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Abstract—This paper investigates how the latency and energy
of register alias tables (RATs) vary as a function of the number of
global checkpoints (GCs), processor issue width, and window size.
It improves upon previous RAT checkpointing work that ignored
the actual latency and energy tradeoffs and focused solely on
evaluating performance in terms of instructions per cycle (IPC).
This work utilizes measurements from the full-custom check-
pointed RAT implementations developed in a commercial 130-nm
fabrication technology. Using physical- and architectural-level
evaluations together, this paper demonstrates the tradeoffs among
the aggressiveness of the RAT checkpointing, performance, and
energy. This paper also shows that, as expected, focusing on IPC
alone incorrectly predicts performance. The results of this study
justify checkpointing techniques that use very few GCs (e.g.,
four). Additionally, based on full-custom implementations for the
checkpointed RATs, this paper presents analytical latency and
energy models. These models can be useful in the early stages of
architectural exploration where actual physical implementations
are unavailable or are hard to develop. For a variety of RAT
organizations, our model estimations are within 6.4% and 11.6%
of circuit simulation results for latency and energy, respectively.
This range of accuracy is acceptable for architectural-level studies.

Index Terms—Computer architecture, delay and power mod-
eling, implementation, microprocessors, register alias table (RAT).

I. INTRODUCTION

T HE Register Alias Table (RAT), the core of register re-
naming, is a performance-critical component of modern

dynamically-scheduled processors. Register renaming elimi-
nates false data dependencies and increases instruction level
parallelism (ILP). The RAT is read and updated by all instruc-
tions in order as they are decoded. Hence, it must operate at the
processor’s clock frequency or it must be pipelined.

RAT complexity and size and, hence, latency and energy de-
pend on several architectural parameters: The wider the issue
width, the more heavily ported the RAT must be. Furthermore,
as the instruction window size increases, so does the number
of physical registers and, hence, the width of each RAT entry.
RAT complexity and size also increase with the number of si-
multaneous threads supported by the processor. In modern pro-
cessors, RAT complexity is increased further by the use of spec-

Manuscript received March 30, 2008; revised August 25, 2008. First pub-
lished July 21, 2009; current version published February 24, 2010. This work
was supported in part by an NSERC Discovery Grant, by a Canada Foundation
for Innovation Equipment Grant, and by funds from the University of Toronto.
Parts of this work appeared in a paper with the same title in the IEEE Interna-
tional Symposium on Low Power Electronics and Design, August 2008.

The authors are with the Department of Electrical and Computer Engineering,
University of Toronto, Toronto, ON M5S 3G4, Canada (e-mail: elham@eecg.
toronto.edu; moshovos@eecg.toronto.edu; veneris@eecg.toronto.edu).

Digital Object Identifier 10.1109/TVLSI.2008.2012128

ulation, control flow, or otherwise. On mispeculations, the RAT
content must be restored such that it does not contain any of
the mappings introduced by incorrectly-speculated instructions.
Accordingly, modern RAT designs incorporate a set of global
checkpoints (GCs) to recover from mispeculations. A GC con-
tains a complete snapshot of all relevant processor states in-
cluding the RAT and, thus, can be used to recover from con-
trol-flow mispeculations. Recovery at an instruction using a GC
is “instantaneous,” i.e., it requires a fixed, low latency.

In early processor designs, GCs were allocated to every spec-
ulated branch [26]. This technique was feasible because very
few GCs were sufficient to achieve high performance. Modern
processors, however, use much larger instruction windows (e.g.,
128 versus 32) and, hence, require considerably more GCs to
maintain high performance. Accordingly, recent work assumed
that the policy of allocating a GC to every speculated branch
is impractical for modern processors [1], [2], [8], [18]. These
studies developed GC count reduction techniques focusing
on instructions-per-cycle (IPC) performance evaluation to
compare alternatives. However, it is well understood that IPC
does not predict the performance of the techniques that impact
the clock period. Determining the actual relation between
the number of GCs and performance is imperative for under-
standing whether existing state-of-the-art RAT checkpointing
solutions work sufficiently well or whether further innovations
are required.

This paper improves upon previous RAT checkpointing work
by investigating how increasing the number of GCs affects the
RAT latency and, thus, actual performance (execution time).
Specifically, this work studies how the latency and energy of
the RAT vary as a function of the number of GCs, the issue
width, and the window size. The various RAT configurations are
implemented in a commercial 130-nm technology. The results
show that only a limited number of GCs can be implemented
without impacting the clock cycle significantly, thus reducing
overall performance. In addition, as energy consumption has be-
come a major design consideration, this work also studies how
energy varies for various checkpointing designs. To the best of
our knowledge, no previous work determined RAT latency and
energy variation trends as a function of the aforementioned ar-
chitectural parameters.

Unlike previous work that primarily focused on architec-
tural-level evaluation, this paper relies on both physical- and
architectural-level evaluations to study the actual performance
and energy impact of GC count. For the architectural-level eval-
uation, both conventional and state-of-the-art confidence-based
methods for selectively allocating GCs are considered [3]. This
paper shows that ignoring the actual delay of the RAT incor-
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rectly predicts performance: In particular, performance does not
monotonically increase with GC count as IPC measurements
suggest. Two components determine actual performance: First,
with more GCs, fewer cycles are spent recovering from mispec-
ulations, hence improving performance. Second, introducing
more GCs increases RAT latency and, hence, increases the
clock period and decreases performance. In most cases, using
very few GCs (e.g., four) leads to optimal performance.

