
High-Quality, Deterministic Parallel Placement for FPGAs
on Commodity Hardware

Adrian Ludwin
aludwin@altera.com

Vaughn Betz
vbetz@altera.com

Ketan Padalia
kpadalia@altera.com

Altera Corporation
151 Bloor Street West, Suite 200
Toronto, ON, M5S 1S4, Canada

ABSTRACT
In this paper, we describe the application of two paralleliza-
tion strategies to the Quartus II FPGA placer. The first
uses a pipelining approach and achieves speedups of 1.3x on
two processing cores. The second uses a parallel moves ap-
proach and achieves speedups of 2.2x on four cores. Unlike
all previous parallel moves algorithms, ours is deterministic
and always gives the same answer as the serial version of the
algorithm, without any significant reduction in performance.

We also describe a process to quantify multi-core perfor-
mance effects, such as memory subsystem limitations and
explicit synchronization overhead, and fully describe these
effects on a CAD tool for the first time. Memory limitations
alone are found to cost up to 35% of total runtime. Unlike
previous algorithms, our algorithms have negligible explicit
synchronization overhead. These results are relevant to both
CAD designers and to any developers seeking to parallelize
existing software.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles—
Gate Arrays; B.7.2 [Integrated Circuits]: Design Aids—
Placement and Routing ; D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming

General Terms
Algorithms, Performance, Design

Keywords
Parallel placement, FPGAs, Timing-driven placement

1. INTRODUCTION
The Quartus R© II design software is a commercial CAD

tool used to implement designs on Altera R© devices. This
paper describes parallel versions of the Quartus II placer’s
most CPU-intensive algorithm.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’08, February 24-26, 2008, Monterey, California, USA.
Copyright 2008 ACM 978-1-59593-934-0/08/02 ...$5.00.

0

10

20

30

40

1999 2000 2001 2002 2003 2004 2005 2006

In
cr

ea
se

si
n
ce

1
9
9
9

Logic cell count supported by Quartus II
Fastest Q4 SPEC CINT2000 (base)

Figure 1: FPGA size vs. per-core performance.

1.1 Motivation
Since the launch of Altera’s Quartus software in 1999,

FPGA device sizes have increased at almost five times the
rate of processor core speeds (Figure 1). In addition, there
is now broad agreement that the exponential growth in per-
core performance is slowing, and that future processors will
have more cores to compensate for this reduction in per-core
progress [1].

There are three possible approaches to keeping the run-
time of FPGA CAD reasonable:

1. Discourage flat compilation of the entire design, and
instead force users to compile partitions of their de-
signs incrementally and assemble the partitions to form
the entire design [2]. This approach, taken by many
ASIC flows, can mitigate runtime but at the cost of
increased design complexity and disallowed optimiza-
tions between partitions.

2. Find faster single-threaded algorithms, while sacrific-
ing little or no quality. This approach has been very
productive but it is risky to depend entirely on this ap-
proach to offset the exponential growth in FPGA cell
counts.

3. Create parallel algorithms, possibly by modifying ex-
isting ones, to take advantage of the multi-core pro-
cessors which are now becoming common. Commodity
PCs contained two cores in 2007, and four cores will
become common in 2008. Since the number of cores is
expected to increase exponentially for the foreseeable

future, parallel algorithms may be well suited to han-
dle increasing FPGA sizes. This is the approach we
explore in this paper.

1.2 Constraints
Parallelizing a commercial FPGA placement tool involves

respecting the following constraints which are not commonly
encountered in prior parallel placement work. Firstly, it
must run on commodity hardware such as Windows and
Linux desktops, the predominant platforms in the FPGA
design community.

Secondly, most FPGA designers will not tolerate a sig-
nificant degradation in quality relative to existing tools.
The Quartus II placer currently optimizes wirelength, criti-
cal path delay, localized routing congestion and power, and
any replacement must deliver equivalent quality on all of
these goals. It must also handle more complicated circuits
than are commonly encountered in academic work, includ-
ing arithmetic chains, RAM and DSP blocks and sophisti-
cated floorplanning constraints. Creating a new placer from
scratch with equal capabilities and quality would be very
difficult, and for this reason we decided to parallelize the
existing version.

Thirdly, the placer must be deterministic. That is, when
run multiple times, it must always return exactly the same
result. This constraint is rarely studied in prior work (an
exception is [3]), but is vital in a commercial context for
two reasons:

• When a bug is reported, we must be able to reproduce
the problem. Nondeterminism makes this extremely
difficult, even if the problem is not caused by the par-
allel algorithm.

• We run thousands of regression tests prior to each re-
lease of Quartus II. It would be extremely difficult to
diagnose failing tests whose results changed randomly.

There is an even stronger constraint we can apply to our
algorithm, known as serial equivalency. This is the property
that the algorithm must give exactly the same answer, re-
gardless of how many processing cores are used. A serially
equivalent algorithm is clearly deterministic as well.

There are two clear advantages to including this con-
straint. Firstly, we can trivially show that the quality of the
parallel algorithm is identical to that of the original, serial
algorithm1, thus meeting our second constraint. Secondly,
testing can be significantly simplified (and automated) since
any difference between serial and parallel results proves, by
definition, the existence of a bug.

As we will show in the remainder of this paper, achieving
serial equivalency (and hence determinism) had little im-
pact on the speedups obtained by our algorithms, at least
at two and four processors. Therefore, both the algorithms
presented in this paper are serially equivalent.

2. PRIOR WORK
To the best of our knowledge, no published work in par-

allel placement optimizes for any criteria except wirelength.
Furthermore, all previously published algorithms with good

1In practice, some minor modifications were made to the se-
rial algorithm to make parallel development possible. These
had no impact on any of our quality metrics.

performance are non-deterministic and all deterministic al-
gorithms have poor performance. Our algorithm, by con-
trast, is both serially equivalent and obtains good speedups.

