
TVLSI-00443-2009 1

Abstract— Register renaming is a performance-critical

component of modern, dynamically-scheduled processors.

Register renaming latency increases as a function of several

architectural parameters (e.g., processor issue width, window

size and checkpoint count). Pipelining of the register renaming

logic can help avoid restricting the processor clock frequency.

This work presents a full-custom, two-stage register renaming

implementation in a 130nm fabrication technology. The latency

of non-pipelined and two-stage pipelined renaming is compared,

and the underlying performance and complexity tradeoffs are

discussed. The two-stage pipelined design reduces the renaming

logic depth from 23 FO4 (fan-out-of-four) down to 9.5 FO4.

Index Terms— Computer architecture, microprocessors,

register renaming, register alias table, pipelining, latency.

I. INTRODUCTION

Modern high-performance processors increase instruction-

level parallelism (ILP) by removing artificial data

dependencies via register renaming. The register alias table

(RAT), the core of register renaming, maintains mappings

among architectural (the register names used by instructions)

and physical registers (the physical storage elements’ names,

which hold the values at runtime). The RAT is a performance-

critical component since it is read and updated by all

instructions in order as they are decoded. Hence, the renaming

unit must operate at the processor frequency or must be

pipelined to avoid limiting the clock period. While previous

work discussed the possibility of RAT pipelining [3] [7], none

discussed how the renaming logic can be pipelined and none

measured how pipelining affects renaming latency. To fill this

gap, this work investigates a two-stage renaming design in a

commercial fabrication technology, analyzes the latency in

terms of fan-out-of-four (FO4), and explains the underlying

performance and complexity tradeoffs. This work also

presents optimizations enabled by pipelining that reduce RAT

energy (e.g., RAT reads are disabled when dependencies exist

among co-renamed instructions). Latency results show that the

logic depth per pipeline stage (which determines the

processor’s clock period) of a 4-way superscalar processor is

reduced from 23 to 9.5 FO4 using two-stage renaming.

II. REGISTER RENAMING BACKGROUND

Renaming a single instruction proceeds as follows:

(i) reading the physical register names for the source register

operands; (ii) reading the current mapping of the destination

Manuscript received November 3, 2009; revised April 3, 2010.
E. Safi, and A. Moshovos are with the Department of Electrical and

Computer Engineering, University of Toronto, Toronto, ON, M5S3G4,

Canada (e-mails: {elham, moshovos}@eecg.toronto.edu).
Digital Object Identifier /TVLSI.

register to be saved in the reorder buffer (ROB) for supporting

speculative execution [1] [4]; and (iii) updating the RAT for

the destination register with a physical register name allocated

from the pool of free registers. Actions (i) and (ii) proceed in

parallel, while action (iii) follows. Acquiring a free physical

register name can be done at any time prior to action (iii).

Superscalar processors simultaneously rename several

instructions (called a rename group) per cycle. Hence, the

renaming unit checks intra-group dependencies to handle

intra-group write-after-write (WAW) and read-after-write

(RAW) dependencies. To reduce latency, RAT reads proceed

in parallel with dependency checks. All the RAT writes are

performed last taking into account WAW dependencies so that

only the latest update per destination register is saved.

Figure 1 shows the hardware block diagram of the 4-way

superscalar renaming. The actions involved are as follows: (i)

RAT reads for the source (I0..3(S1..2)) and destination (I0..3(D1..2))

operands of the co-renamed instructions (I0..3) are initiated. (ii)

In parallel with (i), new physical registers P(I0..3(D1..2)) are

allocated for all the destination registers. (iii) The physical

register names read in (i) do not reflect map changes from the

co-renamed instructions. The names read are the ones left by

the immediately-preceding rename group. RAW dependencies

among co-renamed instructions need to be detected; each

source register name is compared with the destination register

names of all its preceding instructions. These comparisons

proceed in parallel with (i) and (ii). When the RAT reads and

the dependency checks complete, the comparison results are

priority encoded and drive multiplexers selecting the most

recent preceding physical register name assigned to each

source architectural register. (iv) WAW dependencies among

co-renamed instructions must be detected (a) to write only the

latest update per architectural register in the RAT and (b) to

select the appropriate previous mapping to store in the ROB

for each destination register. This mapping is either the RAT

mapping read in (i), or the physical register assigned to a

preceding write within the same co-rename group in (ii). As

with RAW dependencies, these comparisons proceed in

Elham Safi, Andreas Moshovos and Andreas Veneris

Two-Stage, Pipelined Register Renaming

R
A
W

W
A
W

S
c
h
e
d
u
le
r

TVLSI-00443-2009 2

parallel with (i), (ii) and (iii).

