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Overview

Why do we need a new system-level interconnect?
Why an embedded NoC?

How does it work?

How efficient is it?

Future trends and an embedded NoC

— Data center FPGASs

— Silicon interposers

— Registered routing

— Kernels = massively parallel accelerators



Why Do We Need a System Level
Interconnect?

And Why a NoC?



Challenge

Large Systems

High bandwidth

hard blocks &
compute modules

High on-chip
communication

Memory Controllers
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Buses are unique to the
application = design time
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System-level buses = costly

Memory Controllers




Hard Bus?

System-level interconnect in
most designs?

Costly in area & power?y

Usable by many designs?

Memory Controllers

................ — dedicated

(hard)

s Wires
Muxing,
arbitration
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Hard Bus?

System-level interconnect in
most designs?

Costly in area & power?y

Usable by many designs?

Not Reusable!
Too design specific

Memory Controllers
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Needed: A More General System-Level Interconnect

1. Move data between arbitrary end-points
2. Area efficient

3. High bandwidth = match on-chip & I/O
bandwidths

Network-on-Chip (NoC)



Embedded NoC

NoC=complete interconnect
* Data transport
* Switching
e Buffering

Memory Controllers
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Embedded NoC

NoC=complete interconnect
* Data transport
* Switching
* Buffering

1. Moves data
between
arbitrary end

points?

Memory Controllers
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Embedded NoC Architecture

How Do We Build It?



Routers, Links and Fabric Ports

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

FPGA [

DDRx Interface

Compute

PCle Interface-~

____________________________________________________

* No hard boundaries
— Build any size compute modules in fabric
* Fabric interface: flexible interface to compute modules



Crossbar Switch

ey Links

5 Virtual Channel '
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e Full featured virtual channel router [D. Becker,
Stanford PhD, 2012]



Must We Harden the Router?

e Tested: 32-bit wide ports, 2 VCs, 10 flit deep buffers
* 65 nm TSMC process standard cells vs. 65 nm Stratix Il

Area 4.1 mm? (1X) 0.14 mm? (30X)
Speed 166 MHz (1X) 943 MHz (5.7X)

Hard: 170X throughput per area!



Harden the Routers?

 FPGA-optimized soft router?

— [CONNECT, Papamichale & Hoe, FPGA 2012] and
[Split/Merge, Huan & Dehon, FPT 2012]

e ~2-3X throughput / area improvement with reduced
feature set

— [Hoplite, Kapre & Gray, FPL 2015]

 Larger improvement with very reduced features /
guarantees

* Not enough to close 170X gap with hard
 Want ease of use = full featured
Hard Routers
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e 200 MHz module, 900 MHz router?

s
Router Port

* Configurable time-domain mux / demux: match bandwidth

e Asynchronous FIFO: cross clock domains

= Full NoC bandwidth, w/o clock restrictions on modules
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Hard Routers/Soft Links

Logic clusters

-
———————
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P "\\
Programmable s
/
; Interconnect

S So

,/

Router

 Same I/O mux structure as a logic block — 9X the area
 Conventional FPGA interconnect between routers



Hard Routers/Soft Links

Slowest, most plentiful wires (C4)

|
§th of FPGA vertically (~2.5 mm)

Faster, fewer wires (C12)

|
gth of FPGA vertically (~4.5 mm)

 Same I/O mux structure as a logic block — 9X the area
 Conventional FPGA interconnect between routers




Hard Routers/Soft Links

Assumed a mesh > Can form any topology



Hard Routers/Hard Links

Logic blocks

-
———————

,/' Dedicated RO
Interconnect

Router

 Muxes on router-fabric interface only — 7X logic block area
 Dedicated interconnect between routers = Faster/Fixed



Hard Routers/Hard Links

D ~“9mmatl.lV or ~7mmat0.9V

N[ SISISIIN

 Muxes on router-fabric interface only — 7X logic block area
 Dedicated interconnect between routers = Faster/Fixed




Hard NoCs
" Soft | Hard ( Soft Links) | Hard (+ Hard Links)

Area 4.1 mm? (1X)
Speed 166 MHz (1X)

Power --

Programmable
Interconnect

Router
Logic




Hard NoCs
" Soft | Hard ( Soft Links) | Hard (+ Hard Links)

Area 4.1 mm? (1X) 0.18 mm? =9 LABs (22X) 0.15 mm?=7 LABs (27X)
Speed 166 MHz (1X) 730 MHz  (4.4X) 943 MHz (5.7X)
Power -- (9X less) (11X — 15X less)

Dedicated
Interconnect




2. Area Efficient? v/
64-node, 32-bit wide NoC on Stratix V

Very Cheap! Less than cost of 3 soft nodes

“ Hard (+ Soft Links) | Hard (+ Hard Links)

Area ~12,500 LABs 576 LABs 448 LABs
%LABs 33% 1.6 % 1.3%
%FPGA 12 % 0.6 % 0.45%
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Power Efficient?