Considerable research has been performed into the place-
ment problem. The most popular approaches include re-
cursive partitioning [4, 5], analytic [6], genetic [7] and ran-
domized, the best-known of which is simulated annealing
[8, 9, 10]. Of these, the latter is the most-studied for FPGA
placement, mainly since it directly handles FPGAs’ complex
legality constraints, while other approaches require sophis-
ticated legalization steps [11].

There have been attempts to parallelize these various ap-
proaches for over twenty years. Recursive partitioning is
parallelizable in a reasonably obvious way, at least after the
first cut, provided there are enough cutlines to occupy all
available cores. Analytic placement can benefit from par-
allelized matrix operations, and higher-level parallelism has
also been extracted in [12].

Our placer’s core algorithm uses a technique known as it-
erative improvement, whose low-level implementation is sim-
ilar to simulated annealing. Both these algorithms consist
of inner loops that repeatedly perturb a placement to form
another placement, evaluate the impact of this perturbation
and decide whether to accept or reject it. The perturbation
is called a move and the evaluated impacts are called costs.
Many thousands or millions of moves are considered while
placing a typical circuit.

Three major approaches for parallelizing simulated an-
nealing have been described: move acceleration, fine-grained
parallel moves and coarse-grained parallel moves, though the
lines between them are often blurred.

2.1 Move Acceleration
Move acceleration, as described in [13], parallelizes the

evaluation of each move by evaluating different parts of the
costs on two cores, and additionally by using a third core
to propose the next move. This algorithm yields a speedup
of 2x on three cores, but is not easily scalable and has been
little studied since it was originally proposed.

Modern commodity hardware suffers from severe synchro-
nization overhead (see Section 3.2). Since the cores must
synchronize when the cost evaluation is finished, this would
overwhelm any gains obtained from the cost parallelization
on these platforms. The algorithm we present in Section
5 proposes future moves separately from their evaluation,
similar to the third core in the algorithm above, but almost
entirely avoids the need for synchronization.

2.2 Fine-Grained Parallel Moves
In this strategy, entire moves are proposed and evalu-

ated in parallel by cores all working on the same placement.
Clearly, this could lead to conflicts if multiple processors
accept moves that affect the same cells or nets, a situation
known as a collision. There are several published approaches
to resolving this problem:

1. Find an independent (non-colliding) set of moves and
process them all in parallel,

2. Assign each core a partition in the placement such that
different processors’ moves tend not to interact, or

3. Make assumptions about future decisions of the an-
nealer and speculatively process moves based on these
assumptions.

2.2.1 Independent Set Finding
In the parallel moves algorithm described in [13], the first

core to accept a move forces all other cores to reject the
moves they have in progress. This does not significantly af-
fect the quality of the final result and achieves a 3.5x speedup
on four cores when the acceptance rate is low. A more recent
attempt uses one core to propose moves with non-colliding
locations and nets, but is slower than the serial algorithm
due to synchronization overhead [14]. Similarly, moves with
non-colliding nets are proposed in [15] using a cell-colouring
heuristic to reduce collisions between nets, but the place-
ment is still partitioned into rows to prevent cell collisions.
The parallel speedup is not reported. These algorithms are
nondeterministic [13, 15] or at best not serially equivalent
[14].

The algorithm we present in Section 6 also finds indepen-
dent move sets. It is serially equivalent and yields speedups
of 2.2x on four cores.

2.2.2 Partitioned Placements
In this approach, errors in the costs of nets that span

partitions are usually tolerated, and updates are broadcast
periodically to prevent the errors from becoming too large.
Some implementations occasionally modify the partitions to
allow cells to migrate across the entire chip [14, 16] while
others allow cells to be transferred to other partitions at any
time [17, 18]. This method can produce excellent speedups;
six cores linked by a LAN achieve a 5.3x speedup in [16] with
no impact in wire quality. Other authors report speedups
of 2-2.5x on four cores at a cost of slightly increased wire-
length [17, 18]. These algorithms are all nondeterministic,
and since the chip is always partitioned according to the
number of cores, this approach cannot ever be serially equiv-
alent. We do not explore this approach.

2.2.3 Speculative Computation
In this approach, first described in [19] for the task assign-

ment problem, the decision tree of the annealer is mapped to
the number of available cores. For example, on a three-core
system, while core C0 evaluates move M1, cores C1 and C2
propose and evaluate M2, with C1 assuming that M1 will
be accepted and C2 that it will be rejected. Once a decision
is reached for M1, the result for M2 is immediately selected
and the annealer proceeds to M3. This technique preserves
serial equivalency. With N cores, we can speculate between
log2N and N moves into the future, depending on the ratio
of accepted to rejected moves. High speedups are indeed re-
ported in [19], but significant slowdowns are reported when
applied to placement in [3]. The largest cause, once again, is
synchronization overhead, and furthermore, it takes as long
to speculatively perform a placement move as it does to fully
evaluate it, limiting speedups when the acceptance rate is
high.

Both of the algorithms in this paper speculatively pro-
pose moves, but they do not require that previous moves
are rejected. Instead, a dependency checker is used to en-
sure that speculatively proposed moves do not interact with
any accepted moves.

2.3 Coarse-Grained Parallel Moves
By assigning different cores to completely different place-

ments, more parallelism can be introduced. This technique
is known as the parallel Markov chain [20]. Every so often,

Figure 2: Hardware configurations.

the core with the lowest-cost placement broadcasts its so-
lution to the other cores. To obtain a speedup of X, the
number of moves per core is simply divided by that number,
though quality may suffer. Broadcasts are typically sent
asynchronously to increase efficiency [14, 18].

Most authors have attempted to find the best speedup
for similar quality of the serial version. Using four cores,
speedups between 2.5x and 2.9x are reported for low to mod-
erate wirelength increases [14, 18]. This technique cannot be
serially equivalent without excessive runtime overhead and
is nondeterministic if asynchronous updates are used. It is
not further explored here.

