 -x_ -

Speedup

5 10 15 20 25 30
Number of processors

Figure 7.24: Speedup for LL18

7.6.3 Resultsfor .1.18

The L1.18 kernel consists of three loop nests surrounded by an outer loop. A total of nine
arrays are used, and there is reuse between the inner loop nests in addition to the reuse carried
by the outer loop. Tiling requires fusion with the shift-and-peel transformation to produce a
singleloop nest, followed by skewing of the inner loops by three iterations. The tiled loop nest
is scheduled with the different strategies just as for SOR and Jacobi. Normalized execution
times for 16 and 30 processors are shown in Figure 7.23 for array sizes of 1024 x 1024 and
T = 10 iterations in the original outer loop. The results are similar to those obtained for
Jacobi. Fusion improves performance by exploiting reuse between the inner loop nests, but
tiling with an appropriate scheduling strategy exploits all the reuse for the best performance.
Once again, only block scheduling is successful in enhancing locality when the tile size is
reduced to provide sufficient parallelism for a large number of processors. The speedups for
LL18 shownin Figure 7.24 also agree with the trends observed for Jacobi. Block scheduling
improves the speedup at 30 processors by a factor of 2.3 over dynamic self-scheduling. Block
scheduling improves the speedup by 50% over the original code at 16 processors, and by 29%

at 30 processors.

7.6.4 Comparison of Sweep Ratiosfor Tiling

This section compares sweep ratios for tiling of the Jacobi kernel. Table 7.11 provides the

number of cache misses measured on one processor during parallel execution on 16 processors

CHAPTER 7. EXPERIMENTAL EVALUATION 161

Table 7.11: Cache misses and sweep ratiosfor Jacobi on Convex SPP1000 (16 processors)

Measured Sweep ratio
Version of code cache misses | measured \ predicted
Original 2645990 — —
Fused 1991090 1.3 1.3
Dyn. sched., tile size=32 525763 5.0 5.9
Dyn. sched., tile size=8 1664540 1.6 2.2
Block sched., tile size=32 405631 6.5 13
Block sched., tile size=8 266595 9.9 13

for different versions of Jacobi. For each version, the measured sweep ratio is computed
with respect to the original code. For example, the measured sweep ratio for the fused code is
2645990,/1991090 = 1.3.

Table 7.11 also providesthe predicted sweep ratios for each version of the code. The sweep
ratio of 1.3 for fusion was computed earlier in Table 7.5. For dynamic scheduling of the tiled
code, no intertile reuse is exploited, hence the sweep ratio for tiling with skewing is given by
Equation 5.1 in Section 5.2.2, i.e., 7ing = T/(2- (s - T/B) + 1). For Jacobi, the skewing
factor is s = 2 and the number of iterationsis7 = 10. Thetilesizesare B = 8 and B = 32.
Hence, r4jjin, = 1.7 for B = 8 and 7,y = 4.4 for B = 32.

However, tiling is preceded by fusion whose sweep ratio is rsi0n = 1.3. The overall
sweep ratio for both transformations is given by the product of sweep ratios for the individual
transformations (Equation 5.2): 7 oyerai = Tfusion - Titing- 1N Overall sweep ratios for dynamic
scheduling with tile sizes of 8 and 32 are computed accordingly and given in Table 7.11.

For block scheduling, the analysis in Section 5.4.4.4 explained that even with skewing,
exploiting intertile reuse should result in the ideal sweep ratio of 1", the number of iterationsin
the outermost loop. SinceT" = 10for Jacobi, 7y = 1T = 10for block scheduling. Tilingis
still preceded by fusion, hencethe overall sweepratiois sroyeran = 7 fusion Ttiting = 1.3-10 = 13.

