
Parallel CAD for FPGAs:
A Personal Retrospective and

Thoughts for the Future

Vaughn Betz
vaughn@eecg.utoronto.ca

1

• Altera: 2006 - 2011

• Motivation & constraints for parallel CAD

• “High-Quality, Deterministic Parallel Placement for
FPGAs on Commodity Hardware”, FPGA 2008

• First commercial parallel placement algorithm for FPGAs

• How does it work?

• How well does it work?

• Later Parallel Placement Enhancements

• Compile Time Past, Present & Future

Agenda

2

Part I: Motivation &
Constraints

• My team: responsible for most of Quartus II compile

• Major progress in speeding up

• Other SW directors: Good enough?

Altera 2006

40%
Dec-02 Dec-03 Dec-04 Dec-05 Dec-06

R
e

la
ti

ve
 C

o
m

p
il

e
T

im
e

(L
o

g
 s

ca
le

)

Quartus II Version

Quartus II Compile Time
(Relative time for fixed design on fixed CPU)

Stratix

Stratix II

63%

80%

50%

100%

5

The ChallengeThe Challenge

0

100

200

300

400

500

600

700

800

900

1998 2000 2002 2004 2006 2008 2010

Year Introduced

0

10

20

30

40

50

60

70

80

90

R
el

at
iv

e
S

pe
cI

N
T

Logic Elements

Relative CPU Speed

Lo
gi

c
E

le
m

en
ts

 (
T

ho
u

sa
nd

s) 4x
gap

Have to Sell Your Ideas!

1. Algorithm improvements
 Productive, but dangerous to rely on solely

2. Incremental compile
 Software-like flow: only recompile what

changed

 Useful, but requires up-front planning and can
hurt productivity

3. Go parallel

6

How to Speed UpHow to Speed Up

Did all 3  Parallel Code Must Be Able To Evolve

 Define partitions
 CAD will not optimize across

partitions

 Can re-synthesize, place and
route one partition alone

 Faster compile time

 Fewer iterations because other
logic unchanged

 “RapidRecompile”
 Incremental compile without the

designer identifying partitions

 Figures out what changed
automatically

 Challenge: global optimizations

7

Aside: Incremental CompilationAside: Incremental Compilation

 Deterministic (required)
 Same results every run

 Means no race conditions

 Most prior work wasn’t deterministic

 Almost impossible to test non-deterministic code

 Many customers will not use it
 Can’t reproduce results

 Inherently insecure

 Serial equivalency (desirable)
 Even better: same res3ult no matter how many cores

8

Parallel ConstraintsParallel Constraints

 Quality (required)
 Need to achieve quality comparable to current

Quartus results
Worse timing closure: designer productivity hurt
IP timing closure: DDR, PCIe must close timing
Increased wiring  unroutes?
Power optimization?

 Rough annealing trade-off: 10% quality
means 10X less runtime
Small quality loss not worth it for a moderate

compile time gain

9

Parallel ConstraintsParallel Constraints

 Maintainable (required)
 Quartus is big (~20 million lines of code)

 Place and route system over 1 million lines

 Don’t want to shut down new algorithm work

 Plus new devices, features need to be
integrated

 Careful how you code, and only make key
pieces parallel

10

Parallel ConstraintsParallel Constraints

Placement
Core

Other Fitter
(e.g. route,

timing
analysis)

Other CAD
(e.g.

Synthesis)

11

Algorithm Runtimes (Quartus 2011)Algorithm Runtimes (Quartus 2011)

Must Parallelize Multiple Algorithms, but
Placement is Biggest

Part II:
High Quality, Deterministic Parallel

Placement for FPGAs on Commodity
Hardware

Overview of FPGA 2008 and TODAES 2011
Papers by Adrian Ludwin, Ketan Padalia
and Vaughn Betz

 Simulated annealing-based

 Optimizes wire, timing, power, congestion

 Based on academic VPR, but with many
enhancements
 More complex cost functions

 Directed moves

 Multi-level placement

 Spends ~50% of time at T = 0 (quench)

13

Quartus Placement (2011)Quartus Placement (2011)

P = InitialPlacement ();
T = InitialTemperature ();

while (ExitCriterion () == False) {

while (InnerLoopCriterion () == False) { /* One temperature */
Pnew = PerturbPlacementViaMove (P); /* Propose move */
ΔCost = Cost (Pnew) – Cost (P); /* Evaluate move */

r = random (0,1);
if (r < e-ΔCost/T) {

P = Pnew; /* Accept (Finalize) move */
}

} /* End one temperature */

TimingAnalyze();
CongestionAnalyze();
T = UpdateTemp (T);

