Automated Data Analysis Techniques for a Modern
Silicon Debug Environment

Yu-Shen Yang!, Andreas Veneris?, Nicola Nicolici®, Masahiro Fujita®

Abstract—With the growing size of modern designs and more
strict time-to-market constraints, design errors unavoidably es-
cape pre-silicon verification and reside in silicon prototypes. As
a result, silicon debug has become a necessary step in the digital
integrated circuit design flow. Although embedded hardware
blocks, such as scan chains and trace buffers, provide a means to
acquire data of internal signals in real time for debugging, there is
a relative shortage in methodologies to efficiently analyze this vast
data to identify root-causes. This paper presents an automated
software solution that attempts to fill-in the gap. The presented
techniques automate the configuration process for trace-buffer
based hardware in order to acquire helpful information for
debugging the failure, and detect suspects of the failure in both
the spatial and temporal domain.

I. INTRODUCTION

In the pre-silicon stages of the integrated circuit devel-
opment cycle, engineers verify designs with sophisticated
simulation [1], emulation [2] and formal verification [3], [4]
tools to check the correctness of the RTL model against
its functional specification. However, due to the growing
complexity of functionality and the size of designs, it becomes
infeasible to achieve 100% verification coverage within the
strict time-to-market constraints. Inevitably, functional bugs
may not be captured by any pre-silicon verification techniques
and only be discovered during in-system silicon validation
where the design is exercised at speed. Consequently, silicon
prototypes are rarely bug-free and multiple re-spins are often
necessary [5]. Each re-spin dramatically increases project costs
and the time-to-market. Therefore, it is important to develop a
silicon debug flow that provides short turn-around time when
a silicon prototype fails.

A typical silicon debug process consists of several iter-
ative sessions, referred to as debug sessions. Each session
can be divided into two stages: data acquisition and data
analysis. In the data acquisition stage, test engineers set up
the environment to obtain appropriate data from the chip
under test while it is operated in real-time. Unlike pre-silicon
verification, where values of any signals can be obtained
through simulation, observability of internal signals in the
silicon prototype is restricted. Several Design-for-Debug (DfD)
hardware components, such as scan chains or trace buffers, are

1Vennsa Technologies. Toronto, ON. Canada (terry@vennsa.com)

2Department of Electrical and Computer Engineering and with the De-
partment of Computer Science, University of Toronto, Toronto, ON. Canada
(veneris@eecg.utoronto.ca)

3Department of Electrical and Computer Engineering, McMaster University,
Hamilton, ON, Canada (nicola@ece.mcmaster.ca)

4VLSI Design and Education Center, University of Tokyo, Japan
(fujita@ee.t.u-tokyo.ac.jp)

used to access the internal signals. Nevertheless, the amount
of acquired data is limited by the integrated DfD hardware
components. These limits greatly inhibit accurate and effective
debugging analysis. During data analysis, the vast amount of
data acquired during the test is analyzed to prune the error
candidates and to set up the data acquisition environment for
the next debug session. Despite the use of dedicated data-
collection hardware mechanisms embedded directly into the
silicon, there exists little in automated software solutions to
help the validation engineer identify the root cause of the
failure with the data acquired. This time-consuming and labor-
intensive cycle continues until the root cause of the failure is
determined.

This paper presents an automated software-based debug
methodology that complements current data acquisition hard-
ware solutions. The methodology is designed as a post-
processing step after the data has been acquired. It identifies
the potential locations of the error in a hierarchical manner,
and estimates the time interval where the error is excited.
The result allows the engineer to concentrate the manual
investigation on a smaller set of locations within a more
concise windows of cycles. In addition, this methodology
sets up the data acquisition environment for the next debug
session and uses the new data in the subsequent automated
data analysis cycle to eventually determine the root cause.

Case studies on OpenCores.org circuits are presented. Re-
sults show that the methodology successfully determines the
locations of the error and it also specifies with accuracy the
time interval in which the error is excited.