Comparing the measured and predicted sweep ratios in Table 7.11, the results for fusion
agree closely (seethevalidationin Section 7.5.2). For tiling with dynamic scheduling, thelarge
tile size provides the best agreement, whereas for block scheduling, the small tile size provides

the best agreement. These results are not surprising because dynamic scheduling exploits

CHAPTER 7. EXPERIMENTAL EVALUATION 162

intratile reuse best with a large tile size, while block scheduling exploits intertile reuse best
with asmall tile size. The discrepancy for dynamic scheduling with a small tile size is caused
by referencing additional cache lines at tile boundaries; these references are not significant
when thetile sizeislarge. The discrepancy for block scheduling with alargetile sizeisdueto
conflictsthat reduceintertilelocality. Only one-dimensional cache partitioningisappliedinthis
case, and thisis sufficient for the small tile size. Although two-dimensional cache partitioning
would increase the measured sweep ratio for block scheduling with the large tile size, the small

tilesizeis till required for sufficient parallelism on alarge number of processors.

7.6.5 Summary for Evaluation of Scheduling Strategies

In summary, the experimental results have confirmed that exploiting intertile reuse is crucial to
improve the performance of tiling for alarge number of processors. Block scheduling permits
the use of small tile sizes required to provide sufficient parallelism without sacrificing locality.
Furthermore, the results for Jacobi and LL18 demonstrate the importance of exploiting all

reuse, first from fusing inner loop nests, then by tiling for reuse carried by the outermost loop.

Chapter 8

Conclusion

The performance of applications on large-scale shared-memory multiprocessorsis determined
largely by the degree of parallelism and cache locality. Parallelism in applications is often
found in loops that operate on array data, and current parallelizing compilers are capable of
detecting this loop-level parallelism. Compilers also enhance cache locality by applying loop
transformations that reorder iterations in order to increase the likelihood of retaining reused
data in the cache. However, existing transformations are ineffective because they only exploit
reuse within loops or they fail to preserve paralelism when exploiting reuse across loops.
Furthermore, even when reuse can be exploited across |oops, cache conflicts between datafrom
different arrays diminish locality by displacing data from the cache before it is reused.

To address these shortcomings, this dissertation has proposed and evaluated new compiler
techniques to improve parallel performance on large-scale multiprocessors. Novel code and
data transformations enhance cache locality across loops while avoiding cache conflicts and
maintaining sufficient parallelism for a large number of processors. These transformations
are combined with appropriate loop scheduling strategies to maintain locality and parallelism
during execution.

The importance of the techniques described in this dissertation will continue to increase as
processor performance continues to increase more rapidly than memory performance. Current
multiprocessors are now using commaodity microprocessors operating at speeds of 200 MHz
or more. Cache misses to access memory are extremely costly at these speeds; execution time
isincreasingly dominated by memory access time. All available data reuse must be exploited
for cache locality if significant reductions in execution time are to be achieved, especialy in

large-scale multiprocessors with large remote memory latencies.

163

CHAPTER 8. CONCLUSION 164
8.1 Summary of Contributions

The contributions of this research are embodied in the proposed techniques. The following

paragraphs summarize these contributions:

e The shift-and-peel transformation has been proposed to enable legal fusion and subse-
guent parall€elization, despite dependences that have previously prevented loop fusion or
resulted in a seria loop. This technique is therefore able to exploit reuse across loops
and maintain parallelism where previous techniques have failed. Experimental results
have shown that shift-and-peel isrequired for representative loop nest sequences and that
it improves parallel performance by up to 30% for representative applications. Results
have also shown that the shift-and-pedl transformation provides additional performance

gainsin conjunction with other performance-enhancing techniques such as prefetching.

e Loop scheduling strategies have been evaluated for exploiting wavefront parallelism that
resultswhen the shift-and-peel transformation iscombined with tiling. Proper scheduling
allows both intratile and intertile data reuse to be exploited effectively during parallel
execution on a large number of processors. Experimental results have shown that static
block scheduling with asmall tile sizeimproves parallel performance by up to 50% over
the original code without fusion or tiling. Results have also shown that static scheduling

incurs the fewest cache misses and is the least sensitive to changesin the tile size.

e A data transformation technigque called cache partitioning has been proposed to prevent
cache conflicts between data from different arrays, especially when enhancing locality
across loops. Unlike techniques such as array padding, cache partitioning systematically
derives a conflict-free data layout in memory for commonly-occurring compatible data
access patterns that would otherwise lead to frequent conflicts. Experimental results
have shown that cache partitioning permits the full benefit of transformations such as

shift-and-peel to be realized by preventing unnecessary cache misses.

