
Lazy Suspect-Set Computation:
Fault Diagnosis for Deep Electrical Bugs

Dipanjan Sengupta
Dept. Elec. & Comp. Eng.

University of Toronto
Toronto, Canada

dipanjan@eecg.toronto.edu

Flavio M. de Paula
Dept. of Computer Science

University of British Columbia
Vancouver, Canada

depaulfm@cs.ubc.ca

Alan J. Hu
Dept. of Computer Science

University of British Columbia
Vancouver, Canada
ajh@cs.ubc.ca

Andreas Veneris
Dept. Elec. & Comp. Eng.

University of Toronto
Toronto, Canada

veneris@eecg.toronto.edu

André Ivanov
Dept. Elec. & Comp. Eng.

University of British Columbia
Vancouver, Canada

ivanov@ece.ubc.ca

ABSTRACT
Current silicon test methods are highly effective at sensitiz-
ing and propagating most electrical faults. Unfortunately,
with ever increasing chip complexity and shorter time-to-
market windows, an increasing number of faults escape un-
detected. To address this problem, we propose a novel tech-
nique to help identify hard-to-find electrical faults that are
not detected using conventional test methods, but manifest
themselves as observable functional errors during functional
test, system test, or during actual use in the field. These
faults are too sequentially deep to be diagnosed using sim-
ulation, ATPG, or formal tools. Our technique relies on re-
peated full-speed chip runs that witness the functional bug,
combined with some additional on-chip functional debug
support and off-line analysis, to compute a possible set of
suspected faults. The technique quickly prunes the suspect
set, and for each suspect, it can provide a short test vector
for further analysis. Experiments on the ITC’99 benchmarks
demonstrate the effectiveness of our approach.

Categories and Subject Descriptors
B.7.2 [Design Aids]: Verification; B.7.3 [Reliability and
Testing]: Testability

General Terms
Algorithms, Performance, Verification

Keywords
Electrical Fault, Post-Silicon Debug, Satisfiability

1. INTRODUCTION
One of the most challenging problems in post-silicon de-

bug is the diagnosis of a fault that has eluded conventional

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI ’12 May 3–4, 2012, Salt Lake City, Utah, USA.
Copyright 2012 ACM 978-1-4503-1244-8/12/05 ...$10.00.

testing but manifests only later as an observable functional
error when the chip is running full-speed during bring-up,
system test, or actual use. We dub these bugs “deep elec-
trical bugs” because they have been first sighted only at
extreme sequential depth (e.g., many billions of cycles after
only seconds of silicon run time). In this paper, we propose
a novel technique to help diagnose these bugs.

Existing methods from pre-silicon verification or manufac-
turing test do not solve this problem. Pre-silicon verifica-
tion does not consider electrical faults. One could imagine
mutating the RTL with a postulated fault and then apply-
ing simulation or formal verification — and indeed, this is
the primary debugging technique once the set of possible
faults is greatly narrowed, and a very short trace demon-
strating the bug has been captured — but the vast set of
possible faults, the slow speed of simulation, and the ca-
pacity limits of formal verification prevent employing these
techniques initially for fault diagnosis. ATPG and other
methods from manufacturing test explicitly consider faults,
but are also inadequate for initial diagnosis of deep electrical
bugs. In particular, ATPG algorithms face two fundamental
complexity limits. First is the need to cover a fault model.
Because the goal is 100% coverage, every possible fault must
be analyzed, even if they are irrelevant to a specific, sighted
bug. The second limit is even worse: sequential ATPG al-
gorithms [13] blow-up exponentially in the sequential depth
(number of time frames). As noted earlier, if we are try-
ing to debug a crash that occurs after a few seconds of the
actual silicon running, then it corresponds to billions of cy-
cles of sequential depth — well beyond the capabilities of
sequential ATPG methods.