A. Checkpointed, SRAM-based RAT

This work focuses on the SRAM-based RAT

implementation, which is more scalable and energy-efficient

for today’s instruction windows (e.g., 128) than the CAM-

based one [3]. This multi-ported SRAM RAT has one entry

per architectural registers. Each entry keeps a physical register

name (e.g., 7 bits for 128 physical registers).

Modern processors speculatively rename and execute

instructions before certainly knowing that they should [1]. On

mispeculations, erroneously-executed instructions are

“squashed”, i.e., any changes they made, including RAT

changes, are undone. Modern RAT designs incorporate a set

of global checkpoints (GCs) to recover from mispeculations.

A GC is a complete snapshot of all relevant processor state

including the RAT. A GC is taken when an instruction

initiates speculation (e.g., a branch whose target address is

predicted) and is released when the instruction commits. To

recover the RAT from a mispeculation, the GC is copied to the

RAT. Besides GCs, which provide fast recovery but are few as

they are expensive to build, modern processors use the ROB,

an instruction-by-instruction log of all changes done to the

RAT. This work uses a mechanism that organizes GCs in

small bi-directional shift registers embedded next to each RAT

bit. This mechanism scales better than the alternative [6].

III. PIPELINED RENAMING

This section discusses a two-stage pipelined renaming

design, its latency and energy as a function of several key

architectural parameters, as well as the impact of deeper

pipelining.

Figures 3 and 2 depict the high-level block diagram of two-

stage renaming and the actions that take place at each stage.

We first explain how single instruction renaming can be

pipelined, and then proceed to superscalar renaming. Figure 3

shows a 4-way superscalar renaming unit. We assume

instructions with two source and one destination register.

Renaming proceeds in two stages, each comprising two sub-

stages. We assume that the current instruction B enters stage

1, while the immediately-preceding instruction A enters stage

2. The first half of stage 1 decodes the source and destination

registers of instruction B. The decoder outputs are latched so

that they remain stable while reading from the RAT (starting

at the second half of stage 1 and continuing into the first half

of stage 2) and while writing the destination register’s new

mapping (starting at the first half of stage 2).

In parallel with decoding of the source and destination

registers for B, dependency checking with A is performed.

This parallel operation is feasible because dependency

checking uses architectural register names of A and B. The

WAW and RAW dependency checks complete before the

RAT writes in stage 2 and some time while the RAT reads are

in progress. The WAW dependency results select the value to

be stored for B in ROB. This value is either A’s destination

physical register in the case of a WAW dependency between

instructions B and A, or the mapping read from the RAT,

otherwise. The RAW dependency results are used to select the

appropriate physical register for B’s source register (either the

value read from the RAT, or A’s destination).

TVLSI-00443-2009 3

The RAT reads start during the second half of stage 1 and

complete by the end of the first half of stage 2. As soon as the

RAT reads complete, the RAT write for B’s destination starts.

The write updates the entry for B’s destination register with a

free physical register obtained from the free list. During the

second half of stage 2, appropriate source and destination

physical register names are selected either from those read

from the RAT (no dependency between A and B), or those

provided by the free list for A (dependency between A and B).

