
On Error Tolerance and Engineering Change
with Partially Programmable Circuits

Hratch Mangassarian1, Hiroaki Yoshida2, Andreas Veneris1, Shigeru Yamashita3, Masahiro Fujita2

Abstract— The growing size, density and complexity of modern
VLSI chips are contributing to an increase in hardware faults and
design errors in the silicon, decreasing manufacturing yield and
increasing the design cycle. The use ofPartially Programmable
Circuits (PPCs) has been recently proposed for yield enhancement
with very small overhead. This new circuit structure is obtained
from conventional logic by replacing some subcircuits with
programmable LUTs. The present paper lays the theoretical
groundwork for evaluating PPCs with Quantified Boolean For-
mula (QBF) satisfiability. First, QBF models are constructed
to calculate the fault tolerance and design error tolerance of
a PPC, namely the percentages of faults and design errors
that can be masked using LUT reconfigurations. Next, zero-cost
Engineering Change Order (ECO) in PPCs is investigated. QBF
formulations are given for performing ECOs, and for quantif ying
the ECO coverage of a PPC architecture. Experimental results
are presented evaluating PPCs from [1], demonstrating the
applicability and accuracy of the proposed formulations.

I. I NTRODUCTION

Larger, denser and more complex digital circuits are leading
to an increase in hardware faults and design errors that slipinto
production silicon. In fact, manufacturing defect levels are expected
to increase sharply in future technologies [2], further decreasing yield.
In order to combat these trends, adding space redundancy andusing
reconfigurability have been proposed in different contextsto reduce
the number of silicon respins [3], [4]. Double and Triple Modular
Redundancy (DMR and TMR) are examples of design techniques
that replicate parts of a design with the aim of yield enhancement
as well as chip reliability improvement. Embedded FPGAs have also
been used for yield improvement [5], [6]. However, these methods are
costly because they incur significant area or performance overhead.

Partially Programmable Circuits (PPCs), recently introduced
in [1], achieve a flexible balance between yield improvementversus
the associated costs. PPCs are obtained from conventional combina-
tional logic circuits by replacing some subcircuits with reconfigurable
elements such as Look-Up Tables (LUTs) and configurable multiplex-
ers (MUXs). The authors of [1] first use simple heuristics to pick
which subcircuits to replace by LUTs. Next, they employ Setsof
Pairs of Functions to be Distinguished (SPFDs) [7] to add redundant
connections to these LUTs and configurable MUXs, such that a large
number of faults can be “bypassed” by simply reprogramming the
PPC post-silicon. Further, reconfiguring the PPC can also beused
to mask some localized design errors that escape verification and
propagate into the silicon.

Evidently, these reconfigurable structures can have other potential
applications as well. In this work, we also investigate their use for
implementing Engineering Change Orders (ECOs), namely small
changes in the specification at later stages of the design cycle. It
is well-known that even minor ECOs can lead to vastly different
synthesized implementations [8] if a new iteration of the automated
flow is used. This is usually unwanted because of the effort already
invested in optimizing the original design [8], [9]. As such, synthesis
for ECOs strives to make the smallest number of changes to the
implementation [8]–[10] so that the design complies to its new

1ECE Department, University of Toronto, Toronto, ON ({hratch,
veneris}@eecg.toronto.edu).

2VLSI Design and Education Center, University of Tokyo, Japan
({hiroaki@cad, fujita@ee}.t.u-tokyo.ac.jp).

3College of Information Science and Engineering, Ritsumeikan University,
Japan (ger@cs.ritsumei.ac.jp).

specification. In a PPC, LUT/MUX reconfigurations can be used
to implement such changes at virtually zero cost, avoiding time-
consuming design iterations.

Along these observations, the contribution of this paper ismulti-
fold. First, thefault toleranceof a PPC is defined as the percentage
of stuck-at-faults that can be made unobservable using post-silicon
reconfigurations. Next,design error toleranceis defined in a similar
fashion. We show how to compute both of these metrics using formal
techniques. Following these contributions, we present a new method
for performing ECOs in PPCs using reconfiguration. Finally,we
define a measure for quantifying the effectiveness of a PPC inimple-
menting ECOs, given an initial specification. We refer to this as the
ECO coverageof a PPC architecture and we develop a methodology
to compute it. To achieve our goals, we use Quantified Boolean
Formulas (QBFs) [11] as the underlying computational platform. Our
formulations demonstrate the theoretical appropriateness of QBFs for
dealing with reconfigurability and we capitalize on the considerable
advances in QBF solvers in recent years.

It should be noted that this work does not attempt to construct
PPCs that maximize ECO coverage or fault tolerance. Instead, it lays
the theoretical groundwork for calculating these quantities, as well as
for performing ECOs. As such, the work here remains orthogonal and
complementary to that in [1] which is strictly focused on constructing
PPCs. Experimental results are presented evaluating PPCs from [1],
demonstrating the applicability and accuracy of the proposed QBF
formulations.

The paper is organized as follows. Section II contains prelimi-
naries on PPCs and QBFs. Section III presents our formulations
for calculating fault and design error tolerance. Section IV gives
QBF encodings for performing ECOs and quantifying ECO coverage.
Section V shows experimental results and Section VI concludes the
paper.

