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Abstract—The conflicting yet increasing demand for high
performance and low power in multi-functional chips has pushed
techniques for power reduction to the forefront of VLSI design.
Although recent developments have automated most of the low
power implementations, designers often manually modify the
circuit in order to achieve further power savings. This human
intervention is often paved with many errors that are bound to
typical logic functional failures. Debugging these errors can be
a resource intensive process that requires considerable manual
effort. This discourages engineers and achieving power savings
at the micro level of the design sometimes remains unrealized.
This paper proposes a novel debugging methodology to rectify
erroneous clock-gating implementations. With the use of Partial
Max-SAT, the method localizes and rectifies the design error
introduced in the circuit during a clock-gating implementation.
The net effect of the proposed methodology leads to shorter debug
time ensuring additional power savings. Extensive experiments
on benchmark circuits confirm the effectiveness of the approach.

Index Terms—Debugging, Design Errors, Low Power design,
Clock Gating, Stability Condition, Max-SAT

I. INTRODUCTION

As low-power implementation is ubiquitous in modern VLSI chip
design, designers are under immense pressure to adopt aggressive
power-saving techniques. Although progress has been made in au-
tomating such implementations, significant manual effort is still
required to realize savings. Due to inherent design complexity and
the human factor, power-saving methods can introduce design errors.
When such errors occur, debugging the design to identify the root
cause of failure is an overwhelming and time-consuming process.
Consequently, designers often get discouraged and fail to maximize
power-savings.

Clock gating [1] is a circuit transformation where the clock input
of a register no longer latches in new value but instead holds its
current value. This enables power savings as unnecessary switching
of gates can be avoided. The enable/control signal to stop the clock
is computed in two phases. First, coarse-grained clock-gating is
implemented by identifying the idle condition for major functional
unit(s) of the design. Next, fine-grained clock-gating is inserted in
register(s) by identifying idle conditions that are not visible at the
architectural level.

For any register in the circuit, fine-grained clock-gating takes place
under the following two situations: 1) the output of the register is
not observed at the primary outputs, also known as an Observability
Don’t Care (ODC) [2] condition, or 2) the output of the register
retains the same logic value for two or more consecutive clock cycles,
a situation widely known as a Stability condition (STC) [3]. ODC
is a well-studied combinational technique, studied extensively and
automatically extracted from steering logic such as multiplexers, tri-
state buffers and enable states [2]. In contrast, STC is a sequential
technique that must be extracted from the finite state machine of
the circuit and thus is much more challenging. Moreover, computing
the exact STC is a resource intensive process [3]. Although [4]–[7]
attempts to find these conditions automatically in any design, it is
much easier for designers, having a detailed understanding of the
circuit, to extract the STC and implement it manually for a particular
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register. Evidently, this process is susceptible to design errors. For
this reason, in the remainder of this paper, we focus on debugging
fine-grained clock-gating under STC.

STC is implemented by replacing the clock input of the gated
register(s) by a new enable signal. The logic used to realize this
enable is termed as clock-gating cone (CGC). During this process,
it is often the case that existing combinational logic must also be
modified to achieve the power saving transformation. Functional
correctness of the clock-gated circuit is ensured by using Sequential
Equivalence Checking (SEC) and/or simulation-based verification
approaches. If the verification step detects the presence of design
error(s), it returns a counter-example such that at least one output of
the clock-gated circuit differs from the expected value for the same
input vector. In such a situation today, the root cause of the failure is
identified and rectified manually. With increasing design complexity
and stringent time-to-market windows, finding such design errors
becomes an arduous task. As such, it is common practice for some of
the clock-gating implementations to be discarded leading to reduced
power savings to what ideally one may be able to achieve.

This work proposes a novel debug strategy for erroneous clock-
gating implementations under fine-grained STC. The first step is a
light weight checking technique for identifying the relative location
of the design error. In this step, the erroneous clock-gated circuit
is transformed to a modified circuit that is used to quickly provide
an insight to the location of the error - namely the CGC and/or the
modified combinational logic. Next, a Partial Max-SAT solver utilizes
this localization by the pre-processing step to iteratively identify the
set of erroneous gates that may be responsible for the logic failure.
Once the set of possible erroneous gates have been identified, a gate-
level rectification methodology is devised to correct the error. As a
result of the above debug and rectification procedures, more power
savings can be revived in the circuit leading to increased power
savings.