The post-silicon debug team has the luxury of sequential
depth, as they are the ones running applications full-speed
on real silicon. In our problem scenario, they are the ones
who sight the bug. But the almost complete lack of con-
trollability and observability forces them into an extremely
challenging, ad hoc debug flow [6]. Some techniques can
enhance observability, but these are slow and very limited.
For example, physical probing can measure the voltages on a
handful of on-chip signals (as long as accessible probe points
are available) [5]. However, decreasing feature-size, flip-chip
technologies, and growing complexity of chips make such a
method cumbersome [7]. Scan chains [11] can aid observ-
ability, but typically provide only one-cycle snapshot of the
chip’s scan chain. Trace buffers [1] provide a recording of

hundreds or more cycles, but only of a few key signals. All
of these methods help, but it is exceptionally hard to get
that scan or trace buffer dump that captures the exact mo-
ment that root-causes a bug.

Recently, researchers have started proposing methodolo-
gies to harness the on-chip test and debug hardware to pro-
vide greater assistance to the post-silicon debug team. For
example, scan dumps can be compared automatically be-
tween good and bad runs to help root-cause a fault [2], or
propagated forward and backward to help improve visibility
and diagnosis [10]. A binary-search-based debug method [12]
iteratively divides the search space in half until the method
identifies the first cycle in which the error is activated and
observed. These methods assume the system behavior is
deterministic, which is rarely true in practice (due to test
case randomness, incomplete control of the operating en-
vironment, clock domain crossings, arbitration, etc.). The
BackSpace [3] approach can handle non-determinism, but
does not consider electrical faults.

Building on those previous works, this paper presents FD-
BackSpace (Fault Diagnosis BackSpace) to provide assis-
tance for diagnosing sequentially deep electrical bugs. In
particular, the contributions are as follows:

• We propose a novel algorithm that identifies a small
set of possible faults that could be responsible for the
observed buggy behavior running the actual system in
silicon.

• The key characteristic of our method is its laziness.
Rather than trying to analyze whether a deep bug
could occur for every possible fault, our method starts
from the observed bug sighting (e.g., a system crash)
and goes backwards, lazily considering only the faults
that are relevant to a possible execution leading to the
actual bug.

• Experimental results show that our method can reduce
the number of suspect faults by an average of 94%.
Furthermore, we can eliminate the majority of possible
faults within only few clock cycles (going backwards
from the bug observation). Even if we cannot run the
algorithm to completion, we still greatly reduce the set
of possibilities for the debug team to consider.

• Not only does our technique produce a small suspect
set of possible faults, it simultaneously reconstructs a
trace showing for each fault how that fault can cause
the observed buggy behavior.

• Unlike [3,4], our method handles deep electrical faults,
being specifically used for fault diagnosis. In contrast
to [2, 10, 12], our method handles non-determinism in
the system execution.1 Unlike [8], our method is not
processor-specific and can be applied to any design.
Unlike [9], which assumes the existence of test vec-
tors demonstrating faulty behavior before fault diag-
nosis can be performed, our method simultaneously
constructs plausible test vectors along with diagnosing
possible faults.

2. PRELIMINARIES

2.1 Notation and Basic Definitions
Let C be a fault-free circuit. We model C as a finite state

machine, M = (Q, I,O,Q0, δ, ω), where:

1Our experimental results are done with deterministic sim-
ulation, but we show how to relax this assumption to handle
non-determinism.

• Q = 2L is the set of states, where L is the set of latches
in C;

• I is the input alphabet;

• O is the output alphabet;

• Q0 ⊆ Q is the set of initial states;

• δ ⊆ Q× I ×Q is the transition relation;

• ω ∈ Q× I 7→ O is the output function.

Notice that we model M as a non-deterministic finite state
machine, so the formalism can handle randomness in the
bring-up tests as well as transient errors, race conditions,
etc.

An execution path (run) onM is a finite sequence of states
π = s0s1s2 . . . sn, where n ∈ N. A crash state is a state of the
chip where a bug is observable (e.g., a system hang). A path
sisi+1 . . . sn is said to be a valid trace leading to the crash
state if sn is the crash state and for each sj , i ≤ j ≤ n−1, sj
is a predecessor of sj+1 and reachable from the initial state.

A signature of a state s ∈ Q is a projection of s onto a set
of latches S ig ⊆ L, i.e., in this paper, we consider a signature
to be just a subset of the bits of a state.