To provide ameans of assessing the benefit of enhancing locality acrossloopswith transfor-

mationssuch as shift-and-peel and tiling, an analytical model has been described for quantifying

CHAPTER 8. CONCLUSION 165

the reduction in memory accesses. The contribution of memory accesses towards total exe-
cution time is also quantified in order to associate the reduction in memory accesses with a
reduction in execution time. Estimatesfor performance improvement obtained with this model
compare favorably with measured improvementsin the experimental results.

Finally, the feasibility of the proposed techniques has been established with a prototype
source-to-source compiler implementation in FORTRAN 77. The implementation automates
the shift-and-peel and cache partitioning transformations (with the exception of modifications
required to produce consistent COMMON block definitions for cache partitioning). Although
the prototype implementation performs only source-level transformations, the techniques are
equally feasible for a native machine compiler that generates executable code. Integrating the
requisite analyses and transformations into a native compiler framework should enable further

performance improvements.

8.2 FutureWork

The results from combining the shift-and-peel transformation with prefetching suggest further
work to explore the limits on the achievable improvements in performance. Current processor
designs support between 4 and 10 concurrent memory accesses [Hun95, Yea96]. Further
experimentation can investigate how effectively the shift-and-peel transformation can improve
the available bandwidth utilization for prefetching with a large number of concurrent memory
accesses, and to what extent computati on becomes the performance bottleneck in representative
loop nest sequences when both techniques are combined.

Inthisdissertation, candidateloopsfor the shift-and-peel transformation have beenidentified
within individual subroutines. This approach exploits a common programming style in which
related loops are placed together in the same subroutine. The scope of the transformation can be
increased with interprocedural techniques, specifically selective subroutine inlining to collect
loops from separate subroutines and form larger candidate sequences.

The techniques have centered on dense array applications that constitute an important class
of scientific applications. However, there are also many applications that operate on sparse
arrays. These applications may also contain loop sequences that are candidates for loop fusion,

although the data access patterns (and hence the dependence relationships) may not be as

CHAPTER 8. CONCLUSION 166

regular. Future work can investigate the feasibility of exploiting reuse across loops in such
applications.

A more challenging direction for future work is broadening the scope of locality enhance-
ment in nhon-numeric applications. Such applications also contain loops; however, instead of
DO-loops with an integer index variable, such applications may employ WHILE-loops using a
pointer variable to traverse complex data structures. The challenge is to identify opportunities
to legally combine the bodies of multiple WHILE-loops in such applications.

Finally, this dissertation has centered on cache locality enhancement. The physically-
distributed memory in large-scale multiprocessors also raises the issue of memory locality
enhancement, i.e., ensuring that most cache misses are satisfied by local rather than remote
memory. Memory locality isenhanced with an appropriate data distribution to match the distri-
bution of parallel computation among processors. Future work can investigate the interaction

between cache and memory locality enhancement and the relative importance of each.

Bibliography

[AALOS]

[AS92]

[ASKL81]

[BAM*96]

[Bansg]

[Ban93]

[BCJ94]

[BCK+89]

J. M. Anderson, S. P Amarasinghe, and M. S. Lam. Data and computation
transformations for multiprocessors. In Proceedings of the Fifth ACM SGPLAN
Symposium on Principles and Practice of Parallel Processing, pages 166-178,
July 1995.