Previous work relied on analytical models of register files,
which were not adjusted to appropriately model a checkpointed
RAT. To facilitate further RAT checkpointing studies, this paper
presents analytical models for the latency and energy of the
checkpointed RATs. These models can predict RAT latency
and energy variation as a function of several parameters. These
models can help computer architects estimate the latency and
energy of various RAT organizations without involving in the
actual physical-level implementation. These models are useful
during early architectural-level exploration where physical-level
implementation is either impossible to develop or cannot be
afforded due to time and/or cost constraints. The model estima-
tions are within 6.4% and 11.6% of Spectre circuit simulation
results for the latency and energy, respectively. This range of ac-
curacy for analytical models is acceptable for architectural-level
studies.

In summary, this paper makes the following contributions:
1) It presents two full-custom implementations for the check-
pointed RATs of 4- and 8-way dynamically scheduled super-
scalar processors in a 130-nm CMOS technology. These two
implementations are representative of two commonly assumed
checkpointing techniques for the RATs. The implementations
differ in the way GCs are organized, allocated, and de-allocated.
2) For all RAT operations, it quantitatively determines the RAT
latency and energy as a function of the number of GCs, issue
width, and window size. 3) Using architectural-level simula-
tions, it estimates how performance is affected by RAT latency
for two RAT implementations taking a state-of-the-art selective
GC allocation policy into consideration [3]. 4) It presents ana-
lytical models for the RAT latency and energy and compares the
model estimations against physical-level simulation results.

The rest of this paper is organized as follows. Section II re-
views the RAT’s role in modern processors as well as related
work. Section III discusses two checkpointed RAT implemen-
tations. Section IV presents the analytical models for the RAT
latency and energy. Section V presents the results of the phys-
ical- and architectural-level evaluations. Additionally, it com-
pares the simulation results against model estimations. Finally,
Section VI summarizes our findings.

II. RAT BACKGROUND

This section provides an overview of register renaming, RAT
implementations, and RAT checkpointing. Moreover, this sec-
tion reviews related work on the RAT implementation and RAT
checkpoint reduction.

A. Role of the RAT in Register Renaming

The register renaming logic maps the architectural reg-
ister names used by instructions into the physical registers
implemented in the processor. Register renaming assigns a

Fig. 1. Example of register renaming.

different physical register for each write to the same architec-
tural register. As a result, this mapping removes false name
dependences—write-after-write (WAW) and write-after-read
(WAR)—that artificially limit ILP. The number of physical
registers is larger than the number of architectural registers.
Physical register names are recycled when their values are no
longer needed (i.e., all instructions that might consume the
values have executed). For each architectural destination reg-
ister, renaming logic allocates a physical register and records
this mapping in the RAT so that the subsequent architectural
source registers will correctly reference the physical registers
holding their latest value. Conceptually, the RAT is a table
indexed by architectural register names, and each RAT entry
contains a physical register name. Fig. 1 shows how false
data dependences are removed by register renaming for the
architectural register R2.

Renaming a single instruction through the RAT proceeds
as follows: 1) reading the physical register names for the
source register operands; 2) reading the current mapping of the
destination register; this old mapping is saved in the reorder
buffer (ROB) to support speculative execution (addressed in
Section II-D); and 3) acquiring a physical register name from
the pool of free registers and updating the RAT for establishing
the new mapping of the destination register.

B. RAT Implementations

Two commonly used RAT implementations are based
on static random access memory (SRAM) or content ad-
dressable memory (CAM) structures. This paper focuses on
the SRAM-based RAT implementation (e.g., used in MIPS
R10000 [26]). This implementation is similar in structure to
a multi-ported register file and has as many entries as the
number of architectural registers. The physical register name
(or address) for an architectural register name is read/updated
via a direct access to the corresponding RAT entry. The RAT
entry width is equal to the physical register address (e.g., 7
bits for 128 physical registers). The CAM-based RAT has as
many entries as the number of physical registers; each RAT
entry stores the architectural register name assigned to a given
physical register in addition to a valid bit indicating whether
this RAT entry corresponds to the most recent instance of the
architectural register [19]. In this implementation (e.g., used in
the Alpha 21264 [13]), a RAT lookup involves an associative
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Fig. 2. RAT characteristics.

search on the CAM content using the architectural register
address as the key. An investigation of the CAM-based RAT’s
latency and energy characteristics can be found in [22].

C. RAT Port Requirements

This work assumes a MIPS-like instruction set architecture,
where the instructions may have at most two source registers
and one destination register. Given this, the SRAM-based RAT
needs to support reads and writes per cycle, where
is the number of instructions required to be renamed per cycle.

read ports are used to rename the two source operands, and
another read ports are needed to read the current mappings of
the destination operands for the purpose of recovery using ROB
( Section II-D). Finally, the write ports are used to write new
mappings for the destination registers. Fig. 2 shows a high-level
block diagram of the RAT including its inputs and outputs.

D. Checkpointing Mechanisms: GCs Versus ROB

Modern processors utilize control-flow speculation to
improve performance. When speculation is incorrect, all in-
structions along the mispeculated path must be squashed, i.e.,
any changes made by these instructions must be reversed. The
fail-safe recovery mechanism, the ROB, allows recovery at any
instruction including mispeculated branches. By maintaining a
complete log of all changes made to the RAT, the ROB supports
recovery at any instruction. Squashing an instruction amounts
to reversing any changes it has made to the RAT. This recovery
is done by writing back to the RAT the previous physical
register name for the instructions’ destination registers. To
restore the RAT to the state it had at a particular instruction,
all subsequent changes must be undone by traversing the ROB
log in reverse order. Accordingly, in this recovery mechanism,
reversing the effects of each mispeculated instruction requires
time proportional to the number of squashed instructions.

Since branch mispeculations are relatively frequent, proces-
sors incorporate a number of GCs that are allocated at the de-
code time. A GC contains a complete snapshot of all relevant
processor states, including the RAT. Using GCs, the previous
state of all relevant processor components is retrieved “instan-
taneously,” i.e., with a fixed, low latency. Recovery at a specific
instruction without a GC can be done either through ROB or by
recovering at an earlier GC and then re-executing all other in-
structions in between.