For any node g, we denote by fanout(g) and fanin(g) the
set of fan-out and fan-in nodes of g, respectively.

For any fault-free node g, the variable, ḡ, denotes its faulty
counterpart. We denote by C̄ a faulty circuit. To simplify
our exposition, we will assume a single-stuck-at fault model:
the notation ḡ(0) (ḡ(1)) refers to a stuck-at-0 (stuck-at-1)
fault at node g. However, our method works for any fault
model that can be modeled using the SAT-based technique
described next.

2.2 Fault Modeling

We use the SAT-based fault-modeling technique intro-
duced by [9]: we augment the model of the fault-free circuit
C (henceforth, C’) by adding a mux at the output of each
gate g. Each mux has one fault-select and one signal line.
We denote the set of fault-select lines by E = {e1, e2, . . . , en}
and the set of corresponding fault-signal lines by W =
{w1, w2, . . . , wn}, where n = |G|. By setting ei = 1, the node
gi is disconnected from fanout(gi), and wi is connected to
every node gj ∈ fanout(gi).

This is a very flexible fault-modeling framework, as any
gates can be disconnected, with arbitrary faulty values forced
into the circuit instead. For example, for the single-stuck-
at fault model, we would constrain that exactly one ei = 1
(which enforces “single”), we would assign the correspond-
ing wi to be 0 (1) for stack-at-0 (stuck-at-1), and we would
not allow ei or wi to change in different time-frames (which
enforces “stuck-at”).

Consider the sequential circuit in Fig. 1(a), for example.
A possible faulty version is in Fig. 1(b), where a s-a-1 fault
is present in g2. Fig. 1(c) shows the augmented circuit with
a set of muxes used to model the fault. (For space reasons,
the latches have been removed in Fig. 1(c).) The fault is
modeled by setting fault-select line e2 = 1 with all other
ei = 0, and fault-signal line w2 = 1.

With the (potentially faulty) circuit in this form, many
useful properties are easily phrased as SAT queries. For ex-
ample, an important basic computation is pre-image: what
states/inputs are possible predecessors of a given state? To
answer this question, we simply constrain that next-state
signals to the given state and ask the SAT solver for solu-
tions for the present-state and input signals. Upon receiving

b

a g

g

g

e

w3
e

w2

e

ew

w1

1 2

443

1
2

43 g

x’

y’

y

x

(c)

D

Q

Q

a

b

x

y

gg
1

g
3

2 D

4
g

s−a−1

x’

y’

y’

x’
D

D

Q

Q

a

b

x

yg g

g g
2

3

1

4

(a)

(b)

Figure 1: Sequential Circuit (a) fault-free (b) faulty
(c) added hardware

a solution, we can force the solver to return additional solu-
tions until we have them all. Returning to Fig. 1, for exam-
ple, we might ask what states are the predecessors of state
11 under input 01, assuming a fault-free circuit. In that
case, we would assert that x′ = y′ = b = 1 and a = ei = 0,
and a SAT solver would quickly tell us that this is actually
impossible: no solutions for x and y exist. Similarly, we
might ask which single-stuck-at faults allow the circuit to
transition from state 10 to state 10 under input 01 by as-
serting x′ = x = b = 1 and y′ = y = a = 0 and leaving the
fault-select and fault-signal lines partially constrained, and
the SAT solver would return the fault in Fig. 1(b) (along
with several other solutions). The challenge with using SAT
for diagnosing deep bugs, though, is that we don’t know the
states leading up to the bug, so we don’t know the correct
constraints for the SAT solver. Our new algorithm solves
this problem.

2.3 BackSpace
Since our technique relies on the same formal principles

of BackSpace, we briefly review its core assumptions and
debug-flow. For a complete presentation, we refer to [3].

The core assumptions of the BackSpace framework are:

• It must be possible to recover the state of the chip
when an error has occurred. For example, this could
be done via the scan chain with the chip in test mode;

• The silicon implements the RTL (or gate-level or lay-
out or any other model of the design that can be ana-
lyzed via formal tools);

• The bring-up tests can be run repeatedly and the bug
being targeted will be at least somewhat repeatable
(one out of every n tries, for a reasonably small value
of n).