W. Appelbe and K. Smith. Determining transformation sequences for |oop paral-
lelization. In Proceedings of the 5th Workshop on Languages and Compilers for
Parallel Computing, pages 208-222, 1992.

W. Abu-Sufah, D. J. Kuck, and D. H. Lawrie. On the performance of paging
systems through program analysis and transformations. |EEE Transactions on
Computers, 30(5):341-356, May 1981.

Edouard Bugnion, Jennifer M. Anderson, Todd C. Mowry, Mendel Rosenblum,
and Monica S. Lam. Compiler-directed page coloring for multiprocessors. In
Proceedings of the 7th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 244-255, Cambridge,
MA, October 1996.

Utpal Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic
Publishers, Boston, 1988.

Utpal Banerjee. Loop Transformations for Restructuring Compilers: The Foun-
dations. Kluwer Academic Publishers, Boston, 1993.

David F. Bacon, Jyh-Herng Chow, Dz-ching R. Ju, Kalyan Muthukumar, and Vivek
Sarkar. A compiler framework for restructuring data declarationsto enhance cache
and TLB effectiveness. In Proceedings of CASCON’ 94, pages 270-282, Toronto,
Ontario, Canada, October 1994.

M. Berry, D. Chen, P. Koss, D. Kuck, and S. Lo. The PERFECT Club Bench-
marks: Effective performance evaluation of supercomputers. Technical Report
827, CSRD, University of Illinois, May 1989.

167

BIBLIOGRAPHY 168

[BEF+95]

[Bel92]

[BGS94]

[Cal87]

[CHK*96]

[CM95]

[CMTO4]

[Con94]

[DR94]

[DWY F92]

[Gan94]

W. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflinger, D. Padua, P. Petersen,
B. Pottenger, L. Rauchwerger, P. Tu, and S. Weatherford. Polaris: Improving the
effectiveness of parallelizing compilers. In K. Pingali et al., editors, Proceedings
of the 7th Workshop on Languages and Compilers for Parallel Computing, pages
141-154. Springer-Verlag, Berlin, 1995.

G. Bell. Ultracomputers. A teraflop beforeitstime. Communications of the ACM,
35(8):26-47, August 1992.

David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler transforma-
tions for high-performance computing. ACM Computing Surveys, 26:345-420,
December 1994,

Charles D. Callahan. A Global Approach to the Detection of Parallelism. PhD
thesis, Department of Computer Science, Rice University, March 1987.

Kenneth K. Chan, Cyrus C. Hay, John R. Keller, Gordon R. Kurpanek, Francis X.
Schumacher, and Jason Zheng. Design of the HP PA 7200 CPU. Hewl ett-Packard
Journal, 47(1), February 1996. Available at http://www.hp.com/hpj/journal.html.

Stephanie Coleman and Kathryn S. McKinley. Tile size selection using cache
organization and datalayout. In Proceedings of the ACM SIGPLAN’ 95 Conference
on Programming Language Design and | mplementation, pages 279-290, La Jolla,
CA, June 1995.

Steve Carr, Kathryn S. McKinley, and Chau-Wen Tseng. Compiler optimizations
for improving datalocality. In Proceedings of the 6th Inter national Conference on
Architectural Support for Programming Languages and Operating Systems, pages
252-262, San Jose, CA, October 1994,

Convex Computer Corporation. Convex Exemplar System Overview. Document
No. 080-002293-000, Richardson, TX, 1994.

Alain Darte and Y ves Robert. Constructive methods for scheduling uniform loop
nests. |EEE Transactions on Parallel and Distributed Systems, 5(8):814-822,
October 1994.

Eric DeLano, Will Walker, Jeff Yetter, and Mark Forsyth. A high speed super-
scalar PA-RISC processor. In Compcon’ 92 Digest of Papers, pages 116-121, San
Francisco, CA, February 1992.