}

14

Algorithm OverviewAlgorithm Overview

Dominate
CPU Time

10K LoC in
Propose +
Evaluate

15

Placement Improvement via MovesPlacement Improvement via Moves

LAB 8 LAB 9 LAB 10

LAB 6

LAB 2

LAB 4LAB 3

LAB 7

LAB 5

LAB 1

Move 1

Move 2

 Quality change of move estimated with
complex cost function
 Fast estimates of wiring, timing, power

 Blended together into overall cost

 If cost decreases, move always accepted
 Placement state is updated

 If costs increase, still have some chance of
accepting if T > 0
 Hill climbing

 But not in the quench (T = 0)
16

Move Evaluation & AcceptanceMove Evaluation & Acceptance

17

move = propose(place);
cost = evaluate(place, move);
if(cost < 0) {

accept(place, move);
}

Processing
(propose and evaluate)

Finalization
(resolve collisions and commit)

99%
time

1%
time

© 2011 Altera Corporation - Public

Altera, Stratix, Cyclone, MAX, HardCopy, Nios, Quartus, and MegaCore are trademarks of Altera Corporation

18

LAB 8 LAB 9 LAB 10

LAB 6

LAB 2

LAB 4LAB 3

LAB 1

LAB 7

LAB 5

Core 0 Propose & Evaluate ViewCore 0 Propose & Evaluate View

Move 1

© 2011 Altera Corporation - Public

Altera, Stratix, Cyclone, MAX, HardCopy, Nios, Quartus, and MegaCore are trademarks of Altera Corporation

19

LAB 8 LAB 9 LAB 10

LAB 6

LAB 2

LAB 4LAB 3

LAB 1

LAB 7

LAB 5

Core 1 Propose & Evaluate ViewCore 1 Propose & Evaluate View

Move 2

© 2011 Altera Corporation - Public

Altera, Stratix, Cyclone, MAX, HardCopy, Nios, Quartus, and MegaCore are trademarks of Altera Corporation

20

LAB 8 LAB 9 LAB 10

LAB 6

LAB 2

LAB 4LAB 3

LAB 1

LAB 7

LAB 5

Core 1 Finalize ViewCore 1 Finalize View

Move 1

Move 2

Collision

21

Resolving CollisionsResolving Collisions

Must detect collisions (avoid illegal placement)

When two moves have collided, we can:
 Abandon the later moves (non-deterministic)

 Or attempt to “fix” colliding moves

We fix it by reproposing it
 This gives the same move as in the serial flow

Therefore, the placer is not only deterministic
but also serially equivalent
 Easier to test  results same no matter how

many cores

22

Core 0 Core 1 Core 2 Core 3

Queue

Finalize

Process
(C2)

Process
(C3)

Process
(C0)

Process
(C1)

Finalization
(resolve collisions and commit)

Processing
(propose and evaluate)

Processing
(propose and evaluate)

Processing
(propose and evaluate)

Processing
(propose and evaluate)

23

Queue

Finalize

Process
(C2)

Process
(C3)

Process
(C0)

Process
(C1)

Move
0

Move
1

Move
0

Move
1

Move
2

Move
3

Move
4

Finalize
(C0)

24

Queue

Finalize

Process
(C2)

Process
(C1)

Process
(C3)

Move
0

Move
1

Finalize
(C0)

Move
2

Move
3

Move
4

25

Queue

Finalize

Process
(C0)

Process
(C1)

Process
(C2)

Process
(C3)

Process
(C2)

Move
2

Move
3

Finalize
(C2)

Move
2

Move
3

Move
4

Move
6

Move
5

Process
(C2)

Move
7

 Speedup higher in quench
 Fewer accepted moves

Fewer collisions & reproposals

 Cost of determinism?
 Modest: estimate ~12%

 Memory subsystem a bigger limit
 Parallel CAD needs memory-friendly code

26

Results SummaryResults Summary

Cores Quench
Speedup

Full Anneal
Speedup

4 2.9 2.1

8 4.0 2.4

Part III: Later Parallel Placement

•27

 Avoid conflicts by modifying move generators
& cost functions
 Goeders, Lemieux & Wilton, “Deterministic Timing-Driven

Parallel Placement by Simulated Annealing Using Half-
Box Window Decomposition” Reconfig, 2011

 Each core moves blocks in a different region

 Cost function uses stale information for
blocks outside region
 No need to track conflicts or repropose moves

 Improves speedup (51x), reduces quality
(10%)

 Deterministic

28

Conflict Free MovesConflict Free Moves

LAB 4

LAB 3

LAB 1

LAB 5

Core 0

Core 1

 Coding a dependency checker to repropose
conflicting moves is hard
 Can hardware or software (compiler) transactional

memory do it for us?

