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Abstract— Register renaming is a performance-critical 

component of modern, dynamically-scheduled processors. 

Register renaming latency increases as a function of several 

architectural parameters (e.g., processor issue width, window 

size and checkpoint count). Pipelining of the register renaming 

logic can help avoid restricting the processor clock frequency. 

This work presents a full-custom, two-stage register renaming 

implementation in a 130nm fabrication technology. The latency 

of non-pipelined and two-stage pipelined renaming is compared, 

and the underlying performance and complexity tradeoffs are 

discussed. The two-stage pipelined design reduces the renaming 

logic depth from 23 FO4 (fan-out-of-four) down to 9.5 FO4. 

 

Index Terms— Computer architecture, microprocessors, 

register renaming, register alias table, pipelining, latency. 

I. INTRODUCTION 

Modern high-performance processors increase instruction-

level parallelism (ILP) by removing artificial data 

dependencies via register renaming. The register alias table 

(RAT), the core of register renaming, maintains mappings 

among architectural (the register names used by instructions) 

and physical registers (the physical storage elements’ names, 

which hold the values at runtime). The RAT is a performance-

critical component since it is read and updated by all 

instructions in order as they are decoded. Hence, the renaming 

unit must operate at the processor frequency or must be 

pipelined to avoid limiting the clock period. While previous 

work discussed the possibility of RAT pipelining  [3]  [7], none 

discussed how the renaming logic can be pipelined and none 

measured how pipelining affects renaming latency. To fill this 

gap, this work investigates a two-stage renaming design in a 

commercial fabrication technology, analyzes the latency in 

terms of fan-out-of-four (FO4), and explains the underlying 

performance and complexity tradeoffs. This work also 

presents optimizations enabled by pipelining that reduce RAT 

energy (e.g., RAT reads are disabled when dependencies exist 

among co-renamed instructions). Latency results show that the 

logic depth per pipeline stage (which determines the 

processor’s clock period) of a 4-way superscalar processor is 

reduced from 23 to 9.5 FO4 using two-stage renaming.   

II. REGISTER RENAMING BACKGROUND 

Renaming a single instruction proceeds as follows: 

(i) reading the physical register names for the source register 

operands; (ii) reading the current mapping of the destination 
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register to be saved in the reorder buffer (ROB) for supporting 

speculative execution  [1]  [4]; and (iii) updating the RAT for 

the destination register with a physical register name allocated 

from the pool of free registers. Actions (i) and (ii) proceed in 

parallel, while action (iii) follows. Acquiring a free physical 

register name can be done at any time prior to action (iii). 

Superscalar processors simultaneously rename several 

instructions (called a rename group) per cycle. Hence, the 

renaming unit checks intra-group dependencies to handle 

intra-group write-after-write (WAW) and read-after-write 

(RAW) dependencies. To reduce latency, RAT reads proceed 

in parallel with dependency checks. All the RAT writes are 

performed last taking into account WAW dependencies so that 

only the latest update per destination register is saved.  

Figure 1 shows the hardware block diagram of the 4-way 

superscalar renaming. The actions involved are as follows: (i) 

RAT reads for the source (I0..3(S1..2)) and destination (I0..3(D1..2)) 

operands of the co-renamed instructions (I0..3) are initiated. (ii) 

In parallel with (i), new physical registers P(I0..3(D1..2)) are 

allocated for all the destination registers. (iii) The physical 

register names read in (i) do not reflect map changes from the 

co-renamed instructions. The names read are the ones left by 

the immediately-preceding rename group. RAW dependencies 

among co-renamed instructions need to be detected; each 

source register name is compared with the destination register 

names of all its preceding instructions. These comparisons 

proceed in parallel with (i) and (ii). When the RAT reads and 

the dependency checks complete, the comparison results are 

priority encoded and drive multiplexers selecting the most 

recent preceding physical register name assigned to each 

source architectural register. (iv) WAW dependencies among 

co-renamed instructions must be detected (a) to write only the 

latest update per architectural register in the RAT and (b) to 

select the appropriate previous mapping to store in the ROB 

for each destination register. This mapping is either the RAT 

mapping read in (i), or the physical register assigned to a 

preceding write within the same co-rename group in (ii). As 

with RAW dependencies, these comparisons proceed in 

Elham Safi, Andreas Moshovos and Andreas Veneris 

Two-Stage, Pipelined Register Renaming  
 

R
A
W

W
A
W

S
c
h
e
d
u
le
r

 



TVLSI-00443-2009 2

parallel with (i), (ii) and (iii).  