The BackSpace framework consists of adding some debug
support to the chip: a signature that saves some history
information but otherwise has no functional effect on the
chip’s behavior, and a programmable breakpoint mechanism
that allows the chip to “crash” when it reaches a specified
state. Given these, the approach repeats the following steps

1. Run the chip until it crashes or exhibits the bug. This
could be an actual crash or a programmed breakpoint.

2. Scan out the full crash state, including the signature.

3. Using formal analysis of the corresponding RTL (or
other model), compute the set of predecessor-candidates
of the crash state. The signature must provide enough
information so that the number of predecessor-candidates
is reasonably small.

4. For each predecessor-candidate s, let s be the new
breakpoint; re-run the chip; if the chip reaches the
breakpoint, then s is a valid predecessor.

until it has computed enough of a history trace to debug
the design (or Step 3 fails). Each iteration of the loop is like
hitting “backspace” on the design – going back one cycle.

Our new algorithm, FD-BackSpace, differs from the orig-
inal BackSpace in two fundamental ways: 1) we do not as-
sume that the silicon implements the RTL, instead use the
techniques from Sec. 2.2 to model faults, and 2) we consider
all valid paths to the crash state instead picking just one.
The next section presents the FD-BackSpace algorithm.

3. FD-BackSpace ALGORITHM
We start this section by setting forth our assumptions,

then we present the algorithm, and afterwards, we prove its
correctness.

Similar to the original BackSpace framework, we assume
that it is possible to recover the state of the chip when it
crashes (or breakpoints) along with a signature of the previ-
ous cycle (using scan-chains). In addition we make the fol-
lowing assumptions: 1) we have a fault model that produces
a finite set G of possible faults that might be the cause of the
crash and that we can model each fault as in Sec. 2.2; 2) if a
fault exists, it will be excited and observed given a reason-
ably small number of chip-run trials; 3) and the signature is
effective at constraining the pre-image computation to yield
a small number of predecessor-candidate states. The last
two assumptions are in-common with the original BackSpace
work, and effective techniques for signature computation are
known [3].

Our new FD-BackSpace algorithm is shown in Algorithm 1.
It computes a minimal set of the suspect faults, working
backwards in time from the crash state towards the initial
states. The three main data-structures in this algorithm are
two tables, W and H , and the set of suspect faults, F . Each
table entry contains a 3-tuple: a state, a signature and a
set of faults. We define W as the working-table and H as
the history table. The former is a dynamic table where el-
ements are inserted and/or deleted in each iteration. The
latter stores all validated states (explained later) and their
associated possible faults.

The intuition behind Algorithm 1 is that we are perform-
ing a modified graph traversal through the state space under
different possible faults. The working table W is the fron-
tier from which we must continue the search, and the history
table H accumulates all states we have visited. The key to
understanding the algorithm is that we are always maintain-
ing two invariant properties of all triples in W and H : 1) for
every state and associated fault, there is an execution path
from that state through only states in H to the crash state,
assuming that fault; and 2) every state is validated, meaning
that we actually observed that state occurring on an actual
silicon run.

This procedure has 2 main loops: lines (15 – 29) and
lines (30 – 57). The first loop (lines 15 – 29) builds the
initial working-table. This loop iterates over all possible
faults G. First, it computes a pre-image of the crash state
under some fault g ∈ G (line 17). If the pre-image is non-
empty, Algorithm 1 checks whether each state s in the pre-
image is already in W , adding g to the set of possible faults

of s, if that is the case. Otherwise, Algorithm 1 validates
and inserts s into W by running the actual chip (this step
is explained in detail later). At the end of this loop, W
contains all valid predecessor-states of the crash state, each
of which is associated with its set of possible faults.

