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Abstract—After functional verification detects a failure, design the debugging engine. However, the main benefit of the
debugging aims to find all locations in the design that could technique for multiple design errors relies on the abiliby t

be responsible for the observed error. The task of debugging fing multiple overlapping UNSAT cores. This is a very difficul
becomes more difficult in modern designs because of the presence

of multiple design errors. Multiple design errors exponentially probler.n.vylth no efficient solution in general [1(_)]' In_ pr_aﬂ"
increase the solution space of the debugging problem, leading Only disjoint UNSAT cores can be found which limits the
to an intractable problem. This work aims to manage the technique’s ability to be more widely applicable.

complexity of multiple design errors within existing automated In this work, we present a new algorithm to deal with

design debugging frameworks by using unsatisfiable cores to ; : ; : i
reduce the solufion space. It builds upon previous work to debugging multiple design errors using unsatisfiable cdtes

generalize the generation and application of unsatisfiable cores 9€neralizes previous work by showing how to both generate
for this purpose. An iterative debugging algorithm is presented and apply unsatisfiable cores for multiple design errore Th
in which unsatisfiable cores are generated as a by-product of the process begins by generating an UNSAT core at error car-
30|V_ing DVOCGSTEtO aid in reducilng th% searchfspacel f_Olr multiple dinality zero with an unsatisfiable debug instance. The core
e s 0 i et is Used (0 consiain the search Space a the next cardinaly
impact to peak memory. which is then solved for all solutions. After these soluti@re
blocked, another UNSAT core is generated from this instance
. INTRODUCTION This process is repeated at each subsequent cardinality. By
&‘?ing the cores generated at each cardinality, we can rule

Functional verification has become a significant bOttIeneout locations that cannot be part of solutions at higherrerro
in the modern VLSI design cycle [1]. An ever growing P 9

component of functional verification is when an failure ascu cardinalities. This greatly reduces the exponential $espace

and the root-cause of the problem must be determined. Tﬁf (;[irt]i% ndes;ki)r?geglph% ggclJ\EJilnem :,(V)IcEZS;nuglr?éia?ezslt%gsgrz:(grsésIg
process, known adesign debuggings estimated to take up by- I’Odl’.ICt there is little %vrt)arhead r?eeded to gain sicanific
to 60% of the total functional verification time [2]. Both th y-p ’ 9

time and complexity of debugging are difficult to estimate enefit n reducing the search space. .
the beginning of the process. This creates large uncegsint Experimental results on large hardware designs from Open-

surrounding tight deadlines with fixed budgets. To allevialCO"eS [11] shows the efficacy of the proposed algorithm
this growing uncertainty, automation is necessary to man mpared to previous work. For finding a!l equllvalentequJs
and reduce this component of functional verification. error cardinality three, the core technique is able taiced

Automated design debugging techniques involve takingﬂ&e total run-time on average by 22% with a negligible impact

counter-example from a verification failure and returning qn peak memory. . . .

set of locations in the buggy design that could possibly be IN€ rémaining sections are organized as follows. Section |l
responsible for the observed error(s). Many different {ecﬂeescr_lbeg, background material. Section Ill describes ta@m
niques [3], [4] have been proposed but recently aIgorithn?Qm”bu_t'on while Section IV presents the experimental re
based on satisfiability (SAT) engines [5], [6] have showt!tS- Finally, Section V concludes this work.

to be the most promising. These algorithms translate the
debugging problem into a satisfiability instance where the
solutions correspond to possible locations that can becwmd A. Design Debugging
in the design. Improvements in SAT-based techniques [7]-
[9] have focused on three main areas that contribute to tg

complexity of debugging: design size, counter-examplgtien observed failure during verification [3]. SAT-based design

and number of design errors (error cardinality). The error debugging [5] formulates this problem as a SAT instance

covdnalty ' peraps he o dauning of e tree bezal'a guen counerexample and number of rors oo
P gp 9 P erinality). The solutions to this SAT instance correspond

with the number of errors [4]. . - to all possible sets of error locations for the given error
A previous algorithm [9] using multiple unsatisfiable (UN-o qinajity “The SAT instance is constructed in severgbste
i’?‘;}r ) ég;iscrc')?: isnfla\iqli\r:ego ?ee reef;eecntl\ée;ntrteaecﬂ'fng;tw: iF;]rot -irst, the conjunctive normal form (CNF)-translated dasig
=M. ( Vely represe P Rfhanced with an error model for each location that could
circuit that is responsible for causing the observed eByr. ooy he erroneous. This is denoted By,. Each error
analyzing the intersections of .these cores, the searcresp del has an associateispect variableghat when active,
can be dramatically reduced, improving the performance {isconnects that location’s fan-out from its fan-in anda it
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Il. PRELIMINARIES

