
The Case for Embedding Networks-on-

Chip in FPGA Architectures

Vaughn Betz

University of Toronto

With special thanks to 
Mohamed Abdelfattah, Andrew Bitar

and Kevin Murray



Overview

• Why do we need a new system-level interconnect?

• Why an embedded NoC?

• How does it work?

• How efficient is it?

• Future trends and an embedded NoC

– Data center FPGAs

– Silicon interposers

– Registered routing

– Kernels � massively parallel accelerators



Why Do We Need a System Level 

Interconnect?

And Why a NoC?
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System-level interconnect in 

most designs?

Costly in area & power? 
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System-level interconnect in 

most designs?

Costly in area & power? 
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Needed: A More General System-Level Interconnect

1. Move data between arbitrary end-points

2. Area efficient

3. High bandwidth � match on-chip & I/O 

bandwidths

Network-on-Chip (NoC)
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Embedded NoC Architecture

How Do We Build It?



Routers, Links and Fabric Ports

• No hard boundaries 

� Build any size compute modules in fabric

• Fabric interface: flexible interface to compute modules



Router

• Full featured virtual channel router [D. Becker, 

Stanford PhD, 2012]



Must We Harden the Router?

• Tested: 32-bit wide ports, 2 VCs, 10 flit deep buffers 

• 65 nm TSMC process standard cells vs. 65 nm Stratix III

Y Soft Hard

Area 4.1 mm2    (1X) 0.14 mm2     (30X)

Speed 166 MHz    (1X) 943 MHz  (5.7X)

Hard: 170X throughput per area!



Harden the Routers?

• FPGA-optimized soft router?

– [CONNECT, Papamichale & Hoe, FPGA 2012]  and 
[Split/Merge, Huan & Dehon, FPT 2012]

• ~2-3X throughput / area improvement  with reduced 
feature set

– [Hoplite, Kapre & Gray, FPL 2015]

• Larger improvement with very reduced features / 
guarantees

• Not enough to close 170X gap with hard

• Want ease of use � full featured

Hard Routers



Fabric Interface

• 200 MHz module, 900 MHz router?

• Configurable time-domain mux / demux: match bandwidth

• Asynchronous FIFO: cross clock domains

� Full NoC bandwidth, w/o clock restrictions on modules
16



Hard Routers/Soft Links
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Logic clusters
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• Same I/O mux structure as a logic block – 9X the area

• Conventional FPGA interconnect between routers

730 MHz

	
1

9
th	of	FPGA	vertically	�~2.5	mm�

Faster, fewer wires (C12)

	
1

5
th	of	FPGA	vertically	�~4.5	mm�



Router

Hard Routers/Soft Links

19Assumed a mesh � Can form any topology

FPGA



Hard Routers/Hard Links
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• Muxes on router-fabric interface only – 7X logic block area

• Dedicated interconnect between routers � Faster/Fixed

Logic blocks
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• Muxes on router-fabric interface only – 7X logic block area

• Dedicated interconnect between routers � Faster/Fixed

900 MHz

Dedicated Interconnect (Hard Links)

~ 9 mm at 1.1 V     or    ~ 7 mm at 0.9V



Soft Hard (+ Soft Links) Hard (+ Hard Links)

Area 4.1 mm2 (1X) 0.18 mm2  = 9 LABs (22X) 0.15 mm2 =7 LABs (27X)

Speed 166 MHz (1X) 730 MHz     (4.4X) 943 MHz   (5.7X)

Power -- (9X less) (11X – 15X)

Router 

Logic

Programmable 

Interconnect

Router
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Hard NoCs



Router
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Soft Hard (+ Soft Links) Hard (+ Hard Links)

Area 4.1 mm2 (1X) 0.18 mm2  = 9 LABs (22X) 0.15 mm2 =7 LABs (27X)

Speed 166 MHz (1X) 730 MHz     (4.4X) 943 MHz   (5.7X)

Power -- (9X less) (11X – 15X less)

Hard NoCs



2. Area Efficient?

24

64-node, 32-bit wide NoC on Stratix V

Very Cheap! Less than  cost  of  3 soft nodes

Soft Hard (+ Soft Links) Hard (+ Hard Links)

Area ~12,500 LABs 576 LABs 448 LABs

%LABs 33 % 1.6 % 1.3%

%FPGA 12 % 0.6 % 0.45%

����



Power Efficient?