The second loop (30 – 57) is essentially just an inductive
repetition of the first loop, expanding the graph traversal
backward through the state space and building up paths
that lead to the crash state under the presence of some fault.
First, Algorithm 1 reads the first entry of W (deleting the
entry from the table) containing a state s, a signature ξ, and
a set of possible faults Ps associated with s. It either copies
this entry to the history-table or updates (adding) the set
of possible faults for the existing state s. Next, Algorithm 1
iterates over Ps. Different from the previous loop, here we
have a few more cases to consider. If a state in the pre-image
of s (denoted as s′), under the assumption of a fault p, is
in the initial set of states Q0, then we can safely add it to
the final suspect set F . Otherwise, we have three options:
a) if s′ is already in the history-table, then we can proceed
to the next state in the pre-image (thus, we handle paths
containing cycles); b) if s′ is already in the working-table
but p is not in its set, we add p to P ′

s (i.e., many faults can
explain the same state); c) if s′ is in neither table, then it
needs to be validated and inserted into W (if valid). Once
Algorithm 1 iterates over all faults in Ps, it removes the next
entry in W , (i.e., it iterates at line 31). This loop terminates
only when the working-table is empty. Thus, F contains
only the faults than can lead the chip from an initial state
to the crash state.

Note that Algorithm 1 interleaves off-line software com-
putation with hardware runs exactly as in BackSpace. The
hardware interaction is encapsulated by the routine inser-
tIfValid(). This routine loads the breakpoint circuitry with
the state to be validated, sets a timeout value for each run,
runs the chip, and then dumps the signature of the vali-
dated state. If the breakpoint is hit, the state is validated;
otherwise, the timeout will occur. This routine also handles
non-determinism as in the original BackSpace framework:
the parameter ntrials specifies the number of times the chip
must be run before giving up on validating a state. If the
chip does not reach the state in any of the ntrials run, only
then do we conclude that the state cannot be reached by the
chip. Setting ntrials large enough makes the probability of
erroneously not validating a state arbitrarily small.

The termination described in Algorithm 1 is simplified by
assuming we can continue until we reach the initial states,
but we can easily generalize it. As described, the only ter-
mination condition is when W becomes empty, which can
only happen if the algorithm reaches the initial set of states
(from which point the preImage() returns the empty set).
State traversal to any state in Q0 may take too much time
or memory, e.g., if the crash state is too deep from the initial
set of states. But it is not difficult to see that if comput-
ing a small prefix of the crash state is sufficient to eliminate
a large number of faults, then we can simply augment the
condition at line 30 to limit to some bounded number of
loop iterations. A similar argument could limit to comput-
ing a pre-determined number of faults. The last condition
not explored in this simplified presentation of the algorithm
is the case when the pre-image computation of some state
s (lines 17 and 39) grows too big. In this case, we can ter-
minate the computation for s and (conservatively) add its
fault to the suspect-set.

To complete the presentation of Algorithm 1, we need to
prove its correctness. We start by introducing some def-
initions. Then, we formally state and prove the correct-
ness properties of the algorithm (under the assumption that

Algorithm 1 Suspect-Fault-Set Lazy Computation

1: input C : circuit-under-debug
2: input Q0 : set of initial states
3: input cs : crash state
4: input ξcs : signature of predecessor state of crash state
5: input G : set of all possible faults (as described in

Sec. 2)
6: input timeout, ntrials: parameters to isV alid()
7: output F : final suspect-fault set
8: /* Global variables and structures */
9: s, s′ : states
10: ξ, ξ′ : signatures of the predecessor-state of s and s′

11: Ps : set of possible faults associated with state s
12: W : working-table, where each entry is a 3-tuple

(s, ξ, Ps)
13: H : history-table, a non-destructive version of table W
14: F := ∅; P,W,H := NULL
15: for each fault g in G do
16: /* C′ is the faulty version of C with fault g */
17: if (I := preImage(cs, ξcs, C