Design debugging aims to find all sets of error locations,
Fsuspect,swhich could potentially be responsible for the



expected outputsK{) are constrained according to the counter- @. @ 1
example. Finally, constraints (denoted B N)) are added

to restrict the number of active suspect variables\toThis 0
forces the instance to search for exadilydesign errors. This 0 )1 & g1 €4 1
is formally written in the next equation for a given counter-

example of length) to &:

K g2 & »
Debug(N) = S AN@(N)A N X AYI AT, (1)
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. . . . . . Fig. 1. SAT-based Design Debugging Instance
Typically, to find multiple design errors, Equation 1 is

iteratively solved fromN = 1 to a maximum desired errorpe among the corresponding gates. When solving the SAT-
cardinality. By blocking all previously found lower cardiity jnstance for a single design erroM( = 1), e; = 1 is the only
solutions, one can find all minimal cardinality equivalengatisfiable solution corresponding to gage, confirming the
design errors [4]. In this work, we use this methodology asjgformation found in the UNSAT core.
basis for finding multiple design errors.

I1l. EFFICIENT DEBUG OF MULTIPLE DESIGN ERRORS

B. Unsatisfiable Cores in Design Debugging - . . L
o ] - Unsatisfiable cores can provide valuable information in
An unsatisfiable (UNSAT) core is a unsatisfiable subset gktermining which locations are involved in the observed
clauses of an unsatisfiable Boolean formula written in CN%"ure_ However as mentioned previous'y' f|nd|ng mu|t|p|e
Modern SAT-solvers can produce UNSAT cores as a bypres is not a simple task. In this section, we describe a
product of their solving process [12]. In the context of desi method for finding a single unsatisfiable core at each error
debugging, an UNSAT core intuitively represents a tree @hrdinality that can be used to reduce the search space for
paths in the circuit from which the primary inputs and iritiahjgher cardinalities. The unsatisfiable cores generatedaar
states propagate to the expected primary outputs and fesulfatural result of the solving process at each cardinalityfin

a conflict. _ ) within existing SAT-based frameworks.
This idea has been used in several algorithms to generate

information to aid in the process of design debugging [7-[9A. Reducing the Search Space of Multiple Design Errors
The work in [9] uses the above concept of UNSAT cores to as previously described, an unsatisfiable core intuitively
restrict which areas of the circuit need to be examlned. 'If @dntains information regarding which parts of the desigm ar
UNSAT core exists, at least one of the suspect variablesein fsponsible for the observed failure. Given a single caagith
core must be ac_tlv_ated to break the conflict. Given ml!“'pk?erived by setting all the suspect variablétave know that at
UNSAT cores, this idea can be extended to further restret thaast one of the suspect variables in the core must be adivat
SO'““Q”_ space. i in order to generate a satisfying assignment. However, this
Deriving such an UNSAT core can be done by setting albsult can be generalized to higher cardinalities as well.
the suspect variables in Equation 1GoSince the simulated \ypen debugging at a certain cardinalify, one finds
outputs of the circuit do not match the expected outputs (gfi possible satisfying solutions that have exaclysuspect
else there is no failure), the instance is unsatisfiable and gyriaples active by adding blocking clauses. Once the solve
UNSAT core can be generated. However in general, findifgoves unsatisfiability at that cardinality, it also genesaan
multiple UNSAT cores is difficult. The work in [9] finds ynsatisfiable core. However intuitively, this core différem
multiple disjoint UNSAT cores by removing previously foundne one described in Section 1I-B. Instead of only finding a
UNSAT cores and calling the SAT-solver again. Howevegingle conflict, the suspect variables allow additionaliBiiity
the main benefit for multiple design errors is if multiplgp, breaking up tolV conflicts. However, even by breakiny
overlapping UNSAT cores can be found. There are seve@ngiicts, there still must exist at least one more confliet th
algorithms to accomplish this goal, but they require sigaift cannot be broken. To achieve a SAT result, we must be able
computation [10]. In practice, a single UNSAT core can bg preak each one of these conflicts. This means that some
generated easily while multiple disjoint cores can be foifind sypset of suspect variables (V) involved in these conflicts
the problem happens to contain them. ~are needed in order to break the resulting core. This leads
The following example demonstrates the use of a singlg the result that if a suspect variable is not included in the
UNSAT core to restrict the solution space for finding a singlgnsatisfiable core a¥, then it cannot be in a solution &t+1.
design error. This is stated more precisely in the next theorem.