A. Checkpointed, SRAM-based RAT 

This work focuses on the SRAM-based RAT 

implementation, which is more scalable and energy-efficient 

for today’s instruction windows (e.g., 128) than the CAM-

based one  [3]. This multi-ported SRAM RAT has one entry 

per architectural registers. Each entry keeps a physical register 

name (e.g., 7 bits for 128 physical registers). 

Modern processors speculatively rename and execute 

instructions before certainly knowing that they should  [1]. On 

mispeculations, erroneously-executed instructions are 

“squashed”, i.e., any changes they made, including RAT 

changes, are undone. Modern RAT designs incorporate a set 

of global checkpoints (GCs) to recover from mispeculations. 

A GC is a complete snapshot of all relevant processor state 

including the RAT. A GC is taken when an instruction 

initiates speculation (e.g., a branch whose target address is 

predicted) and is released when the instruction commits. To 

recover the RAT from a mispeculation, the GC is copied to the 

RAT. Besides GCs, which provide fast recovery but are few as 

they are expensive to build, modern processors use the ROB, 

an instruction-by-instruction log of all changes done to the 

RAT. This work uses a mechanism that organizes GCs in 

small bi-directional shift registers embedded next to each RAT 

bit. This mechanism scales better than the alternative  [6]. 

III. PIPELINED RENAMING  

This section discusses a two-stage pipelined renaming 

design, its latency and energy as a function of several key 

architectural parameters, as well as the impact of deeper 

pipelining.  

Figures 3 and 2 depict the high-level block diagram of two-

stage renaming and the actions that take place at each stage. 

We first explain how single instruction renaming can be 

pipelined, and then proceed to superscalar renaming. Figure 3 

shows a 4-way superscalar renaming unit. We assume 

instructions with two source and one destination register. 

Renaming proceeds in two stages, each comprising two sub-

stages. We assume that the current instruction B enters stage 

1, while the immediately-preceding instruction A enters stage 

2. The first half of stage 1 decodes the source and destination 

registers of instruction B. The decoder outputs are latched so 

that they remain stable while reading from the RAT (starting 

at the second half of stage 1 and continuing into the first half 

of stage 2) and while writing the destination register’s new 

mapping (starting at the first half of stage 2).  

In parallel with decoding of the source and destination 

registers for B, dependency checking with A is performed. 

This parallel operation is feasible because dependency 

checking uses architectural register names of A and B. The 

WAW and RAW dependency checks complete before the 

RAT writes in stage 2 and some time while the RAT reads are 

in progress. The WAW dependency results select the value to 

be stored for B in ROB. This value is either A’s destination 

physical register in the case of a WAW dependency between 

instructions B and A, or the mapping read from the RAT, 

otherwise. The RAW dependency results are used to select the 

appropriate physical register for B’s source register (either the 

value read from the RAT, or A’s destination).  
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The RAT reads start during the second half of stage 1 and 

complete by the end of the first half of stage 2. As soon as the 

RAT reads complete, the RAT write for B’s destination starts. 

The write updates the entry for B’s destination register with a 

free physical register obtained from the free list. During the 

second half of stage 2, appropriate source and destination 

physical register names are selected either from those read 

from the RAT (no dependency between A and B), or those 

provided by the free list for A (dependency between A and B).  

Pipelined superscalar renaming introduces the possibility of 

intra-group and inter-group dependencies among adjacent 

groups as Figure 4 shows. These dependencies must be 

handled appropriately. Superscalar, pipelined renaming entails 

the following actions:   

(1) Starting at the beginning of stage 1, the RAW 

dependencies among the current and the previous rename 

group are detected. Both intra- and inter-group dependencies 

are detected so that the appropriate mapping is assigned to 

each source register. This mapping is either the register name 

that will read from the RAT, or the register name assigned to 

the closest producer. Inter-group RAW dependencies must be 

detected since the previous group’s mappings have not been 

written into the RAT by the time the new group reads from the 

RAT. These pending RAT updates have to be bypassed. RAT 

updates start at stage 2 and do not complete before the end of 

it. Accordingly, reading from the RAT reflects the updates 

performed two rename groups back. The RAW dependency 

comparators’ outputs are priority encoded (design is detailed 

in  [9]) to select the most recently-assigned physical register 
name for the architectural source operand during stage 2.  

(2) Starting at the beginning of stage 1, the source 

architectural registers are decoded and latched to remain stable 

during the RAT reads. The RAT reads, extending over both 

stages, start after decoding. The source’s map RAT read is 

required if no RAW dependency exists. Hence, once the RAW 

dependency checks are finalized, unnecessary RAT reads can 

be stopped to reduce energy consumption. Such optimization 

is desirable since sense amplifiers are a major source of 

RAT’s energy consumption  [6]. The comparators’ outputs are 
NORed to activate the sense-amplifier logic of the associated 

bitlines. If one of the comparators detects a match, NOR’s 

output becomes zero to de-activate the sense amplifiers. 