_ Length of 1 NoC Link _ ‘ *-

b i Compare to best
P —o—¢—¢

200 case FPGA
MHz interconnect: point- -0—0—0—©-
to-point link
¢
Interconnect Description Total Power (W) |Actual Aggregate BW (GB/s)| Energy per Data (mJ/GB)
FPGA Interconnect 10000 Wires 1.2 250 a7

Hard and Mixed NoCs = Power Efficient



3. Match 1/0 Bandwidths?

Host CPU

I

PCle Controller
8.5 (x8) to I
17 (x16) GB/s
W) )
= =
= 2 85t 85t0 O
g o 17GB/s 17 GB/s £
o 32 &= > ¢
< 3 S
o &
= o
— - e
1.25 (10 Gb) to
12.5 (100 Gb) GB/SI
FPGA 10 / 100 Gb Ethernet

|

Network

32-bit wide NoC @ 28
nm

1.2 GHz - 4.8 GB/s
per link

Too low for easy I/0O
usel!
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3. Match I/O Bandwidths? v/

* Need higher-bandwidth links

— 150 bits wide @ 1.2 GHz

—22.5 GB/s per link

— Can carry full I/O bandwidth on one link
 Want to keep cost low

— Much easier to justify adding to an FPGA if cheap
e E.g. Stratix I: 2% of die size for DSP blocks
 First generation: not used by most customers, but 2% cost OK

— Reduce number of nodes: 64 - 16
* 1.3% of core area for a large Stratix V FPGA



NoC Usage & Application Efficiency Studies

How Do We Use It?



j‘> FabricPort In j‘>

FPGA oM | NoC Writer | Embedded
| | a0 | —
Frequency | i e ' | i Frequency
100-400 MHz | | | ! 1.2 GHz
—— l i |
Any* width | R | B Fixed Width
0-600 bits l ; [ credits | ! 150 bits
| | im
. | | |
Width # flits
0-150 bits 1
150-300 bits 2
300-450 bits 3
450-600 bits 4
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j‘> FabricPort In j‘>

Credits

Ready/Valid

1 r-———"~>"~""~>"~>"""™>"""™>""™>"™"7—77— 1
FPGA . TO™ | | NoC Writer | Embedded
o | || | T e ALl
Frequency :"' | A ' | : Frequency
100-400 MHz i | i | 1.2 GHz
' > | | :
Any* width | 1 . ! B Fixed Width
0-600 bits . ; [ credits | ! 150 bits

Time-domain multiplexing:
e Divide width by 4
 Multiply frequency by 4
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j‘> FabricPort In j‘>

FPGA oM - NoC Writer | Embedded
oo ] \ | feAro | | ALl
Frequency B | - ' i : Frequency

BhY .
S | I |
Any* width i |, i - Fixed Width
T =
_/ ]
T | i |
i
Time-domain multiplexing: Asynchronous FIFO:
e Divide width by 4 e Cross into NoC clock
* Multiply frequency by 4 * No restriction on module
frequency
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j‘> FabricPort In j‘>

FPGA ‘r M | ‘r NoC Writer | Embedded
Module 5 \ i . aFIFO | | i NoC
Frequency B | - ' i : Frequency

BhY B
— | | I
i ol
0-600 bits i ; [ credits | ! 150 bits
1/ o]
N Ready=0 i |
_K
Time-domain multiplexing: Asynchronous FIFO: NoC Writer:
e Divide width by 4 e Cross into NoC clock e Track available buffers in
* Multiply frequency by 4 * No restriction on module NoC Router
frequency e Forward flits to NoC
* Backpressure

Input interface: flexible & easy for designers =2 little soft Iogigg



Designer Use

 NoC has non-zero, usually variable latency
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e With restrictions, usable for fixed-latency communication
— Pre-establish and reserve paths

— “Permapaths”

Memory Controllers

Permapaths
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How Common Are Latency-Insensitive Channels?

e Connections to /O Host U
— DDRx, PCle, .. o
— Variable latency !