′) 6= ∅) then
18: for each state s′ in I do
19: if isStateMember(W , s′) then
20: /* add g to s′ possible-fault set */
21: UpdateFaultSetOfState(W , s′, g)
22: else
23: /* validate s′ on-chip assuming g and
24: insert new entry into working-table W */
25: insertIfValid(W , s′, g, timeout, ntrials)
26: end if
27: end for
28: end if
29: end for
30: while (W 6= ∅) do
31: (s, ξ, Ps) = Delete(W [0]) //destructive read
32: /* Manage history-table H */
33: if isStateMember(H , s) then
34: UpdateFaultSetOfState(H , s, Ps)))
35: else Insert(H , (s, ξ, Ps))
36: end if
37: for each fault p in Ps do
38: /* C′ is the faulty version C with fault p */
39: for each state s′ in preImage(s, ξ, C′) do
40: if s′ ∈ Q0 then
41: F := F ∪ {p}
42: else if isFaultMember(H , s′, p) then
43: /*i.e., (s′, p) has already been tested*/
44: continue
45: else if isStateMember(W , s′) then
46: if !isFaultMember(W , s′, p)) then
47: /* append p to s′ possible-fault set */
48: UpdateFaultSetOfState(W , s′, p)
49: end if
50: else
51: /* validate s′ on-chip assuming p and
52: insert new entry into working-table W */
53: insertIfValid(W , s′, p, timeout, ntrials)
54: end if
55: end for
56: end for
57: end while
58: return (F)

ntrials is large enough that insertIfValid() does not fail to
validate any valid state).

Definition 1. Given a physical chip and a circuit model
C̄ with the same state bits/flops, a “plausible path” is a finite
sequence of states such that every state in the sequence is
reachable on the physical chip, each pair of successive states
in this sequence is a legal transition in C̄, and the sequence
ends at the crash state of C̄.

The intuition behind this definition is to capture the best
approximation to what we really want, given the information
we can gather. What we would really like to compute is an
actual execution path of the faulty physical chip that led
to the observed crash, but this is impossible, since we do
not have full trace-visibility of the chip. A plausible path is
an execution path of the model of the faulty chip, with the
extra information that every state on this path was really
reachable on the physical chip. It is possible for a plausible
path to connect states of the physical chip together in a
way that is possible in the model, but not in the silicon,
so plausible paths are an imperfect approximation. But the
important point is that every real execution of a faulty chip
will also be a plausible path, so considering all plausible
paths guarantees not missing possible faults.

Definition 2. An “initial plausible path” is a plausible
path that starts from the initial state of C̄.

This definition restricts Defn. 1 to paths that start at an
initial state, giving a complete execution from reset to the
crash state, assuming some fault. And every state on this
execution has been validated as a real state on the silicon.

Theorem 1. For every fault g ∈ F in Algorithm 1, the
computed paths are initial plausible paths.

Proof: No triple is added to F until the algorithm reaches
an initial state, so any path starting from that state is ob-
viously initial. Algorithm 1 maintains invariants that 1) for
every state and associated fault, there is an execution path
from that state through only states in H to the crash state,
assuming that fault; and 2) every state is validated. These
two invariants are maintained because the only way for a
state/fault to be added to W or H requires that they first
be in the pre-image of a state in W or H , hence guaran-
teeing the first invariant; and that they also be validated,
hence guaranteeing the second invariant. These two prop-
erties combine to show the existence of the plausible path.

Theorem 2. For every fault g ∈ G, if there exists an
initial plausible path in C̄, then g ∈ F.

Proof: Since there exists an initial plausible path, as we
start from the crash state in the first loop of Algorithm 1,
we will find the preceding state of the initial plausible path
in the pre-image, under fault g. This will validate (because
of our assumption that ntrials is sufficiently large), so that
triple will be added to W and H . Subsequently, in the sec-
ond loop, whenever we encounter a state on the initial plau-
sible path, we will find the preceding state of the path in the
pre-image, under fault g, and validate it. This will proceed
until we reach the initial states, whereupon g will be added
to F .