25Hard and Mixed NoCs � Power Efficient

Length of 1 NoC Link

200 

MHz

Compare to best 

case FPGA 

interconnect: point-

to-point link

64 Width, 0.9 V, 1 VC



3. Match I/O Bandwidths?
• 32-bit wide NoC @ 28 

nm

• 1.2 GHz � 4.8 GB/s 

per link

• Too low for easy I/O 

use!



3. Match I/O Bandwidths?

• Need higher-bandwidth links

– 150 bits wide @ 1.2 GHz

�22.5 GB/s per link

– Can carry full I/O bandwidth on one link

• Want to keep cost low

– Much easier to justify adding to an FPGA if cheap

• E.g. Stratix I: 2% of die size for DSP blocks

• First generation: not used by most customers, but 2% cost OK

– Reduce number of nodes: 64 � 16

• 1.3% of core area for a large Stratix V FPGA

����



NoC Usage & Application Efficiency Studies

How Do We Use It?



FabricPort In
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FabricPort In
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• Divide width by 4 

• Multiply frequency by 4



FabricPort In
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FabricPort In
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3Ready/Valid
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Asynchronous FIFO:

• Cross into NoC clock

• No restriction on module 

frequency

Time-domain multiplexing:

• Divide width by 4 

• Multiply frequency by 4

NoC Writer:

• Track available buffers in 

NoC Router

• Forward flits to NoC

• Backpressure

210

Ready=0

Input interface: flexible & easy for designers � little soft logic



Designer Use

• NoC has non-zero, usually variable latency

• Use on latency-insensitive channels

Stallable modules

A B C

data data

valid

ready

Permapaths

A B C

• With restrictions, usable for fixed-latency communication

– Pre-establish and reserve paths

– “Permapaths”



How Common Are Latency-Insensitive Channels?

• Connections to I/O

– DDRx, PCIe, …

– Variable latency

• Between HLS kernels

– OpenCL channels / pipes

– Bluespec SV 

– …

• Common design style between larger modules

– And any module can be converted to use [Carloni et 
al, TCAD, 2001]

Widely used at system level, and use likely to increase



Packet Ordering

FPGA Designs

• Mostly streaming

• Cannot tolerate reordering

– Hardware expensive and 
difficult

35

Multiprocessors

• Memory mapped

• Packets arrive out-of-order
– Fine for cache lines

– Processors have re-order buffers

1 2
All packets with same src/dst

must take same NoC pathR
U

LE

FULL
2 1

1

2

All packets with same src/dst

must take same VCR
U

LE



Application Efficiency Studies

How Efficient Is It?



1. Qsys vs. NoC

qsys: build logical bus 

from fabric
37

NoC: 16-nodes, hard 

routers & links



Area Comparison
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Only 1/8 of Hard NoC BW used, but 

already less area for most systems



Power Comparison
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Hard NoC saves 

power for 

even simplest 

systems



2. Ethernet Switch

• FPGAs with transceivers: commonly manipulating / 

switching packets

• e.g. 16x16 Ethernet switch, @ 10 Gb/s per channel

Transceiver

NoC

Router

• NoC is the crossbar

• Plus buffering, 

distributed 

arbitration & 

back-pressure

• Fabric inspects packet 

headers, performs 

more buffering, …



Ethernet Switch Efficiency

• 14X more efficient!

• Latest FPGAs: ~2 Tb/s transceiver bandwidth � need good switches



3. Parallel JPEG (Latency Sensitive)

42

• NoC makes performance more predictable

• NoC doesn’t produce wiring hotspots & saves long wires

Max 40%

Max 100%
[long wires]



Future Trends and Embedded NoCs

Speculation Ahead!