Previous work [8], [9] focuses on reducing power in a clock-gated
circuit by allowing problematic/erroneous clock-gating conditions.
In [9] the error effects are canceled out before being observed at
the primary output by injecting new clock-gating conditions. In [8],
problematic clock-gating conditions are merged by approximation
and clustering techniques. As discussed earlier, finding additional
clock-gating is an extremely challenging task and merging clock-
gating is a complex process, requiring deep understanding of the de-
sign. In contrast, our rectification technique refrains from introducing
additional clock-gating conditions as well as merging different clock-
gating logic. It rather fixes the root cause of the design error. The
motivation behind the proposed approach is to retain most or all of
the manual modifications in the design while being able to rectify the
circuit. Experiments on benchmark circuits show that our proposed
method is more robust and the pre-processing step leads to significant
reduction in debug runtime. Moreover, 98% power savings can be
regained by rectifying the erroneous CGC.

The remaining paper is organized as follows. Section II discusses
related work in clock-gating as well as Max-SAT approach for design
debugging. Section III proposes the pre-processing step for error
localization. Section IV presents the Max-SAT formulation for clock-
gating debug followed by the proposed rectification methodology. Ex-
perimental results are presented in Section V followed by conclusion
in Section VI.

II. PRELIMINARIES

Given a sequential circuit C (Ca), the symbols X(Xa), Y (Ya),
and S(Sa) denote the set of primary inputs (PI), primary outputs
(PO), and state elements (flip flops) respectively. The circuit is
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modeled as a directed graph G(V, E), where vertices in V represent
the gates and edges in E represent the connections between the gates.
The source(s) and the sink(s) of the graph are the PI and PO of
the circuit. We say that a path, denoted as P (u  v), exists from
node u to v, u, v ∈ V , when there is a way to propagate a value
at u to v. Let clk denote the primary clock input for circuit C with
single clock domain. For each register, the term clock signal is used
to indicate its dedicated clock input.

Time-frame expansion is a modeling technique for sequential
circuits which replicates (i.e unrolls) the circuit for k time-frames,
such that the current state of each time-frame is connected to the
next state of the previous time-frame. The variable k represents the
number of clock cycles that the circuit has been unrolled. For any
node z (set of nodes Z), the term zt(Zt) represents the corresponding
node (set of nodes) in time-frame t during time-frame expansion. The
behavior of C during the tth clock-cycle is dictated by the transition
relation predicate T (st, st+1, xt, yt), which can be extracted from C
and encoded in Conjunctive Normal Form (CNF).

A. Clock gating

This subsection describes STC and its application in clock-gating
design. As the focus of this work is fine-grained clock-gating under
STC, for the rest of this paper, the term clock-gating is used to
represent fine-grained clock-gating under STC.

Definition 1 A register is said to be stable when its output does not
change for two or more consecutive clock-cycles. i.e qt = qt−1.

Figure 1(a) shows a simple example of a register and its stability
condition. In this example, register R receives a new data whenever
e = 1. Otherwise, when e = 0, the output q of R remains unchanged.
Because q retains its value from the previous time-frame, register R
does not perform any switching. As a result of the stability of q, the
designer can safely turn off the clock signal of R to reduce dynamic
power dissipation.

The clock-gating register using the stability condition from Fig-
ure 1(a) is shown in Figure 1(b). In order to turn off the clock signal
of R, the designer can connect e and clk with an AND gate. As such,
when e = 0, the output of the AND gate stays 0 regardless of the
clk value; hence, no switching activity happens at the clock signal
of R. Note that the output q of R of Figure 1(b) is equal with its
counterpart in Figure 1(a) even when its clock signal is turned off.
In practice, the clock-gating circuitry uses latches to prevent timing
errors such as setup and hold time violations. However, as this work
focuses on functional and not timing errors, we simply assume that
the data signals do not violate setup and hold time requirements. As
a result, these latches play no role in functional debugging and are
simply removed during our analysis.

Figure 2 shows an example of a clock-gated circuit. Conceptually,
there are three components in such a design – namely the existing
state elements, combinational circuitry from the original implemen-
tation before clock-gating is applied and the additional clock-gating
circuitry that computes the new clock signals.