Example 1 Figure 1 shows a visualization of the debugrheorem 1 Let U be the unsatisfiable core generated by
instance from Equation 1. A simple combinational circuishasolving and blocking all solutions for the debug instance
been augmented with the error model denotedcbyvhich — Depyg(N). If ¢; ¢ U, thene; = 1 is not in any satisfying

disconnects a gate’s fan-out from its fan-in to become fregp|ution of the instancéebug(N + 1) with all lower cardi-
Next, constraints are added for the input and expected ¢sitpha|ity solutions blocked.

Notice that the outputs mismatch gp and gs.

By disabling all suspect variables, we can generate an Proof: Assume towards a contradiction that a suspect
UNSAT core involving variables, es ande, for this instance. variablee; ¢ U ande; = 1 is part of a satisfying solution
This core implies if there is a single design error, it mudior Debug(N + 1). Sincee; = 1, then exactly N other



suspect variables may be activié. is an unsatisfiable core This is due to the instance generated on line 7 removinginerta
that cannot be broken withV or less suspect variables beingsuspect variables from consideration. These removedblasia
active. ThereforeDebug(N + 1) is still unsatisfiable leading apply only to the current cardinality, not higher ones. I th
to a contradiction. So it must be the case that= 1 is not optimized instance were used instead, it would generate a
part of any satisfying solution foDebug(N + 1). B core whose suspect variables incorrectly constrain theieal
Although Theorem 1 gives us valuable information abowspace.
the next cardinality, it can also provide information about A more general method could use Corollary 1 instead. In
higher cardinalities. The core can help us constrain thatisol this way, additional constraints could be used to force ascisp
space of higher cardinalities by specifying a superset ef thariables in the core to be at least a certain number. However
suspect variables which must be active. This is describedtdo many additional clauses would be needed to model this
the next corollary. constraint, negating the benefit of the optimization in tingt fi
place.
Corollary 1 GivenU from Theorem 1, any solution found at
a cardinality greater thanV must have at leas¥ + 1 suspect Algorithm 1 Debugging Multiple Design Errors
variables active fronU. 1. Nynaz = error cardinality

2: sols := solutions found by algorithm
3: procedure DEBUGMULTIPLEERRORY N 1q2)
U «— {}, sols — {}
for n: 0 .. Npyae do
instorig < Debug(n)
instop: «— DISMISSSUSPECTSinst, U)

Proof: If fewer than N 4 1 suspect variables frony/
are active, therlJ still forms an UNSAT core so it cannot
be part of any solution for a higher cardinality. Therefary
satisfying solution must involve at leadt+1 suspect variables
from U. ]

Notice that the results in [9] are a special case of Theorem )
and Corollary 1 whereV = 0. Similar results for multiple ‘;fls (E sols U (S:OLVEAL;(Z”“O’I’)‘}) k(s0l
UNSAT cores can be applied for the higher cardinality cores e  EXTRACTCORE(instorig A block(sols))
as well. However, as mentioned before, these multiple cor (raerlcurnorsols
are difficult to generate efficiently. The next example shows d d
how Theorem 1 helps reduce the search space at hig g ©Nd procedure
cardinalities.

o gk

IV. EXPERIMENTS

In this section we present results for the proposed algarith
for debugging multiple design errors. All experiments are
performed using a single core of an Intel Core i5 3.1 GHz
machine with memory limit of 8GB and a timeout of 7200

1 corresponding to gates, and gs. This confirms the result seconds. The debugger used is a C++ sequential SAT-based

from Theorem 1 where the suspects in the solution must beffigine based on [5]. MiSAT [13] is used to solve all the
the UNSAT core from the previous cardinality. SAT instances. The UNSAT core extraction feature in the

solver is turned on only during theXERACTCORE step in
Since unsatisfiable cores are generated at each cardinaitgorithm 1. All other runs used the default solver settings

as a by-product of solving process, Theorem 1 can be usgith the core extraction feature off.

effectively with very little overhead. An integrated algbm The effectiveness of the proposed technique is shown on

Example 2 Continuing from Example 1, if we use the UNSAT
core resulting from the debugging instance with= 1, we
will get an UNSAT core involving variables, es, e4 andes.
When solving theV = 2 instance (while blocking previously
found solutions), we will get a single solutionaaf= 1Ae; =

is described in the next sub-section. a variety of RTL designs from OpenCores [11]. Each debug
) instance is generated by randomly selecting a line in the
B. Overall Algorithm RTL and inserting a typical RTL design error such as a