The remainder of the paper is organized as follows. Sec-
tion 1l summarizes work on hardware and software solutions
for silicon debug, as well as the background material. Sec-
tion 111 presents the software solution to silicon debug. Finally,
the case studies and conclusion are given in Sections IV and V,
respectively.

Il. BACKGROUND

In this section, two data acquisition hardware components
used to enhance the observability of internal signals in chips
are discussed. Next, several automated data analysis algo-
rithms are reviewed. Finally, we summarize background ma-
terial for the presented methodology.

A. Design for Debug Hardware Solutions

The behavior of internal signals in the chip can only be
observed if they are routed to external pins. Since numbers
of available pins on the chip are limited, this approach may

not provide sufficient information to perform debugging. To
improve observability of internal signals, two ad-hoc DfD
solutions are mainly used in practice: scan chains and trace
buffers.

a) Scan chains: provide a means to take a snapshot of
the registers at a specific cycle. This operation is referred to as
scan dump. However, the scan dump operation interrupts the
execution of the chip because the values stored in the registers
are destroyed. In order to resume the execution from the same
point, the environment must be reset and restarted from the
beginning of the test vector [6].

b) Trace buffers: record internal signals in an on-chip
memory, which typically ranges from 8Kb to 256Kb, in real-
time. Trigger logic of a trace buffer monitors circuit behavior
and records the logic values of selected signals when the
trigger condition is asserted. Subsequently, the recorded data is
read via a low-bandwidth interface, such as a boundary scan.
Trace buffers can collect values of signals for consecutive
cycles, but only a small set of pre-selected signals can be
traced due to the limited size of the embedded memory. Those
pre-selected signals are divided into groups and connected to
the on-chip memory through a multiplexer. During execution,
only one group can be traced at a time. The traceable signals
are typically manually selected by the designer. Recently, sev-
eral algorithms have been developed to automate the selection
process [7], [8], [9]- Those works try to determine a small
set of signals such that their values have a higher chance of
restoring a significant amount of untraceable states.

B. Work on Automated Data Analysis

Although DfD hardware enhancement increases the ob-
servability of internal signals, there is a lack of techniques
that automate the data analysis process on the acquired data.
Recently, there has been an effort to develop methodologies
to aid the engineer in this part of the silicon debug process as
summarized in the following.

The method proposed in [10] relies on scan dumps collected
at multiple consecutive cycles to determine failing registers at
each time frame. Next, it conducts back-tracing from those
failing registers to identify the fault propagation paths and
suspect registers at each cycle. Finally, it performs a forward-
tracing from the suspect registers to further narrow down the
root cause candidates.

Yen et al. [11] propose an approach that first isolates the
critical cycles using a binary search paradigm based on the
comparison between the observed data and the simulation
results. A critical cycle is the first cycle in which the state
elements show a discrepancy between the expected responses
and the actual ones. Next, this method identifies suspect
registers with a simple path-tracing method [12] from the
unmatched registers. Finally, it simulates the golden model
with faulty values injected at each suspect candidates. The
candidate is included in the final suspect list if the response
matches the behavior of the faulty chip.

Backspace, a formal approach that restores state values of
a design in a failing trace is proposed in [13]. It starts from
the crash state and computes backward in time. Signatures,

computed with additional hardware structures, are captured
during the chip execution and stored in the trace buffer. Later,
those signatures are used to determine a unique or a small
set of possible predecessor states that lead to the crash state.
Because this technique only analyzes one timeframe each
time, it can be still memory efficient when dealing with long
test traces. This is a great advantage since a couple seconds
of silicon execution can translate to thousands of simulation
cycles.

C. Boolean Satisfiability and UNSAT Cores

The backbone of the presented methodology is based on
SAT-based diagnosis [14]. It models the debugging problem
into a Boolean Satisfiability (SAT) instance and utilizes the use
of UNSAT cores extracted from it to guide the silicon debug
data acquisition setup. A brief overview of these methods are
given in this section.