For example in Figure 2, state elements include registers R1 to Rz

where z = |S|. The combinational circuitry is shown at the top and
it computes next states {d1, ..., dz} and PO {y1, ..., ym} from PI
{x1, ..., xn} and current states {q1, ..., qz}. The clock-gating circuitry
is shown underneath and it computes clock signals of all registers
from existing nodes of the combinational circuitry. For a clock-gating
register, a new enable signal is computed and connected with the
clock input clk to create the new clock signal for the register.

B. Partial Max-SAT and Application to Design Debugging
This subsection briefly describes Max-SAT and Partial Max-SAT

as well as their application in design debugging. It also introduces
notation used in the paper.

Given an unsatisfiable CNF instance Φ, the goal of Max-SAT
solver is to return an assignment that maximizes the number of
satisfiable clauses in Φ [10]. This is a well-known NP-Hard problem.
In Partial Max-SAT, the CNF formula Φ is organized as a set of hard
clauses which must be satisfied and a set of soft clauses which may
or may not be satisfied. The set of hard clauses and soft clauses are
denoted as ΦH and ΦS , respectively, i.e Φ = ΦH ∪ ΦS . The goal
of Partial Max-SAT is to find an assignment that satisfies all hard
clauses while maximizing the number of satisfied soft clauses. Recent
advancements in Maximum Satisfiability solvers have demonstrated
promising results in many industrial applications [11]. Next, we
give an overview of design debugging and its Partial Max-SAT
formulation.

Design debugging is a process of localizing the error(s) based on
the failing counter-example trace. Given an erroneous design C, a
counter-example of length k, and an error cardinality N , a debugger
returns all sets of N gates that can be potentially responsible for the
erroneous behavior exhibited by the counter-example. To simplify
our presentation, and without loss of generality, we assume that
N = 1. However, the proposed techniques are still applicable when
N > 1 [12]. In [12], a Partial Max-SAT formulation for design
debugging is proposed. First, the circuit is unrolled k times using
time-frame expansion. The unrolled circuit is then encoded in CNF
using Tseitin transformation [13]. Overall, the debugging problem
can be formulated as a Partial Max-SAT instance as follows:

Debug = (

k̂

t=1

, Ten(st, st+1, xt, yt)) ∧ ΦX(x1, ..., xk)

∧ΦY (y1, ..., yk) ∧ ΦIS(s1) (1)

where ΦX(x1, ..., xk) denotes the input constraints provided by the
counter-example, ΦY (y1, ..., yk) represents the expected outputs and
ΦIS(s1) is the initial state. Note, ΦX , ΦY and ΦIS are the constraints
and thus are hard clauses while Ten represents the soft clauses. As
the circuit is erroneous, it cannot produce the expected output from
the counter-example and therefore Debug is unsatisfiable [14]. For
the instance Debug, a Partial Max-SAT solver returns a maximal
set of satisfied clauses. The complement of such solution presents a
set of clauses whose removal satisfies Debug. Evidently, these sets
of clauses may correspond to the error. As we are only interested
in the complement of the solution of the Partial Max-SAT problem,
the phrase “Max-SAT solution” in the remainder of this paper refers
to the set complement of the Partial Max-SAT solution. Further-
more, [12] proposes many techniques to reduce the complexity of
the overall design debugging Partial Max-SAT instance. One such
technique is to set trusted modules/components of the circuit as hard
clauses in order to prune down the solution space of the instance.
Based on this idea, in the following section, we propose a technique
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to identify trusted (i.e., not erroneous) components in an erroneous
clock-gating circuit.

III. CLOCK GATING DEBUGGING PRE-PROCESSING

Given an erroneous clock-gated circuit C and a counter-example
of length k, potential nodes that are responsible for the observed
erroneous behavior of C are identified first. Moreover, if the po-
tential erroneous node belongs to the clock-gating circuitry, possible
rectifications are derived and ranked based on the power saving level.

The overall flow consists of two phases: pre-processing and
debugging. The pre-processing step aims at identifying the erroneous
component(s) where the erroneous gate is located. Once the erroneous
components are identified, the other components can be set as trusted.
It must be noted that the greater the number of trusted components
in a design, the easier is the debugging step. The trusted components
are encoded as hard clauses in the Partial Max-SAT instance and each
solution potentially corresponds to the erroneous gate.

In general, the pre-processing step aims at simplifying the problem
by increasing the number of hard clauses. This technique, while does
not pose significant overhead, can help in reducing the complexity
of the problem considerably. We first formally define different com-
ponents in a clock-gating design. Then a simulation based method is
presented to identify potential erroneous components.