Decode and bitline precharge latencies are overlapped with 

comparator and NOR latencies. 

(3) Up to issue width (IW) free physical registers are assigned 

to the destination architectural registers by the end of stage 1. 

The names are latched and used in stage 2. These names are 

provided by the register free list, implemented by a circular 

FIFO capable of providing up to IW register names per cycle. 

(4)For updating the RAT, intra-group WAW dependencies are 

detected starting at the beginning of stage 1. Multiple 

instructions may attempt write to the same architectural 

registers within the current group; accordingly, only the latest 

update should be recorded into the RAT. Inter-group WAW 

dependencies must also be detected so that the appropriate 

values are stored in ROB. The WAW dependency check 

results are used to prepare data for RAT updates. To reduce 

energy, unnecessary RAT reads for old mappings can be 

stopped once a WAW dependency is detected. 

(5) Starting at the beginning of stage 1, the destination 

architectural register addresses are decoded and latched to 

remain stable during the RAT reads for the purposes of ROB 

checkpointing and updating the RAT with new mappings. 

Once decoding is completed, RAT reads are initiated for 

reading the old mappings to record them in ROB. RAT 

updates start once the old map reads complete.  

In single-cycle renaming, the SRAM latching delay is 

completely exposed. In the pipelined implementation, part of 

the SRAM latching (Figure 5) is hidden by the pipeline 

latches. Referring to Figure 5, RAT accesses are pipelined as 

follows: (i) during clk1-high, the address is decoded and 

latched, and the bitlines are also pre-charged. (ii) For writes, in 

clk2-high, the write input data are latched and the write 

transaction happens. (iii) For reads, in clk1-high, the bitline 

voltages start to swing and sensed by sense-amplifier whose 

output is then latched. (iv) For a write followed by a read for 

the old mapping, because the read data latch signal defines the 

end of the read operation, it also triggers a write operation.  

A. Scalability of Pipelined Register Renaming 

This section discusses the components along the critical 

path in two-stage renaming, and describes how their latency 

and power scale as a function of the window size (WS) and 

issue width (IW). The components along the critical paths of 

the first and second stages are: (i) Comparators: The width of 

each comparator is Log2(number of architectural registers). 

The maximum number of comparators needed per source 

operand is (2×IW-1). Increasing IW increases the number of 

comparators; however, all comparators work in parallel, hence 

increasing IW does not affect the comparison latency, but 

noticeably increases power. (ii) Priority Encoder: Increasing 

IW increases the latencies of the IW-input priority encoder 

and the (2×IW-1)-input NORs. The encoders are driven by the 

comparators of (i). (iii) Output Multiplexers: The width of 

each multiplexer is log2(WS). The maximum number of 

multiplexers needed per source operand is (2×IW). Increasing 

IW increases the number of pass gates; however, they run in 

parallel, so increasing IW does not affect the multiplexer delay 

significantly, although it noticeably increases power.  

(iv) RAT: non-checkpointed RATs are essentially multi-ported 

register files. RAT access latency grows linearly with entry 

count and quadratically with port count. The RAT size and 

power grow linearly with the entry count and faster than 

linearly and slower than quadratically with port count. For 

checkpointed RATs, previous work has determined 

quantitatively how RAT latency and energy vary as a function 

of WS, IW and GC count  [6]. Increasing WS increases RAT 

entry width, and hence increases delay logarithmically. The 

latency increases exponentially with increasing NoGCs. 

Increasing IW increases latency quadratically as it increases 

port count  [6]. 
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B. Deeper Pipelining 

Using a methodology similar to that used for two-stage 

pipelining, renaming can be pipelined further. However, 

complexity increases rapidly as dependency checks must be 

extended across more groups, and additional bypass paths are 

needed for inter-group dependencies. After the RAT reads 

complete, a set of multiplexers selects the appropriate value. 

For example, Figure 6 shows the organization of a three-stage 

pipelined renaming where a RAT write followed by a read to 

the same entry takes two cycles. In this case, the multiplexers 

that necessarily operate after the RAT reads have one more 

option to select from, making them slower. In general, the 

deeper the pipeline, the wider and slower the final 

multiplexers need to be. Hence, there is a point past which this 

delay becomes detrimental to performance.  