E. RAT Operations

The RAT operations are read (lookup), write (update), GC al-
location, and GC restoration. Section II-A discussed RAT reads

and writes. The other two operations are related to the RAT
checkpointing function. A GC is taken by copying the main RAT
bit into one of the backups (GC allocation). RAT recovery is
done by copying one of the RAT backups (GCs) to the main
RAT bit (GC restoration). The RAT checkpointing function is
further discussed in Section III-B.

F. GCs and Performance

Earlier processors used few GCs (e.g., four) that were allo-
cated at every predicted branch [26]. Few GCs were sufficient
given the relatively small instruction window sizes (e.g., 32).
However, modern processors use a lot larger windows and,
hence, have a lot more unresolved branches. Moreover, modern
processors use other forms of speculation such as memory
dependence prediction and, thus, may require even more GCs
(control-flow mispeculations remain dominant). Previous work
showed that 24–48 GCs would be needed to maintain high per-
formance for processors with 128 or more instructions in their
windows [1], [13]. Assuming that embedding a large number
of GCs into the RAT significantly increases RAT latency,
previous work proposed using confidence estimators to allocate
GCs selectively [11] and throttling control-flow speculation to
achieve higher performance with four or fewer GCs [3]. While
previous studies have assumed that increasing the number of
GCs degrades performance and energy, they have not quantified
this degradation as a function of the number of GCs. Instead,
they have relied on IPC performance evaluation. Accordingly,
it is not clear whether previous work has sufficiently reduced
the number of required GCs and whether the conclusions are
valid. This paper complements previous RAT checkpointing
work by quantifying the actual performance (execution time)
impact, taking into consideration both IPC and latency.

G. Checkpointed RAT: Related Work

Related work falls into two categories: The first category in-
cludes work on measuring and modeling SRAM-based RAT en-
ergy and latency. Bishop et al. present an implementation for a
RAT with GCs for single-issue processors in a 350-nm tech-
nology and report its worst case delay [5]. De Gloria et al. re-
port the latency of a 4-way superscalar RAT with embedded
cross-bundle dependence detection logic and a stack of four GCs
in a 350-nm technology [9]. Our work complements previous
work in that it studies RAT latency and energy as a function
of several architectural parameters as opposed to focusing on a
particular design.

The second category includes work on reducing the number
of RAT GCs or RAT ports while maintaining performance (e.g.,
[14], [20]). This paper complements these studies by focusing
on both IPC and latency. As Section V shows, the tradeoffs are
different when actual RAT latency is taken into consideration.

III. PHYSICAL-LEVEL DESIGN

This section presents two checkpointed RAT designs that are
representative of early and recent proposals, respectively. Ad-
ditionally, this section discusses our physical-level implemen-
tation of the SRAM-based checkpointed RAT.
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Fig. 3. RAT checkpointing. (a) Concept. (b) Implementation.

Fig. 4. Checkpointing organizations. (a) SAB. (b) RAB.

A. Checkpointed RAT Designs

Fig. 3 illustrates the organization of a checkpointed RAT.
Fig. 3(a) shows the conceptual organization where multiple RAT
copies exist. Fig. 3(b) shows how, at the physical-level imple-
mentation, GCs can be interleaved and embedded into the RAT
next to each main bit. Although GCs provide low-latency re-
covery, they affect RAT latency and energy whether the GCs
are embedded into or placed out of the RAT. This increase is
primarily due to the load increase that results from connecting
GCs to the main RAT cell (discussed in Section III-B).

Two checkpointed RAT designs have been assumed in pre-
vious work. These designs differ in the way they implement
GC allocation and GC restoration. The first design organizes
the GCs in a bidirectional shift register. The second design or-
ganizes the GCs in a random access buffer. For clarity, the terms
serial access buffer (SAB) and random access buffer (RAB)
will be used to refer to these implementations. SAB requires
point-to-point connections, whereas RAB provides maximum
GC management flexibility.

Fig. 4(a) and (b) show the organizations of the RAT cells for
SAB and RAB implementations, respectively. Every RAT main
bit cell (marked as M) has read and write ports; these
ports are not shown in Fig. 4. The GC cells are marked as . In
SAB, GC allocation is done by shifting the bits to the right,
copying the RAT bit value to the adjacent vacant position. In
SAB, restoring from a GC may require multiple steps since the
appropriate value must be shifted into the RAT main bit. For ex-
ample, restoring from requires two left shifts. GC restoration
in SAB may take multiple cycles depending on the GC count.

In RAB, the GCs are organized in a random access buffer;
hence, GC allocation latency and GC restoration latency are
nearly the same for all GCs. If the number of GCs becomes
large, recovery using RAB is much faster than recovery using
SAB since no shifting is needed. Both designs require external
controllers to track the number of available GCs and to coor-
dinate GC operations. For SAB, the controller keeps track of
the number of GCs that are currently in the shift registers. For
RAB, the controller tracks the status of each GC. SAB is more
compact than RAB since it requires fewer external signals: RAB
requires one read/write control signal per individual GC, while
SAB only requires a global shift left/right signal.

Fig. 5. (a) RAT main cell. (b) Layout of the main RAT bit and GCs. (c) RAB
GC. (d) SAB GC.

B. Physical-Level Implementation

A non-checkpointed RAT is simply a multi-ported register
file. A checkpointed RAT, however, is a multi-ported register file
with embedded GCs. The checkpointed RAT circuit consists of
the precharge and equalization circuitry, sense amplifiers, write
drivers, control circuitry, and decoders, along with an array of
RAT cells connected by bitlines and wordlines. Fig. 5(a) shows
the main RAT cell comprising two back-to-back inverters and
several read and write ports. Fig. 5(b) shows a complete RAT
cell with 16 GCs. Each GC requires an SRAM cell. The SAB
and RAB GC cells are shown in Fig. 5(c) and (d), respectively.