The two theorems state what is promised by our algo-
rithm. Theorem 1 means that every fault returned should
be considered seriously by the debug team, because under
the assumption of that fault, there is a possible execution
from initial state to the crash state, in which every state

Table 1: Suspect Set Computation Results
Circuit No. of Initial Final Runtime Suspect
Name Flops No. of No. of Set

Faults Faults reduction
(%)

b01 5 146 10 1m 37s 93
b02 4 70 3 32s 95
b03 30 382 3 4m 42s 99
b04 66 1406 1 54m 40s 99
b05 34 4140 4 34m 41s 99
b06 9 146 39 2m 51s 74
b07 49 886 173 75m 7s 80
b08 21 484 2 66m 17s 99
b09 28 403 3 27m 47s 99
b10 17 426 9 17m 53s 97
b12 121 2802 4 640m 25s 99
AVG 94

on that execution has been validated on the silicon. Theo-
rem 2 means that our algorithm will never miss a fault from
G that could have explained the bug (assuming ntrials is
sufficiently large).

4. EXPERIMENTAL RESULTS
In this section, we present experimental results of our pro-

posed flow for identifying single-stuck-at faults during post-
silicon debug. Experiments were conducted on an Intel i5,
3.1 GHz workstation with 16GB of RAM. We report ex-
periments on eleven ITC’99 benchmark circuits. We imple-
mented Algorithm 1 based on the open-source BackSpace
v0.3 codebase.2 To interface with BackSpace, we had to
synthesize these benchmarks using BackSpace’s cell library.
We used Synopsys Design Compiler Version Y-2006.06-SP2.
Also, we used Synopsys VCS Version A-2008.09 as our logic
simulator.

Recall that BackSpace uses a signature to reduce the size
of pre-images. Choosing a good signature depends on knowl-
edge of the circuit [3] or an advanced algorithm for signal
selection [7], but this is orthogonal to our work. Thus, for
simplicity, we randomly chose signatures. Moreover, the sig-
nature size was set for each circuit such that the number of
possible predecessor states never exceeded 1024.

After synthesizing each benchmark, we randomly inserted
either a s-a-0 or a s-a-1 in the gate-level netlist. For each
experiment, we simulated the gate-level netlist with the ac-
companying test bench for an arbitrary number of cycles;
randomly selected a crash state; and then we started Algo-
rithm 1.

Table 1 shows the results of all our experiments. The
first three columns provides details of the circuits. The next
two columns show the size of the final suspect set and the
runtime of our algorithm. We also report the percentage
reduction in the suspect set size (column 6). Note that in
the majority of the benchmark circuits the final suspect fault
set is extremely small. Thus, this set can now be efficiently
handled by ATPG for identifying the actual fault on the
chip.

Figure 2 shows the reduction in the set of faults using
Algorithm 1 for each circuit. The x-axis represents the clock
cycles, starting from the crash state (x = 0) to the initial
state. (Note that we simulated each circuit for 100 clock
cycles before picking a crash state, but due to the presence of
loops, some circuits have initial plausible paths of less than
100 states. For example, the initial plausible path for b06
has 39 states. Thus, for some of the circuits, Algorithm 1

2http://www.cs.ubc.ca/~depaulfm/BackSpace

 5
 10

 25

 50

 100

 0 25 50 75 100

%
 o

f f
au

lts
 p

os
si

bl
e

Clock Cycles

b01
b02
b03
b04
b05
b06
b07
b08
b09
b10
b12

Figure 2: Reduction in possible fault list while trac-
ing from crash state to initial State

Table 2: Suspect-Fault Set Reduction
Circuit |F | = 25% of |G| % reduction in
Name 10 clock cycles
b01 2 93
b02 2 95
b03 3 99
b04 7 99
b05 3 99
b06 >100 74
b07 11 74
b08 6 99
b09 5 86
b10 10 97
b12 38 50

computes the shorter path and terminates well below 100
clock cycles.) Notice that we can negate a significant number
of faults within the first few iterations. Thus, when tracing
to the initial state is impractical, one can stop Algorithm 1
after a few iterations.

Table 2 shows the results where the algorithm terminates
prematurely before reaching the initial state. Column 2
shows the minimum number of cycles to be backspaced such
that the suspect set size is below 25% of the total faults. In
column 3 we show the percentage of fault reduction when
the size of the plausible path reaches 10, i.e. maximum num-
ber of clock cycles to be iterated is 10. Results show that it
is not necessary to trace back to the initial state, in case the
crash happens too deep from the initial state. This would
lead to considerable reduction in runtime without compro-
mising the effectiveness of our approach.