Communication infrastructure

 Between HLS kernels
— OpenCL channels / pipes
— Bluespec SV

I

DDRx controller(s)

On-chip
memory
hierarchy

(s)1e)0u09 XHAaq
|

Application
kernels

e Common design style between larger modules

— And any module can be converted to use [Carloni et
al, TCAD, 2001]

Widely used at system level, and use likely to increase

Memory




Packet Ordering

Multiprocessors
e Memory mapped

 Packets arrive out-of-order
— Fine for cache lines
— Processors have re-order buffers

FPGA Designs
* Mostly streaming
e (Cannot tolerate reordering

— Hardware expensive and
difficult

All packets with same src/dst

L
-
= must take same NoC path

All packets with same src/dst
must take same VC

L
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>
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Memory Controllers
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Application Efficiency Studies

How Efficient Is It?



1. Qsys vs. NoC

DDR3 Controller (64-bit 800 MHz)

FPGA

Pipeline
Registers 200 MHz
512 bits
Multlp!exer/ | Arbiter
Demultiplexer
- T~
~
eee JEIFD \
// ! NG
Module Module I Module
1 2 s qe n
200 MHz 200 MHz \\ 250 MHz |
~ 7

-

gsys: build logical bus
from fabric

DDR3 Controller (64-bit 800 MHz)

O—O—O0—0

510 MHz
128 bits
F Fin )\ )\
./ \_/ ./ N/
F Y 3\ ' F .Y
A\ ./ ./ ./
Module| | IModule < Module
i 2 n
N N £ -
L\ ./ / S

PGA

NoC: 16-nodes, hard
routers & links
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Area [Equivalent Logic Blocks]

3000

2500

2000 -

1500

1000

500

Area Comparison

Only 1/8 of Hard NoC BW used, but
already less area for most systems

Number of Modules

% Area of Stratix V Core
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Hard NoC saves
power for
even simplest
systems

Dynamic Power [mW]

900

800

700 -

600

500

Power Comparison

Hard NoC

3 5 7 9 11

Number of Modules

13

15

39
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2. Ethernet Switch

* FPGAs with transceivers: commonly manipulating /
switching packets

e e.g.16x16 Ethernet switch, @ 10 Gb/s per channel

e NoC is the crossbhar

=f °* Plus buffering,
distributed
arbitration &
back-pressure

| « Fabric inspects packet
headers, performs
more buffering, ...

Transceiver



Ethernet Switch Efficiency

i . _Rx . NoC Tx ;
i , s _ /" NoC / NOC\ _ _ s 5 ol
i | Transceiver Input Queue| |®| 150 FabricPort ( \ / | FabricPort 600 S c Output Queue Transceiver | |
i > — 2 = —  Router  p------ »  Router [— = 25 |
i Inputl |avalon_st|  (FIFO) £ | noc_flit Input \ / \ / Output 4xnoc_flit| & £ |avalon_st (FIFO) Qutput 2 |i
: = Node A Node B g ~ i
L\ \ / / et \ J

NoC-Based Switch M emory-Based Switch

[Dai & Zhu]
Area Consumption
3¢ 39
(% of Stratix V device) 7 %
Supported Bandwidth 819 Gb/s 160 Gb/s
Lat
- 350 ns 2125 ns

(at 75% injection rate)

* 14X more efficient!
e Latest FPGAs: ~2 Tb/s transceiver bandwidth = need good switches



3. Parallel JPEG (Latency Sensitive)
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NoC makes performance more predictable
NoC doesn’t produce wiring hotspots & saves long wires




Future Trends and Embedded NoCs

Speculation Ahead!

N 1

R =

§ 7 '
€

i [ )
W

|

r

- i
v




1. Embedded NoCs and the Datacenter
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Data ce nter ACCGleratorS Microsoft Catapult: Shell & Role to

Ease Design
Host CPU Shell: 23% of Stratix V FPGA
@ [Putnam et al, ISCA 2014]

PCle Controller
Communication Infrastructure

o (“Shell”) — rlj

5 5
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=) 2 & > € k= o©

5 Accelerator = £

o Q
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FPGA 10 /100 Gb Ethernet

|
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Datacenter “Shell”: Bus Overhead

(S)43||043U0) XYAQ

FPGA

PCle Controller

Module A Module B

I Accelerator 1

Module C Module D

¥

DDRx Controller(s)

10 / 100 Gb Ethernet

Buses to I/Os
in shell & role

Divided into
two parts to
ease
compilation
(shell portion
locked down)



Datacenter “Shell”: Swapping Accelerators
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Partial reconfig
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system
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optimization of
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More Swappable Accelerators

PCle Controller

Big Accelerator

(S)43||043u0D X¥Ad
DDRx Controller(s)