Pipelined superscalar renaming introduces the possibility of

intra-group and inter-group dependencies among adjacent

groups as Figure 4 shows. These dependencies must be

handled appropriately. Superscalar, pipelined renaming entails

the following actions:

(1) Starting at the beginning of stage 1, the RAW

dependencies among the current and the previous rename

group are detected. Both intra- and inter-group dependencies

are detected so that the appropriate mapping is assigned to

each source register. This mapping is either the register name

that will read from the RAT, or the register name assigned to

the closest producer. Inter-group RAW dependencies must be

detected since the previous group’s mappings have not been

written into the RAT by the time the new group reads from the

RAT. These pending RAT updates have to be bypassed. RAT

updates start at stage 2 and do not complete before the end of

it. Accordingly, reading from the RAT reflects the updates

performed two rename groups back. The RAW dependency

comparators’ outputs are priority encoded (design is detailed

in [9]) to select the most recently-assigned physical register
name for the architectural source operand during stage 2.

(2) Starting at the beginning of stage 1, the source

architectural registers are decoded and latched to remain stable

during the RAT reads. The RAT reads, extending over both

stages, start after decoding. The source’s map RAT read is

required if no RAW dependency exists. Hence, once the RAW

dependency checks are finalized, unnecessary RAT reads can

be stopped to reduce energy consumption. Such optimization

is desirable since sense amplifiers are a major source of

RAT’s energy consumption [6]. The comparators’ outputs are
NORed to activate the sense-amplifier logic of the associated

bitlines. If one of the comparators detects a match, NOR’s

output becomes zero to de-activate the sense amplifiers.

Decode and bitline precharge latencies are overlapped with

comparator and NOR latencies.

(3) Up to issue width (IW) free physical registers are assigned

to the destination architectural registers by the end of stage 1.

The names are latched and used in stage 2. These names are

provided by the register free list, implemented by a circular

FIFO capable of providing up to IW register names per cycle.

(4)For updating the RAT, intra-group WAW dependencies are

detected starting at the beginning of stage 1. Multiple

instructions may attempt write to the same architectural

registers within the current group; accordingly, only the latest

update should be recorded into the RAT. Inter-group WAW

dependencies must also be detected so that the appropriate

values are stored in ROB. The WAW dependency check

results are used to prepare data for RAT updates. To reduce

energy, unnecessary RAT reads for old mappings can be

stopped once a WAW dependency is detected.

(5) Starting at the beginning of stage 1, the destination

architectural register addresses are decoded and latched to

remain stable during the RAT reads for the purposes of ROB

checkpointing and updating the RAT with new mappings.

Once decoding is completed, RAT reads are initiated for

reading the old mappings to record them in ROB. RAT

updates start once the old map reads complete.

In single-cycle renaming, the SRAM latching delay is

completely exposed. In the pipelined implementation, part of

the SRAM latching (Figure 5) is hidden by the pipeline

latches. Referring to Figure 5, RAT accesses are pipelined as

follows: (i) during clk1-high, the address is decoded and

latched, and the bitlines are also pre-charged. (ii) For writes, in

clk2-high, the write input data are latched and the write

transaction happens. (iii) For reads, in clk1-high, the bitline

voltages start to swing and sensed by sense-amplifier whose

output is then latched. (iv) For a write followed by a read for

the old mapping, because the read data latch signal defines the

end of the read operation, it also triggers a write operation.

A. Scalability of Pipelined Register Renaming

This section discusses the components along the critical

path in two-stage renaming, and describes how their latency

and power scale as a function of the window size (WS) and

issue width (IW). The components along the critical paths of

the first and second stages are: (i) Comparators: The width of

each comparator is Log2(number of architectural registers).

The maximum number of comparators needed per source

operand is (2×IW-1). Increasing IW increases the number of

comparators; however, all comparators work in parallel, hence

increasing IW does not affect the comparison latency, but

noticeably increases power. (ii) Priority Encoder: Increasing

IW increases the latencies of the IW-input priority encoder

and the (2×IW-1)-input NORs. The encoders are driven by the

comparators of (i). (iii) Output Multiplexers: The width of

each multiplexer is log2(WS). The maximum number of

multiplexers needed per source operand is (2×IW). Increasing

IW increases the number of pass gates; however, they run in

parallel, so increasing IW does not affect the multiplexer delay

significantly, although it noticeably increases power.