The plausible path can be considered as the test vector
in our problem. Unlike ATPG, we do not have any con-
trol over these vectors. However, results show that our lazy
computation of the suspect set of faults is very efficient in
reducing the number of suspect faults. The key insight is
that we can use actual “buggy” traces, that lead the chip to
a crash state, to prune out suspect faults (instead of using
the very expensive, exhaustive methods of automatic test
pattern generation).

5. CONCLUSION
We have presented a novel framework to aid debugging

deep electrical faults in silicon. Assuming that we can model
the faults, our method computes a small set of possible sus-
pects that could explain the silicon’s malfunction. In addi-
tion, the method also reconstructs, for each fault, plausible
paths that lead the silicon to the actual bug. Key to our
approach is the laziness of this computation. We avoid the
expensive task of computing very long test-vectors for each
and every fault. Our experiments show that our method is
effective with much less effort. We are able to reduce the
suspect set of faults by an average of 94%, and we show
that we need only a few cycles from the buggy state to elim-
inate the majority of the possible faults. The direct line
of future work is to target larger designs, experiment with
more general fault models, and investigate efficient methods
for reducing the runtime of the algorithm by using on-chip
circuitry, such as trace buffers.

6. REFERENCES
[1] ARM. Embedded Trace Macrocell Architecture

Specification, volume 20. July 2007. Ref: IHI0014O.
[2] P. Dahlgren, P. Dickinson, and I. Parulkar. Latch

divergency in microprocessor failure analysis. In
ITC’03, pages 755–763, 2003.

[3] F. M. De Paula, M. Gort, A. J. Hu, S. J. E. Wilton,
and J. Yang. Backspace: formal analysis for
post-silicon debug. In FMCAD ’08, pages 5:1–5:10.
IEEE Press, 2008.

[4] F. M. de Paula, A. Nahir, Z. Nevo, A. Orni, and A. J.
Hu. Tab-backspace: unlimited-length trace buffers
with zero additional on-chip overhead. In DAC ’11,
pages 411–416. ACM, 2011.

[5] R. Desplats, F. Beaudoin, P. Perdu, N. Nataraj,
T. Lundquist, and K. Shah. Fault localization using
time resolved photon emission and stil waveforms. In
ITC’03. IEEE Computer Society, 2003.

[6] Y.-C. Hsu, F. Tsai, W. Jong, and Y.-T. Chang.
Visibility enhancement for silicon debug. In DAC ’06,
pages 13–18. ACM, 2006.

[7] H. F. Ko and N. Nicolici. Automated trace signals
identification and state restoration for improving
observability in post-silicon validation. In DATE ’08,
pages 1298–1303. ACM, 2008.

[8] S.-B. Park and S. Mitra. IFRA: Instruction footprint
recording and analysis for post-silicon bug localization
in processors. In Design Automation Conference.
ACM, 2008.

[9] A. Smith, A. G. Veneris, M. F. Ali, and A. Viglas.
Fault diagnosis and logic debugging using boolean
satisfiability. IEEE Trans. on CAD of Integrated
Circuits and Systems, pages 1606–1621, 2005.

[10] V. C. Vimjam, E. Amyeen, R. Guo, S. Venkataraman,
M. S. Hsiao, and K. Yang. Using scan-dump values to
improve functional-diagnosis methodology. In VTS’07,
pages 231–238, 2007.

[11] M. J. Y. Williams and J. B. Angell. Enhancing
Testability of Large-Scale Integrated Circuits via Test
Points and Additional Logic. IEEE Transactions on
Computers, C-22(1):46–60, January 1973.

[12] C.-C. Yen, T. Lin, H. Lin, K. Yang, T. Liu, and Y.-C.
Hsu. Diagnosing silicon failures based on functional
test patterns. In MTV ’06, pages 94–98. IEEE
Computer Society, 2006.

[13] L. Zhang, I. Ghosh, and M. Hsiao. Efficient sequential
atpg for functional rtl circuits. In ITC’03, pages
290–298, 2003.