A. Definitions

In this subsection, the components of a clock-gating design are
formally defined.

Definition 2 A node l is called a clock-gating node if every path
from l to a primary output contains at least one clock signal. A
clock-gating node can be formally expressed as

l ∈ CLK ⇔ ∀P (l y) (∃p, p ∈ CLK ∧ p ∈ P (l y))

By default, all clock signals are clock-gating nodes. The set of all
clock-gating nodes is denoted as CLK.

For example, e1 in Figure 2 is a clock-gating node since every path
from e1 to a primary output includes the clock signal of R1. By
definition, the clock signal of Rz is also a clock-gating node although
Rz is not clock-gated.

Definition 3 A node l is called a combinational node if there exists
a path from l to a primary output node that does not contain a clock-
gating node. This can be formally expressed as

l ∈ COM ⇔ ∃P (l y) (∀p ∈ P (l y), p /∈ CLK)

By default, all output nodes are combinational nodes. The set of all
combinational nodes is denoted as COM .

The following lemma is a direct implication from combinational node
definition.

Lemma 1 If node l is a combinational node, at least one fanout of
l is not a clock-gating node.

Proof: This is trivial since every path from l to a primary output
has to pass through one of the fanouts of l. Therefore, if all fanouts
of l are clock-gating nodes then every path from l consists at least
one clock-gating node. As a result, l cannot be a combinational node
if all of its fanouts are clock-gating nodes.

From the above definitions, it is trivial to observe that CLK ∩
COM = ∅. In Figure 2, CLK contains all the nodes in the clock-
gating circuitry including enable signals (e.g, e1) the clock input
clk and all the clock signals of all registers. COM consists of all
the nodes in the combinational circuitry, including all the inputs
x1, ..., xn, outputs y1, ..., ym and register data nodes d1, ..., dz . As
a result of this partitioning, state elements become the remaining
component in the circuit. As mentioned earlier, latches are removed
from the design and hence, state elements are simple registers.

B. Erroneous Node Identification
This section presents a technique to determine the components in

which the erroneous gate resides. First, we demonstrate scenarios in
which clock-gating circuitry (CLK) can be trusted. Consequently, if
CLK is proved to be trusted, the erroneous component can only be
in the combinational circuitry (COM ).

To verify the functionality of clock-gating nodes, we construct
an enhanced circuit Cen from the erroneous circuit C such that
Cen, while maintaining the functionality of C, does not employ any
clock-gating. Figure 3 illustrates how Cen is constructed from C in
Figure 2. To maintain the functionality of C, Cen retains all registers
R1, ..., Rz and the combinational logic COM from C; however, all
clock signals of Cen are replaced by clk. As a result, none of the
clock signals of Cen are turned off at any clock cycle. Using Cen,
we are able to determine whether a modification in CLK can fix the
erroneous behavior presented by the counter-example. If a change in
CLK cannot fix the erroneous behavior, it can be trusted.

Given a sequential clock-gated circuit C, its enhanced circuit Cen,
and a counter-example length k, the following theorem gives the
condition for which CLK can be trusted.

Theorem 1 Given a counter-example trace of length k, if C and
Cen produce the same states and outputs for all time-frame t less
than or equal to k, then any changes in gates of CLK of C cannot
fix the error in C. This assumption can be formally expressed as:

∀t ≤ k, (St
en = St ∧ Y t

en = Y t) (2)

where Sen, Yen are states and PO of Cen.

Proof: We prove this by contradiction. For the sake of contradic-
tion, let us assume that there exists a circuit Cc, a rectified (correct)
version of C, such that Cc is constructed by modifying gates in
CLK of C. From the construction of Cen and Cc, we know that
the combinational circuitry and state elements of Cen and Cc are the
same as C.

Assume time-frame t is the first time-frame that Cc has a dis-
crepancy from C that eventually propagates to the PO and fixes the
erroneous behavior. Consequently, for time-frame t − 1, the states
and outputs of C, Cen and Cc are the same. Therefore, we have:

(St−1
c = St−1 = St−1

en ) ∧ (Y t−1
c = Y t−1 = Y t−1

en ) (3)

We know that C, Cc, and Cen share the same combinational
circuitry and state elements. Since they have the same inputs from
the counter-example and same previous states (as indicated in (3))
their combinational nodes should have the same values at time-frame
t. As a result, the discrepancy should originate from a clock-gating
node and propagate to one or more primary output(s). According to
Defn. 2, the error must propagate through a clock signal of a register.
Let this register in C be denoted as R.