SAT proves or disproves whether a Boolean formula & has
a satisfiable assignment, i.e., the formula is evaluated to t r ue.
If such an assignment exists, the formula @ is said to be
satisfiable; otherwise, it is unsatisfiable. For most modern SAT
solvers, Boolean formula is presented in Conjunctive Normal
Form (CNF), which consists of a conjunction of clauses where
each clause is a disjunction of literals. A literal is an instance
of the variable or its negation.

If the formula is UNSAT, any subset of clauses in the instance
that is also unsatisfiable is referred to as an UNSAT core.
Modern SAT solvers [15], [16], [17] can produce UNSAT
cores as a result of proving unsatisfiability. An example of
an unsatisfied CNF formula and its UNSAT core is shown as
follows.

®=(a+b)-(a+c)-(b+7)-(@-(0)
UNSAT core = {(a+c),(a), ()}

An unsatisfiable SAT instance can have multiple UNSAT
cores. Each core represents a situation where the instance
is unsatisfied. Additional UNSAT cores can be obtained by
eliminating a previously found UNSAT core, as described
in [18].

Modelling the problem of logic and fault diagnosis in SAT
is first presented in [14]. Given a circuit and a set of test traces
that cause the design to fail, the problem is formulated in a
CNF instance such that the SAT solver returns solutions that
correspond to error location(s). In summary, this is achieved by
inserting a multiplexer at every gate (and primary input) such
that when the select line (s) of the multiplexer is inactive, the
original design is maintained; otherwise, a new unconstrained
primary input variable (w) drives the output of the multiplexer.

The SAT-based diagnosis algorithm from [14] performs
model-free diagnosis [19]. That is, it does not make any
assumption on the behavior of the fault/error. This is a
desirable fit to silicon debug since silicon prototypes can fail
test for various reasons. The engineer can utilize the values
of the unconstrained variables w to determine the type of the
fault that has occurred. Readers can refer to [14] for more
information on this SAT-based debugging methodology.

Procedure Product
n-level
'| Hierarchical | Suspect
'| Diagnosis | Modules
3 TD”_“efrar_”e Critical
3 lagnosis Interval
f Data
Acqusition | States to
Setup Be Traced

Fig. 1. A single debug analysis session

I1l. AUTOMATED DATA ANALYSIS

A silicon debug process is different from an RTL debug
process in many important aspects including the ones below.
First, silicon debug needs to utilize the DfD hardware com-
ponents in the design to acquire values of internal signals,
whereas, in RTL diagnosis, values of internal signals can be
obtained through simulation. Second, due to the vast complex-
ity of the silicon debug problem, a software solution should
be designed appropriately to take advantage of the debug
hardware available to the engineer to reduce the iterations of
the process. Finally, because silicon prototypes are operated at-
speed during test, the test trace for debugging can be orders of
magnitude longer compared to the one usually available during
RTL diagnosis. As such, it is important to identify the segment
of the trace that really matters to aid the future iterations of
the debug process and simplify the analysis.

To accomplish the aforementioned objectives, a silicon de-
bug flow is summarized in Figure 1. It consists of three steps.
The first step is n-level hierarchy diagnosis, which identifies
the suspect modules that contain the error in a hierarchical
manner. The second step is timeframe diagnosis. This step
finds the critical interval of the error. A critical interval is
a window of cycles in which the critical cycle locates. The
last step of the flow is data acquisition setup, which finds the
registers that may provide useful information about the error.
The above information feeds back to the proposed analysis
flow which iterates the three steps in Figure 1 in the next
debug session to aid in further root cause analysis. Each step
is further discussed in the next sections.