2.4 Other Parallelization Strategies
More exotic parallel placement algorithms have been pro-

posed, including hardware-assisted simulated annealing [21].
However, this approach is currently unable to handle circuits
larger than about 400 cells when implemented on modern
FPGAs. While interesting for future research, it is not ex-
plored here.

3. EXECUTION ENVIRONMENT

3.1 Hardware Configurations
For the remainder of this paper, the term processor refers

to a physical package on a board, whereas a core refers to
a processing core. These terms match those used recently
by the major processor manufacturers. For example, an In-
tel Core 2 Duo would be referred to here as a processor
containing two cores, but a Pentium 4 with simultaneous
multithreading (SMT, also known as HyperThreading) only
contains one core. A dual-processor dual-core Opteron sys-
tem contains a total of four processing cores in two packages.

Seven hardware configurations are used to test the algo-
rithms in this paper. The first (Figure 2a) is an Intel Xeon
(Netburst microarchitecture) single-core dual-processor sys-
tem running at 2.66 GHz. Each core has a 512 KB L2 cache
and the system has a total of 2 GB of memory. The front-
side bus (FSB) has a peak bandwidth of 4.3 GB/s. The OS
is Windows XP (32 bits). This configuration is called nb.

The next three configurations (Figure 2b) use an AMD
Opteron 275 dual-core dual-processor system running at 2.2
GHz. Each core has a 1 MB L2 cache and the system has 8
GB of memory, connected in a non-uniform memory access
(NUMA) configuration with 4 GB assigned to each proces-

sor. The HyperTransport link used to replace the FSB has
a peak bandwidth of 8.0 GB/s. The OS is Windows XP (64-
bit), though 32-bit executables are used. The opt-dc (“dual-
core”) configuration uses only C0 and C1; opt-dp (“dual pro-
cessor”) uses only C0 and C2; opt-mc (“multi-core”) uses all
four cores.

The last three configurations (Figure 2c) use an Intel Xeon
5140 (Core 2 microarchitecture) dual-core dual-processor
system running at 3.0 GHz. Each of the processors shares a
4 MB L2 cache between its two cores. Two FSBs each run at
8.5 GB/s and are connected to a single 16 GB memory bank.
The OS is identical to that of opt-*, and the configurations
are similarly labelled c2-dc, c2-dp and c2-mc.

The algorithms in this paper were also tested on Linux
using the 2.6 version of the kernel. Numeric results are not
presented here but are comparable to those on Windows.
In addition, we tried setting threads’ affinities to individ-
ual cores to ensure that any poor thread scheduling by the
OS was not affecting runtimes. We found, however, that
this had no significant effect on the performance of our al-
gorithms. Therefore, unless otherwise noted, all the algo-
rithms presented here allow the threads to switch between
cores at the discretion of the operating system.

3.2 Synchronization Overhead
While the wall-clock times for synchronization primitives

such as conditional variables vary across the configurations
listed above, we present some typical values here from opt-

dp as an illustration.
A critical section is a block of code that can only be oc-

cupied by one thread at a time. When a thread wishes to
enter an empty critical section it may do so immediately,
but if another thread is already present it must stall until
the first thread leaves. The time required to enter and leave
an empty critical section is negligible. Critical sections are
used very sparingly in our algorithms and hence are very
small contributors to overall runtime.

Condition variables are used for direct synchronization
between threads, and may be set to true or false. Upon
encountering a condition variable that is true, the thread
continues normally, but if it is false, a thread stalls until the
variable is set to true by another thread. Since these vari-
ables are typically set to false, these stalls can be a significant
contributor to total runtime. In our experience, threads take
about 60µs to be restarted by the OS after stalling, which is
comparable to the 90µs required to perform a single place-
ment move. When we refer to “explicit synchronization” or
“stalls” in this paper, we are referring to condition variables
unless otherwise noted.

We briefly explored creating our own fast, lightweight syn-
chronization primitives using spinlocks instead of system
calls. However, there were three reasons we decided against
using them. Firstly, faster synchronization would have had
only a small impact on the performance of pipelined place-
ment (see Section 5.2) and a negligible impact on that of
parallel moves (see Section 6.2). Secondly, spinlocks are a
form of busy waiting, and would therefore prevent cores from
doing any useful work while threads were stalled. Thirdly,
we would have had to tune the spinlocks for all the platforms
supported by Quartus II, increasing the testing burden and
reducing portability. For these reasons, we decided to dele-
gate all synchronization to the operating system.

4. ATTRIBUTING RUNTIME
Parallel CAD algorithms rarely achieve ideal speedups,

but we know of no prior work in parallel placement to quan-
titatively describe the factors which limit parallel perfor-
mance. We developed the following method to illuminate
these factors.

The centerpiece of this method is to create a serial flow
which, as much as possible, mimics the runtime behaviour of
the parallel flow. We call this new flow the parallel-equivalent
(peq) flow. As an example, to create the peq flow for our
pipelined algorithm (Section 5), we note that one thread
speculatively proposes moves and places them into a buffer,
while the other thread evaluates them. Therefore, the peq

flow also proposes, buffers and evaluates moves, but does so
in the same thread.

The peq flow is also instrumented to collect runtime infor-
mation about different parts of the algorithm. We have used
the high-precision timers provided by the Windows API to
measure runtimes to a high degree of accuracy. For reason-
able instrumentation, we have found their overhead to be
very small (between 1-5%, depending on the configuration).
We call all runtimes measured by these timers bottom-up
measurements (abbreviated to bu in the figures in Sections
5.3.2 and 6.3.2). By contrast, any runtime measurement of
the entire algorithm is called an end-to-end measurement
(abbreviated to e2e).

The peq flow allows us to separate multi-core effects, such
as inter-core memory latency and synchronization overhead,
from more fundamental algorithmic limitations. In addition,
it mimics the data access patterns of the parallel algorithm
and therefore can reproduce some problems in the memory
subsystem, such as decreased cache locality.