II. PRELIMINARIES

The following notation is used throughout the paper. We use the
symbol C to denote a conventional combinational circuit, andĈ to
denote the corresponding PPC. The setsx = {x1, x2, . . . , x|x|},
y = {y1, y2, . . . , y|y|} and g = {g1, g2, . . . , g|g|} respectively
refer to the sets of primary inputs, primary outputs and gates of
C. A node v can refer to a gate or a primary input. The sets
fanout(v) andfanin(v) denote the fan-out and fan-in nodes ofv,
respectively. The setl = {(u, v) | u, v ∈ x∪g andv ∈ fanout(u)}
contains all lines (also referred to asconnectionsor branches) in
C. For eachz ∈ {x,y,g, l}, ẑ = {ẑ1, ẑ2, . . . , ẑ|ẑ|} denotes the
corresponding set in̂C. Throughout the paper, bold (z) versus regular
(z) symbols differentiate sets from single variables, and a hat (ẑ
versusz) differentiates between variables in̂C andC, respectively.

A. Partially Programmable Circuits
The type of a nodev is given by type(v) ∈ {IN, AND, OR, . . . ,

LUT, MUX}. A PPC Ĉ is a Boolean network with three types of
nodes [1]:

• Conventional logic gates, such asAND, OR, NOT andXOR.
• LUTs, whose internal functionality can be reconfigured.
• MUXs, whose select lines are controlled by programmable mem-

ory cells.
To simplify the presentation, we assume that the original circuit

C does not containLUTs/MUXs. Note that aLUT can itself be repre-
sented as a multiplexer with configurable data inputs. As such, the
configuration bitsof a LUT ĝi are the set of Boolean variables:

g3

g1

g4

g5 y1

x1

x2

x3

g2

(a) C

x̂2

ŷ1

LUT

MUX

ĉ8(ĝ5)

ĉ1(ĝ5)
ĉ2(ĝ5)

ĝ3ĝ2

ĝ4

ĝ1x̂3 ĝ5

ĝ6

ĉ1(ĝ6)

x̂1

(b) Ĉ

Fig. 1. A circuit and its corresponding PPC

ĉ(ĝi) = {ĉj(ĝi) | j = 1, . . . , 2n},

wheren denotes the number of input select lines of theLUT. On the
other hand, the configuration bits of a configurableMUX ĝi in a PPC
are its select lines. They are given by:

ĉ(ĝi) = {ĉj(ĝi) | j = 1, . . . , ⌈log2 n⌉},

wheren denotes the number of data inputs of the configurableMUX.
Figures 1(a) and 1(b) show a combinational circuitC and a

corresponding PPĈC. Note thaty1 (respectively,̂y1) is the primary
output label forg5 (respectively,̂g5) and does not represent a separate
node. In Figure 1(b), variableŝc1(ĝ6) and ĉj(ĝ5) (j = 1, . . . , 8) are
the configuration bits of̂g6 and ĝ5, respectively.

In [1], PPCs are constructed as follows. First, given an original
circuit C, an initial PPC is generated by replacing certain subcircuits
of C with LUTs using simple heuristics. Next, redundant lines are
added from selected nodes to some of theseLUTs in an effort to
increase the number of so-calledrobust connections in the PPC.
A robust connection is a line where a stuck-at-0 and a stuck-at-1
can be made unobservable by reprogramming the PPC post-silicon.
These added redundant lines are selected as follows. For each line
(u, v), a set of new connections are added to theLUT inputs such
that thefunctional flexibilitiesof the LUTs, represented by their Sets
of Pairs of Functions to be Distinguished (SPFDs), allow them to
be reconfigured to bypass stuck-at-faults at(u, v). Of course, this is
not always possible given limited resources, so not all lines can be
made robust. If more than one redundant line needs to be addedto a
certainLUT, a configurableMUX is placed in front of theLUT, which
selects between these redundant lines. This paper is not concerned
with constructing PPCs, hence the details of the algorithm given in [1]
are not relevant. Our described techniques for evaluating PPCs can
be applied to any PPC.

In the PPC shown in Figure 1(b), gateg5 is replaced by aLUT ĝ5.
Of course,ĝ5 can be easily programmed to implementOR(ĝ3, ĝ4).
Next, we have added redundant connections (shown using dashed
lines) fromx̂1 andx̂2 to aMUX ĝ6, which is input to theLUT ĝ5. In the
coming sections, we present QBF formulations that can show that this
PPC structure has100% single stuck-at-fault tolerance (disregarding
stack-at-faults at the primary output),100% design error tolerance
(assuming single gate arbitrary errors) and100% ECO coverage
(usingC as the initial specification and our ECO coverage definition).

B. Quantified Boolean Formulas
A propositional logic formulaΦ over a set of Boolean variables

b = {b1, b2, . . . , bn} is said to be satisfiable if it has asatisfying
assignment: a truth assignment tob that makesΦ true (1). Otherwise,
Φ is always false (0) and it is said to be unsatisfiable. This is known
as the SAT problem.Φ is usually given inConjunctive Normal Form
(CNF) as a conjunction ofclauses, where each clause is a disjunction
of literals. A literal is an occurrence of a variablebi or its negation

¬bi. For example,Φ = (b2 ∨ b3) ∧ (b1 ∨ ¬b2 ∨ ¬b3) ∧ (¬b1) is in
CNF. Given a combinational logic circuit, a CNF formula expressing
the circuit constraints can be constructed in linear-time [12]. As
such, a circuit and its corresponding CNF formula are referred to
interchangeably in this work.