Amit Ganesh. Fusing loops with backwards inter loop data dependence. ACM
S GPLAN Notices, 29(12):25-30, December 1994.

BIBLIOGRAPHY 169

[GJI79]

[Hed94]

[HKO*94]

[HS96]

[HSF92]

[Hun9s]

[1T88]

[Jou90]

[Ken91]

[KM92]

[KM94]

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-completeness. W. H. Freeman, San Francisco, 1979.

Katherine S. Hedstrom. User’'s Manual for a Semi-spectral Primitive Equation
Ocean Circulation Model-\Version 3.9. Rutgers University, March 1994. Available
at http://marine.rutgers.edu/po.

M. Heinrich, J. Kuskin, D. Ofelt, et al. The Stanford FLASH Multiprocessor. In
Proceedings of the 21th Annual International Symposium on Computer Architec-
ture, pages 302-313, Chicago, Illinois, April 1994.

Edin Hodzic and Weijia Shang. On optimal size and shape of supernode trans-
formations. In Proceedings of the 1996 International Conference on Parallel
Processing, pages 11125-11134, August 1996.

Susan Flynn Hummel, Edith Schonberg, and Lawrence E. Flynn. Factoring: A
method for scheduling parallel loops. Communications of the ACM, 35(8):90-101,
August 1992.

Doug Hunt. Advanced performance features of the 64-bit PA-8000. In Comp-
con’ 95 Digest of Papers, pages 123-128, San Jose, CA, February 1995.

F. Irigoin and R. Triolet. Supernode partitioning. In Proceedings of the 15th
ACM Symposium on the Principles of Programming Languages, pages 319-329,
January 1988.

Norman Jouppi. Improving direct-mapped cache performance by the addition
of a small fully-associative cache and prefetch buffers. In Proceedings of the
17th Annual International Symposiumon Computer Architecture, pages 364-373,
Sesattle, WA, June 1990.

Kendall Square Research. KSR1 Principles of Operation. Waltham, Mass., 1991.

Ken Kennedy and Kathryn S. McKinley. Optimizing for parallelism and data
locality. In Proceedings of the 1992 ACM Inter national Conference on Supercom-
puting, pages 323-334, Washington, D. C., July 1992.

Ken Kennedy and Kathryn S. McKinley. Maximizing loop parallelism and im-
proving datalocality vialoop fusion and distribution. In U. Banerjee, D. Gelernter,
A. Nicolau, and D. Padua, editors, Proceedings of the 6th Workshop on Languages
and Compilers for Parallel Computing, pages 301-320. Springer-Verlag, Berlin,
1994.

BIBLIOGRAPHY 170

[Kuc]

[LH97]

[LRWO1]

[LTSS93]

[LWO4]

[LWOS]

[MAQ5]

[MA97]

[McC]

[McC92]

[ML94]

Kuck and Associates, Inc. Information on their KAP parallelizing compiler is
available at the Website http://www.kai.com.

Gregg Lesartre and Doug Hunt. PA-8500: The continuing evolution of the PA-
8000 family. In Compcon’'97 Digest of Papers, San Jose, CA, February 1997.
Available at http://www.hp.com/computing/framed/technol ogy/micropro/pa-
8500/docs/8500.html.

MonicaS. Lam, Edward E. Rothberg, and Michael E. Wolf. The cache performance
and optimizations of blocked algorithms. In Proceedings of the 4th International
Conference on Architectural Support for Programming Languages and Operating
Systems, pages 63-74, Santa Clara, CA, April 1991.

Hui Li, Sudarsan Tandri, Michael Stumm, and Kenneth C. Sevcik. Locality
and loop scheduling on NUMA multiprocessors. In Proceedings of the 1993
Inter national Conferenceon Parallel Processing, pages!1140-11147, August 1993.

AlvinR. Lebeck and David A. Wood. Cache profiling and the SPEC benchmarks:
A case study. Computer, 27(10):15-26, October 1994.