A. n-level Hierarchy Diagnosis

Hierarchical diagnosis is first proposed by Ali et. al. [20].
It is an extension of the SAT-based diagnosis to improve
the performance and resolution of logic debugging. A hier-
archical diagnosis process consists of several iterations. In
each iteration, only modules in the same hierarchical level
are considered. The procedure starts from the top-level of
the design and goes deeper into the design hierarchy. Suspect
candidates for debugging in each iteration are sub-modules of
the modules that are determined to be suspects in the previous

(a) Hierarchical design

(b) History of hi-
erarchical diagno-
sis

Fig. 2. Hierarchical diagnosis

iteration. The presented flow would repeat the procedure for
at most n hierarchy levels from the level ended in the last
session during each debug session. This is referred to as n-
level hierarchical diagnosis.

Figure 2 illustrates the concept of debugging using hierar-
chical information. Figure 2(a) shows the hierarchical structure
of a design. A situation in which hierarchical diagnosis is ap-
plied to this design with two iterations is shown in Figure 2(b).
Diagnosis starts with three top modules. In the first iteration,
module C (grey box) is diagnosed to be the suspect. Hence,
diagnosis, in the second round, only considers the sub-modules
of C, namely, C4, Cy, and Cs, as candidates. At that round, C»
is identified as the suspect. As a result, the suspect candidate
list for the third round consists of C5 and Cy, only.

With the hierarchical information of the design, diagnosis
can start with a coarse-grain global analysis and the search can
be directed to local areas after each iteration. Such a procedure
reduces the runtime and memory requirement, since there are
fewer candidates that need to be analyzed.

B. Timeframe Diagnosis

Timeframe diagnosis is carried out to find a greater precision
estimate for the window of clock cycles in which the error
may be excited. In silicon debug, the depth of the trace buffer
limits the number of samples that are acquired in one debug
experiment. Once the buffer is full, the older data is over-
written by the new samples. Hence, if the cycle in which the
error is exercised can be estimated, the buffer can be utilized
more effectively. Timeframe diagnosis divides the trace into
k intervals. The suspects returned by the previous hierarchy
diagnosis step in each cycle of the interval are collectively
considered as a single suspect by timeframe diagnosis. Such
a conceptual suspect module is referred as timeframe module.
Consequently, timeframe diagnosis selects suspects from this
new set of timeframe modules. The final critical interval is
determined as the union of intervals wherein the selected
timeframe module are defined.

The result of timeframe diagnosis can help to set up the
next debug experiment, such that data acquisition starts at the
right cycle(s), i.e., the one(s) as close to the critical cycle
as possible. This interval can further reduce the time interval

f Tt

Tn Tn+1

Fig. 3. Timeframe diagnosis

where the design needs to be analyzed in the next debug
session. The trace can also be truncated to start at the same
cycle as the begin of the returned interval. The idea is that the
segment of the trace before the critical cycle can be safely
removed for debugging analysis since it does not contain
information related to the error observed (which is excited
at the critical cycle). The value of state elements w.r.t. the
truncated trace can be initialized with the value of scan dump
at this new starting cycle.

Example 1: Consider a test vector interval between cycles
Tn and Ty, 5, as shown in Figure 3. From hierarchical diagno-
sis, it is known that modules A and B, shown in that figure as
grey boxes, are suspects. To improve the estimate for the time
interval where the error is excited, timeframe modules that
consider two cycles at a time (i.e., k = 2) are created. These
timeframe modules are shown in dotted rectangles (e.g., TMa1
consists of {A™ ATn+11). Assume that the error is excited in
module A at cycle Ty, 3, that is, the grey box marked with an
x. As such, timeframe diagnosis returns solutions consisting
of TMaz and T Mgs. Hence, timeframe diagnosis can deduce
that the critical interval is (Tnhy2,Tnis) as defined by TMao
and T Mg3z. Consequently, only cycles between Tp2 and Ty 5
are analyzed in the next debug session.

C. Data Acquisition Setup

Trace buffers provide the engineer great flexibility in the
choice of traced signals. However, the buffers can only trace
a limited subset of signals. In most real-world designs, only
a small set of hard-wired signals can be traced during the
execution.