While SAT is NP-complete, QBF is a PSPACE-complete gen-
eralization of SAT that allows for the universal quantification of
some variables. A QBF inprenex normal formis written asQ.Φ,
whereQ is called theprefix andΦ is called thematrix. The matrix
is a propositional logic formula overb in CNF. The prefixQ =
q1v1 q2v2 · · · qrvr consists ofquantifiersqi ∈ {∃,∀}, such that
qi 6= qi+1, and mutually disjoint variable setsvi, called scopes,
which partitionb. In other terms,

Sr

i=1 vi = b and
Tr

i=1 vi = ∅. A
variableb ∈ vi is labeled as anexistential(respectively,universal)
variable if qi = ∃ (respectively,qi = ∀). A scopevi or variable
b ∈ vi is said to bewider (respectively,narrower) than a scopevj

or variableb′ ∈ vj if i < j (respectively,i > j).
A QBF is true orQSAT if it has a so-calledQ-model, otherwise

it is false or UNQSAT. A Q-model is a tree of truth assignments
satisfying the QBF semantics, where each existential variable is a
function of wider universal variables, such that the matrixis satisfied
for all universal variable assignments. For example, the QBF problem:

∃b1 ∀b2 ∃b3 . (b2 ∨ b3) ∧ (b1 ∨ ¬b2 ∨ ¬b3) ∧ (¬b1)

is QSAT because whenb1 = 0, for all values ofb2, there exists an
assignment tob3 (b3 = 1 when b2 = 0 and b3 = 0 when b2 = 1)
that satisfies the matrix. This tree of satisfying truth assignments is
a Q-model. Some QBF solvers can return the satisfying assignments
to the widest existential scope (hereb1) in a Q-model [11].

III. FAULT AND DESIGN ERROR TOLERANCE

In this section, we first construct a QBF formulation for calculating
the stuck-at-fault tolerance of a PPC. We use stuck-at-faults because
this type of fault can model many defects [13]. Then, we extend this
formulation to calculate the gate design error tolerance ofa PPC.
Finally, for single stuck-at-fault tolerance and single gate design error
tolerance, we show how to partition our formulations into smaller
parallelizable problems in order to achieve faster QBF solving times
by taking advantage of modern multi-core architectures.

A. Fault Tolerance
Given a specificationC, and a corresponding implementation in

the form of a PPĈC with a fixed configuration, in this paper we say
that a stuck-at-fault (or a design error) in̂C is unobservableif there
does not exist any primary input vector for whicĥC andC produce
different primary outputs. This can be extended toN stuck-at-faults,
whereN denotes the cardinality of simultaneous stuck-at-faults.In
what follows, we use the termN -faults to denoteN simultaneous
stuck-at-faults.

Definition 1 Given a specificationC, a PPC Ĉ and a stuck-at-fault
cardinality N , the fault toleranceof Ĉ is the percentage ofN -faults
that can be made unobservable using reconfigurations.

We emphasize that (assumingN = 1 for illustration purposes),
different single stuck-at-faults are allowed to be made unobservable
by different PPC reconfigurations. The goal is that in silicon, if a
stuck-at-fault is detected during testing, we would like tobe able
to reprogram the PPC to “mask” it. In general, if for a givenN -
fault there exists a PPC reconfiguration making it unobservable,
this N -fault counts towards the fault tolerance of the PPC. Again,
reconfigurations can vary for differentN -faults. Clearly, a high fault
tolerance increases manufacturing yield because faults that otherwise
would make the circuit unusable can now be made unobservableby
reconfiguring the PPCLUTs/MUXs.

The key idea is to build a QBF instance whose “solutions” are in
a one-to-one correspondence with allN -faults that cannot be made
unobservable by any reconfiguration ofĈ. In what follows, we explain
how to create the matrix of our QBF formulation using an appropriate
circuit construction. In order to assist the reader in visualizing our
descriptions, Figure 2 illustrates this construction (which is described
shortly) for C and Ĉ given in Figures 1(a) and 1(b).

ĝ3

ĝ4

ĝ5

ĝ6

ĉ1(ĝ6)

LUT

MUX

g1

g2
g3

g4

g5

ê(x̂1)

6=

ĝ1
ŵ(ĝ1) ŷ1

y1

ĉ2(ĝ5)
ĉ1(ĝ5)

ĉ8(ĝ5)

x1

x2

x3

C

ΦN

ê(ĝ1, ĝ4)

ŵ(ĝ1, ĝ4)

ê(ĝ1)
ŵ(x̂1)

ĝ2

Ĉsaf

Fig. 2. Stuck-at-fault tolerance matrix

We first create an enhanced version ofĈ, which we callĈsaf . To
prevent any confusion, we stress that any enhancements toĈsaf are
only added to construct our QBF formulation. We do not modifythe
actual PPCĈ in any way. We start by adding a special multiplexer in
front of each gate, each line and each primary input, which determines
whether or not a stuck-at-fault is excited at that gate, lineor primary
input. Note that gate and line stuck-at-faults in this context correspond
to stemand branch stuck-at-faults [13], respectively. Of course, if
a gate has only one fan-out, we do not double-count by adding
two multiplexers at its output. The shaded multiplexers in Figure 2
illustrate this process for gatêg1, line (ĝ1, ĝ4) and primary input̂x1.
We do not show the multiplexers for the remaining gates, lines and
primary inputs to avoid overcrowding that figure. The select-line of
each of these multiplexers is called anexcitation variable, denoted
by the letterê.