1. Embedded NoCs and the Datacenter



Datacenter Accelerators Microsoft Catapult: Shell & Role to 

Ease Design

Shell: 23% of Stratix V FPGA 

[Putnam et al, ISCA 2014]



Datacenter “Shell”: Bus Overhead

• Buses to I/Os

in shell & role

• Divided into 

two parts to 

ease 

compilation 

(shell portion 

locked down)



Datacenter “Shell”: Swapping Accelerators

• Partial reconfig

of role only �

swap accelerator 

w/o taking down 

system

• Overengineer

shell buses for 

most demanding  

accelerator

Two separate 

compiles �

lose some 

optimization of 

bus



More Swappable Accelerators

• Allows more 

virtualization

• But shell 

complexity 

increases

• Less efficient

• Wasteful for 

one big 

accelerator

Accelerator 5

Accelerator 6

Big Accelerator



Shell with an Embedded NoC

• Efficient for 

more cases 

(small or big 

accelerators)

• Data 

brought into 

accelerator, 

not just to 

edge with 

locked bus

Accelerator 6

Accelerator 5

Big Accelerator



2. Interposer-Based FPGAs



Xilinx: Larger Fabric with Interposers

• Create a larger 

FPGA with 

interposers

• 10,000 

connections 

between dice 

(23% of normal 

routing)

• Routability good if 

> 20% of normal 

wiring cross 

interposer [Nasiri

et al, TVLSI, to 

appear]Figure: Xilinx, SSI Technology White Paper, 2012



Interposer Scaling

Figure: Xilinx, SSI Technology White Paper, 2012

• Concerns about how well 

microbumps will scale

• Will interposer routing 

bandwidth remain >20% 

of within-die bandwidth?

• Embedded NoC: naturally 

multiplies routing 

bandwidth (higher clock 

rate on NoC wires 

crossing interposer)



Altera: Heterogeneous Interposers

• Custom wiring interface to each unique die 

– PCIe/transceiver, high-bandwidth memory

• NoC: standardize interface, allow TDM-ing of wires

• Extends system level interconnect beyond one die

Figure: Mike Hutton, 

Altera Stratix 10, FPL 

2015



3. Registered Routing



Registered Routing

• Stratix 10 includes a pulse latch in each routing driver

– Enables deeper interconnect pipelining

– Obviates need for a new system-level interconnect?

• I don’t think so

– Makes it easier to run wires faster

– But still not:

• Switching, buffering, arbitration (complete interconnect)

• Pre-timing closed

• Abstraction to compose & re-configure systems

• Pushes more designers to latency-tolerant techniques

– Which helps match the main NoC programming model



4. Kernels � Massively Parallel Accelerators

Crossbars for Design Composition



Map – Reduce and FPGAs

• [Ghasemi & Chow, MASc thesis, 

2015]

• Write map & reduce kernel

• Use Spark infrastructure to 

distribute data & kernels across 

many CPUs

• Do same for FPGAs?

Between chips � network

Within a chip � soft logic

Consumes lots of soft logic and 

limits routable design to ~30% 

utilization!



Can We Remove the Crossbar?

• Not without breaking Map-Reduce/Spark abstraction!

– The automatic partitioning / routing / merging of 

data is what makes Spark easy to program

– Need a crossbar to match the abstraction and 

make composability easy

• NoC: efficient, distributed crossbar

– Allows us to efficiently compose kernels

– Can use crossbar abstraction within chips (NoC) 

and between chips (datacenter network)



Wrap Up



Wrap Up

• Adding NoCs to FPGAs

– Enhances efficiency of system level interconnect

– Enables new abstractions (crossbar composability, 
easily-swappable accelerators)

• NoC abstraction can cross interposer boundaries

– Interesting multi-die systems

• My belief: 

– Special purpose box � datacenter

– ASIC-like flow � composable flow

– Embedded NoCs help make this happen



Future Work

• CAD System for Embedded NoCs

– Automatically create lightweight soft logic to 

connect to fabric port (translator)

• According to designer’s specified intent

– Choose best router to connect each compute 

module 

– Choose when to use NoC vs. soft links

• Then map more applications, using CAD