 Unfortunately, no (poor performance)
 An, Steffan & Betz, “Speeding Up FPGA Placement: Parallel

Algorithms and Methods”, FCCM 2014

 Tweaking cost functions (ignore high fanout nets)
and move generators can reduce conflicts with no
quality loss
 5X speedup at equal quality, deterministic

 Larger gains if you sacrifice determinism
29

Dependency Checker & Fewer ConflictsDependency Checker & Fewer Conflicts

 Combine analytic placement & quenching
 Gort and Anderson, “Analytic Placement for Heterogeneous

FPGAs,” FPL 2012

 Analytic placement to get global placement
 Parallelize x & y matrix solutions

 2X speedup

 Quench (iterative refinement) to fine-tune
 Uses parallel moves

 Avoids high-temperature part of anneal (most conflicts)

 1.48X speedup

 Overall parallel speedup 1.3X

30

Algorithm Changes + ParallelismAlgorithm Changes + Parallelism

Part IV: Compile Time Past,
Present & Future

•31

•32

The Past: Parallel Success

10%

100%

Dec-02 Dec-03 Dec-04 Dec-05 Dec-06 Dec-07 Dec-08 Dec-09 Dec-10R
e

la
ti

ve
 C

o
m

p
il

e
T

im
e

(L
o

g
 s

ca
le

)

Quartus II Version

Quartus II Compilation Time History
(Relative time for a fixed design, on a fixed CPU)

Stratix

Stratix II

Stratix III (Parallel)

Stratix IV (Parallel)

50%

75%

25%

Parallel Compile

Clustering, placement, routing & delay estimation all
parallel by 2009

33

But Compile Time Challenge Has GrownBut Compile Time Challenge Has Grown

1

10

100

1000

10000

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2019

R
el

a
ti

ve
 V

al
u

e
 (

19
98

)

Year

Largest FPGA Capacity Serial CPU Perf.

10X

 Large, Stratix 10 2800 High Performance Design

34

The PresentThe Present

0:00:00

4:48:00

9:36:00

14:24:00

19:12:00

24:00:00

28:48:00

33:36:00

38:24:00

43:12:00

48:00:00

1 4 8

Synthesis
Plan
Place
Route
Retime
Finalize
Timing Closure Recom.
Timing, Power, Asm

Cores

Place:
3.75X

Speedup

48

24

0

Compile

Time

(h)

Placement

Overall:

2.3X
SpeedupRouting

Synthesis

Finalize

 Parallel compile very helpful
 42 hours  18 hours

 Placement longest single algorithm
 14 hours  3.75 hours

 But many important algorithms
 Extreme Amdahl’s law  must speed them all

 Synthesis not parallel
 Lowest hanging fruit to attack (7 hours here)

 Little published parallel synthesis research

35

The PresentThe Present

 Algorithm speedups in 2x – 4x range on 8
cores

 Large memory footprints, complex
algorithms, data transfer between
algorithms
 GPUs unlikely to help

 Machines with moderate number of fast
cores best fit to current CAD tools

36

ObservationsObservations

 Algorithm & parallelism co-optimization
 Find algorithm with best parallel time

 Partition designs and compile incrementally
 Shell & role in datacenters

 But still not employed inside core of most
designs

 FPGA architecture to reduce compile time
 Larger logic blocks

 More routing? (but increases cost)

 Harden more
E.g. Network-on-Chip37

What to Do?What to Do?

PCIe
PCIe

Module
4

Module
2

Module
1

Module
3

Packet

Links Routers

38

NoC: Pre-Wired & Timing ClosedNoC: Pre-Wired & Timing Closed

38

Bus
1

Bus
2

Bus
3

Module
4

Module
1

Module
3

Module
2

100s of
bits

Difficult
Timing
Constraints

PCIe
PCIe

100’s of
muxes

Traditional: CAD tool builds
system-level interconnect

FPGA with Hard NoC: System-
Level Interconnect Pre-Built

Wrap Up

•39

 FPGA capacity greatly outstripping serial CPU speed growth

 Parallelize high-quality algorithms
 E.g. VPR 8 router 6x to 300x faster than earlier algorithms

 Complex flow  many algorithms to speed up

 Integrate / open-source
 Many parallel algorithms tested in VPR

 But only timing analysis integrated in current master

 Flat compile productive, but may not scale
 Partition / incremental compile flows

 But increases planning for designers

 Do we need automatic floorplanners?

 FPGA architecture for compile time
 Has not been a major architecture goal

 Should be in the future

Wrap UpWrap Up