In more detail, at each gatêgi (respectively, each line(û, v̂) and
each primary input̂xj), setting ê(ĝi) = 1 (respectively,ê(û, v̂) =
1 and ê(x̂j) = 1) “excites” the stuck-at-fault, by disconnectinĝgi

(respectively,(û, v̂) andx̂j) from its fan-ins, and instead connecting it
to a newly created variablêw(ĝi) (respectively,ŵ(û, v̂) andŵ(x̂j)),
which we call areplacementvariable. As will be seen later, thesêw’s
will denote the polarities of the stuck-at-faults. On the other hand,
settingê = 0 keeps the gate/line/primary input unchanged, as can be
seen in Figure 2.

Next, we apply common primary inputs (x) to bothC and Ĉsaf ,
as shown in Figure 2. Furthermore, at least one primary output is
forced to be different. Finally, acardinality constraintΦN is added
to force the number of simultaneously active (i.e., assigned to1)
excitation variables to a pre-specified constantN . This can be done
using a bitonic sorter [14]. This completes the matrix of ourQBF
formulation.

In order to abbreviate the prefix of our QBF (as well as the
remaining QBFs in this paper), we use the following notation:

ê(ĝ) = {ê(ĝi) | ∀ĝi ∈ ĝ} ŵ(ĝ) = {ŵ(ĝi) | ∀ĝi ∈ ĝ}

ê(̂l) = {ê(û, v̂) | ∀(û, v̂) ∈ l̂} ŵ(̂l) = {ŵ(û, v̂) | ∀(û, v̂) ∈ l̂}

ê(x̂) = {ê(x̂i) | ∀x̂i ∈ x̂} ŵ(x̂) = {ŵ(x̂i) | ∀x̂i ∈ x̂} (1)

And the sets of all excitation and replacement variables arerespec-
tively given by:

ê = ê(ĝ) ∪ ê(̂l) ∪ ê(x̂) ŵ = ŵ(ĝ) ∪ ŵ(̂l) ∪ ŵ(x̂)
(2)

When the context of the type of excitation/replacement variable is
clear, we just use the symbolŝe ∈ ê and ŵ ∈ ŵ for brevity.

Recall that the set̂c(ĝi) refers to the configuration bits of the
LUT/MUX ĝi. Let:

ĉ =
[

ĝi∈ĝ,
type(ĝi)∈{LUT,MUX}

ĉ(ĝi)

ĝ4

ĝ5

LUT

g1

g2
g3

g4

g5

6=

ŷ1

y1

ĉ2(ĝ5)
ĉ1(ĝ5)

ĉ8(ĝ5)

x1

x2

x3

C

ĝ2

ĝ6

ĉ1(ĝ6)

MUX

ŵ(ĝ2)

ĝ3

ŵ(ĝ1)
d̂1(ĝ1)

d̂4(ĝ1)

ĝ1

d̂2(ĝ2)
d̂1(ĝ2)

ΦN

ê(ĝ1)

ê(ĝ2)

Ĉde

Fig. 3. Gate design error tolerance matrix

denote the set of all configuration bits in̂C.
Informally, the QBF problem can be stated as follows:

Is it possible to assign exactlyN excitation variables in̂e
to 1, and set what each corresponding gate/line/primary
input is “stuck-at” (by assigningŵ), such that for all
configurations of the PPC (assignments toĉ), there exists a
primary input vector satisfying the constraints in Figure 2?

This question can be formalized as:

∃ê, ŵ ∀ĉ ∃x,g, ĝ .

C(x,y,g) ∧ Ĉsaf (x, ŷ, ĝ, ĉ, ê, ŵ) ∧ (y 6= ŷ) ∧ ΦN (ê) (3)

Notice that the placement of̂w in the widest existential scope forces
their assignment before the assignment of primary inputs, producing
the semantics of stuck-at-faults. Adding constraints on theseŵ’s or
moving them in the prefix can result in different error models, as will
be seen shortly. If (3) is false orUNQSAT, then everyN -fault can be
made unobservable (i.e., is “maskable”) by a reconfiguration of the
PPC.

In order to count the number of maskable (or unmaskable) stuck-
at-faults using (3), we need to add another term to the matrixin (3).
In fact, notice that if a certain excitation variablêe is not active, its
correspondinĝw can simply be “grounded” to0, since its value does
not propagate through the multiplexer. As such, we add the following
constraints to (3):

^

ê∈ê

(¬ê → ¬ŵ) (4)

Adding (4) prunes the search-space of the QBF solver, such that
in any Q-model of (3), thêw’s corresponding to the inactivêe’s are
assigned to0. As such, two Q-models of this QBF that differ in
their truth assignments to the widest existential scope (ê, ŵ) will
correspond to two differentN -faults that cannot be fixed by the
PPC. Therefore, finding all distinct truth assignments toê, ŵ that
satisfy (3) (i.e., that can be extended to Q-models of (3)) is equivalent
to finding all unmaskableN -faults. This can be done using a QBF
solver, by blocking the assignment tôe, ŵ in the returned Q-model
using a blocking clause and re-solving (3) iteratively until the problem
becomesUNQSAT. Subtracting the number of such solutions from the
total number ofN -fault combinations, and dividing the result by this
number gives the stuck-at-fault tolerance of the PPC for cardinality
N .

B. Design Error Tolerance
In this subsection, we propose a QBF formulation to quantifythe

effectiveness of a PPC in masking localized design errors that escape
verification and slip into the silicon. Our design error model consists
of any functional modification in the function of a gate. We use the
term N -gatesto denote a set ofN gates.