Our attribution method proceeds as follows:

1. Run the original, unmodified serial algorithm. Divide
the total time by the number of moves run to obtain
the end-to-end time per move.

2. Run the peq flow, set to mimic the serial flow as closely
as possible. For example, in the pipelined placer’s peq
flow we set the number of speculative moves to zero,
allowing only one to be “in-flight” at any time. We
call this the peq1 flow. We attribute any discrepancy
between the original flow and peq1 to the added code
infrastructure required to run the parallel algorithm.

3. Run the peq flow, set to mimic the parallel flow as
closely as possible. For example, if the algorithm has
an average of x moves in-flight at a time, we allow the
peq flow to do the same. We call this the peqX flow.
If tasks that are identical in both peq1 and peqX be-
come slower, we attribute the difference to decreased
memory subsystem efficiency, such as decreased cache
locality. We also use the high-precision timers to mea-
sure any overhead induced by allowing a more realistic
workload (such as move reproposals; see Sections 5.2
and 6.2).

4. Run the parallel flow. We directly instrument some
multi-core effects, such as the time spent blocked in
stalls. We also attribute slowdowns between peqX and
the parallel flow to multi-core memory issues, such as
bus contention or inter-core latencies such as cache
snoops.

Figure 3: Accelerated vs. pipelined moves.

For peq1 and peqX, the end-to-end and bottom-up mea-
surements should match closely. Any large difference means
the algorithm is not fully instrumented. For the parallel
flow, we can divide all the bottom-up components by the
ideal speedup; the sum of these adjusted times should also
match the end-to-end runtime.

5. PIPELINED MOVES

5.1 Description
Our first parallel placer uses the pipelined aspects of the

move acceleration strategy described in Section 2.1, but with
several novel features to eliminate the explicit synchroniza-
tion. As shown in Section 3.2, stalls’ overheads are too high
to achieve any speedup if they are common.

Figure 3 contrasts our pipelined move strategy with that
of [13]. The basic idea is that if we can partition our runtime
into two phases, the earlier shorter than the later, we could
use an additional core to make the earlier phase “disappear.”
We want this imbalance because a perfectly balanced parti-
tioning would require explicit synchronization between the
stages; the cost is that the imbalance does limit the poten-
tial speedup. Our final partitioning assigns about 40% of a
move’s runtime to the earlier stage and 60% to the later. We
refer to the earlier stage as the proposal stage, though some
evaluation also occurs there, and the latter as the evaluation
stage, which also accepts and rejects moves. With the crit-
ical path consisting of 60% of the serial runtime, we have a
maximum speedup of about 1.7x.

There can be considerable variation in the runtimes of the
two stages, so the assumption that the evaluation phase need
never wait for the proposal phase does not always hold. In
addition, at least in the pipelining scheme in Figure 3a [13],
the proposal stage must still stall until the evaluation phase
finishes the previous move. To solve both these problems,
we allow the proposal stage to speculatively propose multiple
moves and insert a buffer between the two stages (see Figure
3b). The proposal stage then races ahead of the evaluation,
and variations in any one move’s runtime does not cause the
evaluation stage to stall.

5.2 Implementation
The method described above is not deterministic; the eval-

uation phase may change the placement at any time by ac-
cepting a move, which would lead to the proposal phase

proposing different moves if they collide as described in Sec-
tion 2.2.1. To resolve this problem, the database containing
the locations of all the cells is duplicated between the two
stages so that we can guarantee that the placement seen by
the proposal stage never changes while proposing a move2.
When a move is accepted, it is also sent back to the proposal
stage to allow it to update its copy of the database.

This is still not deterministic. To enforce determinism,
when a move is accepted, any speculatively proposed move
that may collide with the accepted move must be repro-
posed3. If we ensure that the reproposed move is identical
to the same move in the serial placer (a relatively simple
matter), then the algorithm becomes not only determinis-
tic, but serially equivalent.

Since not all moves collide, we can avoid reproposing those
moves that are independent of the accepted move. We use
a simple heuristic as our dependency checker. The proposal
stage builds a list of all LAB locations it examines while
proposing the move, and the evaluation stage remembers the
last move to affect each location. It can then check whether
any locations have been changed since the new move was first
proposed. If such a collision is found, the move is reproposed
prior to evaluation. Otherwise, it is not affected by previous
moves and can be evaluated normally. For this algorithm,
the rate of reproposals is quite low, on the order of 2% or
less.

We experimentally found that allowing no more than six
speculative moves to be in progress gave the best runtime.
We need at least one speculative move to keep two proces-
sors busy, and our high synchronization overhead required
one additional move. The remaining four moves are used to
smooth out variations in the proposal and evaluation times.
Note that using much faster synchronization (such as spin-
locks, see Section 3.2) would only reduce the length of this
queue by one move. The algorithm is not very sensitive to
this parameter; values from about four to eight were reason-
able. Too many moves could cause additional collisions and
cache pollution, as is shown below.

We refer to this tuned version of the algorithm as pipe7,
since it allows seven moves to exist at a time, one being
evaluated and six being speculatively proposed.

5.3 Results

5.3.1 Overall Results
Figure 4 shows the geometric mean speedup of the

pipelined iterative improvement algorithm on a set of 11
Stratix R© II FPGA benchmark designs. These circuits are
a collection of IP and customer circuits used internally for
product development at Altera, and range from approxi-
mately 10k logic cells to 100k cells, the latter using the
largest Stratix II device. We also tested a set of 40 Stratix
III FPGA circuits and achieved very similar results.

The best configuration is c2-dc with an average 1.3x
speedup (from 1.2x to 1.5x across circuits), and the worst

2This also prevents us from proposing absurd moves, such
as exchanging a cell with itself in another location. Even if
this move were never evaluated, it would likely violate an
assertion and crash the program as it was being proposed.
3It does not suffice to reject the move, as does the algorithm
described in 2.2.1 [13], as a move’s validity would then de-
pend on exactly when the proposal stage received the last
update to its location database.