Since we know the discrepancy propagates to the primary output
through the clock signal of R at time-frame t, the output qt

c of Rc

should be different from its counterparts qt and qt
en. Otherwise, the

difference in the clock signal of R and Rc does not propagate to the
output and cannot fix the erroneous behavior as stated:

(qt
c 6= qt) ∧ (qt

c 6= qt
en) (4)
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Consider the case where clock signal of Rc is turned on. At time-
frame t, Cc should function exactly as Cen. This is because C and
Cen share the same PI from the counter-example, same last states
as indicated in (3) and the same clock signal for Rc and R (both
ON). Therefore, qt

c has the same value as qt
en. This is a contradiction

with (4).
Next, we consider the case where clock signal of Rc is turned

off at time-frame t and R has its clock signal off. Using the same
argument as the previous case, R and Rc have the same output as
well, i.e. (qt

c = qt). Therefore, this also leads to a contradiction.
Now we examine the case in which the clock signal of Rc is off

while the clock signal of R is on. We know that if clock signal of
register Rc is turned off under STC, its output should be the same as
when the clock is turned on (subsection II-A). However, in this case
because of (4), they are different. Therefore, Cc is still erroneous in
this case. This also leads to a contradiction since we assume that Cc

is a rectified version of C.

Corollary 1 Given an erroneous clock-gated circuit C, its enhanced
circuit Cen, and a counter-example trace of length k, if Cen and C
produce the same states and primary outputs for the counter-example
trace, then the erroneous gate g is a combinational node.

Proof: This corollary is a direct implication from Theorem 1.
Theorem 1 proves that if C and Cen produce the same states/outputs,
any change in CLK cannot fix the error in C. Hence, given such
condition, the erroneous node cannot be in the clock-gating circuitry.
Thus, the erroneous node has to be a combinational node.

Algorithm 1 distinguishes clock-gating and combinational nodes
in C. First, all the outputs in C are added to the combinational set
(COM ) (line 1- 4). Next, the circuit is traversed from the PO to PI
to find all combinational nodes (line 5-16). Lemma 1 is used to decide
if a node belongs to COM (line 8-9). After all the combinational
nodes are found, CLK is simply all the other nodes in the circuit C
except state elements.

Algorithm 1 is guaranteed to terminate because each node is visited
only once (line 12) and the number of nodes is finite. Moreover,
as Algorithm 1 visits all nodes except the clock-gating nodes, it
successfully finds all combinational nodes.

Algorithm 2 shows our pre-processing step after CLK and COM
are computed. First, the enhanced circuit Cen is constructed from
from C (line 1) by copying all nodes and edges from C except for
CLK nodes and the edges between them. The clock signals of all
state elements in Cen are replaced by the primary clock input clk.
Next we run simulation on both circuits using the trace from the
counter-example and compare their output and states for all time-
frames t less than or equal to k (line 5-8). If there is a mismatch
between C and Cen, the algorithm returns false indicating that we

Algorithm 1: Clock Gating Nodes Computation
input : C
output: CLK, COM

1 foreach y ∈ Y do
2 Nodeslist.pushback(y);
3 COM .pushback(y);
4 end
5 while Nodeslist is not empty do
6 l← Nodeslist.top();
7 visited← l;
8 if l is not a clock signal then
9 if l is not a state element then

COM .pushback(l);
10 foreach i fanin of l do
11 if i /∈ visited then
12 Nodeslist.pushback(i);
13 end
14 end
15 end
16 end
17 CLK ← allnodes \ (COM ∪ S) ;

Algorithm 2: Clock Gating Debug Pre-processing
input : C, CLK, COM , Trace

1 Cen ← C \ CLK ;
2 clken ← clk ;
3 simulate(Cen, Trace) ;
4 simulate(C, Trace) ;
5 for t = 1 to k do
6 if Y t 6= Y t

en then return false ;
7 if St 6= St

en then return false ;
8 end
9 return true ;

cannot assume anything about the erroneous region. Otherwise, if all
the states and outputs are equal, the algorithm returns true indicating
that the erroneous gate must be a combinational node.

IV. CLOCK GATING DEBUGGING

In this section, the debugging technique using Partial Max-SAT is
presented. The problem is encoded as a Partial Max-SAT instance
Debug as shown in (1). Each solution of the Partial Max-SAT
instance corresponds to a potential erroneous gate in circuit C. If
the potential erroneous gate is in CLK, possible fixes are suggested
based on their power saving.