The multi-ported RAT cell uses one wordline and two bit-
lines per each write or read port. Multiple read operations may
access the same RAT entry. In RAB, all GCs are connected via
pass gate/gates to the main cell, whereas in SAB, only one GC
is connected to the main cell directly. Hence, the main cell must
be capable of driving a capacitance proportional to the number
of ports and connected GCs. To protect the data stored in the
main cell during multiple accesses, decoupling buffers isolate
the RAT main cell and the read ports [28]. Since the GCs are
connected to the main cell as the read ports do, the buffers also
isolate the GCs. Due to these isolating buffers, separate write
bitlines are required. Differential read and write operations
are used because they offer better power, delay, and robust
noise margins. To reduce power, the following techniques
are employed: 1) pulse operation for the wordlines, for the
periphery circuits, and for the sense amplifiers; 2) multi-stage
static CMOS decoding; and 3) current-mode read and write
operations.

Fig. 5(c) and (d) show RAB and SAB GC cells, respectively.
In SAB, GCs are organized as bi-directional shift registers with
connections between adjacent cells; only one of the GCs is con-
nected to the main RAT bit through pass gates. In SAB, a GC
cell consists of a register and a multiplexer controlling the shift
direction. The SAB’s shift register uses two non-overlapping
clocks. The SAB requires two external control signals irrespec-
tive of the number of GCs. In RAB, each GC cell is connected to
the RAT main cell through separate pass transistors. Two pairs
of pass transistors are used to copy the value from the RAT main
cell to the GC and vise versa. Each RAB GC cell needs two ex-
ternal control signals.
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IV. ANALYTICAL MODELS

Analytical models help computer architects estimate the la-
tency and energy of architectural alternatives during architec-
tural-level exploration. To the best of our knowledge, no analyt-
ical model exists for the checkpointed RATs. Hence, previous
work relied on analytical models for register files. However, reg-
ister file models do not consider the impact of GCs on latency
and energy. This section presents analytical models for the worst
case latency and energy of the SRAM-based checkpointed RAT
implementation. Computer architects can use the models to es-
timate the latency and energy of RAT organizations in lieu of
a physical-level implementation. Architectural-level power-per-
formance simulators such as Wattch [6] and Simplepower [25]
can incorporate these models as well.

This section is organized as follows: Section IV-A discusses
the model-developing methodology and the model’s input pa-
rameters. Sections IV-B and IV-C present the latency and energy
models, respectively.

A. Methodology

To model latency and energy, we decompose the design into
equivalent RC circuits. Our analysis methodology is similar to
that of CACTI [24]. RC circuit analysis requires estimations
of the gate capacitance , the diffusion capacitance

, the overlap capacitance , the equiva-
lent on resistance for nMOS transistors - , and the
equivalent on resistance for pMOS transistors - .
Information such as transistor sizes and interconnect lengths,
required for capacitance and resistance estimations, is extracted
from the full-custom layout.

For the base RAT, the transistors can be sized to achieve dif-
ferent speed/energy tradeoffs. In our implementation, we sized
the transistors for the base 4- and 8-way RATs (addressed in
Section V-A) such that the RAT read delay is less than the upper
bound estimated by CACTI 4.2 [24]. In our models, the geom-
etry and transistor sizes of the base 4- and 8-way RAT cells (cell
port requirements are addressed in Section II-B) are extracted
from our full-custom layout.

The models do not account for external loads since these
loads are independent of the RAT implementation. Extending
the models to predict latency and energy for other technologies
is feasible, but it is beyond the scope of this work.

Table I lists the model’s input parameters. The parameters fall
under two broad classes: physical-level organizational parame-
ters and technology-specific parameters. The physical-level or-
ganizational parameters are as follows: the number of entries
(NoE), the width of each entry (WoE), the number of read ports
(NoRP), the number of write ports (NoWP), and the number of
GCs (NoGCs). In our analytical models, the relations among
the physical-level organizational parameters and the architec-
tural-level parameters are given by (1)–(4)

Number of physical registers (1)

Number of architectural registers (2)

Number of source operands per instruction

Number of destination operands

per instruction issue width (3)

TABLE I
ANALYTICAL MODEL INPUT PARAMETERS

Number of destination operands

per instruction issue width (4)

B. Delay Model

This section presents the analytical worst case delay model
for the checkpointed SRAM-based RAT. For clarity, labels are
assigned to the elements in the critical path. These labels are
used as subscripts to specify the corresponding resistance and
capacitance. The type of gates (e.g., inverter) and the type of
capacitors (e.g., drain , source , and gate ) are also denoted
in the subscripts.

Our RAT design is based on a synchronous multi-ported
SRAM, i.e., a clock starts off the accesses. The SRAM consists
of six main subblocks: a decoder to decode the input address, a
memory core of bit cells arranged in rows and columns, a read
logic comprising a read-column differential sense amplifier and
output data drivers, a write logic to drive data onto the bitlines,
and read and write control logic to control the write and read
logic, respectively. The RAT read and write delays are given
by (5) and (6), respectively. The following sections present the
per component delay analyses.

(5)

(6)

1) Component delay—Decoder: A separate decoder is
needed per read port and per write port. Fig. 6 shows the
decoder’s high-level architecture, critical path, and equiva-
lent circuit. To estimate the delay, transistor sizes
and interconnect lengths along the critical path are required.
These parameters are a function of WoE, NoRP, and NoWP.
Increasing the NoRP, NoWP, and NoGCs increases the RAT
cell geometry and interconnect lengths between subsequent
rows and columns.