(iv) RAT: non-checkpointed RATs are essentially multi-ported

register files. RAT access latency grows linearly with entry

count and quadratically with port count. The RAT size and

power grow linearly with the entry count and faster than

linearly and slower than quadratically with port count. For

checkpointed RATs, previous work has determined

quantitatively how RAT latency and energy vary as a function

of WS, IW and GC count [6]. Increasing WS increases RAT

entry width, and hence increases delay logarithmically. The

latency increases exponentially with increasing NoGCs.

Increasing IW increases latency quadratically as it increases

port count [6].

TVLSI-00443-2009 4

B. Deeper Pipelining

Using a methodology similar to that used for two-stage

pipelining, renaming can be pipelined further. However,

complexity increases rapidly as dependency checks must be

extended across more groups, and additional bypass paths are

needed for inter-group dependencies. After the RAT reads

complete, a set of multiplexers selects the appropriate value.

For example, Figure 6 shows the organization of a three-stage

pipelined renaming where a RAT write followed by a read to

the same entry takes two cycles. In this case, the multiplexers

that necessarily operate after the RAT reads have one more

option to select from, making them slower. In general, the

deeper the pipeline, the wider and slower the final

multiplexers need to be. Hence, there is a point past which this

delay becomes detrimental to performance.

While deeper pipelining can improve performance by

providing a faster clock, it suffers from performance-

degrading side effects. Due to the extra pipeline stages that

have to be re-filled, deeper pipelining in the front-end

increases mispredicted branch penalties and instruction cache

miss penalties. Hence, deeper pipelining will be useful only if

performance improvement it provides (faster clock) surpasses

its side effects [7]. Executing dependent instructions in

consecutive cycles is needed for high performance, especially

for programs with limited parallelism; otherwise, pipeline

bubbles can cause significant performance loss.

C. Other RAT Latency Reduction Techniques

Aside from pipelining register renaming, renaming latency

can be reduced in several ways: First, the RAT can be

duplicated to reduce the number of ports on each RAT copy

reducing latency to some extent. Second, considering that not

all instructions have two operands and that co-renamed

instructions are highly likely to have common operands, the

RAT port count can be reduced at the cost of insignificant IPC

performance loss. However, this requires a routing network

whose latency may negate any of the benefits. Third, using

GC prediction and selective GC allocation, the number of

RAT GCs can be reduced while maintaining performance [1].

Pipelining is orthogonal to all aforementioned techniques.

Given a specific design, any or all of the above techniques can

be used to reduce latency to the desired level if possible.

IV. EVALUATION

Section A details the design and evaluation methodologies.

Section B validates that our underlying circuit

implementations are reasonably tuned. Section C presents

simple empirical models for RAT delay and uses it to justify

why a two-stage pipeline is an appropriate choice for this

technology. Finally, Section D analyzes the latency of the

pipelined renaming unit.

A. Methodology

We developed full-custom layouts using the Cadence® tool

set in a commercial 130 nm technology with a 1.3V supply

voltage (the best technology available to us at the time of these

experiments). The key observations can apply, for the most

part, to smaller technologies. The main differences will be in

the relative importance of dynamic versus static power.

We implemented a 4-way superscalar RAT, a width

representative of the processors built in the given fabrication

technology and of many modern processors. We assume 64

and 128 architectural and physical registers respectively,

common sizes today. We also assume that WS and the number

of physical registers are the same as the exact implementation

of the scheduler and the window is orthogonal to this study.

We assume a RAT with 16 GCs since it has been shown that

with GC prediction, at most 16 GCs are sufficient to achieve

performance close to what is possible with infinite GCs [1].

We initially used minimum-size transistors, and then

increased dimensions to achieve latency less than an upper

bound. We arrived at this upper bound by estimating the delay

of a 64-bit, 64-entry SRAM with 12 read and four write ports

using CACTI 4.2 [8]. We used Spectre
TM
 for circuit

simulations. We report worst-case latency results.