Daniel Lenoski and Wolf-Dietrich Weber. Scalable Shared-memory Multiprocess-
ing. Morgan Kaufmann, San Francisco, 1995.

Naraig Manjikian and Tarek Abdelrahman. Array data layout for the reduction of
cache conflicts. In Proceedings of the 8th International Conference on Parallel
and Distributed Computing Systems, pages 111-118, Orlando, FL, September
1995.

Naraig Manjikian and Tarek S. Abdelrahman. Fusion of loopsfor parallelism and
locality. |EEE Transactions on Parallel and Distributed Systems, 8(2):193-209,
February 1997.

John D. McCalpin. STREAM: Measuring Sustainable Memory Bandwidthin High
Performance Computers. Web page http://www.cs.virginia.edu/stream/ main-
tained by the Department of Computer Science, University of Virginia. This Web
site provides performance results for the STREAM memory bandwidth bench-
mark.

John D. McCalpin. Quasigeostrophic Box Model-Revision 2.3. University of
Delaware, July 1992. Thisis an unpublished description of the ggbox code.

Evangelos P. Markatos and Thomas J. LeBlanc. Using processor affinity in loop
scheduling on shared-memory multiprocessors. |EEE Transactions on Parallel
and Distributed Systems, 5(4):379-400, April 1994.

BIBLIOGRAPHY 171

[MLG92]

[MT96]

[MWV/92]

[NJL94]

[Pac]

[PHO6]

[PK87]

[Porgg]

[Pug91]

[Pug92]

[PW86]

[RLBCO4]

Todd C. Mowry, Monica S. Lam, and Anoop Gupta. Design and evaluation of
a compiler algorithm for prefetching. In Proceedings of the 5th International
Conference on Architectural Support for Programming Languages and Operating
Systems, pages 62—73, Boston, MA, October 1992.

Kathryn S. McKinley and Olivier Temam. A quantitative analysis of loop nest lo-
cality. In Proceedingsof the 7th Inter national Conferenceon Architectural Support
for Programming Languages and Operating Systems, pages 94-104, Cambridge,
MA, October 1996.

Sunil Mirapuri, Michael Woodacre, and Nader Vasseghi. The MIPS R4000 pro-
cessor. |EEE Micro, 12(2):10-22, April 1992.

Juan J. Navarro, Toni Juan, and Tomas Lang. MOB forms: A class of multilevel
block algorithmsfor dense linear algebra. In Proceedings of the 1994 ACM Inter-
national Conference on Supercomputing, pages 354-363, Manchester, England,
July 1994.

Pacific Sierra Research Corporation. Information on their VAST parallelizing
compiler is available at the Website http://www.psrv.com.

David A. Patterson and John L. Hennessy. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, San Mateo, CA, second edition, 1996.

Constantine D. Polychronopoulos and David J. Kuck. Guided self-scheduling: A
practical scheduling scheme for parallel supercomputers. |EEE Transactions on
Computers, 36(12):1425-1439, December 1987.

Allan K. Porterfield. Software Methods for Improvement of Cache Performance
on Supercomputer Applications. PhD thesis, Department of Computer Science,
Rice University, April 1989.

William Pugh. Uniform techniques for loop optimization. In Proceedings of
the 1991 ACM International Conference on Supercomputing, pages 341-352,
Cologne, Germany, June 1991.

William Pugh. A practical agorithm for exact array dependence analysis. Com-
muni cations of the ACM, 35(8):102-114, August 1992.

D. A. Paduaand M. J. Wolfe. Advanced compiler optimizationsfor supercomput-
ers. Communications of the ACM, 29(12):1184-1201, December 1986.

Theodore H. Romer, Dennis Lee, Brian N. Bershad, and J. Bradley Chen. Dy-
namic page mapping policies for cache conflict resolution on standard hardware.