The decoder has a hierarchical architecture. In the predecode
stage, each 3-to-8 decoder generates a 1-of-8 code for every
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Fig. 6. (a) Decoder and wordline driver. (b) Equivalent critical path. (c) Equivalent �� circuit.

three address bits. If the number of address bits is not divisible
by three, a 2-to-4 decoder or an inverter is used. Each -to-
decoder consists of NAND gates and inverters to complement
the address inputs. In the second stage, the predecoder outputs
feed NOR gates. The decoder delay is the interval between the
moment the address input passes the INV(E1)’s threshold voltage
and the moment the NOR(E3)’s output reaches the threshold
voltage of the following NAND (E4). Equations (7)–(12) report
the number of address bits , the number of 3-to-8 de-
coders , the number of NOR gates , and the NOR

gate’s fan-in - as a function of the model’s input
parameters. Equations (9), , and (10), , show if an
additional 2-to-4 decoder or an inverter is required when is
not divisible by three. Equation (13), - - , calculates the
number of NOR gates driven by each NAND gate. Given by (14),
the length of the wire between two NOR gates fed by a specific
NAND gate of the predecode stage is a function of the RAT cell’s
height and NoGC. The corresponding resistance and capacitance
are calculated by (15). Equations (17)–(19) calculate time
constants for the circuit shown in Fig. 6(c)

(7)

(8)

(9)

(10)

(11)

- (12)

- - if is divisible by (13)

in m wire length between two gates

fed by the same gate

of the predecoder

Height of multi-ported cell

- -

(14)

in ohms

in farads in m (15)

- -
(16)

- -
(17)

- -

(18)

- -

(19)

2) Component delay—Wordline driver: Fig. 6 shows the crit-
ical path along the wordline driver and the inverter chain fol-
lowing it. The equivalent circuits [(20)-(22)] for the crit-
ical path is shown in Fig. 6(c). The NAND (E4) inputs are the
decoder output and the operation select input (read, write, or
“no operation”). The worst case delay occurs when one of the
NAND inputs turns off and the last column’s pass transistor
turns on. Each wordline driver consists of a NAND gate fol-
lowed by an INV or an INV chain, depending on the wordline ca-
pacitance. Wordline capacitance (23) depends on the number of
pass transistors along it . Furthermore, the wordline ca-
pacitance depends on , the interconnect length between the
wordline driver and the SRAM’s last columns. is a function
of NoGCs, the SAB cell’s width, and the multi-ported SRAM
cell’s width. , given by (24), is used to estimate the equiva-
lent resistance and capacitance required in (25).

- -

(20)

- -
(21)

- -
(22)

(23)

width of multi-ported

cell

width of a SAB GC cell

(24)

- -
(25)
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Fig. 7. Building blocks: (a) Multi-ported SRAM cell and its connection with a SAB GC cell. (b) Write driver. (c) Sense amplifier. (d) �� equivalent circuits.

3) Component delay—Bitline delay: This section discusses
the components contributing to the bitline delay for read and
write operations. The reading from or writing to a row is pre-
ceded by precharging all bitlines—bitlines (BLs) and bitline
bars (BLBs)—to and the selection of a row by the de-
coder. The bitline precharge time is designed to be hidden under
the address decoding time to achieve shorter read/write access
time. As shown in Fig. 7(b), a wordline and a set of BLs/BLBs
are selected to drive the contents of memory cell(s) to the sense
amplifier for a read operation or to the write driver(s) for a
write operation. During a read, when the wordline goes high,
one of the pull-down transistors of the back-to-back inverters
will begin to conduct, discharging BL or BLB. Column isola-
tion pMOS transistors are turned on to allow the voltage differ-
ence between BL and BLB to develop to the sensing voltage (

), helping the amplifiers to quickly sense the data. The BL
delay of the read operation is the time interval between the mo-
ment the wordline goes high and the moment one of the bitlines
reaches the voltage below its maximum value .

The delay of the latch-based sense amplifier, shown in
Fig. 7(c), consists of the latch and buffer delays. The latch
delay depends on the voltage gain and the BL swing’s speed.
The latch’s amplification delay is proportional to the logarithm
of the required gain and the load on the amplifier outputs
[4]. For a gain of about 20 with only the self-loading of the
sense amplifier, [4] reports an amplification delay of about two

fan-out-of-4 (FO4) inverter delays. We use the same estimation
for the sense amplifier delay in our models.

Write drivers pull down the precharged BL/BLB to zero. As
shown in Fig. 7(b), two nMOS transistors connect the write cir-
cuits to the write BL/BLB during write cycles. The write driver’s
critical path consists of an INV, a NAND, and another INV. The
final inverter feeds the gate of an nMOS isolator transistor. The
worst case BL delay for a write operation is the time interval
between the moment that wordline goes high and the moment
the cell content is inverted ( should be a very low voltage
near zero). Fig. 7(d) shows the equivalent circuit along the
critical path for read and write operations (26)–(35).

4) Operation delay: The switching delay from input to
output is referred to as propagation delay that is the time
required for the output to reach 50% of its final value when
the input changes. The output follows an exponential trend

, and the time it takes for the output
to reach is . The read and write delays are given
by (36) and (37), where the time constants correspond to
the equations with the same numerical subscript

(36)

(37)
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(26)

Height of multi-ported cell (27)

(28)

(29)

(30)

(31)

(For more details, refer to the RC tree analysis [24].)

(32)

- - (33)

- - (34)

- - (35)

C. Energy Model

The four sources of power dissipation are as follows: First
is the dynamic switching power due to the charging and dis-
charging of the circuit capacitances. Second is the leakage
power from the reverse-biased diodes and subthreshold con-
duction. Third is the short-circuit current power due to the finite
signal rise/fall times. Fourth is the static biasing power found in
some types of logic styles (e.g., pseudo-nMOS). For the given
technology, circuit simulations suggest that the first two are the
principal sources of energy consumption.