Among all traceable registers, the engineer wants to select
ones that are related to the error source or provide valuable
information to aid in pruning suspects. A simple approach
to identify those registers is using X-simulation [19], which
simulates the design with logic unknown at the output of the
suspects to capture all possible paths for error propagation.
Then, any registers that store logic unknown are the candidates
for tracing. Because X-simulation is a pessimistic process, it
may return too many registers to make the information useful.

To improve resolution and accuracy, an alternative selection
algorithm is presented in [21], which utilizes the proof of
unsatisfiability generated by SAT solvers. Given an erroneous
circuit, the input vector sequence, and the correct output
response, the CNF formula of the ILA representation of the
circuit is unsatisfiable due to the contradiction between the
erroneous output response and the correct output response.
Intuitively, the contradiction can occur at any signals along
the paths from the actual fault location to the output where

Vector | Response {g, h}
Cycle | {abe} | Correct | Erron.
@) | Weorr) | (Yerr)

1 100 11 11

2 011 01 01

3 110 11 11

4 111 11 00

(a) Erroneous Circuit

(b) Test vector sequence and
response. The initial value of
{d, e, f} is000

Fig. 4. Example erroneous circuit. The correct implementation of gate
i =OR(a, b) is i =AND(a, b)

discrepancies are observed. As discussed in Section II-C, an
UNSAT core of an unsatisfiable SAT problem is a subset of
clauses that is also unsatisfiable. Therefore, signals associated
with clauses in the UNSAT core can be potential locations
for tracing and provide information about the behavior of the
failure. Note that each UNSAT core can potentially represent
different error propagation paths. To ensure that all paths
are considered, the union of all UNSAT cores should be
considered.

Example 2: Consider the circuit shown in Figure 4(a).
Assume the error is at i, where the correct implementation
is i =AND(a, b) . The test vector and the correct/erroneous re-
sponse are shown in Figure 4(b). Since the circuit is erroneous,
the CNF formula, ® = Ut ;(C'-v'-y"), is unsatisfiable. Due
to the space limitation, the formulation of @ is not shown.
However, the construction can be done in linear time as shown
in [22]. Given @ to the SAT solver (e.g., MiniSAT [17]), an
UNSAT core of the instance can be extracted from the proof
of unsatisfiability provided by the solver as shown below.

{(B+e") - (c*+et+g%) - (d3+ %)
(i2+d3) - (b2+i%) - (c*) - (g%) - (b3}

By examining the UNSAT core, variables that represent
registers can be extracted: d® (from the clause (i2+d®)) and
e (from the clause (j3+e*)). Therefore, signals that should
be traced are d at cycle 3 and e at cycle 4.

As mentioned in Section I1-A, there are two ways to obtain
the values of those registers. One way is through the use of
scan dumps, if they are scannable. This can be time inefficient
since tests need to be reset and started over again after each
dump. The second approach is tracing these registers with trace
buffers. However, the issue here is that only a limited set of
registers can be traced in practice. To alleviate this issue, a
searching technique is proposed in [21] to obtain the value of
non-traceable registers indirectly by implication using other
traceable registers.

Given a set of traceable registers and a target untraceable
register, this technique finds a subset of traceable registers

TABLE |
TESTCASE CHARACTERISTICS

Ckt. Ckt. # of # of # of
name description gates | states | modules
divider 16-bits divider 5276 510 31
spi spi core 1889 162 79
wh WISHBONE Conmax IP core | 2253 110 94
rsdecoder Reed-Solomon Decoder 10265 521 481

such that their values can be used to restore the value of the
target register through the means of forward implications and
backward justifications. The technique formulates the problem
into a SAT instances and identifies possible implications within
a bounded timeframe window. At the end, engineers can trace
those alternative registers for further debugging.