For delay analysis, we used the FO4 delay metric as

estimated by formula (1). For the 130 nm technology, FO4 is

about 40 ps. In typical commercial designs of dynamically-

scheduled, superscalar processors, the optimal pipeline depth

is around 10-14 FO4 for performance-only optimized designs

and 24-28 FO4 for power-performance (Energy × delay
2

metric) optimized designs [12]. Given by (2), the logic

depth/computation delay is calculated by subtracting the

pipeline logic depth from the pipelining clock overhead

including clock skew and jitter, and latch delay. Clock

overhead including margins for setup time and hold time is

thus estimated at 4-6 FO4: (i) pulse-mode Latch 1-1.5 FO4/

flip-flops 2-3 FO4, (ii) skew 2-4 FO4, and (iii) jitter 1-2 FO4.

In a custom design flow, most of the clock skew and jitter

overheads can be hidden by circuit techniques such as time

borrowing. The latch overhead could be reduced using

techniques such as pulsed clocks and/or direct domino

pipelines. Accordingly, a 3 FO4 pipelining overhead is a

reasonable approximation [12].

B. Validation

This section demonstrates that the proposed circuit

implementations are reasonably tuned by comparing the

results to published measurements for a commercial design.

Unfortunately, to the best of our knowledge no public results

exist for a two-stage pipelined implementation. Accordingly,

we used the same design methodology to implement a single-

cycle renaming unit and compared its latency to that of a

commercial processor implementation. The latency was

measured at 28 FO4 for the specific 4-way RAT. By

overlapping the decoding and wordline select drivers for RAT

writes with the preceding RAT reads, this delay was further

reduced to 23 FO4. With a pipeline overhead of 3 FO4, this

delay is comparable to the clock period of processors

implemented in 130 nm technology and considered single-

cycle renaming (e.g., 800 MHz SR71010B MIPS).

C. Two-Stage Pipeline Justification

Based on our full-custom implementation, we developed a

FO4 Delay Estimation:

(360-500) ps/um × 0.13/Ldrawn , Ldrawn = 0.7 Leff (1)

Pipeline depth Pipeline overhead Pipeline length

(2) 10-14 (FO4) =

400- 560ps

3 FO4 =

120ps

7-11 FO4 =

280-440ps

TVLSI-00443-2009 5

simple empirical delay model for single-cycle checkpointed,

superscalar RATs. To develop the empirical models, we

applied curve fitting over 60 data points, based on the

measurements from our physical-level implementations in a

130nm technology. We present the latency models for the 4-

way RAT; equations (3) and (4) estimate read and write

latencies. In this model, NOP stands for the number of ports,

WS for window size, NoGCs for the number of GCs, and IW

for the issue width. The worst-case relative error of the model

predictions is on average within 7.8% of the Spectre
TM
 circuit

simulation results for the data points we used for curve fitting

(0<=WS<=512, 0<=NoGCs<=16, IW=4). These data points

cover values of the WS, IW and NoGCs that would be typical

for modern processors, and model predictions have a rage of

accuracy that is acceptable for architectural-level studies. For

predicting the delay of the configurations outside of this range,

extrapolation can be used. However, the extrapolation results

are often subject to greater uncertainty.

The model given by (3) and (4) provides an upper bound on

RAT read and write. We used this model to decide how many

pipeline stages would be appropriate for the given technology.

In particular, we first estimated an upper bound (X) on non-

pipelined renaming latency. We then considered the clock

frequency of the Pentium 4 processor implemented in a 130nm

technology [11] as the target clock frequency (Z) that the

specification is supposed to meet. Diving the two and

rounding (Floor (Z/X)) suggests a two-stage pipeline.

D. Latency Measurements

Finally, we report the latency measurements for the two-

stage renaming and show how much faster it is compared to

the single-cycle renaming. The latencies of the components in

FO4 are given by (5). The critical path latencies of the first

and second stages are as follows: (i) The critical path of the

first stage comprises the latencies of the comparator, the NOR

gate within the priority encoder, and the partial RAT read. The

first stage latency measured at about 9.2 FO4. (ii) The critical

path of the second stage comprises the latencies of the partial

RAT read delay, the RAT write excluding encoding and

wordline select. This is measured at 9.5 FO4. Accordingly, the

logic delay in each stage is about 9.5 FO4. By adding up the

pipelining overhead of 3 FO4, the overall pipeline depth,

defining the clock frequency, is about 12.5 FO4. In brief, the

latency results show that the processor’s logic depth is reduced

from 23 to 9.5 FO4 going from one to two-stage renaming.