A. Clock Gating Debugging using Partial Max-SAT
Given an unsatisfiable instance of Debug, the goal is to find sets

of clauses that correspond to potential erroneous gates. Each set is
known as a solution of the Partial Max-SAT instance Debug. Hence,
the overall design debugging problem can be solved by finding all
such solutions. In order to accomplish this, we incrementally call the
Partial Max-SAT solver until all solutions are found. With regards
to preventing duplicate solutions, all solutions found in the previous
iterations are set as hard clauses in the subsequent iterations.

Algorithm 3 outlines our debugging process. Our algorithm takes
in the unsatisfiable instance of Debug, the mapping from CNF
clauses to gates and the error cardinality N . Each window is analyzed
by traversing from the last window to the first one (line 2–13). When a
window is analyzed, all other windows are set to hard clauses (line 5).
In each window, several solutions are found. For each solution, it
is mapped back to a gate in C and stored in the erroneous gates
set, called ERROR (line 9). Next the instance Debug is updated
with new hard clauses which are the previous solution (line 10).
The algorithm stops when no more solution can be found or all the
solutions of the error cardinality N have been discovered (line 7).

Algorithm 3: Clock Gating Fault Localization
input : CNF Debug, mapping M, N , Trace
output: set of erroneous gates ERROR

1 current← h ;
2 repeat
3 for t = 1 to h do
4 if t = current then setSoftClause (window t);
5 else setHardClause (window t);
6 end
7 repeat
8 sol← Max-SAT(Debug) ;
9 ERROR← ERROR ∪ M (sol) ;

10 Debug ← setHardClause (sol) ;
11 until (sol 6= ∅) ∧ (size(M (sol)) <= N );
12 current −− ;
13 until current = 1;

B. Clock Gating Node Rectification
In this subsection we propose a technique that allows us to suggest

rectifications for erroneous clock-gating nodes. First, all the available



fixes for the erroneous clock-gating node are listed. Each fix is
verified to check if it corrects the erroneous behavior exhibited by the
counter-example. Moreover, the fix is verified to ensure that it does
not introduce any new design error. All qualified fixes are short-
listed, and ranked based on their power saving level, estimated using
conventional tools [16]. These fixes are called potential fixes.

Unlike the combinational circuitry, clock-gating circuitry is much
smaller in terms of the number of gates involved and they are
usually added manually by the designer. Due to the nature of clock-
gating circuitry construction, it is evident that in most of the cases
a dictionary-based rectification technique is adequate to rectify the
error. Gates are grouped into sets based on the number of inputs and
outputs. Our verification technique replaces potential erroneous gates
with gates residing in the same set and verifies if it is a good fix.
Thus, in our approach, we simply switch the candidate erroneous gate
using a dictionary-based approach and verify the correctness of the
clock-gating cone containing the erroneous node.

As a fix is derived from the dictionary of gates, it is not guaranteed
to be the appropriate correction for the erroneous node. Therefore, a
post-processing step is required to filter out spurious fixes. First, the
potential fix has to correct the erroneous behavior of C. To ensure
this, we apply the fix to C and simulate it using the counter-example.
If the simulated outputs do not agree with the values from the golden
model, the fix is discarded and the next available fix is examined.
Otherwise, it is examined further to assert that it does not introduce
new errors.

Of course, Sequential Equivalence Checking (SEC) can be used
to ensure with confidence that the fix does not introduce new errors.
However, a full-blown SEC step can be costly and there may be
multiple corrections that must be checked. Since our fixes are only
on clock-gating nodes, we can simply focus on the corresponding
CGC. After the fix is applied, for any arbitrary trace (different from
the counter-example trace), the fixed clock-gating circuitry can:

1) produce the same output as CLK of C.
2) turn on the clock signal while CLK turns it off.
3) turn off the clock signal while CLK turns it on.
Then the following can be deduced for the above three scenarios:

1) Here, as the clock signals are same, no error is introduced.
2) In this case, the clock signal in C is correctly turned off under

STC. Based on Defn. 1 of STC, turning on the clock signal does
not modify any states/outputs. Therefore, no error is introduced.

3) In this case, the clock signal in C is turned on, while the
fixed clock-gating circuitry turns it off. This could alternate the
register value in the fixed circuit compared to C and hence,
potentially introduce new errors.