IV. CASE STUDIES

This section presents the study of the presented methodol-
ogy on OpenCores.org designs. Minisat [17] is used as the
underlying SAT-solver. Experiments are conducted on Core
2 Duo 2.4GHz process with 4 GB of memory. All runtimes
are reported in seconds. In each testcase, a single random
functional error (e.g., wrong assignment, incorrect case state,
etc) is inserted into the RTL code. Test vectors are extracted
from the test-bench provided by OpenCores.org. The trace
length is between 100 to 300 time frames. Finally, to fully
take advantage of hierarchical diagnosis, building blocks of
HDL code, such as a case statement or an if-statement, are
parsed as a module.

The first set of experiments examined the two parameters
that can affect the performance of the presented diagnosis
methodology. These two parameters are the level of hierarchy
that the hierarchical diagnosis examines at each session (n),
and the timeframe module interval sizes used in the timeframe
diagnosis (k). The size of the trace buffer is assumed to be
16*128 bits. It is assumed that 80% of registers in each design
are traceable and they are divided into groups of at most 16. In
each debug session, the buffer can store values of one group
for at most 128 cycles or two groups for at most 64 cycles.

Table | summarizes the characteristics of designs used in
this study. The name and a short description of the design are
given in the first two columns. The third and fourth columns
reports the number of primitive gates and the number of
registers for each design. The fourth column shows the number
of the modules at the lowest level of hierarchy. This is also
the number of suspects one needs to examine in a brute-force
manual silicon approach.

Figure 5 shows the total numbers of modules returned by
each hierarchical diagnosis round when various numbers of
hierarchy levels are examined in one debug session. In general,
the numbers are increased as hierarchical diagnosis runs more
rounds in one debug session. This is because fewer state values
are available and the diagnosis algorithm cannot distinguish
some of the suspects. Nevertheless, comparing the result to
the number of modules shown in the fourth column of Table I,
we can see that in all cases the presented methodology can
significantly prune the modules that one needs to examine.

n
IS
S

0
Eln=1 0n=2 [1n=3 llln=4

—=—divider

N
o

of Suspects
e
o
% of critical interval
)
o

o

wb rsdecoder 2 4 6 8 10 12 14 16 18
of Intervals

divider spi
Benchmark

Fig. 5. Impact of depth n in Perfor- Fig. 6. Impact of number of intervals
mance used in timeframe diagnosis
TABLE I
TRACEABLE REGISTER GROUP INFORMATION
Circ. Gate | Total # of # of Perc.
count reg. | groups | reg./group
spi 2832 162 8 8 40%
hpdmc || 20536 | 453 16 8 28%
ush 39179 | 2054 32 16 25%

Figure 6 shows the ratio of the size of the critical interval
after the last debug session compared to the original trace
length when various numbers of interval are used in timeframe
diagnosis. Four cases are considered: 2, 4, 8 and 16 intervals.
As expected, greater reductions are achieved with finer-grain
intervals. The only exception is wb in the case where the
interval size is 16. In this case, the error happens to be excited
across two intervals, which results in a wider range. In all
cases, over 50% of reduction is achieved.

The second set of experiments demonstrates the effective-
ness of the UNSAT-core register selection, as well as this of the
searching algorithm. To emulate the real trace buffer hardware
structure, a subset of registers of each design is selected
randomly as traceable by the trace buffer. These registers
are divided into groups and the grouping configuration is
summarized in Table Il. The first column lists the designs
used in this experiment; the size of the designs in terms
of the number of primitive gates is reported in the second
column. The third column of the table shows the total number
of registers in each design. The fourth and fifth columns
have the number of the register groups and the number of
registers in each group, respectively. The sixth column shows
the percentage of total registers that can be traced.

The algorithm is configured to perform one-level hier-
archical diagnosis and the timeframe diagnosis divides the
time interval into two timeframe modules. For the searching
algorithm, the window size is set to be six time frames.