V. CONCLUSION

The register alias table (RAT), the core of register

renaming, is a performance-critical component of modern

processors because it is read and updated by all instructions in

order as they are decoded. Register renaming latency increases

as a function of the issue width, window size and number of

recovery checkpoints. The RAT is on the processor’s critical

path and can limit the processor clock frequency. To avoid

restricting of processor’s clock frequency, pipelining of the

register renaming logic is a solution. This work presents a full-

custom, two-stage register renaming implementation in a

130nm fabrication technology. Latency analyses show that

the renaming logic depth is reduced from 23 to 9.5 FO4 going

from single-stage to two-stage renaming for a 4-way

processor. In our two-stage pipelined implementation,

pipelining enables the early termination of RAT reads to

reduce power consumption. Furthermore, this work

contributes to other proposed architectural techniques that

consider pipelined renaming as their requirement [4] [7].

REFERENCES

[1] P. Akl, and A. Moshovos, “BranchTap: Improving Performance with

Very Few Checkpoints through Adaptive Speculation Control”,
International Conference on Supercomputing, 36-45, Jun. 2006.

[2] D. Deleganes, J. Douglas, B. Kommandur and M. Patyra,, “Designing a

3GHz, 130nm, Intel Pentium4 Processor”, Symposium on VLSI
Circuits, 130-133. Jun. 2002.

[3] G. Kucuk, O.Ergin, D. Ponomarev and K. Ghose., “Energy-Efficient

Register Renaming”, Power and Timing Modeling, Optimization and
Simulation. International Workshop, 219-228, Sept. 2003.

[4] S. Palacharla, “Complexity-Effective Superscalar Processors”, Ph.D.

Thesis, Comp. Sci. Dept., University of Wisconsin-Madison, 1998.
[5] A. Roth and G.S. Sohi, “Register Integration: A Simple and Efficient

Implementation of Squash Reuse”, MICRO, 223-234, Dec 2000.

[6] S. Rusu, et.al., “A 1.5-GHz 130-nm Itanium® 2 Processor with 6-
MB on-die L3 cache” IEEE Journal of Solid-State Circuits,

38(11):1887- 1895, Nov. 2003.

[7] E. Safi, P. Akl, A. Moshovos and A. Veneris,. “On the Latency and
Energy of Checkpointed, Superscalar Register Alias Tables”, IEEE

Transaction on VLSI, 18(3):365 - 377, Jul. 2009

[8] E. Sprangle, D. Carmean, “Increasing Processor Performance by
Implementing Deeper Pipelines”, International Conference on Computer

Architecture, 25-34, May 2002.

[9] D. Tarjan, S. Thoziyoor and N. P. Jouppi, “CACTI 4.0”, HP Labs
Technical Report, HPL-2006-86, 2006.

[10] J. Wang and C. Huang, “High-speed and Low-Power CMOS Priority

Encoders”, IEEE Journal of Solid-State Circuits, 35(10): 1511-1514,
Oct 2000.

[11] S. Wasson and A. Brown, “Pentium 4 'Northwood' 2.2GHz vs. Athlon

XP 2000+”, www.techreport.com, Jan. 2002.
[12] V. Zyuban, et.al., “Integrated Analysis of Power and Performance for

Pipelined Microprocessors”, IEEE Transaction on Computers. 53(8):

1004-1016, Aug. 2004.

Component Delay

(5)

6-64 decoder and wordline driver 5 FO4

Latch delay 2.5 FO4

Wordline activation to sense-amp output 2.4 FO4

Wordline activation to write in data cell 2.8 FO4

8-bit comparator 3 FO4

8-bit dynamic NOR 3 FO4

output Multiplexer 2.5 FO4

Precharge 3 FO4

DelayRead=1.7543×e
0.1524×NoGCs+2.77×ln(WS) + 0.0835× NOP2 +

0.4908×NOP+ 449.31

DelayWrite=5.5818×e
0.1322×NoGCs+13.946×ln(WS)+0.1664× NOP2 +

1.8378× NOP+ 449.31

NOP = 4×IW NOP>16

(3)

(4)