Definition 2 Given a specificationC, a PPC Ĉ and a gate design
error cardinality N , thedesign error toleranceof Ĉ is the percentage
of N -gates whereany simultaneous modifications can be made
unobservable using reconfigurations.

For instance, ifN = 1, the design error tolerance is equal to
the percentage of gates where any design error can be masked by a
reconfiguration. In other terms, gates where at least one type of design
error cannot be masked by any reconfiguration do not contribute to
the design error tolerance. In the event a design error is identified
post-silicon, a PPC with high design error tolerance is likely to offer
a configuration fix, allowing the circuit to operate correctly without
the need for a costly respin.

In this subsection, we modify the QBF in (3) to deal with
gate design errors. We model design errors by again enhancing Ĉ.
Here, Ĉde adds similar multiplexers as in Figure 2 but now only
at the outputs of gates. Furthermore, thêw(ĝi)’s are no longer
unconstrained and instead are the outputs of newly addedLUTs whose
select lines arêgi’s inputs. This allows eacĥw(ĝi) to be any function
of the inputs ofĝi, thus implementing any gate design error. This
construction is illustrated in Figure 3, where shaded multiplexers are
added for gateŝg1 and ĝ2. For each gate,̂gi, the set:

d̂(ĝi) = {d̂j(ĝi) | j = 1, . . . , 2|fanin(ĝi)|}

refers to the configuration bits of thereplacementLUT ŵ(ĝi).
Again, applying common primary inputs, forcing different primary

outputs and adding cardinality constraints yields the matrix in Fig-
ure 3. Using this, our QBF formulation is given as follows:

∃ê(ĝ), d̂(ĝ) ∀ĉ ∃x,g, ĝ, ŵ(ĝ) .

C(x,y,g) ∧ Ĉde(x, ŷ, ĝ, ĉ, ê(ĝ), ŵ(ĝ), d̂(ĝ)) ∧ (y 6= ŷ) ∧ ΦN (ê)
(5)

which asks whether there existN gates that can be arbitrarily
modified such that for all PPC configurations (ĉ), there is always an
input vector exhibiting the error at a primary output. Similarly to (4),
we add the following constraints that ground the configuration bits
d̂(ĝi) of ŵ(ĝi) for gates whose excitation variables are inactive:

^

ê(ĝi)∈ê(ĝ)

0

@¬ê(ĝi) →

0

@

^

d̂j(ĝi)∈d̂(ĝi)

¬d̂j(ĝi)

1

A

1

A (6)

This is done in order to create a one-to-one correspondance
between different satisfying truth assignments toê(ĝ), d̂(ĝ) and
different N -gate design errors that cannot be masked by the PPC.
Finding all these satisfying assignments using blocking clauses en-
ables us to calculate the gate design error tolerance of the PPC for
cardinalityN .

C. Problem Partitioning forN = 1

Most often, we are interested in calculating single stuck-at-fault
tolerance and single gate design error tolerance. It is usually very
difficult to mask multiple simultaneous faults or errors, especially
with limited redundancy as in PPCs. Here, we show that whenN = 1,
we can partition the QBF problem (for both (3) and (5)) into a linear
number of independently solvable and much easier subproblems, in
order to take advantage of the modern multi-core architectures in
solving these QBF instances.

For single stuck-at-fault tolerance, the partitioning is done by
enumerating eacĥe ∈ ê and the corresponding two polarities of
ŵ. For each gate/line/primary input with excitation variable ê∗ and
replacement variablêw∗, and each stuck-at valueb ∈ {0, 1}, we let:

Ĉsaf |ê∗,ŵ∗=b , Ĉsaf ∧ ê
∗ ∧ (ŵ∗ = b) ∧

^

ê∈ê−{ê∗}

(¬ê) (7)

denote the PPC with only that gate/line/primary input stuck-at-b. We
now ask whether there exists a PPC configuration, such that for all

primary inputs, this faulty circuit produces the same outputs asC.
Formally, this is stated as:

∃ĉ ∀x ∃g, ĝ . C(x,y,g) ∧ Ĉsaf (x, ŷ, ĝ, ĉ, ê, ŵ)|ê∗,ŵ∗=b ∧ (y = ŷ)
(8)

Note that the cardinality constraints are no longer necessary because
ê is already assigned a-priori, and all the inactive shaded multiplexers
in Figure 2 can be discarded due to (7). Now although (8) must be
solved for every single stuck-at-fault, each of these QBF instances is
completely independent and much easier to solve than (3). Assuch,
the number of maskable single stuck-at-faults can be computed by
heavily parallelizing all the QBFs of the form (8) and simplycounting
the number ofQSAT results.

A similar partitioning can be accomplished for the single gate
design error tolerance formulation in (5). Here, for each gate ĝi, we
let:

Ĉde|ê(ĝi) , Ĉde ∧ ê(ĝi) ∧
^

ê(ĝj)∈ê(ĝ)−{ê(ĝi)}

(¬ê(ĝj)) (9)

denote the PPC where onlŷgi can have a design error. We now
ask whether for all possible design errors atĝi, there exists a PPC
configuration that masks the error. Formally,

∀d̂(ĝi) ∃ĉ ∀x ∃g, ĝ, ŵ(ĝi) .