Table 111 summarizes the performance of debug analysis un-
der two situations: debug without values of registers (columns
2 — 4) and debug with values of registers selected by the
UNSAT core-based selection procedure (columns 5 — 11).
Each row is one individual case that contains a different bug
in the design. The sum of the number of modules returned at
the end of each debug session is shown in the second and fifth
columns. This is the total number of modules that the engineer
needs to investigate. The ratio of these two columns is reported
in the sixth column, which means the percentage reduction
on the number of suspects. The third and seventh columns

TABLE Il
PERFORMANCE OF DEBUGGING WITH PROPOSED TECHNIQUES

No state value used With UNSAT-core-based register selection
Circ. # of # of Runtime (s) # of % # of # of Runtime(s)
susp. | sessions Diag. susp. | reduction | sessions | traced sig. | Diag. | Search [Total increased
spi 146 11 1990 73 50% 11 24 828 1011 0.92
144 11 179 76 48% 9 32 101 94 1.09
hpdme 213 17 3817 170 21% 17 40 2323 15734 4.73
167 16 2321 131 22% 15 40 1963 14233 6.98
usb 103 15 3795 38 74% 11 64 1609 9218 2.85
224 14 7091 138 39% 7 128 4245 | 18519 3.49
show the number of debug sessions performed. The number [3] J. Jan, A. Narayan, M. Fujita, and A. S. Vincentelli, “A survey of

of registers traced by the trace buffer is shown in the eighth
column. Finally, the runtime of the diagnosis procedure of
both situations is reported in the fourth and ninth columns. In
the case of the presented methodology, the additional runtime
for searching the registers for tracing is recorded in the 10t
column and the total runtime is shown in the 11t column.

As shown in the sixth column of the table, one can see
that for all cases the algorithm can effectively eliminate more
false candidates when it utilizes the values of registers. The
reduction can be as high as 74% (i.e., case 1 of usb). The result
also indicates that fewer debug sessions are required to find the
root cause of the failure. All of those are achieved with tracing
a small amount of registers. The benefit of the UNSAT-core-
based technique is shown when one considers the reductions in
both the number of suspects and the number of debug sessions.
Furthermore, because of the reduction of suspects and debug
sessions, the runtime for diagnosis is reduced in the case of the
presented methodology. However, the presented methodology
requires additional computation for the searching algorithm.
As shown in the table, this computation can be significant
in cases such as hpdnt. This is because the algorithm has a
higher failing rate on finding the recommendation for the non-
traceable registers in those cases. Since the number of the final
suspects is reduced significantly, this additional runtime may
be acceptable if there is a greater amount of time saved by
manually inspecting fewer suspects.

V. CONCLUSION

Automated software silicon debug solutions are a necessity
today to ease the task of the test/design engineer during chip
failure analysis. In this paper, we present a debugging method-
ology that comprises of multiple iterative debug sessions. At
each session, the methodology uses the circuit hierarchy to
debug the failure and also narrows down the window of cycles
wherein the error is exercised. The methodology also contains
techniques to aid in selection of traceable registers to be traced
in the next debug session such that the diagnosis can benefit
from the new data. Case studies are presented to confirm the
effectiveness of the approach.

REFERENCES

[1] A. Gupta, S. Malik, and P. Ashar, “Toward formalizing a validation
methodology using simulation coverage,” in Design Automation Conf.,
June 1997, pp. 740-745.

[2] J. Kumar, N. Strader, J. Freeman, and M. Miller, “Emulation verification
of the Motorola 68060,” in Int’l Conf. on Comp. Design, Oct. 1995, pp.
150- 158.

[4]

[5]

[6]

[71

(8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

techniques for formal verification of combinational circuits,” in Int’l
Conf. on Comp. Design, Oct. 1997, pp. 445-454.

G. Parthasarathy, M. K. lyer, K. T. Cheng, and L. C. Wang, “Safety
property verification using sequential SAT and bounded model check-
ing,” IEEE Design & Test of Comp., vol. 21, no. 2, pp. 132-143, March
2004.