Algorithm 1 presents pseudo-code for the overall algorithincorrect operator, state transition, or module instaiota
to debug multiple design errors. The algorithm takes astinplihese RTL errors translate to multiple design errors at #te g
the maximum error cardinalityN;,....) and outputs solutions level. To effectively demonstrate the effect of multiplesidm
corresponding to possible locations for the design eryor(grrors, error models.g., suspect variabl@sre placed on the
Lines 5-10 consist of the main loop where the debuggirmutput of gates of the synthesized design that correspond to
instance is solved for each error cardinality and an UNSAdignals at the RTL level. This translates to a suspect Variab
core is generated. First, the debugging instance is creatté on each bit of all Verilogi nput s, wi r es andr egs. This
current error cardinality on line 6. The SAT instance is madensures that the error models can correspond preciselyyto an
such that any satisfying solution will activate exactlguspect given design error. Next, each instance is run through its
variables corresponding to the current error cardinaltgxt, accompanying testbench, simulated and the resulting eount
Theorem 1 is applied where suspects not inside the preyiouskample is recorded. This counter-example contains thialini
found core are removed from the instance (line 7). This catate and the primary input/output values for each cycléef t
either by done by re-generating the instance or simplyrggttisimulation trace, which are used to constrain the debugging
the corresponding suspect variable®tdJsing this optimized problem. The instances are labeled with the circuit name
instance all solutions are found (line 8). Finally, the UNSAfollowed by a number indicating different errors that were
core is extracted on line 9. inserted.

On line 9, it is important to use the unoptimized instance The experimental results for Algorithm 1 witN,,,,. = 3
(with all the solutions blocked) to derived the UNSAT coreare shown in Table I. The proposed algorithm is denoted by



TABLE |
DEBUGGING MULTIPLE DESIGN ERRORSEXPERIMENTS

[ instance info [ orig [5] T core |

instance gates [ flops | clks [ #sus| sols sols sols time | mem [[ core | total [ mem | dismiss| dismiss | dismiss
(N=1) | (N=2) | (N=3) || (s) [ (MB) || (s) | (s) | (MB) | (N=1) | (N=2) | (N=3)
ac97 ctrll 15109 | 2482 | 300 | 2483 25 3 262 294 | 2466 16 165 | 2628 2450 2471 2413
ac97 ctrl2 15114 | 2483 200 | 2456 12 132 205 402 [ 1937 37 303 | 1903 2430 2350 2333
dividerT 3773 424 39 498 18 503 | 5228 653 487 26 693 473 136 31 9
mem_ctrl1 46767 | 1239 | 40 | 2858 6 14 4 57 | 1309 9 35 [ 1385 2824 2705 2508
mrisc_ corel | 15407 | 2161 | 41 | 2566 52 118 616 317 913 10 245 886 2446 2378 2112
mrisc_core? | 14456 | 1371 | 40 | 2044 61 358 | 3392 637 708 7 488 690 1799 1798 1514
rsdecoderl | 13023 526 40 | 5159 21 102 | 2714 || 2518 | 1000 81 | 2124 [ 1026 2870 1139 602
ush functl | 10217 736 37 | 1593 27 223 299 [| 1298 788 || 203 | 1451 806 1420 994 480
vgal 72292 | 17110 50 | 2936 38 328 | 3578 3958 | 1639 || 182 | 2625 | 1440 2766 2568 2369
vgaz 73546 | 17213 100 | 1103 118 116 15 57 | 1119 4 37 | 1133 939 1065 1051

coreand compared against the SAT-based debugger describet*”
in [5], denoted byorig. Each row of the table corresponds to2 gq,|
a different instance that is run. The first five columns of th§
table show the instance name, number of combinational gat@s oo JR M - N .
number of state elements, length of the counter-exampte, an
number of potential suspect locations. The next three cotumZ 40% RS~ N |
show the number of solutions for each of the three errgg 0%
cardinalities which are identical for bottore and orig. I
The next two columns show the run-time in seconds and the g,
peak memory in MB foorig. Columns 11-16 show the results 5
for core These six columns show the cumulative time needed ~
to generate all the UNSAT cores, total run-time includingeco 3
generation, peak memory and number of suspects removed _ o
from consideration for each of the three error cardinalitie Fig. 2. Percentage of Dismissed Suspects

The benefit of the proposed technique is clearly sho:tvfrg apply unsatisfiable cores to reduce the solution space of

when looking at the total run-time compared with the presio ﬁe debugging problem. The generation and application of
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work. There is an average reduction 22% in the total run-ti ese cores fits naturally within existing SAT-based delng
when using UNSAT cores. This comes with almost no impa; ! uraily within existing RV 9
ameworks to allow easy extensibility of existing impleme

to peak memory resulting in a slight reduction of 0.4% i ations. Experimental results show large improvementsite r
favor of thecoretechnique. This improvement in run-time ca ime while Fi)wavin minimal impact to geak rrr)lemor
be primarily explained by the drastic reduction in the skear 9 P P Y.
space for each cardinality. From columns 14-16, the average REFERENCES
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