1.0

1.1

1.2

1.3

1.4

nb opt-dc opt-dp c2-dc c2-dp

S
p
ee

d
u
p

Figure 4: Pipelined moves speedups.

0

20

40

60

80

100

120

orig peq1
bu

peq1
e2e

peq7
bu

peq7
e2e

pipe7
bu

pipe7
e2e

µ
s

evaluation
infrastructure

equivalency
stall

proposal
e2e

Figure 5: Pipelined moves attribution (opt-dp).

c2-dp with no speedup (from 0.9x to 1.2x), closely followed
by nb. Clearly, the achieved speedup is strongly influenced
by the platform architecture.

We also tested the effectiveness of the dependency checker
by disabling it and simply re-proposed all moves that had
been speculatively proposed after an earlier move was ac-
cepted. We found that this reduced the speedup by approx-
imately 10%.

5.3.2 Attribution
Our best result of 1.3x is significantly lower than the ideal

result of about 1.7x. Given the differences in the results
for each configuration, and that a key difference between
them is their memory subsystems, it is reasonable to as-
sume that memory inefficiency is a major limiting factor.
We used the procedure outlined in Section 4 to quantita-
tively determine the causes of performance loss versus the
ideal speedup. Since seven moves are active in pipe7, we
used peq7 to mimic the parallel flow. Our studies were con-
ducted on a single circuit with a size of about 20k logic cells.

In peq1, we measured proposal and evaluation times. In
peq7, we added reproposal times and dependency checks,
and in pipe7 we added stall times. In addition, we at-
tributed the difference between peq1 and the original flow
to parallel infrastructure. Since the dependency checks and
reproposal times turn out to be extremely small, we have
combined them into an “equivalency” bin, representing all
the time necessary to make the algorithm serially equiva-
lent. The bottom-up and end-to-end measurements for all
of these flows are presented in Figure 5 for opt-dp, and they

0%

10%

20%

30%

40%

50%

60%

70%

nb opt-dc opt-dp c2-dc c2-dp

E
x
ce

ss
ru

n
ti

m
e

o
v
er

id
ea

l

evaluation
infrastructure

equivalency
stall

other

Figure 6: Pipelined moves overhead.

correspond very well, indicating that the flows are well in-
strumented4. In the bottom-up pipe7 column, the proposal
stage is not shown as it is assumed to be off the critical path.

While the infrastructure, equivalency and stall runtimes
are very small, the evaluation runtime has a large jump be-
tween peq1 and peq7. As discussed in Section 4, this indi-
cates that the memory inefficiency on this configuration is
likely decreased cache locality. Since the evaluation runtime
does not jump further between peq7 and pipe7, we conclude
that inter-core latencies and bandwidth limitations are not
a factor for opt-dp.

In Figure 6, the pipe7 overheads are presented for all two-
core configurations5. The overheads are shown as a percent-
age of the “ideal runtime,” which is defined as the runtime of
the evaluation stage in peq1. Note that the ideal runtime is
about 60% of serial, so an overhead of 66% would wipe out
any gains (60%× 166% = 100%) . For the evaluation stage,
the difference between pipe7 and peq1 is considered over-
head, and the“other”bin accounts for the difference between
the pipe7 bottom-up and end-to-end measurements.

Three results are significant. Firstly, for most configu-
rations the time spent in stalls is so small as to be neg-
ligible; their large runtime penalty is avoided by reducing
their frequency. Secondly, the overhead of the evaluation
stage (8–40%, equivalent to 7–25% total runtime) accounts
for most of the overhead on most configurations. Since the
code executed by this stage is identical between the orig

and pipe7 flows, this must be entirely due to a bottleneck
in the memory subsystem. Thirdly, the overhead caused by
maintaining serial equivalency is very small, less than 4%
on all configurations (less than 3% runtime). This indicates
that we would have very little to gain by dropping serial
equivalency or determinism as requirements.

While there is no increase in evaluation runtime between
peq7 and pipe7 on opt-dp, this is not the case on other con-
figurations such as nb and c2-dp (not shown). This could
be caused by inter-core latency, limited FSB bandwidth, or
some combination of the two. We make some effort to quan-
tify these causes in the next section.

4The bottom-up and end-to-end runtimes for the other two-
core configurations are not shown here but are also well-
instrumented.
5The results in Figure 4 do not line up perfectly with those in
Figure 6, particularly for opt-dc and c2-dc. This is because
Figure 4 shows an 11-circuit average while Figure 6 shows
only one of those circuits.

0.9

1.0

1.1

1.2

1.3

64 256 1024 4096 16384 65536

R
u
n
ti

m
e

in
cr

ea
se

Disruptor size (KB)

nb opt-dp c2-dc

Figure 7: Effect of disruptor.

5.3.3 Further Study of Memory Inefficiencies
We conducted additional tests to directly show the ex-

istence and nature of the memory inefficiencies by using a
disruptor thread. A disruptor thread simply reads and writes
to arrays of various sizes on one core while we run the peq1

flow on the other6. The results are shown in Figure 7. On
nb, runtimes of the peq1 flow are not affected until the dis-
ruptor’s size passes 512 KB, the size of its cache, at which
point the flow’s performance drops sharply but levels off
above 2 MB. By contrast, on c2-dc, performance decreases
until the disruptor fully uses the shared cache but levels off
above that. This strongly suggests that bus contention is
a main bottleneck for nb, and cache contention for c2-dc.
The other three configurations (opt-dp, opt-dc and c2-dp,
of which only the first is shown) show no effect at all from
the disruptors, proving that they do not have a problem
with raw bandwidth to main memory. The disruptor can-
not measure inter-core latency, and this is likely a factor on
all configurations except opt-*, as shown in Section 5.3.2.