C(x,y,g) ∧ Ĉde(x, ŷ, ĝ, ĉ, ê(ĝ), ŵ(ĝ), d̂(ĝ))|ê(ĝi) ∧ (y = ŷ)
(10)

In each QBF of the form of (10), all̂d(ĝj) and ŵ(ĝj) with j 6= i
can be disregarded, since they cannot propagate through theshaded
multiplexers in Figure 3. Again, for each gate, a QBF of the form
of (10) must be solved to determine whether all possible errors at
that gate can be masked by the PPC. All these QBFs can be solved
in parallel. The single gate design error tolerance of the PPC is equal
to the ratio of these QBFs that areQSAT.

IV. ENGINEERING CHANGE ORDER

In this section, we first construct a QBF for performing an ECO
using a PPC. Then, we define the ECO coverage of a PPC and show
how to compute it using a QBF.

A. Performing ECOs
ECOs are small changes in the specification at later stages ofthe

design cycle. Synthesis for ECOs strives to make the smallest number
of changes to the implementation [8]–[10]. PPCs can be used to
implement ECOs pre- or post-silicon by simply reprogramming the
MUXs/LUTs.

Given a modified specificationCmod, if there exists a configuration
of the PPCĈ, such that for all primary inputs,̂C and Cmod behave
identically, then the ECO can be implemented by reprogramming the
PPC. This is easily expressed as the following QBF:

∃ĉ ∀x ∃g, ĝ . Cmod(x,y,g) ∧ Ĉ(x, ŷ, ĝ, ĉ) ∧ (y = ŷ) (11)

Figure 4 illustrates the matrix of (11) given a specificationCmod

where theNOT gateg2 has been eliminated andg4 = AND(x3, g1) has
been replaced byg4 = NAND(x1, g1). Using a QBF solver, it can be
easily verified that the QBF (11) with the matrix shown in Figure 4 is
QSAT. The satisfying assignment to the configuration bitsĉ returned
by the solver can be used to reprogram the PPC to implement the
modified specification at essentially zero-cost. Interestingly, the QBF
in (11) is similar to a formualtion used for FPGA technology mapping
given in [15].

B. ECO Coverage

Given a PPCĈ and an original specificationC, we would like to
measure the effectiveness of this PPC architecture in implementing
small changes inC. Given a change cardinalityN , a simple way to
model small changes in the specification netlistC is to allowN gates
to be changedarbitrarily . As such, we define theECO coverageof
a PPC as follows:

ĝ3

ĝ4

ĝ5

ĝ6

ĉ1(ĝ6)

LUT

MUX

g1

g3

g5

ŷ1

y1

ĉ2(ĝ5)
ĉ1(ĝ5)

ĉ8(ĝ5)

x1

x2

x3

ĝ2

g4

Ĉ

ĝ1

=

Cmod

Fig. 4. Engineering change matrix

Definition 3 Given an original specificationC, a PPC Ĉ and a
change cardinalityN , theECO coverageof Ĉ is the percentage ofN -
gates inC, whereanysimultaneous modifications can be implemented
using reconfigurations in̂C.

Note that many ECOs involve changes at a higher abstraction level,
for which different models should be considered. Furthermore, since
this paper deal with combinational PPCs, sequential specification
changes are not covered. Our formulation for ECO coverage is
essentially the dual of the formulation for design error tolerance given
in (5). Here, we must enhance the specification circuitC instead of
Ĉ, since we are allowing the specification to change. A multiplexer
is added at the output of each gategi in C, with excitation select
line e(gi). Furthermore, similarly to Figure 3, thew(gi)’s are the
outputs of newly added replacementLUTs, whose select lines are
gi’s inputs. This allows eachw(gi) to be any function of the inputs
of gi, thus modeling any gate change atgi, when e(gi) = 1. This
construction is illustrated in Figure 5, where shaded multiplexers are
added for gatesg1 and g4 (we have skipped the remaining gates to
avoid overcrowding the figure). As before, for each gategi, the set:

d(gi) = {dj(gi) | j = 1, . . . , 2|fanin(gi)|}

refers to the configuration bits of the replacementLUT w(gi).
Informally, the QBF problem can be stated as follows:

Do there existN gates in the specifications (e(g)), such
that foranymodification of these gates(d(g)), there exists
a PPC configuration (̂c), such that for all primary inputs,
this PPC correctly implements the modified specification?

Adding cardinality constraintsΦN (e), applying common primary
inputs and forcing the primary outputs to be equal, we get thematrix
in Figure 5 and the following QBF formulation:

∃e(g) ∀d(g) ∃ĉ ∀x ∃g, ĝ,w(g) .

Ceco(x,y,g, e(g),w(g), d(g)) ∧ Ĉ(x, ŷ, ĝ, ĉ) ∧ (y = ŷ) ∧ ΦN (e)
(12)

wheree(g) andw(g) are defined similarly to (1).
In (12), only e(g) is in the widest scope, so counting all the

satisfying assignments toe(g) using blocking clauses gives the
number ofN -gates where any change can be implemented by the
PPC using reconfigurations.

C. Problem Partitioning forN = 1

In the case where exactly one gate is allowed to arbitrarily change
in the specification (i.e., N = 1), (12) can be partitioned into|g|
smaller, independent QBFs by enumerating eache(gi) ∈ e(g). For
each gategi, we let:

Ceco|e(gi) , Ceco ∧ e(gi) ∧
^

e(gj)∈e(g)−{e(gi)}

(¬e(gj)) (13)

ĝ3

ĝ4

ĝ5

ĝ6

ĉ1(ĝ6)

LUT

MUX

g3

ŷ1
ĉ2(ĝ5)
ĉ1(ĝ5)

ĉ8(ĝ5)

x1

x2

x3

ĝ2

ĝ1

Ĉ
=

y1g4

d4(g1)

d1(g1)
d1(g4)

g1

e(g1)

w(g1)

g2

g5

w(g4)

e(g4)

ΦN

d4(g4) Ceco

Fig. 5. ECO coverage matrix

denote the specification where onlygi is allowed to change. We
now ask whether for all possible changes atgi, there exists a PPC
configuration that can implement it. Formally,

∀d(gi) ∃ĉ ∀x ∃g, ĝ, w(gi) .