1) Dynamic power: Dynamic power is the result of the gate
output transitions. Output transitions cause the capacitive load
driven by the gate to be charged or discharged. To calculate
approximately the capacitive load that is required for the en-
ergy per operation estimation, the gate (e.g., NAND) and inter-
connect capacitances in the signal path are added up. The en-
ergy dissipated per transition (0-to-1 or 1-to-0) is given by (38),
where is the load capacitance, is the supply voltage, and

is the output’s voltage swing

(38)

The analytical energy models use the capacitance estimations
of the delay analysis. For instance, the decoder energy is
calculated by adding up the gate and interconnect capacitances
along the critical path [12].

2) Leakage power: To calculate the leakage current in a
MOSFET, like [17], we used the model proposed by Zhang et
al. [27] given by (39)

(39)

As shown in [17], for a given threshold voltage and
temperature , all terms except the width are constant
for all the transistors in a given fabrication technology. Hence,
(39) can be reduced to (40) where is the leakage current of a
unit-width transistor at a given and

(40)

When stacks of transistors (transistors connected in series
drain to source) exist in a design, leakage current reduces sig-
nificantly [17]. The leakage characteristics of nMOS and pMOS
transistors can be different from each other in a given fabrication
technology. We assume that the and for
the given technology are available to the models. For leakage
power estimation, we follow the methodology suggested in [17].
As an example, we discuss how the memory core’s leakage cur-
rent for the idle (or precharge) state is calculated. This memory
core is assumed to comprise single-port SRAM cells similar in
structure to the cell shown in Fig. 7(a). During the idle time,
all wordlines are inactive, and BLs and BLBs are precharged to

. We identify the off transistors during idle time and add up
their leakage current as calculated in (41) and (42)

(41)

(42)

The same methodology is used for other components. Multi-
plying by gives us the leakage power estimation.

V. EVALUATION

This section discusses physical- and architectural-level eval-
uation results. Section V-A presents the physical-level results
and, then, Section V-B builds upon these results, taking into con-
sideration actual program behavior. Section V-D compares the
model estimations against the circuit measurements.

A. Physical-Level Evaluation

1) Design assumptions and methodology: The base 4-way
RAT has 12 read ports and 4 write ports, and the base 8-way
RAT has 24 read ports and 8 write ports. These base RAT con-
figurations include no GCs. We also assume that 64 architec-
tural registers are available, typical of modern load/store archi-
tectures. Modern processors have about 128 physical registers.
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However, future designs may include more physical registers
to support larger scheduling windows and/or multiple threads.
Hence, we vary the number of physical registers from 128 to
512. We focus on RAT designs with 0, 4, 8, or 16 GCs since
previous work shows that, with GC prediction and selective GC
allocation, 16 GCs are sufficient to achieve performance close
to the performance achievable with an infinite GCs [1].

We developed full-custom layouts for both designs using
the Cadence tool set in a commercial 130-nm fabrication tech-
nology with a 1.3-V supply voltage. For circuit simulations, we
used Spectre, a vendor-recommended simulator. In this section,
the worst case delay and energy values are reported.

Circuit designs can be tailored to achieve different latency
and energy tradeoffs. In an actual commercial design, a target
latency and/or energy is decided and used as a specification for
tuning the individual components. In lieu of an actual specifica-
tion for the target operating frequency, we used CACTI 4.2 [17]
to obtain a reasonable upper bound on delay. CACTI is an inte-
grated cache-access-time cycle-time area and power modeling
tool that is commonly utilized by computer architects. Using
CACTI, for the base 4-way RAT, we determined an upper bound
on the critical path delay by estimating the delay of a 64-bit
64-entry SRAM with 12 read ports and 4 write ports. Similarly,
we estimated the delay of a 64-bit 64-entry SRAM with 24 read
ports and 8 write ports to determine an upper bound on the crit-
ical path delay for the base 8-way RAT. These upper bounds
are reasonable approximations since the base non-checkpointed
RAT designs are identical to register files. However, the data
width of the register files modeled by CACTI is larger. To fur-
ther corroborate these RAT delay estimations, we also consid-
ered the clock periods of processors built in 130-nm fabrica-
tion technology (e.g., 800-MHz SR71010B MIPS) given that a
single-cycle register renaming has been assumed.

2) RAT delay: Fig. 8 shows RAT read and write delays for
RAB and SAB as a function of the issue width, the window size,
and the number of GCs. Fig. 8(a) and (b) show latencies of the
4- and 8-way superscalar RATs, respectively. As expected, RAT
delay increases with increasing the window size, the issue width,
and the number of GCs for both implementations. Adding more
GCs increases delay, more so for RAB. The read and write oper-
ations of RAB are slower than those of SAB because, in RAB,
the main RAT bit is connected via pass transistors to all GCs.
The increase due to additional GCs is more pronounced for the
4-way superscalar RAT. The delay of the 8-way RAT, however,
is dominated by the load of the extra read ports and, hence, GCs
have less impact on overall latency.

To comment on the RAT delay variation as a function of
the number of GCs, we focus, for instance, on SAB-512 and
RAB-512. We compare the read and write delays for RATs with
4, 8, or 16 GCs with those of the non-checkpointed RAT. SAB
RAT reads are 0.5%, 1.6%, and 5% slower depending on the
number of GCs; SAB RAT writes are 1.8%, 4.8%, and 13.8%
slower. RAB RAT reads are 0.8%, 2.7%, and 9.3% slower,
whereas RAB RAT writes are 2.7%, 8%, and 25.3% slower,
respectively. A SAB RAT with 16 GCs is faster than a RAB
RAT with four GCs. These results suggest that a RAB RAT
must improve IPC considerably over a SAB RAT to improve
real performance.