Based on all of these results, we can draw some conclusions
about the characteristics of the memory subsystems of the
tested configurations. The shared cache in c2-dc appears
to provide the best inter-core communication, though per-
core efficiency drops as both cores attempt to use the same
limited cache for their private working sets. The memory
systems on opt-* provide the next-best performances, suf-
fering only from reduced cache locality. The nb and c2-dp

configurations are the slowest of all, suffering from reduced
cache locality, inter-core latency and (for nb) bandwidth lim-
itations.

Similar conclusions for these types of configurations have
also been reported for other fine-grained algorithms [22].

5.4 Summary
Pipelined moves produce a speedup between nil and 1.3x,

depending on the hardware configuration used, with the
best results on the most recent architectures. Memory in-
efficiency is the largest performance bottleneck, comprising
between 7% and 25% of total runtime. Some of this bottle-
neck is caused by cache pollution needed to keep the move
buffer full. Serial equivalency cost less than 3% runtime.

While the algorithm could theoretically scale above two
cores, in practice it is very difficult to partition the move run-

6For these experiments, both threads were locked to a spe-
cific core, to ensure the OS scheduler did not interfere with
the results.

Figure 8: Parallel moves with speculation.

time into more than two independent and balanced stages in
our iterative improvement algorithm. Consequently, in the
next section we investigate an alternative parallel approach,
which will also largely solve the problem of cache pollution.

6. PARALLEL MOVES

6.1 Description
This algorithm partitions a moves runtime into two stages:

processing and finalization. The processing stage consists of
move proposals and evaluations, takes the vast majority of
the runtime and occurs in parallel. Finalization consists of
the dependency checker, reprocessing moves that have col-
lided, and making the accept/reject decisions. It is relatively
fast and occurs in serial.

The algorithm can be thought of as a master-worker con-
figuration with the master finalizing moves. The workers
can speculatively process moves so that they do not stall
while the master finalizes earlier moves, and these moves
are buffered as in the pipelined algorithm, with the addition
that the buffer reorders them such that they are finalized in
serial order. One can also view this algorithm as a limited
implementation of a transactional memory system, where
the modified locations in memory are manually tracked by
the dependency checker.

This algorithm has two major advantages over pipelined
placement. Firstly, assuming the finalization time is negli-
gible, the ideal speedup increases from 1.7x to N , where N
is the number of available cores. Secondly, a move is now
processed in one step, entirely by one core, improving mem-
ory locality and eliminating the cache pollution from the
pipelined algorithm caused by keeping a buffer full of active
moves.

6.2 Implementation
As in the pipelined algorithm, we use a dependency

checker to check for moves that collide due to sharing the
same LAB location, though this occurs even less often than
it did in parallel moves due to the shorter queue. However,
since moves are now also being evaluated in parallel, their
costs may collide as well, for example, if two moves affect the
same net. While we could simply re-evaluate moves after a
costs collision (as we re-propose them after a location colli-
sion), we found that there were too many such collisions to
make this feasible. Therefore, we always re-evaluate moves
if any collision is possible, but we also extended the depen-

dency checker7 to allow us to skip portions of the runtime-
intensive cost components that were not affected by the col-
lision.

Our initial, simplistic implementation of this algorithm
with the master as a separate thread suffered from massive
synchronization overhead. Since the finalization runtime is
much smaller than the processing time, the master spent
most of its time stalled and required one explicit synchro-
nization per move to wake it up. Additionally, note that a
lightweight, spinlock-based stall (as discussed in Section 3.2)
as the master would not even be able to share a core with
a worker thread, effectively preventing one core from doing
any useful work.

Instead, our algorithm factors the master’s tasks into a
function known as the supervisor, which can be called by
any thread after it has processed a move. Only one thread
can “become” the supervisor at a time by calling this func-
tion, and it can only do so if the move buffer contains the
next move in serial order. In Figure 8, when C0 completes
M0, it will become the supervisor and finalize moves M0
to M3, and broadcast the results back to the other proces-
sors8. Note that the other cores are not stalled and are doing
useful work. The concept of having a thread change roles
was described in [22] to improve cache efficiency, but we use
it mainly to avoid stalls. This change alone improved the
performance of our algorithm by approximately 30% at two
cores.

We found that allowing four in-flight moves per core gave
the best results, though three was also reasonable. Fewer
than three moves caused cores to become idle due to the
wide variability in move times. Five or more moves had no
impact on runtime, but since moves have a non-negligible
memory footprint, we chose to limit the number of moves at
the minimum necessary for good performance.

We wrote a new parallel-equivalent (peq) flow to match
the new algorithm. In the new version, a single thread pro-
cesses x moves. It then finalizes one move, processes a new
move, and continues alternating one move at a time.

6.3 Results

6.3.1 Overall Results
Figure 9 summarizes the overall results and compares

them to the pipelined algorithm. All results were collected
as in Section 5.3.1. The *-dp and *-mc results are shown
together, with *-dp used for two cores and *-mc for four.

The parallel moves algorithm achieves significant
speedups. It outperforms pipelined placement on two cores,
with an average speedup of 1.6x on opt-* (from 1.4x to
1.7x across circuits). In addition, it scales to four cores and
achieves an average 2.2x speedup (from 1.6x to 2.8x) on
opt-mc.

We again attempted to test the effectiveness of the depen-
dency checker by simply reproposing all speculative moves
after a move is accepted. In general, the dependency checker

7The exact resources tracked by the dependency checker
vary depending on the cost. For example, if a small net
counts towards a bounding box cost but a clock net does not,
only the former will be tracked by the dependency checker.
The programmer must manually track all resources used to
evaluate a move, as the specific implementation of the costs
determine exactly what must be tracked.
8The supervisor also reproposes and/or re-evaluates moves
as necessary.

1.00

1.25

1.50

1.75

2.00

2.25

nb opt-dc opt-dp
opt-mc

c2-dc c2-dp
c2-mc

S
p
ee

d
u
p

pipelined
parallel - 2 cores

parallel - 4 cores

Figure 9: Speedups for parallel and pipelined moves.