Ceco(x,y,g, e(g),w(g),d(g))|e(ĝi) ∧ Ĉ(x, ŷ, ĝ, ĉ) ∧ (y = ŷ)
(14)

In each QBF of the form of (14), alld(gj) and w(gj) with j 6= i
can be disregarded, since they cannot propagate through theshaded
multiplexers in Figure 5. For each gate, a QBF of the form of (14)
must be solved to determine whether all possible modifications at
that gate in the specification can be implemented by the PPC. All
these QBFs can be solved in parallel. The ECO coverage of the PPC
is equal to the ratio of these QBFs that areQSAT.

V. EXPERIMENTAL RESULTS

This section presents the experimental evaluation of21 PPCs
from [1] using our proposed QBF formulations. These PPCs are
generated by [1] from some of the MCNC benchmark circuits [16].
Experiments are run on a quad-core Intel i5,3.1 Ghz workstation
with 16 GB of RAM. Since complex faults can be modeled using
single stuck-at-faults [13], and given the limited number of LUTs
in the PPCs of [1], we setN = 1 in our tolerance and coverage
calculations. We use the proposed QBF partitioning schemesin
Subsections III-C and IV-C to speed up the solving process. For each
tolerance/coverage computation, the QBF subproblems are solved in
parallel over the four cores. A timeout of100 seconds is used foreach
QBF subproblem. The QBF solversKizzo-v0.11c [11] is used
to solve all QBF instances. Other QBF solvers, such as QuBE7 [17]
give similar results.

Table I shows the results of our evaluations. The first eight columns
underPPC information describe the PPCs [1]. The first five columns
respectively show the PPC name, its number of gates|ĝ|, lines |̂l|,
addedLUTs and addedMUXs. Next, columnsadded linesand% added
lines respectively show the number of redundant lines added by [1]
to theLUTs/MUXs and the percentage of added lines to all lines in the
PPC. Column% LUTs+MUXs gives the percentage of gates that are
addedLUTs/MUXs compared to all gates in|ĝ|. The columns under
PPC evaluation present the results of the tolerance and coverage
metrics outlined in this work. The first two columns respectively
show thefault toleranceof Ĉ and the total time required for all the
corresponding QBF subproblems to terminate. The next two columns
give thedesign error toleranceof Ĉ and the total time to compute it.
And finally, theECO coveragemeasure along with its computation
run-time are given.

For the circuitpair shown in table I, the fault coverage and ECO
coverage are, respectively, at least40% and at least52%, because
a small number (roughly5%) of the QBF subproblems for each of
these calculations does not terminate by100 seconds. Note that since

TABLE I
PPC EVALUATION RESULTS

PPC information PPC evaluation

Ĉ
|ĝ| |̂l| LUTs MUXs added % added %LUTs fault time DE time ECO time

lines lines +MUXs tolerance (sec) tolerance (sec) coverage (sec)
alu2 335 797 5 3 21 3% 2% 33% 35.5 10% 11.2 16% 12.1

alu4 627 1459 7 5 35 2% 2% 29% 1145.3 12% 216.7 16% 269.3

apex6 866 1805 98 29 143 8% 15% 54% 461.0 28% 140.1 65% 197.3

apex7 295 586 37 17 74 13% 18% 58% 39.4 22% 9.1 71% 13.6

b9 163 349 20 14 66 19% 21% 70% 8.0 23% 2.0 67% 3.0

c8 145 282 18 6 27 10% 17% 33% 2.5 6% 0.8 63% 1.2

cc 116 206 19 9 26 13% 24% 63% 1.8 23% 0.5 85% 0.7

comp 106 234 2 2 21 9% 4% 13% 96.2 7% 60.1 10% 37.8

example2 477 997 65 31 148 15% 20% 48% 102.7 17% 22.3 70% 39.2

f51m 109 250 8 2 17 7% 9% 60% 1.3 37% 0.5 60% 0.6

frg1 94 197 3 1 5 3% 4% 11% 7.1 5% 3.0 20% 4.7

lal 150 298 19 10 45 15% 19% 76% 4.7 36% 1.2 70% 1.5

mux 60 146 1 1 6 4% 3% 39% 6.9 12% 3.9 25% 4.6

pair 1364 3246 100 85 482 15% 14% ≥ 40% 18431.8 12% 8736.4 ≥ 52% 10566.9

t481 824 2319 1 1 39 2% 0% 81% 7843.7 65% 1871.6 68% 2921.8

term1 186 458 10 7 57 12% 9% 90% 64.2 66% 15.9 56% 16.6

too large 436 1029 3 3 38 4% 1% 37% 9128.1 21% 1633.7 22% 1946.7

vda 749 1928 39 20 192 10% 8% 95% 980.6 86% 257.4 88% 234.9

x1 359 783 35 20 109 14% 15% 48% 140.4 16% 31.9 50% 42.0

x3 912 1871 99 70 285 15% 19% 55% 823.4 18% 171.6 65% 222.7

x4 563 1279 71 47 287 22% 21% 66% 325.5 22% 54.9 62% 78.3

the QBF subproblems used in our computations are independent, it is
easy to improve our run-times by simply parallelizing more heavily.