J. Jaeger. (2007, Dec.) Virtually every ASIC ends up an FPGA.
EETimes. [Online]. Awailable: http://www.eetimes.com/showArticle.
jhtml;jsessionid=JRHN50J1CLD2SQSNDLP%SKHOCJUNN2JVN?
articlelD=204702700

P. M. Rosinger, B. M. Al-Hashimi, and N. Nicolici, “Scan architecture
with mutually exclusive scan segment activation for shift- and capture-
power reduction,” IEEE Trans. on CAD, vol. 23, no. 7, pp. 1142-1153,
July 2004.

H. F. Ko and N. Nicolici, “Algorithms for state restoration and trace-
signal selection for data acquisition in silicon debug,” IEEE Trans. on
CAD, vol. 28, no. 2, pp. 285 — 297, Feb. 2009.

J.-S. Yang and N. A. Touba, “Automated selection of signals to observe
for efficient silicon debug,” in VLSI Test Symp., May 2009, pp. 79 — 84.
X. Liu and Q. Xu, “Trace signal selection for visibility enhancement
in post-silicon validation,” in Proc. of Design, Automation and Test in
Europe, 2009, pp. 1338 — 1343.

O. Caty, P. Dahlgren, and I|. Bayraktaroglu, “Microprocessor silicon
debug based on failure propagation tracing,” in Proc. of Int’l Test Conf.,
Oct. 2005, pp. 284-293.

C. C. Yen, T. Lin, H. Lin, K. Yang, T. Liu, and Y. C. Hsu, “Diagnosing
silicon failures based on functional test patterns,” in Int’l Workshop on
Microprocessor Test and Verification, Dec. 2006, pp. 94-97.

S. Venkataraman and W. K. Fuchs, “A deductive technique for diagnosis
for bridging faults,” in Proc. of Int’l Conf. on CAD, Nov. 1997, pp. 562—
567.

F. M. D. Paula, M. Gort, A. J. Hu, S. Wilton, and J. Yang, “BackSpace:
Formal analysis for post-silicon debug,” in Int’l Conf. on Formal
Methods in CAD, 2008, pp. 1-10.

A. Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault diagnosis and logic
debugging using Boolean satisfiability,” IEEE Trans. on CAD, vol. 24,
no. 10, pp. 1606-1621, Oct. 2005.

M. W. Moskewicz, C. F. Madigan, and S. Malik, “Chaff: Engineering an
efficient SAT solver,” in Design Automation Conf., 2001, pp. 530-535.
J. P. Marques-Silva and K. A. Sakallah, “GRASP: a new search
algorithm for satisfiability,” IEEE Trans. on Comp., vol. 48, no. 5, pp.
506-521, May 1999.

N. Eén and N. Sorensson, “An extensible SAT-solver,” in SAT, 2003,
pp. 502-518. [Online]. Available: http://dblp.uni-trier.de/db/conf/sat/
5at2003.html#EenS03

Z. Fu and S. Malik, “On solving the partial max-sat problem,” in SAT,
2006, pp. 252-265.

V. Boppana and M. Fujita, “Modeling the unknown! towards model-
independent fault and error diagnosis,” in Proc. of Int’l Test Conf., Oct.
1998, pp. 1094-1101.

M. F. Ali, S. Safarpour, A. Veneris, M. S. Abadir, and R. Drechsler,
“Post-verification debugging of hierarchical designs,” in Proc. of Int’l
Conf. on CAD, Nov. 2005, pp. 871-876.

Y.-S. Yang, A. Veneris, and N. Nicolici, “Automating data analysis and
acquisition setup in a silicon debug environment,” IEEE Trans. on VLSI
Systems, 2012.

T. Larrabee, “Test pattern generation using Boolean satisfiability,” IEEE
Trans. on CAD, vol. 11, no. 1, pp. 4-15, Jan. 1992.