10 / 100 Gb Ethernet

Allows more
virtualization

But shell
complexity
Increases

Less efficient

Wasteful for
one big
accelerator



Shell with an Embedded NoC

(S)43]1043Uu0D XHAA

PCle Controller » Efficient for
more cases
(small or big
? ? ? ® — | accelerators)
9|  Data
® ; o—® 5 .
Big Accelerator = brought into
PN ® ® ® = accelerator,
& not just to
) :
O ® @ ® a edge with
locked bus
10 / 100 Gb Ethernet




2. Interposer-Based FPGAs



Xilinx: Larger Fabric with Interposers

High-Bandwidth,
Low-Latency Connections

Microbumps

Through-Silicon Wias (TSV) L

C4 Bumps

SLR0D & 28 nm FPGA Die (SLR)

65 nm Silicon Interposer
[ ]

—
& B & S5 8 & & & & & & & &

Package Substrate

BGA Solder Balls

Figure: Xilinx, SSI Technology White Paper, 2012

Create a larger
FPGA with
interposers

10,000
connections
between dice
(23% of normal
routing)

Routability good if
> 20% of normal
wiring cross
interposer [Nasiri
et al, TVLSI, to

appear]



Interposer Scaling

Figure: Xilinx, SSI Technology White Paper, 2012

e Concerns about how well

microbumps will scale

* Will interposer routing

bandwidth remain >20%
of within-die bandwidth?

e Embedded NoC: naturally

multiplies routing
bandwidth (higher clock
rate on NoC wires
crossing interposer)



XCVR (6CH)
XCVR (6CH)
XCVR (6CH)
XCVR (6CH)

XCVR (6CH)
XCVR (6CH)
XCVR (6CH)
XCVR (6CH)

' XCVR (6CH)
XCVR (6CH)
XCVR (6CH)
XCVR (6CH)

Altera: Heterogeneous Interposers

91X 310d

XCVR (6CH)
XCVR (6CH)
XCVR (6CH)
XCVR (6CH)

¥ . Ixcvr(sch)

u
2]
Lo}
*
-
(=]

91X 8|0d

XCVR (6CH)
XCVR (6CH)
XCVR (6CH)

XCVR (6CH)
XCVR (6CH)
XCVR (6CH)
XCVR (6CH)

e Custom wiring interface to each unique die

— PCle/transceiver, high-bandwidth memory
 NoC: standardize interface, allow TDM-ing of wires
* Extends system level interconnect beyond one die

Figure: Mike Hutton,
Altera Stratix 10, FPL
2015



3. Registered Routing



Registered Routing

e Stratix 10 includes a pulse latch in each routing driver
— Enables deeper interconnect pipelining
— Obviates need for a new system-level interconnect?
| don’t think so
— Makes it easier to run wires faster

— But still not:

* Switching, buffering, arbitration (complete interconnect)
* Pre-timing closed
* Abstraction to compose & re-configure systems

* Pushes more designers to latency-tolerant techniques
— Which helps match the main NoC programming model



4. Kernels = Massively Parallel Accelerators

Crossbars for Desigh Composition



Map — Reduce and FPGAs

[Ghasemi & Chow, MASc thesis, 1" m
2015] "
appers Mappers

Write map & reduce kernel

. llckey:value} U
Use Spark infrastructure to
distribute data & kernels across Partitioner |~ ----+ | Partitioner
many CPUS Fqu“gnt il.Lc:keypvalue:s I ll
sa] |ont | fkewvalen ... L.
Do same for FPGAs? o Crossbar
/ ....... mﬁf:‘gm&key;\ﬂuea— . lf nes il‘ """
Between chips =2 network Reducer | «--. | Reducer
Within a chip = soft logic

Consumes lots of soft logic and
limits routable design to ~30%
utilization!



Can We Remove the Crossbar?

* Not without breaking Map-Reduce/Spark abstraction!

— The automatic partitioning / routing / merging of
data is what makes Spark easy to program

— Need a crossbar to match the abstraction and
make composability easy

 NoC: efficient, distributed crossbar
— Allows us to efficiently compose kernels

— Can use crossbar abstraction within chips (NoC)
and between chips (datacenter network)



Wrap Up



Wrap Up

 Adding NoCs to FPGAs
— Enhances efficiency of system level interconnect

— Enables new abstractions (crossbar composability,
easily-swappable accelerators)

 NoC abstraction can cross interposer boundaries
— Interesting multi-die systems

My belief
— Specia
— ASIC-i

purpose box = datacenter
ke flow = composable flow

— Embec

ded NoCs help make this happen



Future Work

* CAD System for Embedded NoCs

— Automatically create lightweight soft logic to
connect to fabric port (translator)

* According to designer’s specified intent

— Choose best router to connect each compute
module

— Choose when to use NoC vs. soft links
 Then map more applications, using CAD