1.0

1.5

2.0

2.5

1 2 4

S
p
ee

d
u
p

Number of cores

pipe
pipe (no dchk)
pmove

pmove (no prop. dchk)
pmove (no eval. dchk)

Figure 10: Various dependency checkers (opt-dp).

had little effect at two cores and was very helpful at four
cores. The exception was on opt-dp, where the dependency
checker decreased performance by 10% at two cores, though
it is still helpful at four, where it increases performance by
40%. Figure 10 shows the effect of disabling various parts
of the dependency checker on this configuration on both the
pipelined and parallel moves algorithms. These results in-
dicate that the dependency checker may have room for im-
provement.

6.3.2 Attribution
We performed attribution studies on the parallel moves

algorithm as described in Section 4. The prl8 label indicates
that two cores processed up to eight in-flight moves. When
running on two cores, we measured that the reorder buffer
contained an average of one move, so we set the peqX flow
to peq3 (one move in the buffer plus two being processed).

In addition to the reproposal runtime, we also measured
reevaluation and supervisor runtimes but combined them all
into an “equivalency” measurement since they are all rela-
tively small, reevaluation time being the largest. In Fig-
ure 11, we show the runtime components for opt-dp. The
prl8 bu/2 column presents identical information as in the
prl8 bu column, but divided by the ideal 2x speedup. This
correlates very well with the end-to-end measurements. The
overheads are shown in Figure 12, with the “ideal runtime”
defined as the peq1 proposal and evaluation time.

Virtually no time is spent in stalls. For its part, serial
equivalency causes an overhead of less than 5%, costing less
than 3% of total runtime. Finally, we note no increase be-

0

20

40

60

80

100

120

140

160

orig peq1
bu

peq1
e2e

peq3
bu

peq3
e2e

prl8
bu

prl8
bu/2

prl8
e2e

µ
s

proposal
evaluation

infrastructure
equivalency

stall
e2e

Figure 11: Parallel moves attribution (opt-dp).

0%

20%

40%

60%

80%

100%

120%

nb opt-dc opt-dp c2-dc c2-dp

E
x
ce

ss
ru

n
ti

m
e

o
v
er

id
ea

l

proposal
evaluation

infrastructure
equivalency

stall
other

Figure 12: Parallel moves overhead – two cores.

tween peq1 and peq3 runtimes on opt-dp (similar results are
reported on other configurations). This shows that, unlike
in the pipelined algorithm, memory locality has not been
degraded (for example, by cache pollution); all the latency
is added by multi-core memory effects.

The improved speed-up over pipelined moves comes
mainly from the higher ideal speedup of 2x. Memory over-
head has also improved on some configurations. For exam-
ple, on opt-dp, the runtime increase in the evaluation stage
declined from 20% in the pipelined algorithm to 15% for
parallel moves, and for overall processing declined from 23%
to 16%. The most likely cause of this reduction is better
cache locality due to the same core proposing and evaluat-
ing a move. However, for c2-dp there was no improvement,
with an overhead of 50% in both the pipelined and paral-
lel moves algorithms. We believe this is due to the inter-
core bandwidth on the FSB being saturated, as it was with
the disruptor tests on nb in Section 5.3.3. Overall, memory
caused an overhead of 13–50%, equivalent to 10–30% of total
runtime.

The “other” category is larger here than in the pipelined
algorithm, though it is still 5% or less of total runtime on
all configurations. This is likely caused by the overhead of
critical sections and the overhead of the timers themselves.

The attributions for the four-core cases are shown in Fig-
ure 13 and Figure 14. The move buffer contained an average
of 3 moves for a total of seven moves in flight, so we used
peq7 as the peqX flow. Once again, memory performance
is the main limiting factor and is significantly worse at four
cores than at two. On c2-mc, the memory overhead in-

0

20

40

60

80

100

120

140

160

orig peq1
bu

peq1
e2e

peq7
bu

peq7
e2e

prl16
bu

prl16
bu/4

prl16
e2e

µ
s

proposal
evaluation

infrastructure
equivalency

stall
e2e

Figure 13: Parallel moves attribution (opt-mc).

0%

20%

40%

60%

80%

100%

120%

opt-mc c2-mc
E

x
ce

ss
ru

n
ti

m
e

o
v
er

id
ea

l

proposal
evaluation

infrastructure
equivalency

stall
other

Figure 14: Parallel moves overhead – four cores.

creased from 15% at two cores (c2-dc, Figure 12) to 75%
at four (c2-mc, Figure 14), equivalent to 35% of all runtime.
On opt-mc, it increased from 15% at two cores (opt-dc) to
40% at four (opt-mc), or 25% of all runtime. The serial
equivalency overhead is higher than at two cores at 12% (or
7% total runtime), but it is still relatively small.

6.4 Summary
Compared to pipelined moves, the parallel moves algo-

rithm has better scalability and higher performance due to
more inherent parallelism. Overhead due to memory is still
the main bottleneck, though memory locality has improved
and this helps performance on some configurations. Serial
equivalency caused little overhead at two cores and some-
what more at four, but we believe this situation can be im-
proved with more research into the dependency checker.

7. CONCLUSIONS AND FUTURE WORK
We have demonstrated two approaches to paralleliz-

ing a move-based iterative improvement placement algo-
rithm: pipelined and parallel moves. We have improved
on prior approaches by nearly eliminating synchronization
overhead, and by using a dependency checker to minimize
re-computation when we incorrectly speculate about the
placement state. Pipelined placement achieved a signifi-
cant speedup of up to 1.3x on two cores, but parallel moves
achieved a larger speedup of 1.6x on two cores and 2.2x on
four. In addition, both algorithms are deterministic and se-
rially equivalent, greatly easing debugging and release test-
ing and preserving the high quality of results of our existing

placement algorithm at a cost of less than 3% of total run-
time on two cores and 8% on four.