In order to conservatively ensure that no error is introduced, one
can simply assert that the third scenario, as discussed above, does
not occur. To prevent it, the fixed CLK must not turn off the clock
signal when the clock-gating circuitry in C has it on.

Let us denote Efix as the rectified CGC and E as the erroneous
CGC. The symbols e and efix are used to denote the enable signals
computed by E and Efix, respectively. If E computes more than
one enable signal, we extend our check for each enable signal and
its correspondence in Efix. However, to simplify our presentation
without the loss of generality, let us assume that E only computes
one enable signal e. Our goal is to assure that when e = 1 (ON),
efix 6= 0, i.e efix = 1 (ON). This can be formally expressed as

e = 1 =⇒ efix = 1 (5)

Overall, if Property 5 is satisfied, the fix does not introduce new
errors and hence, it is a potential fix.

Algorithm 4 shows our rectification process for clock-gating cir-
cuitry. After the debugging flow returns all possible erroneous gates,
we only select the gates in CLK for further analysis (line 1). In order
to fix the erroneous gate, we replace it with different available gates
in the dictionary. Each possible fix is verified such that it corrects the
erroneous behavior excited by the counter-example. If the fix passes
the first check, we construct Efix and check if the condition in (5) is
satisfied as well. All qualified fixes are stored in CORRECTION
(line 6). The loop terminates when all the available fixes are tried
(line 3). Next, all potential fixes are ranked based on their power
saving level (line 12) and the fix corresponding to the greatest power
savings is selected as the solution.

Algorithm 4: Clock Gating Node Rectification
input : C, CLK, ERROR, dictionary
output: gates, CORRECTION

1 foreach g ∈ ERROR do
2 if g ∈ CLK then
3 repeat
4 Efix ← Rectify (dictionary, E) ;
5 if Verify (E, Efix) then
6 CORRECTION ← Efix ;
7 end
8 trial++ ;
9 until trial = dictionary.size();

10 end
11 end
12 Rank (CORRECTION ) ;

V. EXPERIMENTAL RESULTS

This section presents the experimental results for the proposed
clock-gating debug framework. The presented technique is imple-
mented on state-of-art Max-SAT solver from [17]. All experiments
are run on an Intel Core i5 3.1 GHz quad-core workstation with
8 GB of RAM; timeout is set at 7200 seconds. Several ISCAS-89
and ITC-99 benchmark circuits are used in our experiments. The
clock-gated version of the circuits is implemented using Synopsys
Design Compiler utilizing the STC condition. The gate level power
consumption was measured using Power Compiler under normal
loading. For each design, debugging instances are generated by
injecting different design errors such as incorrect gate function, wrong
gate input etc., both in the combinational logic as well as in the
clock-gating circuitry. Each circuit is simulated using a test bench.
The simulated output values are compared with the expected output
values of the circuit. As soon as an inconsistency is detected between
the expected and observed values of the circuit, the simulation is
terminated and the trace is recorded. The circuit is then converted into
CNF using the method in [13]. For all experiments, we compare our
debugging methodology with the state-of-the-art presented in [12].
Also we compare the power consumption of the circuit using our
rectification technique with the power consumption of the circuit
when clock-gating implementations are removed.

Table I shows the results of Algorithm 2 where the error resides
in the combinational logic (COM ). The first four columns of Table I
list the instance name, number of gates, number of time frames in
the counter-example trace and the number of solutions found by
Partial Max-SAT. Experiments are conducted with and without a
pre-processing step. The next three columns specify the number of
soft clauses, number of hard clauses and runtime without the pre-
processing step. With pre-processing, the number of hard and soft
clauses is specified in Column 10 Column 11 respectively. The next
two columns report the pre-processing time and the total runtime. As
stated earlier, the pre-processing time overhead is extremely small.
The improvement in the number of hard clauses and the runtime is
stated in Column 12 and 13. With extremely small runtime overhead
for pre-processing step, our overall runtime is improved on-average
by 12% with 15X increase in the number of hard clauses.