Fig. 8. RAT read delay and RAT write delay as a function of the number of
GCs with window sizes of 128, 256, and 512. (a) 4-way. (b) 8-way.

Fig. 9. Clock frequency as a function of the number of GCs for window sizes:
128, 256, and 512. (a) 4-way. (b) 8-way.

3) Operating frequency: In the simplest possible implemen-
tation, the RAT operates at the same frequency as the processor.
In this implementation, instructions read from the RAT and then
write new mappings back to it within a single cycle. Alterna-
tively, the RAT can be pipelined to achieve a higher operating
frequency at the expense of increased complexity and hardware
cost. This paper focuses on single-cycle register renaming as
this represents a reasonable and common design point. To fur-
ther support the validity of this assumption, we present RAT la-
tency in terms of the FO4 inverter delay. For instance, consider
the 4-way RAT with 12 read and 4 write ports and no GCs. For
the 130-nm fabrication technology that we use, the FO4 delay,
measured by simulations, is about 40 ps. For the SAB RAT, 12
reads and 4 writes take 1077ps (27 FO4) given a non-pipelined
RAT. The decoding of a RAT write can be overlapped with its
preceding RAT data read. In this case, overall RAT access delay
reduces to 20 FO4. This delay is comparable to the clock period
of the processors used as a specification for our design (e.g.,
800-MHz SR71010B MIPS).

Fig. 9 shows the maximum operating frequency for the 4-
and 8-way RATs given that the RAT latency is the same as
the clock period and the latching overheads are ignored. For a
given window size and issue width, RAB’s performance deteri-
orates more rapidly than SAB’s performance as the GC count is
increased.

B. Architectural-Level Evaluation

This section discusses the effects of architectural-level GC
management policies on performance and energy.

1) Methodology: We used Simplescalar v3.0 [7] to simulate
the processors detailed in Table II. We study 4- and 8-way
dynamically-scheduled superscalar processors with 128-, 256-,
or 512-entry window sizes. We compiled the SPEC CPU
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Fig. 10. IPC deterioration compared to a design with infinite GCs: (a) 4-way and (b) 8-way (all designs operate at the same frequency).

TABLE II
BASE PROCESSOR CONFIGURATION

2000 benchmarks for the Alpha 21264 architecture using
HP’s compilers and for the Digital Unix V4.0F utilizing the
SPEC-suggested default flags for peak optimization. All bench-
marks were run using a reference input data set. The following
SPEC CPU 2000 benchmarks are used in the experiments:
ammp, applu, apsi, art, bzip2, crafty, eon, equake, facerec,
fma3d, galgel, gap, gcc, gzip, lucas, mcf, mesa, mgrid, parser,
swim, twolf, vortex, vpr, and wupwise. We were not able to run
the rest of the SPEC benchmarks either because we could not
compile them or because they exhausted the available memory
space during simulation. To achieve reasonable simulation
times, samples were taken for one billion committed instruc-
tions per benchmark. Prior to collecting measurements, two
billion committed instructions were skipped. Unless otherwise
noted, we report the average over all benchmarks.

We limit our attention to two representative GC manage-
ment policies. The first one, SEL, selectively allocates GCs

only to low-confidence branches [1], [13]. Low-confidence
branches are identified using a confidence estimator comprising
a 1K-entry table of 4-bit resetting counters [11]. The second
one, ALL, allocates GCs to all branches. Both use in-order
GC allocation and deallocation. Unless otherwise stated, all
performance results are normalized over an idealized RAT
with infinite GCs that are allocated at all branches and can
be accessed in a single cycle. Ignoring secondary effects, this
RAT represents an upper bound on performance for the two GC
allocation policies. We pessimistically assume that SAB can
only shift by one bit per cycle. This assumption is valid for a
simple SAB design. However, multiple shifts per cycle may be
possible and, hence, execution time could be better at the cost
of increased complexity.

2) IPC performance and execution time: Fig. 10(a) shows
the average IPC deterioration for the 4-way processor given that
all RAT implementations operate at the same frequency. These
measurements ignore the actual implementation delay and com-
pare just the IPC. For clarity, Fig. 10 excludes the results for
the non-checkpointed RAT. Performance deterioration with a
non-checkpointed RAT is on the average 5%, 9.4%, and 15%
for the 128-, 256-, and 512-entry window sizes, respectively.

Irrespective of the GC allocation policy (SEL or ALL), with
RAB, performance improves as the number of GCs increases
because recovery latency for all GCs is nearly the same. As pre-
vious work reported, performance is better with SEL than with
ALL when few GCs are used because SEL allocates GCs ju-
diciously to branches that more likely trigger recoveries. With
ALL, however, GCs are allocated to all branches indiscrimi-
nately and, hence, GCs get exhausted more often.

The same observation applies to SAB, where SEL still per-
forms better than ALL with four or eight GCs. However, with
SAB, performance does not always increase with the number
of GCs. Specifically, performance degrades when GC count in-
creases to 16 from 8, because the number of cycles required to
recover from a specific GC is different depending on the loca-
tion of the GC in the SAB’s shift register. As the number of
GCs increases, so does the expected number of shifts to retrieve
that specific GC and, hence, the cycles needed to restore from
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Fig. 11. Execution time for (a) 4- and (b) 8-way superscalar processors.

Fig. 12. Total energy of RAB and SAB for both SEL and ALL methods. (a) 4-way RAT. (b) 8-way RAT.

it. SEL requires more cycles for recovery as the number of GCs
is increased to 16, because when SEL cannot find a GC asso-
ciated with a specific mispredicted branch, it restores at a later
GC and then walks back using ROB. The results show that RAB
outperforms SAB if their implementation latencies are ignored.