While deeper pipelining can improve performance by 

providing a faster clock, it suffers from performance-

degrading side effects. Due to the extra pipeline stages that 

have to be re-filled, deeper pipelining in the front-end 

increases mispredicted branch penalties and instruction cache 

miss penalties. Hence, deeper pipelining will be useful only if 

performance improvement it provides (faster clock) surpasses 

its side effects  [7]. Executing dependent instructions in 

consecutive cycles is needed for high performance, especially 

for programs with limited parallelism; otherwise, pipeline 

bubbles can cause significant performance loss.  

C. Other RAT Latency Reduction Techniques 

Aside from pipelining register renaming, renaming latency 

can be reduced in several ways: First, the RAT can be 

duplicated to reduce the number of ports on each RAT copy 

reducing latency to some extent. Second, considering that not 

all instructions have two operands and that co-renamed 

instructions are highly likely to have common operands, the 

RAT port count can be reduced at the cost of insignificant IPC 

performance loss. However, this requires a routing network 

whose latency may negate any of the benefits. Third, using 

GC prediction and selective GC allocation, the number of 

RAT GCs can be reduced while maintaining performance  [1]. 

Pipelining is orthogonal to all aforementioned techniques. 

Given a specific design, any or all of the above techniques can 

be used to reduce latency to the desired level if possible. 

IV. EVALUATION  

Section  A details the design and evaluation methodologies. 

Section  B validates that our underlying circuit 

implementations are reasonably tuned. Section  C presents  

simple empirical models for RAT delay and uses it to justify 

why a two-stage pipeline is an appropriate choice for this 

technology. Finally, Section  D analyzes the latency of the 

pipelined renaming unit. 

A. Methodology  

We developed full-custom layouts using the Cadence® tool 

set in a commercial 130 nm technology with a 1.3V supply 

voltage (the best technology available to us at the time of these 

experiments). The key observations can apply, for the most 

part, to smaller technologies. The main differences will be in 

the relative importance of dynamic versus static power.  

We implemented a 4-way superscalar RAT, a width 

representative of the processors built in the given fabrication 

technology and of many modern processors. We assume 64 

and 128 architectural and physical registers respectively, 

common sizes today. We also assume that WS and the number 

of physical registers are the same as the exact implementation 

of the scheduler and the window is orthogonal to this study. 

We assume a RAT with 16 GCs since it has been shown that 

with GC prediction, at most 16 GCs are sufficient to achieve 

performance close to what is possible with infinite GCs  [1].  

We initially used minimum-size transistors, and then 

increased dimensions to achieve latency less than an upper 

bound. We arrived at this upper bound by estimating the delay 

of a 64-bit, 64-entry SRAM with 12 read and four write ports 

using CACTI 4.2  [8]. We used Spectre
TM
 for circuit 

simulations. We report worst-case latency results.  

For delay analysis, we used the FO4 delay metric as 

estimated by formula (1). For the 130 nm technology, FO4 is 

about 40 ps. In typical commercial designs of dynamically-

scheduled, superscalar processors, the optimal pipeline depth 

is around 10-14 FO4 for performance-only optimized designs 

and 24-28 FO4 for power-performance (Energy × delay
2
 

metric) optimized designs  [12]. Given by (2), the logic 

depth/computation delay is calculated by subtracting the 

pipeline logic depth from the pipelining clock overhead 

including clock skew and jitter, and latch delay.  Clock 

overhead including margins for setup time and hold time is 

thus estimated at 4-6 FO4: (i) pulse-mode Latch 1-1.5 FO4/ 

flip-flops 2-3 FO4, (ii) skew 2-4 FO4, and (iii) jitter 1-2 FO4.  

In a custom design flow, most of the clock skew and jitter 

overheads can be hidden by circuit techniques such as time 

borrowing. The latch overhead could be reduced using 

techniques such as pulsed clocks and/or direct domino 

pipelines. Accordingly, a 3 FO4 pipelining overhead is a 

reasonable approximation  [12].  

B. Validation 

This section demonstrates that the proposed circuit 

implementations are reasonably tuned by comparing the 

results to published measurements for a commercial design. 

Unfortunately, to the best of our knowledge no public results 

exist for a two-stage pipelined implementation. Accordingly, 

we used the same design methodology to implement a single-

cycle renaming unit and compared its latency to that of a 

commercial processor implementation.  The latency was 

measured at 28 FO4 for the specific 4-way RAT. By 

overlapping the decoding and wordline select drivers for RAT 

writes with the preceding RAT reads, this delay was further 

reduced to 23 FO4. With a pipeline overhead of 3 FO4, this 

delay is comparable to the clock period of processors 

implemented in 130 nm technology and considered single-

cycle renaming (e.g., 800 MHz SR71010B MIPS). 