We presented a novel and systematic approach to measur-
ing parallel runtime bottlenecks relative to the algorithm’s
ideal speedup. Interestingly, this procedure showed that the
performance of our algorithms is restricted primarily not by
insufficient parallelism but instead by the memory subsys-
tem performance. Microprocessor vendors are aware that
memory is a critical factor for multi-core systems, and have
announced improvements in upcoming products. AMD’s
new quad-core Opteron line features a shared L3 cache, simi-
lar to the shared L2 cache on the Core 2 Duo, and Intel plans
to replace the FSB in its future chipsets with a point-to-
point communication system similar to AMD’s HyperTrans-
port system. Both of these advances will make fine-grained
parallelism somewhat more efficient.

The fact that memory presents the largest limitation to
parallel performance has major implications for algorithm
developers. On architectures with a front-side bus, raw
bandwidth to memory can be an issue, suggesting the de-
signer should lower overall memory usage. On the other
hand, core-to-core latencies are also a large factor, suggest-
ing we duplicate as much state as possible across cores and
only transmit updates between them. Obviously, these two
solutions are contradictory, and further research will be re-
quired to determine when each technique is appropriate.

We have identified several probable enhancements to im-
prove the efficiency of our parallel moves algorithm and
plan to explore them in the future. With these refinements,
and the expected hardware improvements to memory perfor-
mance, we expect this algorithm to scale to eight or sixteen
cores. More scalable algorithms will likely be required on
larger systems.

8. REFERENCES
[1] H. Sutter, “A fundamental turn toward concurrency in

software,” Dr. Dobb’s J., Mar. 2005.

[2] Altera Corp., “Quartus II Incremental Compilation for
Hierarchical & Team-Based Design,” in The Quartus
II Handbook, Version 7.1, Vol. 1, Ch. 2, 2007.

[3] J. Chandy, S. Kim, B. Ramkumar, S. Parkes, and
P. Banerjee, “An evaluation of parallel simulated
annealing strategies with application to standard cell
placement,” TCAD, vol. 16, pp. 398–410, Apr. 1997.

[4] M. Sarrafzadeh, M. Wang, and X. Yang, Modern
Placement Techniques. Boston: Kluwer Academic
Publishers, 2003.

[5] C. Alpert, L. Hagen, and A. Kahng, “A hybrid
multilevel/genetic approach for circuit partitioning,”
tech. rep., CS Dept., UCLA, Los Angeles, CA, USA,
1996.

[6] J. M. Kleinhans, G. Sigl, F. Johannes, and
K. Antreich, “GORDIAN: VLSI placement by
quadratic programming and slicing optimization,”
TCAD, vol. 10, pp. 356–365, Mar. 1991.

[7] S. N. R. Borra, A. Muthukaruppan, S. Suresh, and

V. Kamakoti, “A parallel genetic approach to the
placement problem for field programmable gate
arrays,” in IPDPS, (Nice, France), p. 184, 2003.

[8] S. Kirkpatrick, C. Gelatt Jr., and M. Vecchi,
“Optimization by simulated annealing,” Science,
pp. 671–680, May 1983.

[9] C. Sechen and A. Sangiovanni-Vincentelli, “The
TimberWolf placement and routing package,” JSSC,
pp. 510–522, Apr. 1985.

[10] V. Betz and J. Rose, “VPR: A new packing, placement
and routing tool for FPGA research,” in FPL,
pp. 213–222, 1997.

[11] M. Hutton and V. Betz, “FPGA synthesis and
physical design,” in Electronic Design Automation for
Integrated Circuits Handbook (L. Scheffer, L. Lavagno,
and G. Martin, eds.), vol. 1, ch. 13, pp. 13.1–13.32,
Taylor and Francis CRC Press, 2006.

[12] P. Chan and M. Schalg, “Parallel placement for
field-programmable gate arrays,” in FPGA, (Monterey,
CA, USA), pp. 33–42, 2003.

[13] S. Kravitz and R. Rutenbar, “Placement by simulated
annealing on a multiprocessor,” TCAD, pp. 534–549,
Jul. 1987.

[14] M. Haldar, A. Nayak, A. Choudhary, and P. Banerjee,
“Parallel algorithms for FPGA placement,” in
GLSVLSI, (Chicago, IL, USA), pp. 86–94, 2000.

[15] P. Banerjee, M. Jones, and J. Sargent, “Parallel
simulated annealing algorithms for cell placement on
hypercube multiprocessors,” TPDS, pp. 91–106, Jan.
1990.

[16] W. Sun and C. Sechen, “A loosely coupled parallel
algorithm for standard cell placement,” in ICCAD,
(San Jose, CA, USA), pp. 137–144, 1994.

[17] S. Kim, J. A. Chandy, S. Parkes, B. Ramkumar, and
P. Banerjee, “ProperPLACE: A portable parallel
algorithm for standard cell placement,” in IPPS,
(Cancún, Mexico), pp. 932–941, 1994.

[18] J. Chandy and P. Banerjee, “Parallel simulated
annealing strategies for VLSI cell placement,” in
VLSID, (Bangalore, India), pp. 37–42, 1996.

[19] E. Witte, R. Chamberlain, and M. Franklin, “Parallel
simulated annealing using speculative computation,”
TPDS, vol. 2, pp. 483–494, Oct. 1991.

[20] E. Aarts, F. deBont, and E. Habers, “Parallel
implementations of the statistical cooling algorithm,”
Integration, the VLSI J., vol. 4, pp. 209–238, Sep.
1986.

[21] M. Wrighton and A. DeHon, “Hardware-assisted
simulated annealing with application for fast FPGA
placement,” in FPGA, (Monterey, CA, USA),
pp. 33–42, 2003.

[22] S. Vadlamani and S. Jenks, “Architectural
considerations for efficient software execution on
parallel microprocessors,” in IPDPS, (Long Beach,
CA, USA), 2007.