BIBLIOGRAPHY 172

[Sil964]

[Sil96b]

[SMP*96]

[Stel]

[Sun9e]

[TFJ93]

[VBS*95]

[Wars4]

[WFEW+94]

In Proceedings of the First Symposium on Operating Systems Design and Imple-
mentation, pages 255-266, November 1994.

Silicon Graphics, Inc. Origin Servers: Technical Overview of
the Origin Family. Mountain View, CA., 1996. Available at
http://www.sgi.com/Products/hardware/servers/technol ogy/overview.html.

Silicon Graphics, Inc. POWER CHALLENGE: Technical Report. Mountain View,
CA., 1996. Available at http://www.sgi.com/Products/software/PDF/pwr-chlg/.

Rafagl H. Saavedra, Weihau Mao, Daegyeon Park, Jacqueline Chame, and Sungdo
Moon. The combined effectiveness of unimodular transformations, tiling, and
software prefetching. In Proceedingsof the 10th International Parallel Processing
Symposium, pages 39-45, Honolulu, HI, April 1996.

Standard Performance Evaluation Corporation. Information on the SPEC bench-
mark suite is available at the Website http://www.specbench.org.

Sun Microsystems, Inc. Ultra Enterprise X000 Servers. A Technol-
ogy Overview. Mountain View, CA., 1996. Available at the Website
http://www.sun.com/960416/wp/wp.ultra.server.html.

Olivier Temam, Christine Fricker, and William Jal by. Impact of cacheinterferences
on usua numerical dense loop nests. Proceedings of the IEEE, 81(8):1103-1115,
August 1993.

Zvonko Vranesic, Stephen Brown, Michael Stumm, Steve Caranci, Alex Grbic,
Robin Grindley, Mitch Gusat, Orran Krieger, Guy Lemieux, Kelvin Loveless,
Naraig Manjikian Zeljko Zilic, Tarek Abdelrahman, Ben Gamsa, Peter Pereira,
Ken Sevcik, Ali Elkateeb, and Sinisa Srbljic. The NUMAchine Multiprocessor.
Technica Report CSRI-324, Computer Systems Research Institute, University of
Toronto, Toronto, Ontario, Canada, April 1995.

Joe Warren. A hierarchical basis for reordering transformations. In Proceedings
of the 11th ACM Symposium on the Principles of Programming Languages, pages
272-282, June 1984.

Robert P. Wilson, Robert S. French, Christopher S. Wilson, Saman P. Amarasinghe,
Jennifer M. Anderson, Steven W. K. Tjiang, Shi-Wei Liao, Chau-Wen Tseng,
Mary W. Hall, Monica S. Lam, and John L. Hennessy. SUIF: an infrastructure
for research on parallelizing and optimizing compilers. ACM SIGPLAN Notices,
29(12), December 1994.

BIBLIOGRAPHY 173

[WLO1]

[Wol89]

[Wol92]

[Yeaos]

[ZC91]

[ZLTI96]

Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm. In
Proceedings of the ACM SIGPLAN'91 Conference on Programming Language
Design and Implementation, pages 3044, Toronto, Ontario, Canada, June 1991.

M. J. Wolfe. Optimizing Supercompilers for Supercomputers. The MIT Press,
Cambridge, MA., 1989.

Michael E. Wolf. Improving Locality and Parallelismin Nested Loops. PhD thesis,
Department of Computer Science, Stanford University, August 1992.

Kenneth C. Yeager. The MIPS R10000 superscalar microprocessor. |EEE Micro,
16(2):28-40, April 1996.

Hans Zima and Barbara Chapman. Supercompilersfor Vector and Parallel Com+
puters. ACM Press, New York, 1991.

Marco Zagha, Brond Larson, Steve Turner, and Marty Itzkowitz. Perfor-
mance analysis using the MIPS R10000 performance counters. In Proceed-
ings of Supercomputing’ 96, Pittsburgh, PA, November 1996. Available at
http://www.supercomp.org/sc96/proceedings.