C. Two-Stage Pipeline Justification 

Based on our full-custom implementation, we developed a 

FO4 Delay Estimation:  

(360-500) ps/um × 0.13/Ldrawn  , Ldrawn = 0.7 Leff   (1) 

Pipeline depth Pipeline overhead Pipeline length  

(2) 10-14 (FO4) = 

400- 560ps 

3 FO4 = 

120ps 

7-11 FO4 = 

280-440ps 
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simple empirical delay model for single-cycle checkpointed, 

superscalar RATs. To develop the empirical models, we 

applied curve fitting over 60 data points, based on the 

measurements from our physical-level implementations in a 

130nm technology. We present the latency models for the 4-

way RAT; equations (3) and (4) estimate read and write 

latencies. In this model, NOP stands for the number of ports, 

WS for window size, NoGCs for the number of GCs, and IW 

for the issue width. The worst-case relative error of the model 

predictions is on average within 7.8% of the Spectre
TM
 circuit 

simulation results for the data points we used for curve fitting 

(0<=WS<=512, 0<=NoGCs<=16, IW=4). These data points 

cover values of the WS, IW and NoGCs that would be typical 

for modern processors, and model predictions have a rage of 

accuracy that is acceptable for architectural-level studies. For 

predicting the delay of the configurations outside of this range, 

extrapolation can be used. However, the extrapolation results 

are often subject to greater uncertainty.  

The model given by (3) and (4) provides an upper bound on 

RAT read and write. We used this model to decide how many 

pipeline stages would be appropriate for the given technology.  

In particular, we first estimated an upper bound (X) on non-

pipelined renaming latency. We then considered the clock 

frequency of the Pentium 4 processor implemented in a 130nm 

technology  [11] as the target clock frequency (Z) that the 

specification is supposed to meet.  Diving the two and 

rounding (Floor (Z/X)) suggests a two-stage pipeline. 

D. Latency Measurements 

Finally, we report the latency measurements for the two-

stage renaming and show how much faster it is compared to 

the single-cycle renaming. The latencies of the components in 

FO4 are given by (5). The critical path latencies of the first 

and second stages are as follows: (i) The critical path of the 

first stage comprises the latencies of the comparator, the NOR 

gate within the priority encoder, and the partial RAT read. The 

first stage latency measured at about 9.2 FO4. (ii) The critical 

path of the second stage comprises the latencies of the partial 

RAT read delay, the RAT write excluding encoding and 

wordline select. This is measured at 9.5 FO4. Accordingly, the 

logic delay in each stage is about 9.5 FO4. By adding up the 

pipelining overhead of 3 FO4, the overall pipeline depth, 

defining the clock frequency, is about 12.5 FO4. In brief, the 

latency results show that the processor’s logic depth is reduced 

from 23 to 9.5 FO4 going from one to two-stage renaming.  

V. CONCLUSION 

The register alias table (RAT), the core of register 

renaming, is a performance-critical component of modern 

processors because it is read and updated by all instructions in 

order as they are decoded. Register renaming latency increases 

as a function of the issue width, window size and number of 

recovery checkpoints. The RAT is on the processor’s critical 

path and can limit the processor clock frequency. To avoid 

restricting of processor’s clock frequency, pipelining of the 

register renaming logic is a solution. This work presents a full-

custom, two-stage register renaming implementation in a 

130nm fabrication technology.  Latency analyses show that 

the renaming logic depth is reduced from 23 to 9.5 FO4 going 

from single-stage to two-stage renaming for a 4-way 

processor. In our two-stage pipelined implementation, 

pipelining enables the early termination of RAT reads to 

reduce power consumption. Furthermore, this work 

contributes to other proposed architectural techniques that 

consider pipelined renaming as their requirement  [4] [7]. 
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(5) 

6-64 decoder and wordline driver 5 FO4 

Latch delay 2.5 FO4 

Wordline activation to sense-amp output 2.4  FO4 

Wordline activation to write in data cell 2.8 FO4 

8-bit comparator 3 FO4 

8-bit dynamic NOR 3 FO4 

output Multiplexer 2.5 FO4 

Precharge 3 FO4 

 

DelayRead=1.7543×e
0.1524×NoGCs+2.77×ln(WS) + 0.0835× NOP2 + 

0.4908×NOP+ 449.31   

DelayWrite=5.5818×e
0.1322×NoGCs+13.946×ln(WS)+0.1664× NOP2 + 

1.8378× NOP+ 449.31 

NOP = 4×IW                    NOP>16 

(3) 

 

(4) 