Table II shows the results when the error exists in the clock-gating
circuitry (CLK). Column 2 provides the results from Max-SAT, in
terms of number of possible gates that may be fixed to correct the
error. Our methodology tries to rectify the error by modifying the
CGC of the erroneous gate. Of all the rectification solutions, only a
few of them satisfy the clock-gating condition and are listed next. The
next three columns state the effect on power consumption. The power
consumption of the circuits when all the clock-gating conditions are
maximally utilized is stated in Column 4. The next column states the
power consumption of the circuit with the erroneous clock-gating
removed. Obviously the power demand of this circuit is more as
compared to Column 4. Using the proposed rectification technique,
some of the power savings can be reclaimed back and is stated in
Column 6. The overall improvement, in terms of power is mentioned
in the next column. The last column specifies the runtime of the
entire design flow. A TO (MO) entry in the tables is used to refer



TABLE I
PRE PROCESSING RESULTS

Circuit Info w/o Pre-processing w Pre-processing Improvement
Instance # gates # total total # # hard # soft time # hard # soft Pre-pros. time hard runtime
Name cycles solns. clauses clauses (s) clauses clauses time (s) (s) clause(X) (%)
s382 172 15 36 165 11176 3 1570 9771 1 2 9.5 33.3
s298 147 43 21 473 28274 13 9394 19353 1 10 19.8 23
s344 154 225 15 4950 140916 22 30576 115290 2 20 6.1 9
s349 133 39 34 858 22773 9 4344 19287 1 9 5 0

s9234 1125 51 240 3927 247493 467 7787 243633 3 378 1.9 19
s1423 989 77 >238 1848 298915 TO 67503 233260 2 TO 36.5 -
s838 412 17 64 629 27668 TO 10837 17460 1 2135 17.2 ∞
s420 205 1977 >526 41517 1620932 TO 642461 1019988 14 TO 15.4 -
b03 101 27 53 270 17480 35 2306 15444 1 24 8.5 31.4
b04 695 27 43 567 72884 115 2603 70848 1 105 4.5 8.7
b05 1477 9 333 351 41285 164 1019 40617 1 161 2.9 1.8
b07 437 89 165 979 157555 1336 11101 147433 2 1282 11.3 4
b08 141 94 46 1410 62399 127 8538 55271 1 126 6 0.7
b09 171 39 105 156 31408 240 1630 29934 1 230 10.4 4.1
b12 1063 153 726 1989 711695 1665 144236 569448 5 1571 72.5 5.6

to a time-out(memory-out) condition for that experiment and partial
results are presented. On average the rectified circuit can have 98% of
the power savings revived. Thus, the benefit of the proposed method
can be seen in the amount of power savings that would have remained
unrealized otherwise.

TABLE II
CLOCK GATING DEBUG RESULTS

Instance # total # rect. w/o error with improv time
Name solns solns. error removed rect. (%) (s)

(µW) (µW) (µW)
s382 62 3 8.8 13.6 9.0 97.7 10
s298 186 2 4.78 5.5 5.34 89.5 485
s344 30 3 5.8 6.02 5.8 100 17
s349 25 1 5.81 6.0 5.81 100 70
s9234 33 1 69.7 69.9 69.7 100 65
s1423 MO - 38.1 40.7 - - -
s838 261 2 14.1 14.4 14.36 98.1 417
s420 48 3 7.45 8.33 7.46 99.8 88
b03 40 2 12.47 14.99 13.9 89.7 491
b04 27 2 57.03 62.90 57.03 100 55
b05 67 3 9.8 12.4 9.8 100 671
b07 57 3 15.8 18.3 15.8 100 69
b08 190 2 10.07 11.2 10.1 99.7 116
b09 180 3 15.10 15.3 15.16 99.6 66
b12 >124 - 52.07 52.4 - - TO

The scatter plot in Figure 4 shows the power saving of some
of the circuits under different rectification solutions. The top and
bottom end of each line represents the percentage of power savings
with correct clock-gating implementation and with the removal of
erroneous clock-gating respectively as compared to a non clock-
gating design. The scatter points are the power savings achieved with
rectification. Any solution within the range is a valid solution. In
majority of the circuits power savings can be maximized using the
proposed technique.

VI. CONCLUSION

This work proposes a methodology to debug and rectify erroneous
clock-gated designs. The first step is to distinguish the relative
erroneous region. The debugging problem is then encoded as a
Partial Max-SAT instance where each solution corresponds to a
possible candidate of the error. After all the candidates are collected,
qualified rectifications are suggested for ones in the clock-gating
logic. Finally, an extensive set of experiments on standard benchmark
circuits demonstrates the practicality of the presented framework. In
the future, we would like to study the effects of other debugging
formulations on enhancing clock-gating design debugging.
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