Fig. 10(b) shows IPC deterioration for the 8-way superscalar
processor. Wider (8-way) processors are capable of filling the
window faster than 4-way processors. Hence, they are more
likely to speculate further down the instruction path. However,
the deeper the speculation, the less likely it will succeed. Hence,
additional GCs will rarely be useful. In most cases, they only
serve to introduce additional delay while shifting the right GC
to the main RAT cell in the SAB RAT.

Fig. 11 shows execution time in seconds taking implementa-
tion delay into consideration. For this experiment, we assume
that the RAT delay determines the processor’s clock period. To
comment on the execution-time variation as a function of the
number of GCs, we focus on the 4-way RAT for a 512-entry
window size, shown in Fig. 11(a). Irrespective of the GC al-
location policy, going from four to eight GCs, we observe up
to 2.24% and 0.94% increase in total execution time for RAB
and SAB, respectively. Furthermore, going from 8 to 16 GCs,
we observe up to 10.42% and 6.92% increase in total execu-
tion time. We observe similar variation trends for other window
sizes. Thus, when we consider the delay overhead introduced
by additional GCs, IPC does not correctly predict actual per-
formance. In particular, IPC measurements suggest that perfor-
mance always improves by increasing the number of GCs. Re-
sults show that, as predicted by IPC measurements, four or eight
GCs improve the overall performance compared to the case no

GCs exist, and recovery must exclusively be done using ROB.
However, contrary to IPC prediction, the increase in the RAT
latency with 16 GCs outweighs the IPC benefits. Furthermore,
while eight GCs typically offer better IPC performance than four
GCs, absolute performance in most cases deteriorates.

As expected, the best design when we focus on IPC alone
would be different from the best design when we consider both
IPC and latency. IPC measurements predict that the best perfor-
mance is achieved by SEL_RAB with 16 GCs. Whereas, the best
performance (execution time) is achieved by SEL_SAB with
four GCs when the implementations’ worst case delay is taken
into consideration.

The results show that ignoring the actual latency of the RAT
incorrectly predicts performance, and performance does not
monotonically increase with increasing the number of GCs
as IPC measurements suggest. Two components contribute to
determining performance, and these components are at odds
with each other. First, as more GCs are introduced, fewer cycles
are spent recovering from mispeculations, hence improving
performance. Second, introducing more GCs increases RAT
latency and, consequently, increases the clock period and de-
creases performance. In most cases, using very few GCs (e.g.,
four) leads to optimal performance.

C. Energy

Fig. 12 shows the average total RAT energy as a function of
the number of GCs and window size for both implementations
and GC management policies. Each reported energy value totals
the energy for the RAT reads, RAT writes, GC allocations, and
GC restorations. SAB consumes less energy than RAB since
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Fig. 13. (a) Energy and (b) delay as a function of number of GCs and window sizes for the 4-way RAT (simulation results and model estimations).

more than 90% of RAT accesses are reads and writes that SAB
consumes less energy for them than RAB. The GC allocation
and restoration of SAB are more energy consuming than those of
RAB; however, these operations are relatively infrequent (10%
of the total RAT accesses).

D. On the Accuracy of the Analytical Models

This section discusses the accuracy of the models. In this
analysis, the relative estimation error is calculated by (43)

Error (43)

Fig. 13(a) and (b) show the circuit measurements with the an-
alytical model estimations for energy and latency as a function
of the number of GCs. The worst case relative error per opera-
tion is also shown. The worst case relative errors for energy and
latency are within 11.6% and 6.4% of the Spectre simulation
results, respectively. The errors are monotonic, and the estima-
tions are in agreement with the physical-level simulation results
in predicting delay and energy variation trends.

As expected, the analytical model estimations differ from the
simulation results. Several sources of error cause this difference:
Comparisons of the model-estimated and layout-extracted ca-
pacitances show that about 5.1% of the error for energy is due
to capacitance estimation inaccuracy. The formulas used to cal-
culate gate and diffusion capacitances are oversimplified, and
the capacitances are assumed to be voltage independent [15],
[17]. Each stage in our models (e.g., bitline and wordline) as-
sumes that the inputs to the stage are step waveforms; how-
ever, actual waveforms are far from steps, hence impacting the
delay of a stage. The energy model exhibits a worst case error
of about 11.6%. Inaccurate capacitance estimation plays a key
role in dynamic power consumption. The leakage power model
accounts for 5.7% of this error. Leakage current largely depends
on the state of the circuit and temperature. Hence, leakage cur-
rent cannot be accurately quantified without circuit simulations.

VI. CONCLUSION

Previous RAT checkpointing work developed GC count re-
duction techniques focusing solely on IPC performance evalua-
tion to compare alternatives. Although previous work assumed
that increasing the number of GCs increases the RAT delay, in
performance evaluation, they ignored the effect of the number
of GCs on RAT delay and clock period. This paper improves
upon previous work by determining quantitatively how RAT
delay and energy vary as a function of the number of GCs,

issue width, and window size, utilizing two representative full-
custom checkpointed RAT implementations in a 130-nm fabri-
cation technology. IPC performance evaluations show that per-
formance improves monolithically by introducing more GCs.
However, this paper demonstrates that, when RAT delay is taken
into consideration, actual performance (execution time) rarely
improves with more than four GCs for the SRAM-based check-
pointed RAT. This paper also shows that, although RAB, rep-
resentative of recent checkpointed RAT designs, offers better
IPC performance, SAB is superior in achieving better actual per-
formance since SAB offers faster RAT reads and writes. Addi-
tionally, this paper presents analytical delay and energy models
for checkpointed RATs. Analytical models help computer ar-
chitects estimate the latency and energy of various checkpointed
RAT organizations during architectural-level exploration, where
physical-level implementation is unavailable or unaffordable.
Comparisons show that the estimations provided by the models
are in satisfying agreement with the simulation results.
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