Figures 6(a) and 6(b) plot the calculated metrics against% added
lines and % LUTs+MUXs, respectively. As expected, adding more
redundant lines to theLUTs/MUXs, and replacing more gates withLUTs
increases both fault tolerance and ECO coverage. On the other hand,
the correlation of these two variables with design error tolerance is
weaker, at least given the considered family of PPCs.

On average, only10% of the lines in the PPCs are added as
overhead, and only12% of the gates are addedLUTs or MUXs. In
fact, LUTs replaceother gates in the original circuit, so the overhead
in the number of added gates is much less than12%. We found that
these PPCs have a53% average single stuck-at-fault tolerance, a26%
average single gate design error tolerance, and a52% average ECO
coverage. From these results, we can conclude that the smallhardware
overhead is more than compensated by the fault/error tolerance and
ECO coverage that these architectures demonstrate, confirming that
PPCs are attractive architectures to increase silicon yield and reduce
the cost of the design/manufacturing cycle. Furthermore, the existence
of methods for computing these metrics encourages further research
on improving PPCs.

VI. CONCLUSION

PPCs are circuits with limited reconfigurability. This paper lays the
theoretical groundwork for evaluating PPCs with QBF satisfiability.
QBF models are given to calculate the fault tolerance and design
error tolerance of a PPC. Next, QBF formulations are proposed for
performing ECOs, and for quantifying the ECO coverage of a PPC
architecture. Experimental results are presented that evaluate existing
PPCs, demonstrating the applicability of the proposed formulations

0% 5% 10% 15% 20% 25%
0%

20%

40%

60%

80%

% added lines

fault tolerance
design error tolerance
ECO coverage

(a) vs % added lines

0% 5% 10% 15% 20% 25%
0%

20%

40%

60%

80%

% LUTs + MUXs

fault tolerance
design error tolerance
ECO coverage

(b) vs %LUTs+MUXs

Fig. 6. Fault tolerance, design error tolerance and ECO coverage

and confirming the attractiveness of PPCs for increasing silicon yield
and reducing the cost of the design/manufacturing cycle.

REFERENCES

[1] S. Yamashita, H. Yoshida, and M. Fujita, “Increasing yield using
partially-programmable circuits,” inWorkshop on Synthesis And System
Integration of Mixed Information technologies (SASIMI), 2010, pp. 237–
242.

[2] International technology roadmap for semiconductors, 2007.
[3] R. Lyons and W. Vanderkulk, “The use of triple-modular redundancy to

improve computer reliability,”IBM Journal of Research and Develop-
ment, vol. 6, no. 2, pp. 200–209, 1962.

[4] S. Sarangi, S. Narayanasamy, B. Carneal, A. Tiwari, B. Calder, and
J. Torrellas, “Patching processor design errors with programmable
hardware,”IEEE Micro, vol. 27, no. 1, pp. 12–25, 2007.

[5] M. Abramovici, C. Stroud, and M. Emmert, “Using embeddedFPGAs
for SoC yield improvement,” inDesign Automation Conf., 2002, pp.
713–724.

[6] A. Doumar and H. Ito, “Detecting, diagnosing, and tolerating faults in
sram-based field programmable gate arrays: a survey,”IEEE Trans. on
VLSI Systems, vol. 11, no. 3, pp. 386–405, 2003.

[7] S. Yamashita, H. Sawada, and A. Nagoya, “SPFD: A new method to
express functional flexibility,”IEEE Trans. on CAD, vol. 19, no. 8, pp.
840–849, 2000.

[8] G. Swamy, S. Rajamani, C. Lennard, and R. Brayton, “Minimal logic
re-synthesis for engineering change,” inIEEE International Symposium
on Circuits and Systems, vol. 3, 1997, pp. 1596–1599.

[9] D. Brand, A. Drumm, S. Kundu, and P. Narain, “Incrementalsynthesis,”
in Int’l Conf. on CAD, 1994, pp. 14–18.

[10] Y. Kuo, Y. Chang, S. Chang, and M. Marek-Sadowska, “Engineering
change using spare cells with constant insertion,” inInt’l Conf. on CAD,
2007, pp. 544–547.

[11] M. Benedetti, “sKizzo: a suite to evaluate and certify QBFs,” in Int’l
Conf. on Automated Deduction, 2005, pp. 369–376.

[12] G. S. Tseitin, “On the complexity of derivations in the propositional
calculus,” in Studies in Constructive Mathematics and Mathematical
Logic, 1968, pp. 115–125.

[13] N. Jha and S. Kundu,Testing and reliable design of CMOS circuits.
Kluwer Academic Publishers Boston., 1990.

[14] K. Batcher, “Sorting networks and their applications,” in Proceedings of
AFIPS, Spring Joint Computer Conference, 1968, pp. 307–314.

[15] A. Ling, D. Singh, and S. Brown, “FPGA PLB architecture evaluation
and area optimization techniques using boolean satisfiability,” Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
vol. 26, no. 7, pp. 1196–1210, 2007.

[16] S. Yang, “Logic synthesis and optimization benchmarksuser guide
version 3.0,”MCNC, 1991.

[17] E. Giunchiglia, M. Narizzano, and A. Tacchella, “QUBE:A system for
deciding quantified boolean formulas satisfiability,”Automated Reason-
ing, pp. 364–369, 2001.

